三极管及放大电路

合集下载

第4章 三极管及放大电路基础1

第4章 三极管及放大电路基础1

与 的关系
IC IC ICBO I E ICBO IC I B ICBO
(1 ) IC I B ICBO
I CBO IC IB 1 1
IE
N
P
N
I'C ICBO IC
IC I B (1 ) ICBO
共射直流电流放大倍数: IC I B 1.7 42.5 0.04 共射交流电流放大倍数: IC I B 2.5 1.7 40 0.06 0.04 说明: 例:UCE=6V时: 曲线的疏密反映了 的大小; IC(mA ) 160mA 电流放大倍数与工作点的位置有关; I 5 140mA CM 120mA 交、直流的电流放大倍数差别不大, 4 100mA 今后不再区别;
3 80mA
___
4. 集电极最大电流ICM 当值下降到正常值的三分之二时的 集电极电流即为ICM。
IC
2.5 2 1.7
1 0 2 4 6 8
IB 40mA
IB=60mA 20mA IB=0 10 UCE(V)
六、主要参数
5. 集-射极反向击穿电压U(BR)CEO 手册上给出的数值是25C、基极开路时的击穿电压U(BR)CEO。 6. 集电极最大允许功耗PCM 集电极电流IC 流过三极管, 所发出的焦耳热为: PC =ICUCE 导致结温 上升,PC 有限制, PCPCM 7. 频率参数

扩散 I C 复合 I B
IC
C
N
IB
P N
EC
或者 IC≈IB
I E IC I B (1 ) I B
EB
E
IE
二、电流放大原理

三极管及放大电路基础教案

三极管及放大电路基础教案

三极管及放大电路基础教案章节一:三极管概述教学目标:1. 了解三极管的定义、结构和工作原理。

2. 掌握三极管的类型和符号。

教学内容:1. 三极管的定义:三极管是一种半导体器件,具有放大电信号的功能。

2. 三极管的结构:三极管由发射极、基极和集电极组成。

3. 三极管的工作原理:通过基极控制发射极和集电极之间的电流。

4. 三极管的类型:NPN型和PNP型。

5. 三极管的符号:NPN型三极管符号为“N”,PNP型三极管符号为“P”。

教学活动:1. 讲解三极管的定义、结构和工作原理。

2. 展示三极管的实物图和符号图。

3. 引导学生通过实验观察三极管的工作状态。

章节二:放大电路基础教学目标:1. 了解放大电路的定义和作用。

2. 掌握放大电路的基本组成和原理。

教学内容:1. 放大电路的定义:放大电路是一种通过反馈作用放大电信号的电路。

2. 放大电路的作用:放大微弱的信号,使其具有足够的功率驱动负载。

3. 放大电路的基本组成:电源、三极管、输入电阻、输出电阻和反馈电阻。

4. 放大电路的原理:通过三极管的放大作用,实现电信号的放大。

教学活动:1. 讲解放大电路的定义、作用和基本组成。

2. 展示放大电路的原理图和实际电路图。

3. 引导学生通过实验观察放大电路的工作状态。

章节三:三极管的放大特性教学目标:1. 了解三极管的放大特性。

2. 掌握三极管的放大原理。

教学内容:1. 三极管的放大特性:三极管的放大能力与基极电流、集电极电流和发射极电流之间的关系。

2. 三极管的放大原理:通过基极电流的控制,实现发射极和集电极之间电流的放大。

教学活动:1. 讲解三极管的放大特性和放大原理。

2. 分析三极管放大电路的输入和输出特性曲线。

3. 引导学生通过实验观察三极管的放大特性。

章节四:三极管放大电路的设计与应用教学目标:1. 了解三极管放大电路的设计方法。

2. 掌握三极管放大电路的应用。

教学内容:1. 三极管放大电路的设计方法:根据输入和输出信号的要求,选择合适的三极管、电阻等元件,设计合适的电路。

(完整版)三极管及放大电路原理

(完整版)三极管及放大电路原理

测判三极管的口诀三极管的管型及管脚的判别是电子技术初学者的一项基本功,为了帮助读者迅速掌握测判方法,笔者总结出四句口诀:“三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准,动嘴巴。

”下面让我们逐句进行解释吧。

一、三颠倒,找基极大家知道,三极管是含有两个PN结的半导体器件。

根据两个PN结连接方式不同,可以分为NPN型和PNP型两种不同导电类型的三极管,图1是它们的电路符号和等效电路。

测试三极管要使用万用电表的欧姆挡,并选择R×100或R×1k挡位。

图2绘出了万用电表欧姆挡的等效电路。

由图可见,红表笔所连接的是表内电池的负极,黑表笔则连接着表内电池的正极。

假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。

测试的第一步是判断哪个管脚是基极。

这时,我们任取两个电极(如这两个电极为1、2),用万用电表两支表笔颠倒测量它的正、反向电阻,观察表针的偏转角度;接着,再取1、3两个电极和2、3两个电极,分别颠倒测量它们的正、反向电阻,观察表针的偏转角度。

在这三次颠倒测量中,必然有两次测量结果相近:即颠倒测量中表针一次偏转大,一次偏转小;剩下一次必然是颠倒测量前后指针偏转角度都很小,这一次未测的那只管脚就是我们要寻找的基极(参看图1、图2不难理解它的道理)。

二、PN结,定管型找出三极管的基极后,我们就可以根据基极与另外两个电极之间PN结的方向来确定管子的导电类型(图1)。

将万用表的黑表笔接触基极,红表笔接触另外两个电极中的任一电极,若表头指针偏转角度很大,则说明被测三极管为NPN型管;若表头指针偏转角度很小,则被测管即为PNP型。

三、顺箭头,偏转大找出了基极b,另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透电流ICEO的方法确定集电极c和发射极e。

(1) 对于NPN型三极管,穿透电流的测量电路如图3所示。

根据这个原理,用万用电表的黑、红表笔颠倒测量两极间的正、反向电阻Rce和Rec,虽然两次测量中万用表指针偏转角度都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔→c 极→b极→e极→红表笔,电流流向正好与三极管符号中的箭头方向一致(“顺箭头”),所以此时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。

三极管及放大电路基础

三极管及放大电路基础

IC(mA ) 4
3
2
1 36
截止区
100A 80A
IB= 60A 40A 20A 0 9 12 VCE(V)
IC RC
IB B C
VCE
RB
VBE EB
E IE
EC
(1-13)
特点:VBE<死区电压, IB≤0≈0, IC ≤ICEO≈ 0,VCE ≈EC
这时三极管C 、 E端相当于: 一个断开的开关。
过大,温升过高会烧坏三极管。所以要求:
PC =IC VCE≤PCM 6.集-射极反向击穿电压V(BR)CEO ——基极开路时,集电极与发射极之间允许的最大反向 电压。
(1-22)
由三个极限参数可画出三极管的安全工作区
IC ICM
ICVCE=PCM
安全工作区
O
V(BR)CEO
VCE
(1-23)
八、晶体管参数与温度的关系
IC RC
IB B
C VCE
RB
VBE EB
E IE
EC
如何判断是否截止?
若:VBE ≤0(死区电压)
或 VC>VE >VB 三极管可靠截止
IC
VCE
C RC
E
EC
(1-14)
(3) 放大区:IC=IB区域 , 发射结e正偏,集电结c反偏 特点: IC=IB , 且 IC = IB , VCE=EC-IC RC
(1-29)
三极管在电路中的应用
1、放大电路 对三极管放大电路的分析,包括静态分 析和动态分析两部分。 也就是直流方面的分析和交流方面的分 析 直流方面的分析主要是判断三极管是否 有合适的直流工作条件 交流方面的分析主要是判断放大电路是 否能够正常的放大信号。

电子技术课件第二章三极管及基本放大电路

电子技术课件第二章三极管及基本放大电路
10
2.三极管的主要参数
(1)直流参数 反映三极管在直流状态下的特性。
直流电流放大系数hFE 用于表征管子IC与IB的分配比例。
漏电电流。ICBO大的三极管工作的稳定性较差。
集—基反向饱和电流ICBO 它是指三极管发射极开路时,流过集电结的反向
ICBO测量电路
ICEO测量电路
加上一定电压时的集电极电流。ICEO是ICBO的(1+β)倍,所以它受温度影响不可忽视。
性。 A——PNP锗材料,B——NPN锗材料, C——PNP硅材料,D——NPN硅材料。
三极管型号的读识 3 A G 54 A
规格号
第三部分是用拼音字母表示管子的类型。
X——低频小功率管,G ——高频小功率管, D——低频大功率管,A ——高频大功率管。
三极管 NP锗材料 高频小功率 序号
第四部分用数字表示器件的序号。 第五部分用拼音字母表示规格号。
饱和区 当VCE小于VBE时,三极管的发
四、三极管器件手册的使用
三极管的类型非常多,从晶体管手册可以查找到三极管的型号,主要用途、主 要参数和器件外形等,这些技术资料是正确使用三极管的依据。
1.三极管型号
国产三极管的型号由五部分组成。
第一部分是数字“3”,表示三极管。 第二部分是用拼音字母表示管子的材料和极
一、放大电路静态工作点不稳定的原因
(1)温度影响 (2)电源电压波动 (3)元件参数改变
二、分压式偏置放大电路 1.电路组成
Rb1是上偏置电阻,Rb2是下偏置电阻。电源电压经Rb1、Rb2串联分压后为三极 管提供基极电压VBQ。Re起到稳定静态电流的作用,Ce是Re的交流信号旁路电容。
分压式偏置放大电路
放大电路的电压和电流波形

三极管及放大电路

三极管及放大电路
三极管及放大电路
§4.1 晶体三极管
一、 基本结构
NPN型
集电极
C
N
B
P
基极
N
E
集电区: 面积较大
基区:较薄,
掺杂浓度低 B
基极
发射区: 掺杂浓度较高
发射极
PNP型
集电极
C
P N P
E
发射极
C 集电极
集电结
N
B
P
基极
N
发射结
E
发射极
C
C
N
B
P
N
P
B
N
P
E
E
C * 三极管的符号 C
B
B
E NPN型三极管
3、放大电路分析方法
估算法
放大 电路 分析
静态分析
动态分析 计算机仿真
图解法 微变等效法
图解法
一、静态分析
放大电路中各点的电压或电流都是在直流上 附加了小的交流信号。
在令交流信号Vs=0,只考虑直流信号单独作用时
放大电路的工作状态称为静态。 静态分析着重计算静态值(IBQ、ICQ、VCEQ)
和画出静态工作点Q。 估算法:主要用于计算静态值(IBQ、ICQ、VCEQ)
信号越大。其定义为:
Ri
vi ii
(2)、输出电阻Ro
RS
放大电路的 输出对其负 载而言,相 当于信号源, 其内阻就是 输出电阻。
vS ~
RS vs ~
ii
i0
放大
vi 电路
RL vo
ii
Ro i0
vi Ri ~ Avvi RL vo
输出电阻是衡量放大电路带动负载能力大小的参

三极管及放大电路解析

三极管及放大电路解析
基极开路时的击穿电压U(BR) CEO。
6. 集电极最大允许耗散功耗PCM PCM取决于三极管允许的温升,消耗功率过大,温升过高会烧坏三极管。 PC PCM =IC UCE
硅管允许结温约为150C,锗管约为7090C。
由三个极限参数可画出三极管的安全工作区 IC
ICM
ICUCE=PCM
安全工作区 O
ICE 与 IBE 之比称为共发射极电流放大倍数
C IC
ICBO
N
ICE IB
P
EC
B
ICEICICBO IC
RB
IBE
N
IBE IBICBO IB
EB
E IE
IC IB ( 1)IC BO IB ICEO
若IB =0, 则 IC ICE0
集-射极穿透电流, 温度ICEO
忽 IC略 E , O IC 有 IB (常用公式)
(3)通频带 衡量放大电路对不同频率信号的适应能力。
由于电容、电感及放大管PN结的电容效应,使放大电路在信号频率较低和较高时电压放大倍数数值下降, 并产生相移。
下限频率
fbwfHfL
(4)最大不失真输出电压Uom:交流有效值。 (5)最大输出功率Pom和效率η:功率放大电路的主要指标参数
上限频率
二、基本共射极放大电路 1、基本放大电路组成及各元件作用
问题:
将两个电源合二为
1. 两种电源

2. 信号源与放大电路不“共地”
共地,且要使信号驮载在静 态之上
-+ UBEQ
有交流损失
有直流分量
静态时(ui=0),
UBEQURb1
动态时,VCC和uI同时作用于晶体管的输入回 路。
(2)阻容耦合放大电路

第4章三极管及放大电路基础

第4章三极管及放大电路基础
综上所述,三极管的放大作用,主要是依 靠它的发射极电流能够通过基区传输,然后到 达集电极而实现的。
实现这一传输过程的两个条件是:
(1)内部条件:发射区杂质浓度远大于基区 杂质浓度,且基区很薄。
(2)外部条件:发射结正向偏置,集电结反 向偏置。从电位上来看对于NPN型三极管,
UC>UB>UE
4.1.3 BJT的特性曲线
iB/uA
vvio与iBv/iu相vABE位相反6i0B;
iC
vCE
Q`
|-vo|

iC/mA
可以测量出放40大电路的电Q压放大倍数;
可以确定最大不失真输出幅度。
20 IBQ
Q``
iC/mA 交流负载线
Q`
60uA
Q
40uA
ICQ
Q`` 20uA
t
vBE/V
t
共vB射E/V极放大电路
end
4.2 共射极放大电路
电路组成 简化电路及习惯画法 简单工作原理 放大电路的静态和动态 直流通路和交流通路
4.2 共射极放大电路
1. 电路组成
输入回路(基极回路) 输出回路(集电极回路)
3.2 共 射极放
2. 简化电路及习惯画法
大电路
共射极基本放大电路
习惯画法
注意: 判断一个电路能否正常放大一般从以下 几点考虑(1)保证三极管处于放大状态,因 此直流电源及其极性要接正确。直流电源要保 证发射结正偏、集电结反偏。 (2)输入信号Ui能够加在三极管的B、E之间 (RB不能为0),输出信号U0能够从C、E两点 取出(RC不能为0)。 (3)耦合电容作用是通交流阻直流。它的极 性及位置要接正确
4.2 共 射极放
4. 放大电路的静态和动态

三极管BJT及放大电路

三极管BJT及放大电路
I B I BS
三极管处于放大状态。
12
Analog Electronics
《例》由三极管组成的电路如图所示,试判断三极管的工 作状态。 (设三极管的β=100)
《解》由电路看出,发射结处于正向偏 置,由输入回路可得:
IB I BS VEE VBB U BE 8 1 0.7 ( )mA 62A Rb (1 ) Re 2 1011
动态信号 驮载在静 态之上
与iC变化 方向相反
uCE
VCC UCEQ O
饱和失真
uCE
VCC UCEQ
截止失真 要想不失真,就要 输出和输入反相! 在信号的整个周期内 保证晶体管始终工作 在放大区!
22
t
O
t
底部失真
顶部失真
Analog Electronics
四、放大电路的组成原则
• 静态工作点合适:合适的直流电源、合适的电 路参数。 • 动态信号能够作用于晶体管的输入回路,在负 载上能够获得放大了的动态信号。 • 对实用放大电路的要求:共地、直流电源种类 尽可能少、负载上无直流分量。
Analog Electronics
4.1 晶体管(BJT)
一、晶体管的结构和符号 二、晶体管的放大原理 三、晶体管的共射输入特性和输出特性 四、温度对晶体管特性的影响 五、主要参数
2
Analog Electronics
4. 1 .1 半导体三极管结构和工作原理
半导体三极管的结构示意图如图所示。它有两种类 集电极,用C或c 发射极, 用E或 e PNP型。 表示(Collector)。 型:NPN 型和 集电区 发射区 表示(Emitter );
25
Analog Electronics

三极管及其放大电路

三极管及其放大电路

第2章 半导体三极管及其基本放大电路
2.1.3 .BJT的特性曲线
BJT的特性曲线是指各电极电压与电流之间 的关系曲线,它是BJT内部载流子运动的外部 表现。
工程上最常用的是BJT的输入特性和输出特 性曲线。
第2章 半导体三极管及其基本放大电路
以共射放大电路为例:
输入特性:iBf vBEvCE 常 数 输出特性: iCf vCEiB常数
第2章 半导体三极管及其基本放大电路
输出特性曲线可以划分为三个区域: 饱和区——iC受vCE控制的区域,该区域内vCE的 数值较小。此时Je正偏,Jc正偏
iC /mA
25℃
=80μA =60μA =40μA
=20μA
vCE /V
第2章 半导体三极管及其基本放大电路
饱和区——iC受vCE显著控制的区域,该区域内vCE的数值较 小。此时Je正偏,Jc正偏。
电压增益2= 0lgAV dB 电流增益2= 0lgAI dB
由于功率与电压(或电流)的平方成比例, 因此功率增益表示为:
功率增益=10lgAP
【 AP
Po 】 Pi
第2章 半导体三极管及其基本放大电路
2.2.2
+
VS
-
R

i
Vi I i
输入电阻Ri
I i
Io
+
+
Rs Vi
放大电路 Ri (放大器)
2.3 共射基本放大电路
共射基本放大电路组成
放大的外部条件
输入回 路
输出回 路
两个回路 正确的直流偏置
ui为小信号 ui和VBB串接 RB为基极偏置电阻
RC为集电极偏置电

第2章 半导体三极管及其基本放大电路

三极管_放大电路_原理

三极管_放大电路_原理

三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。

分成NPN和PNP 两种。

我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。

一、电流放大下面的分析仅对于NPN型硅三极管。

如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流 Ic。

这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。

三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。

如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic 很大的变化。

如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式 U=R*I 可以算得,这电阻上电压就会发生很大的变化。

我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。

二、偏置电路三极管在实际的放大电路中使用时,还需要加合适的偏置电路。

这有几个原因。

首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。

当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。

但实际中要放大的信号往往远比 0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。

如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。

晶体三极管及基本放大电路

晶体三极管及基本放大电路
晶体三极管及基本 放大电路
目录
• 晶体三极管简介 • 基本放大电路 • 晶体三极管在基本放大电路中的应用 • 晶体三极管放大电路的性能指标 • 晶体三极管放大电路的应用 • 晶体三极管放大电路的设计与制作
01
CATALOGUE
晶体三极管简介
晶体三极管的基本结构
01
02
03
三个电极
集电极、基极和发射极, 是晶体三极管的主要组成 部分。
THANKS
感谢观看
总结词
通频带和最高频率响应是衡量放大电路 对不同频率信号的放大能力的参数。
VS
详细描述
通频带表示放大电路能够正常工作的频率 范围,其宽度由晶体三极管的截止频率和 放大倍数决定。最高频率响应表示放大电 路能够处理的最高频率信号,其大小由晶 体三极管的截止频率决定。通频带和最高 频率响应是晶体三极管放大电路的重要性 能指标,决定了电路的应用范围和性能表 现。
05
CATALOGUE
晶体三极管放大电路的应用
在音频信号处理中的应用
音频信号放大
晶体三极管放大电路可以用于放 大音频信号,如麦克风、扬声器 等设备中的信号放大。
音频效果处理
在音频信号处理中,晶体三极管 放大电路可以用于实现各种音效 效果,如失真、压缩、均衡等。
音频功率放大
在音响系统中,晶体三极管放大 电路可以作为功率放大器使用, 将音频信号放大到足够的功率以 驱动扬声器发声。
共发射极放大电路
总结词
共发射极放大电路是晶体三极管最常用的放大电路,具有电压和电流放大作用。
详细描述
共发射极放大电路由晶体三极管、输入信号源、输出负载和偏置电路组成。输入信号加在 基极和发射极之间,通过晶体三极管的放大作用,将信号电压或电流放大后,从集电极和 发射极之间输出。

3_三极管及放大电路基础

3_三极管及放大电路基础
(正偏),集电结加反向电压 (反偏)。如图3.2.8所示,电
VBB
e
位关系应为VC>VB>VE。
4. 共射极基本放大电路
(3)放大电路中电位的关系
PNP型三极管放大工作时,其电源电压VCC 极性与NPN型管相反,这时,管子三个电极的电 流方向也与NPN型管电流方向相反,电位关系则 为VE>VB>VC。
截止区:发射结反偏,集电结反偏,相当于开关的断开状态。
U BE U ON , I B 0
放大区:发射结正偏,集电结反偏,具有电流放大作用。
I C I B
三极管的前一种状态被广泛应用于信号的放大,后两种状态常被用作电子开关。
4. 共射极基本放大电路
(1)电路组成 如图所示
Rcc Rbb C11 c b VT Vcc c2
三极管引脚读取方式
任务实施
三极管器件手册查阅 三极管引脚排列
三极管引脚识读如表所示 对于中小功率塑料三极管:按图使其平面朝向自己,三个引脚朝下放置 从左到右依次为e b c。
三极管引脚读取方式
四、三极管的使用常识
小功率三极管检测 1. 三极管基极和类型判断
如图
点击
当第一根表笔接某电极, 万用表置于R×1k挡。 用万用表的第一根表笔依次 接三极管的一个引脚,而第 二根表笔分别接另两根引脚, 以测量三极管三个电极中每 两个极之间的正、反向电阻 值。 而第二根表笔先后接触另外两个
三极管引脚排列有很多形 式,使用三极管之前应该先熟 半导体三极管也称为晶体 三极管。由于工作时,多数载 流子和少数载流子都参与运行, 因此又叫双极性晶体管,简称 BJT,是现代电子产品中必不可 少的半导体器件。 悉三极管的型号、用途、参数、 外形尺寸以及引脚的排列,以 保证能正确使用三极管。 三极 管的产生使PN结的应用发生了 质的飞跃。它分为双极型和单

三极管及放大电路—放大电路的微变等效电路分析法(电子技术课件)

三极管及放大电路—放大电路的微变等效电路分析法(电子技术课件)

二、放大电路动态指标的估算
1.性能指标估算
共射放大电路微变等效电路
(1)电压放大倍数的估算


AU
UO
.•
Ui


Ui Ib rbe


Uo Ib R'(L R'L RC // RL )


故共射放大电路的电压放大倍数为:

AU
UO
.•
Ui
I b R'L

Ibr be
R'L
rbe


如果不考虑 U i 和 U o各自的相位关系,则上式也可以写成:
AU
UO
.
Ui
I b R'L
Ibr be
R'L
rbe
式中“-”表示输入信号与输出信号相位相反。
空载时电压倍数:
Au
RC rbe
Au Au 说明:放大电路带上负载后放大倍数将降低。
(2)输入电阻ri
(3)输出电阻ro
ro Rc
2.输入电阻ri
放大电路的输入端可以用一个等效交流电阻ri来表示,它定义为:
ri
ui ii

rs
us -
+ ii
ui -
放大电路
ro
ri

uo′ -
+ io
RL
uo

ri
ro
放大器接到信号源上以后,就相当于信号源的负载电阻,ri 越大表示放
大器从信号源索取的电流越小,信号利用率越高。
3.输出电阻ro
一是放大倍尽可能大; 二是输出信号尽可能不失真。 主要技术指标有:放大倍数、输入电阻、输出电阻。

三极管及放大电路

三极管及放大电路
2021-07-31
第2章 三极管及放大电路
例2.1 已知图2.7中各晶体管均为硅管,测得各管脚的电压值分别如图中所示值,试判别各晶体管的 工作状态。
图2.7 例2.1的图
2021-07-31
第2章 三极管及放大电路
解: (1)在图2.7(a),发射结零偏;UCB=-2V<0,集电结反偏,故中,因为UBE=0.7V>0, 发射结正偏;UBC=0.5V>0,集电结正偏,故可判断它工作在饱和区。 (2)在图2.7(b)中,因为UBE=0.7V>0,发射结正偏;UBC= -5.3V<0,集电结反偏, 故可判断它工作在放大区。 (3)在图2.7(c)中,因为UEB=0V可判断它工作在截止区。
2021-07-31
第2章 三极管及放大电路
(3)饱和区。IC随UCE的增大而增大的区域是饱和区。此时发射结正偏,集电结正偏。对NPN型管,当UCE <UBE时,三极管工作于饱和状态。当增加IB使工作点上移到Q1点时,三极管即进入饱和区,此时IB的变化对 IC的影响较小,IC≠IB,其管压降UCE称为饱和压降UCES,一般硅管约为0.3V,锗管约为0.1V,都可近似为0V。 因UCES≈0,C,E极近似于短路,UBE≈0.7V,B,E极也近似于短路,等效电路如图2.6(c)所示。
2021-07-31
第2章 三极管及放大电路
表2.1 实验测试数据
电流
1
2
IB(mA)
0
0.02
IC(mA)
<0.001
0.70
IE(mA)
<0.001
0.72
实验次数
3
4
0.04
0.06
1.50
2.30
1.54
2.36
5 0.08 3.10 3.18
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

VB>VE和VC>VB ,
iCf(vCE)vBE常数IICC只 =与IB,IB有称关为且放大
VCE0.3V, VB>VE和 VB>VC ,
4
iC(mA )

100A
称为饱和
区。
3
80A
60A
2
IB=0,IC=ICEO,
VB< VE和 1
VB<VC,称为 截止区。
40A
20A IB=0 3 6 9 12 vCE(V)
ICBO A
ICBO是集 电结反偏 由少子的 漂移形成 的反向电 流,受温 度的变化 影响。
3. 集-射极反向饱和电流ICEO
集电结反 偏有ICBO
B
ICEO= IBE+ICBO
C
ICBO IBE N
P
ICEO受温度影响 很大,当温度上
升时,ICEO增加 很快,所以IC也 相应增加。三极
管的温度特性较
iC
iB
iB
vBE
t
ui
t t
Q
vCE v0= vCE
vo 放大电路
产生截止 失真
c、 Q点过高:放大电路产生饱和失真
iC
iB
iB
Q
t
vBE
ui
t t
vCE v0= vCE
uo 放大电路
产生饱和 失真
t
思考:
电源电压VCC,电阻RB,RC,温度的变化 对静态工作点的影响如何?
iC
V CC
RC
V CC R 1C
电极电位如何?
C
B
PN N
C
B
NP P
E E
VB、VC、VE大于零 且VC > VB>VE
VB、VC、VE小于零 且-VC >- VB>-VE
总的来说:处于放大区时,NPN型、PNP型两种三极管,
满足 VC > VB >VE
思考2:在同一坐标上绘制NPN型、PNP型三极管的
输出特性曲线
iC2(mA)
6. 集电极最大允许功耗PCM
• 集电极电流IC 流过三极管,
所发出的焦耳
IC ICM
热为:
PC =ICUCE
• 必定导致结温 上升,所以PC 有限制。
PCPCM
安全工作区
ICUCE=PCM
U(BR)CEO
UCE
五、温度对BJT参数及特性的影响
T iC
、 ICEO 、 ICBO
IC
温度上升时, 输出特性曲 线上移
vBE
vO
vI
iB
iB
iC
Q2
IBQ
ICQ
Q
Q1
t
vBE
vI
t
VCEQ vCE
t
t
(2)、运用图解法选择最佳的静态工作点
a、 Q点在直流负载线的中点:可输出的最大不失真信号 iC
iB
iB
Q
t
vBE
uvi
t t
VCC vCE vo v0= vCE
可输出的最 大不失真信 号
b、 Q点过低:放大电路产生截止失真
计算IB
V C C IC RC
Q
直流 负载线
与输出 特性的 交点就 是Q点
直流负载线与 iB=IB的输出特性 的交点就是Q点
IB
iBVCE
VCC
2、图解法的应用 (1)、分析vS造成工作点 RB 在Q点上下移动的原因
iC
RC C2
iB T
+VCC
uS的变化,使vI 、 vBE有一 Rs C1
i微C、小vC的E变变化化,,从iB使而工造作成点iB将、移动vS ~ iC
(一)、 放大的概念、放大器的组成框图
1、放大就是将微弱的变化信号放大成较大的 信号,包括对电压、电流的放大。
2、放大器的一般组成框图:


电压放大
功率放大
负载


放大器
(二)、 放大电路的性能指标
放大电路的性能指标主要包括静态性能指标和 动态性能指标
1、静态性能指标:
主要包括静态值:IBQ、ICQ、VCEQ
I ICBO CE N P N
E IE
从基区扩 散到集电
E区 被C的收电集子,,
形成ICE。
BJT 内部载流子的传输过程:(1)、E区向B区注入电子,形成IE (2)、电子在B区复合,形成IB (3)、 C区收集电子,形成IC
三、 V-I特性曲线及结 论
iB
A
RB
V vBE
iC mA
EC V vCE
(三)、结论
1、三极管工作在三个区域的条件及特点:
(1) 放大区:发射结正偏,集电结反偏。
(2)
即: IC=IB , 且 IC = IB
(2) 饱和区:发射结正偏,集电结正偏。
IB>IC,VCE0.3V C、E间相当于短路
(3) 截止区:发射结反偏,集电结反偏, IB=0 ,
IC=ICEO 0
C、E间相当于开路
___
1. 电流放大倍数
前面的电路中,三极管的发射极是输入输出的 公共点,称为共射接法,相应地还有共基、共 集接法。共射直流电流放大倍数:
___
IC
IB
工作于动态的三极管,真正的信号是叠加在
直流上的交流信号。基极电流的变化量为IB,
相应的集电极电流变化为IC,则交流电流放
大倍数为:
IC IB
2.集-基极反向饱和电流ICBO
uCE
六、常见三极管实物外形
§ 4.2 基本共射极放大电路
一、放大电路的分类
三极管放 大电路有 三种形式
共射放大器 共基放大器 共集放大器
以共射放 大器为例 讲解工作 原理
二、 共射放大电路的基本组成
iC
RB
RC C2
+VCC iC
t
C1
iB
T
Rs
RB
vBE
VCC
vS ~ VB
vI
v0
vS
vI
差。
IBE
N
根据放大关系,
ICBO进入N E
区,形成
由于IBE的存 在,必有电流
IBE。
IBE。
4.集电极最大电流ICM
集电极电流IC上升会导致三极管的值的下降, 当值下降到正常值的三分之二时的集电极电 流即为ICM。
5.集-射极反向击穿电压U(BR)CEO
当集---射极之间的电压UCE超过一定的数值 时,三极管就会被击穿。手册上给出的数值是 25C、基极开路时的击穿电压。
ec
ib
rce很大
c
ib
rce
三极管的c、e间 可等效为一个受 ib 控制的电流源
可认为开路
e 简易等效
e 完全等效
三极管的微变等效电路 ib
三极管及放大电路
§4.1 晶体三极管
一、 基本结构
NPN型
集电极
C
N
B
P
基极
N
E
集电区: 面积较大
基区:较薄,
掺杂浓度低 B
基极
发射区: 掺杂浓度较高
发射极
PNP型
集电极
C
P N P
E
发射极
C 集电极
集电结
N
B
P
基极
N
发射结
E
发射极
C
C
N
B
P
N
P
B
N
P
E
E
C * 三极管的符号 C
B
B
E NPN型三极管
义为:
R0
v0 i0
(3)、放大倍数
a、电压放大倍数Av 、Avs
RS
ii
i0
vS ~
放大
vi 电路
RL vo
Av
v0 vi
RS ii
Ro i0
vs ~
vi Ri ~ Avvi RL vo
Avs
v0 vs
vi vs
• v0 vi
Ri
RS Ri
Av
b、互导放大倍数(互导增益)Ag
RS
ii
i0
vS ~
Q
Q1 幅波动时,可将Q1、
vbe
Q2曲线近似为线段。
e
ib
b
vBE uBE 三极管的b、e间 可等效为电阻rbe
rbe
rbe
200()(1)26(mV)
IEQ(mA)
ቤተ መጻሕፍቲ ባይዱ
e
rbe的量级从几百欧到几千欧。
2、 输出回路的等效(c、e间的等效)
c ic
iC
ib
b
vce
vbe
vCE
三极管的微变 等效电路
从输出特性 可知,三极 管处于放大 区时,iC与vce 无关
解:IB QV R C B C3 1 0 2 00.04m A40A
IC Q IB Q 3 7 .5 0 .0 4 1 .5 m A
V C E Q V C C IC Q R C 1 2 1 .5 4 6 V
二、动态分析
放大电路中各点的电压或电流都是在直流上 附加了小的交流信号。
3、放大电路分析方法
估算法
放大 电路 分析
静态分析
动态分析 计算机仿真
图解法 微变等效法
图解法
一、静态分析
放大电路中各点的电压或电流都是在直流上 附加了小的交流信号。
在令交流信号Vs=0,只考虑直流信号单独作用时
放大电路的工作状态称为静态。 静态分析着重计算静态值(IBQ、ICQ、VCEQ)
相关文档
最新文档