现代数值计算方法习题答案 北京大学出版社 肖筱南

合集下载

数值方法课后习题答案

数值方法课后习题答案

数值方法课后习题答案习题1:插值法给定一组数据点 \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\),使用拉格朗日插值法构造一个多项式 \(P(x)\),使其通过所有给定的数据点。

答案:拉格朗日插值法的多项式 \(P(x)\) 可以表示为:\[ P(x) = \sum_{i=1}^{n} y_i \prod_{\substack{j=1 \\ j \neq i}}^{n} \frac{x - x_j}{x_i - x_j} \]习题2:数值积分使用梯形法则和辛普森法则分别计算定积分 \(\int_{0}^{1} x^2 dx\) 的近似值。

答案:- 梯形法则的近似值:\[ \text{Trapezoidal Rule} \approx \frac{h}{2}(y_0 + 2y_1 +2y_2 + \ldots + y_{n-1}) \]- 辛普森法则的近似值:\[ \text{Simpson's Rule} \approx \frac{h}{3}(y_0 + 4y_1 +2y_2 + 4y_3 + \ldots + y_{n-1}) \]习题3:微分方程数值解考虑常微分方程 \(y' = f(x, y)\),其中 \(f(x, y) = x^2 - y^2\),初始条件 \(y(0) = 1\)。

使用欧拉方法和改进的欧拉方法分别计算\(y(0.1)\) 的近似值。

答案:- 欧拉方法:\[ y_{n+1} = y_n + h \cdot f(x_n, y_n) \]- 改进的欧拉方法:\[ y_{n+1} = y_n + \frac{h}{2} \cdot (f(x_n, y_n) + f(x_{n+1}, y_{n+1})) \]习题4:线性方程组的数值解给定线性方程组 \(Ax = b\),其中 \(A\) 是一个 \(n \times n\)的矩阵,\(b\) 是一个 \(n \times 1\) 的向量。

《数值计算方法》习题答案

《数值计算方法》习题答案

《数值计算方法》课后题答案详解吉 林 大 学第一章 习 题 答 案1. 已知(1)2,(1)1,(2)1f f f −===,求()f x 的Lagrange 插值多项式。

解:由题意知:()01201212001020211012012202121,1,2;2,1,1()()(1)(2)()()6()()(1)(2)()()2()()(1)(1)()()3(1)(2)(1)(2)()2162nj j j x x x y y y x x x x x x l x x x x x x x x x x l x x x x x x x x x x l x x x x x x x x L x y l x ==−=====−−−−==−−−−+−==−−−−−+−==−−−−+−==×+×−∴∑()2(1)(1)131386x x x x +−+×=−+2. 取节点01210,1,,2x x x ===对x y e −=建立Lagrange 型二次插值函数,并估计差。

解11201201210,1,;1,,2x x x y y e y e −−======1)由题意知:则根据二次Lagrange插值公式得:02011201201021012202110.510.520.51()()()()()()()()()()()()()2(1)(0.5)2(0.5)4(1)(224)(43)1x x x x x x x x x x x x L x y y y x x x x x x x x x x x x x x x x e x x e e e x e e x −−−−−−−−−−−−=++−−−−−−=−−+−−−=+−+−−+22)Lagrange 根据余项定理,其误差为(3)2210122()1|()||()||(1)(0.5)|3!61max |(1)(0.5)|,(0,1)6()(1)(0.5),()330.5030.2113()61()0.2113(0.21131)(0.21130.5)0.008026x f R x x e x x x x x x t x x x x t x x x x t x R x ξξωξ−+≤≤==−−≤−−∈′=−−=−+=−==≤××−×−=∴取 并令 可知当时,有极大值3. 已知函数y =在4, 6.25,9x x x ===处的函数值,试通过一个二次插值函数求的近似值,并估计其误差。

《数值计算方法》试题集及答案解析(114)

《数值计算方法》试题集及答案解析(114)

插值多项式为 N2 (x) = 16x + 7x(x −1) 。
∫ ∑ b
n
18、
求积公式
a
f ( x)dx ≈ Ak f ( xk )
k =0
的代数精度以(
高斯型
)求积公式为最高,具
有( 2n +1 )次代数精度。
5
∫ f (x)dx
19、 已知 f (1)=1,f (3)=5,f (5)=-3,用辛普生求积公式求 1
A. 2
B.5
C. 3
D. 4
4、求解线性方程组 Ax=b 的 LU 分解法中,A 须满足的条件是( B )。
A. 对称阵
B. 正定矩阵
C. 任意阵
D. 各阶顺序主子式均不为零
5、舍入误差是( A )产生的误差。
A. 只取有限位数
B.模型准确值与用数值方法求得的准确值
C. 观察与测量
D.数学模型准确值与实际值
D. 简化计算
x 9、用 1+ 3 近似表示 3 1 + x 所产生的误差是( D )误差。
A. 舍入
B. 观测
C. 模型
D. 截断
10、-324.7500 是舍入得到的近似值,它有( C )位有效数字。
A. 5
B. 6
C. 7
D. 8
11、设 f (-1)=1,f (0)=3,f (2)=4,则抛物插值多项式中 x2 的系数为( A )。
A. –0.5
B. 0.5
C. 2
D. -2
12、三点的高斯型求积公式的代数精度为( C )。
A. 3
B. 4
C. 5
D. 2
13、( D )的 3 位有效数字是 0.236×102。

现代数值计算方法—肖筱南

现代数值计算方法—肖筱南

现代数值计算方法习题答案习 题 一1、解:根据绝对误差限不超过末位数的半个单位,相对误差限为绝对误差限除以有效数字本身,有效数字的位数根据有效数字的定义来求.因此49×10-2:E = 0.005; r E = 0.0102; 2位有效数字.0.0490 :E = 0.00005;r E = 0.00102; 3位有效数字. 490.00 :E = 0.005; r E = 0.0000102;5位有效数字. 2、解:722= 3.1428 …… , π = 3.1415 …… , 取它们的相同部分3.14,故有3位有效数字.E = 3.1428 - 3.1415 = 0.0013 ;r E =14.3E = 14.30013.0 = 0.00041. 3、解:101的近似值的首位非0数字1α = 1,因此有 |)(*x E r |)1(10121--⨯⨯=n < = 21× 10-4 , 解之得n > = 5,所以 n = 5 . 4、证:)()(1)()(1)(*11**11**x x x nx E x n x E n n n-=≈--)(11)()(1)()(*****11****x E nx x x n x x x x nx x E x E r nnnn n r =-=-≈=- 5、解:(1)因为=20 4.4721…… ,又=)(*x E |*x x -| = |47.420-| = 0.0021 < 0.01, 所以 =*x 4.47.(2)20的近似值的首位非0数字1α = 4,因此有 |)(*x E r |)1(10421--⨯⨯=n < = 0.01 , 解之得n > = 3 .所以,=*x 4.47. 6、解:设正方形的边长为x ,则其面积为2x y =,由题设知x 的近似值为*x = 10cm .记*y 为y 的近似值,则)(20)(20)(2)(*****x E x x x x x y E =-=-= < = 0.1,所以)(*x E < = 0.005 cm . 7、解:因为)()(*1x x nx x E n n -≈-,所以n x nE x x x n xx E x E r nn nr 01.0)()()(*==-≈=. 8、解:9、证:)()()(**t gtE t t gt S S S E =-≈-=t t E gt t t gt S S S S E r )(22/)()(2**=-≈-= 由上述两式易知,结论. 10、解:代入求解,经过计算可知第(3)个计算结果最好.11、解:基本原则为:因式分解,分母分子有理化、三角函数恒等变形…… (1)通分;(2)分子有理化;(3)三角函数恒等变形.12、解: 因为20=x ,41.1*0=x ,所以|*0x x -| < = δ=⨯-21021 于是有 |*11x x -| = |110110*00+--x x | = 10|*0x x -| < =δ10 |*22x x -| = |110110*11+--x x | = 10|*11x x -| < =δ210 类推有 |*1010x x -| < =810102110⨯=δ 即计算到10x ,其误差限为δ1010,亦即若在0x 处有误差限为δ,则10x 的误差将扩大1010倍,可见这个计算过程是不稳定的.习 题 二1、 解:只用一种方法.(1)方程组的增广矩阵为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----11114423243112 → ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----1010411101110112 → ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---11041001110112→ 31=x , 12=x , 13=x . (2)方程组的增广矩阵为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------017232221413 → ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--247210250413 → ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--147200250413 → 21=x , 12=x , 2/13=x . (3)适用于计算机编程计算.2、 解:第一步:计算U 的第一行,L 的第一列,得611=u 212=u 113=u 114-=u3/1/112121==u a l 6/1/113131==u a l6/1/114141-==u a l第二步:计算U 的第二行,L 的第二列,得3/1012212222=-=u l a u 3/213212323=-=u l a u 3/114212424=-=u l a u 5/1/)(2212313232=-=u u l a l10/1/)(2212414242=-=u u l a l第三步:计算U 的第三行,L 的第三列,得10/37233213313333=--=u l u l a u 10/9243214313434-=--=u l u l a u 37/9/)(33234213414343-=--=u u l u l a l第四步:计算U 的第四行,得370/9553443244214414444-=---=u l u l u l a u从而, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----3101141101421126=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--137/910/16/1015/16/10013/10001⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---370/95500010/910/37003/13/23/1001126由b LY = , 解得Y =(6,-3,23/5,-955/370)T . 由Y UX = , 解得X =(1,-1,1,-1)T .3、(1)解:首先检验系数矩阵的对称正定性,这可以通过计算其各阶顺序主子式是否大于零来判断.11a = 3 > 0, 2223= 2 > 0, 301022123 = 4 > 0,所以系数矩阵是对称正定的.记系数矩阵为A ,则平方根法可按如下三步进行:第一步 分解:A = L L T. 由公式计算出矩阵的各元素:311=l 33221=l 3622=l 3331=l 3632-=l 233=l因此, L =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-23633036332003. 第二步 求解方程组LY = b . 解得Y = (335,36,2)T . 第三步 求解方程组L T X = Y . 解得X =(0,2,1)T .(2)解:首先检验系数矩阵的对称正定性,这可以通过计算其各阶顺序主子式是否大于零来判断.11a = 3 > 0,2223= 2 > 0, 1203022323 = 6 > 0,所以系数矩阵是对称正定的.记系数矩阵为A ,则平方根法可按如下三步进行: 第一步 分解:A = L L T . 由公式计算出矩阵的各元素:311=l 33221=l 3622=l331=l 632-=l 333=l因此, L =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-363036332003 . 第二步 求解方程组LY = b . 解得Y = (335,66-,33)T. 第三步 求解方程组L T X = Y . 解得X = (1,21,31)T . 4、解: 对1=i , 2111==a d ;对2=i , 121-=t , 2121-=l , 252-=d ;对3=i , 131=t , 2732=t ,2131=l , 5732-=l ,5273=d .所以数组A 的形式为: ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=527572102521002A 求解方程组LY = b . 解得Y = (4,7,569)T.求解方程组DL T X = Y . 解得X = (910,97,923)T .5、解:(1)设A = LU = ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1010000000000010010015432l l l l ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡5432106000000000600006006u u u u u计算各元素得: 51=u , 512=l , 1952=u , 1953=l , 19653=u ,65194=l , 652114=u , 211655=l , 2116655=u .求解方程组LY = d . 解得Y = (1,51-,191,651-,211212)T.求解方程组UX = Y . 解得X = (6651509,6651145,665703,665395-,665212)T.(2)设A = LU = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100100132l l ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡32101001u u u 计算各元素得:51=u ,512=l ,5242=u ,2453=l ,241153=u . 求解方程组LY = d . 解得Y = (17,553,24115)T.求解方程组UX = Y . 解得X = (3,2,1)T . 6、证:(1)(2)相同.因为此方程组的系数矩阵为严格对角占优矩阵,所以雅可比迭代法和相应的高斯-赛德尔迭代法都收敛. (1)雅可比迭代公式:7107271)(3)(2)1(1+--=+k k k x x x14141)(3)(1)1(2+--=+k k k x x x329292)(2)(1)1(3+--=+k k k x x x高斯-赛德尔迭代公式:7107271)(3)(2)1(1+--=+k k k x x x14141)(3)1(1)1(2+--=++k k k x x x329292)1(2)1(1)1(3+--=+++k k k x x x(2)雅可比迭代公式:545152)(3)(2)1(1+-=+k k k x x x 525351)(3)(1)1(2++-=+k k k x x x 5115152)(2)(1)1(3++=+k k k x x x 高斯-赛德尔迭代公式:545152)(3)(2)1(1+-=+k k k x x x 525351)(3)1(1)1(2++-=++k k k x x x5115152)1(2)1(1)1(3++=+++k k k x x x 7、(1)证:因为此方程组的系数矩阵为严格对角占优矩阵,所以雅可比迭代法和相应的高斯-赛德尔迭代法都收敛。

数值计算方法试题和答案解析

数值计算方法试题和答案解析

数值计算方法试题和答案解析(总22页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x x k k n k k ( )。

5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f 。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。

数值计算方法

数值计算方法
x⋆ − η ⩽ x ⩽ x⋆ + η or x = x⋆ ± η
14
误差与有效数字
例 用毫米刻度的直尺量一长度为 x 的物体,测得其近似值为 x⋆ = 84mm。 因直尺以 mm 为刻度,其误差不超过 0.5mm,即有
|x − 84| ⩽ 0.5 mm or x = 84 ± 0.5 mm.
15
14
误差与有效数字
定义 : 绝对误差与绝对误差限 设某个量的精确值为 x,其近似值为 x⋆,则称
E(x) = x − x⋆ 为近似值 x⋆ 的绝对误差,简称误差。若存在 η > 0,使得
|E(x)| = |x − x⋆| ⩽ η 则称 η 为近似值 x⋆ 的绝对误差限,简称误差限或精度。 η 越小,表示近似值 x⋆ 的精度越高。
5
研究数值方法的必要性
而对于行列式,可以采用 Laplace 展开定理进行计算: 定理 : Laplace 展开定理 |A| = ai1|Ai1| + ai2|Ai2| + · · · + ain|Ain|, Aij为aij的代数余子式
6
研究数值方法的必要性
实际操作中,该方法的运算量大的惊人,以至于完全不能用于实际计 算。事实上,设 k 阶行列式所需乘法运算的次数为 mk,则
所以,
|E⋆r (x)|
=
|x − x⋆| |x⋆|

1 2
×
10m−n
α1 × 10m−1
=
1 2α1
× 10−(n−1)
反之,由
|x

x⋆|
=
|x⋆|
·
|E⋆r (x)|

(α1
+
1)

数值分析课程介绍中文版

数值分析课程介绍中文版

数值分析课程介绍
课程代码(学校统一编制)
课程名称数值分析
英文名称Numerical Analysis
学分: 2 修读期:大三上学期
授课对象:理工科
课程主任:洪晓英、讲师、硕士
课程简介
《Numerical Analysis》是理工科专业基础选修课。

它主要介绍各种数值方法来解决形式比较复杂的各种数学问题。

通过本课程的学习,使学生了解和掌握这门课程所涉及的各种常用的数值计算公式、数值方法的构造原理及适用范围,并通过本课学到一些现代数学的概念,为今后用计算机去有效地解决实际的科研问题及进入现代数学打下基础。

主要包括:(1)引论
(2)线性方程组的求解
(3)插值法与最小二乘法
(4)数值积分与微分
(5)常微分方程的数值解法
(6)逐次逼近法
实践教学环节(如果有)
学习计算方法的过程中,进行重要的实验(上机)是必不可少的。

通过实验一方面加深对计算方法的理解,另一方面培养学生的解决实际问题的能力。

本课程有实验(上机)的教学安排,内容以教材附录中的上机实习参考题为主,共18学时。

要求学生熟悉至少一门数学软件平台(Mathematica/Matleb/Maple)和至少一种编程语言,能够编程实现几种重要的计算方法,至少做有求解足够规模问题的大作业4-5次。

课程考核
课外作业 10%,上机实验 20%;期末闭卷考试 70%。

指定教材
计算机数值方法,施吉林,高等教育出版社,2005年3月,第2版
参考书目
【1】计算方法,易大义,浙江大学出版社,2002年6月,第2版
【2】现代数值计算方法,肖筱南,北京大学出版社,2003年7月,第1版。

数值计算方法习题答案(第二版)(绪论)

数值计算方法习题答案(第二版)(绪论)

数值分析(p11页)4 试证:对任给初值x 0,0)a >的牛顿迭代公式112(),0,1,2,......k ak k x x x k +=+= 恒成立下列关系式:2112(1)(,0,1,2,....(2)1,2,......kk k x k x x k x k +-=-=≥=证明:(1)(21122k k k k k kx a x x x x +-⎫⎛-=+==⎪ ⎝⎭(2) 取初值00>x ,显然有0>k x ,对任意0≥k ,a a x a x x a x x k k k k k ≥+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛+=+2121216 证明:若k x 有n 位有效数字,则n k x -⨯≤-110218, 而()k k k k k x x x x x 288821821-=-⎪⎪⎭⎫⎝⎛+=-+ nnk k x x 2122110215.22104185.28--+⨯=⨯⨯<-∴>≥ 1k x +∴必有2n 位有效数字。

8 解:此题的相对误差限通常有两种解法. ①根据本章中所给出的定理:(设x 的近似数*x 可表示为m n a a a x 10......021*⨯±=,如果*x 具有l 位有效数字,则其相对误差限为()11**1021--⨯≤-l a x x x ,其中1a 为*x 中第一个非零数)则7.21=x ,有两位有效数字,相对误差限为025.010221111=⨯⨯≤--x x e 71.22=x ,有两位有效数字,相对误差限为025.010221122=⨯⨯≤--x x e 3 2.718x =,有两位有效数字,其相对误差限为:00025.010221333=⨯⨯≤--x e x ②第二种方法直接根据相对误差限的定义式求解 对于7.21=x ,0183.01<-e x∴其相对误差限为00678.07.20183.011≈<-x e x 同理对于71.22=x ,有003063.071.20083.022≈<-x e x 对于718.23=x ,有00012.0718.20003.033≈<-x e x备注:(1)两种方法均可得出相对误差限,但第一种是对于所有具有n 位有效数字的近似数都成立的正确结论,故他对误差限的估计偏大,但计算略简单些;而第二种方法给出较好的误差限估计,但计算稍复杂。

数值计算课后习题答案(全)

数值计算课后习题答案(全)

习 题 一 解 答1.取3.14,3.15,227,355113作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。

分析:求绝对误差的方法是按定义直接计算。

求相对误差的一般方法是先求出绝对误差再按定义式计算。

注意,不应先求相对误差再求绝对误差。

有效数字位数可以根据定义来求,即先由绝对误差确定近似数的绝对误差不超过那一位的半个单位,再确定有效数的末位是哪一位,进一步确定有效数字和有效数位。

有了定理2后,可以根据定理2更规范地解答。

根据定理2,首先要将数值转化为科学记数形式,然后解答。

解:(1)绝对误差:e(x)=π-3.14=3.14159265…-3.14=0.00159…≈0.0016。

相对误差:3()0.0016()0.51103.14r e x e x x -==≈⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.14=0.314×10,m=1。

而π-3.14=3.14159265…-3.14=0.00159…所以│π-3.14│=0.00159…≤0.005=0.5×10-2=21311101022--⨯=⨯所以,3.14作为π的近似值有3个有效数字。

(2)绝对误差:e(x)=π-3.15=3.14159265…-3.14=-0.008407…≈-0.0085。

相对误差:2()0.0085()0.27103.15r e x e x x --==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.15=0.315×10,m=1。

而π-3.15=3.14159265…-3.15=-0.008407…所以│π-3.15│=0.008407……≤0.05=0.5×10-1=11211101022--⨯=⨯所以,3.15作为π的近似值有2个有效数字。

(3)绝对误差:22() 3.14159265 3.1428571430.0012644930.00137e x π=-=-=-≈-相对误差:3()0.0013()0.4110227r e x e x x--==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10, 223.1428571430.3142857143107==⨯,m=1。

现代数值计算方法—肖筱南

现代数值计算方法—肖筱南

现代数值计算方法习题答案习 题 一1、解:根据绝对误差限不超过末位数的半个单位,相对误差限为绝对误差限除以有效数字本身,有效数字的位数根据有效数字的定义来求.因此49×10-2:E = 0.005; r E = 0.0102; 2位有效数字.0.0490 :E = 0.00005;r E = 0.00102; 3位有效数字. 490.00 :E = 0.005; r E = 0.0000102;5位有效数字. 2、解:722= 3.1428 …… , π = 3.1415 …… , 取它们的相同部分3.14,故有3位有效数字.E = 3.1428 - 3.1415 = 0.0013 ;r E =14.3E = 14.30013.0 = 0.00041. 3、解:101的近似值的首位非0数字1α = 1,因此有 |)(*x E r |)1(10121--⨯⨯=n < = 21× 10-4, 解之得n > = 5,所以 n = 5 . 4、证:)()(1)()(1)(*11**11**x x x nx E x n x E n n n-=≈--)(11)()(1)()(*****11****x E nx x x n x x x x nx x E x E r nnnn n r =-=-≈=- 5、解:(1)因为=20 4.4721…… ,又=)(*x E |*x x -| = |47.420-| = 0.0021 < 0.01, 所以 =*x 4.47.(2)20的近似值的首位非0数字1α = 4,因此有 |)(*x E r |)1(10421--⨯⨯=n < = 0.01 , 解之得n > = 3 .所以,=*x 4.47. 6、解:设正方形的边长为x ,则其面积为2x y =,由题设知x 的近似值为*x = 10cm .记*y 为y 的近似值,则)(20)(20)(2)(*****x E x x x x x y E =-=-= < = 0.1,所以)(*x E < = 0.005 cm . 7、解:因为)()(*1x x nx x E n n -≈-,所以n x nE x x x n xx E x E r nn nr 01.0)()()(*==-≈=. 8、解:9、证:)()()(**t gtE t t gt S S S E =-≈-=t t E gt t t gt S S S S E r )(22/)()(2**=-≈-= 由上述两式易知,结论. 10、解:代入求解,经过计算可知第(3)个计算结果最好.11、解:基本原则为:因式分解,分母分子有理化、三角函数恒等变形…… (1)通分;(2)分子有理化;(3)三角函数恒等变形.12、解: 因为20=x ,41.1*0=x ,所以|*00x x -| < = δ=⨯-21021于是有 |*11x x -| = |110110*00+--x x | = 10|*00x x -| < =δ10|*22x x -| = |110110*11+--x x | = 10|*11x x -| < =δ210类推有 |*1010x x -| < =810102110⨯=δ 即计算到10x ,其误差限为δ1010,亦即若在0x 处有误差限为δ,则10x 的误差将扩大1010倍,可见这个计算过程是不稳定的.习 题 二1、 解:只用一种方法.(1)方程组的增广矩阵为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----11114423243112 → ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----1010411101110112 → ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---11041001110112 → 31=x , 12=x , 13=x . (2)方程组的增广矩阵为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------017232221413 → ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--247210250413 → ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--147200250413 → 21=x , 12=x , 2/13=x . (3)适用于计算机编程计算.2、 解:第一步:计算U 的第一行,L 的第一列,得611=u 212=u 113=u 114-=u3/1/112121==u a l 6/1/113131==u a l6/1/114141-==u a l第二步:计算U 的第二行,L 的第二列,得3/1012212222=-=u l a u 3/213212323=-=u l a u 3/114212424=-=u l a u 5/1/)(2212313232=-=u u l a l10/1/)(2212414242=-=u u l a l第三步:计算U 的第三行,L 的第三列,得10/37233213313333=--=u l u l a u 10/9243214313434-=--=u l u l a u 37/9/)(33234213414343-=--=u u l u l a l第四步:计算U 的第四行,得370/9553443244214414444-=---=u l u l u l a u从而, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----3101141101421126=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--137/910/16/1015/16/10013/10001⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---370/95500010/910/37003/13/23/1001126由b LY = , 解得Y =(6,-3,23/5,-955/370)T . 由Y UX = , 解得X =(1,-1,1,-1)T .3、(1)解:首先检验系数矩阵的对称正定性,这可以通过计算其各阶顺序主子式是否大于零来判断.11a = 3 > 0,2223= 2 > 0, 301022123 = 4 > 0,所以系数矩阵是对称正定的.记系数矩阵为A ,则平方根法可按如下三步进行:第一步 分解:A = L L T. 由公式计算出矩阵的各元素:311=l 33221=l 3622=l 3331=l 3632-=l 233=l因此, L =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-23633036332003. 第二步 求解方程组LY = b . 解得Y = (335,36,2)T . 第三步 求解方程组L T X = Y . 解得X =(0,2,1)T .(2)解:首先检验系数矩阵的对称正定性,这可以通过计算其各阶顺序主子式是否大于零来判断.11a = 3 > 0,2223= 2 > 0, 1203022323 = 6 > 0,所以系数矩阵是对称正定的.记系数矩阵为A ,则平方根法可按如下三步进行: 第一步 分解:A = L L T . 由公式计算出矩阵的各元素:311=l 33221=l 3622=l331=l 632-=l 333=l因此, L =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-363036332003 . 第二步 求解方程组LY = b . 解得Y = (335,66-,33)T. 第三步 求解方程组L T X = Y . 解得X = (1,21,31)T . 4、解: 对1=i , 2111==a d ;对2=i , 121-=t , 2121-=l , 252-=d ;对3=i , 131=t , 2732=t ,2131=l , 5732-=l ,5273=d .所以数组A 的形式为: ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=527572102521002A 求解方程组LY = b . 解得Y = (4,7,569)T . 求解方程组DL T X = Y . 解得X = (910,97,923)T .5、解:(1)设A = LU = ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1010000000000010010015432l l l l ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡5432106000000000600006006u u u u u 计算各元素得: 51=u , 512=l , 1952=u , 1953=l , 19653=u , 65194=l , 652114=u , 211655=l , 2116655=u . 求解方程组LY = d . 解得Y = (1,51-,191,651-,211212)T.求解方程组UX = Y . 解得X = (6651509,6651145,665703,665395-,665212)T.(2)设A = LU = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100100132l l ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡32101001u u u 计算各元素得:51=u ,512=l ,5242=u ,2453=l ,241153=u . 求解方程组LY = d . 解得Y = (17,553,24115)T.求解方程组UX = Y . 解得X = (3,2,1)T . 6、证:(1)(2)相同.因为此方程组的系数矩阵为严格对角占优矩阵,所以雅可比迭代法和相应的高斯-赛德尔迭代法都收敛. (1)雅可比迭代公式:7107271)(3)(2)1(1+--=+k k k x x x14141)(3)(1)1(2+--=+k k k x x x329292)(2)(1)1(3+--=+k k k x x x高斯-赛德尔迭代公式:7107271)(3)(2)1(1+--=+k k k x x x14141)(3)1(1)1(2+--=++k k k x x x329292)1(2)1(1)1(3+--=+++k k k x x x(2)雅可比迭代公式:545152)(3)(2)1(1+-=+k k k x x x 525351)(3)(1)1(2++-=+k k k x x x 5115152)(2)(1)1(3++=+k k k x x x 高斯-赛德尔迭代公式:545152)(3)(2)1(1+-=+k k k x x x 525351)(3)1(1)1(2++-=++k k k x x x5115152)1(2)1(1)1(3++=+++k k k x x x 7、(1)证:因为此方程组的系数矩阵为严格对角占优矩阵,所以雅可比迭代法和相应的高斯-赛德尔迭代法都收敛。

数值计算课后习题答案-

数值计算课后习题答案-

习 题 一 解 答1.取3.14,3.15,227,355113作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。

分析:求绝对误差的方法是按定义直接计算。

求相对误差的一般方法是先求出绝对误差再按定义式计算。

注意,不应先求相对误差再求绝对误差。

有效数字位数可以根据定义来求,即先由绝对误差确定近似数的绝对误差不超过那一位的半个单位,再确定有效数的末位是哪一位,进一步确定有效数字和有效数位。

有了定理2后,可以根据定理2更规范地解答。

根据定理2,首先要将数值转化为科学记数形式,然后解答。

解:(1)绝对误差:e(x)=π-3.14=3.14159265…-3.14=0.00159…≈0.0016。

相对误差:3()0.0016()0.51103.14r e x e x x -==≈⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.14=0.314×10,m=1。

而π-3.14=3.14159265…-3.14=0.00159…所以│π-3.14│=0.00159…≤0.005=0.5×10-2=21311101022--⨯=⨯所以,3.14作为π的近似值有3个有效数字。

(2)绝对误差:e(x)=π-3.15=3.14159265…-3.14=-0.008407…≈-0.0085。

相对误差:2()0.0085()0.27103.15r e x e x x --==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.15=0.315×10,m=1。

而π-3.15=3.14159265…-3.15=-0.008407…所以│π-3.15│=0.008407……≤0.05=0.5×10-1=11211101022--⨯=⨯所以,3.15作为π的近似值有2个有效数字。

(3)绝对误差:22() 3.141592653.1428571430.0012644930.00137e x π=-=-=-≈-相对误差:3()0.0013()0.4110227r e x e x x--==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10, 223.1428571430.3142857143107==⨯,m=1。

现代数值计算课后答案

现代数值计算课后答案

现代数值计算课后答案【篇一:数值计算课后答案4】>1、设x0?0,x1?1,写出f(x)?e?x的一次插值多项式l1(x),并估计插值误差。

设插值函数为l1(x)?ax?b,由插值条件,建立线性方程组为?a?0?b?1??1?a?1?b?e?a?e?1?1解之得??b?1则l1(x)?(e?1?1)x?1因为y?(x)??e?x,y??(x)?e?x 所以,插值余项为r(x)?f(x)?p(x)??1f(n?1)(?)?(x)(n?1)!1(2)f(?)?(x)2!1?f(2)(?)(x?x0)(x?x1)2!1?e??(x?0)(x?1)(??(0,1))2所以1r(x)?maxe??maxx(x?1)0?x?120???1。

111??e?0??2482选用合适的三次插值多项式来近似计算f(0.2)和f(0.8)。

解:设三次插值多项式为f(x)?a0?a1x?a2x2?a3x3,由插值条件,建立方程组为?a0?a1?(?0.1)?a2?(?0.1)2?a3?(?0.1)3?0.995?23?a0?a1?0.3?a2?0.3?a3?0.3?0.995?23?a0?a1?0.7?a2?0.7?a3?0.7?0.765?a?a?1.1?a?1.12?a?1.13?0.4 5423?01即?a0?0.1a1?0.01a2?0.001a3?0.995?a0?0.1a1?0.01a2?0.001a3?0 .995?a?0.3a?0.09a?0.027a?0.995?0.4a1?0.08a2?0.028a3?0?0?1 23???a?0.7a?0.49a?0.343a?0.7650.8a1?0.48a2?0.344a3?1.76123?0?? ?0.4a1?0.72a2?0.988a3??0.311?a0?1.1a1?1.21a2?1.331a3?0.45 4??a0?0.1a1?0.01a2?0.001a3?0.995?0.4a1?0.08a2?0.028a3?0???0.32a2?0.288a3?1.76???0.384a3??3.831?解之得 ?a0?0.41?a??6.29?1?a??3.48?2??a3?9.98则所求的三次多项式为f(x)?0.41?6.29x?3.48x2?9.98x3。

《现代数值计算方法(MATLAB版)》习题解答

《现代数值计算方法(MATLAB版)》习题解答
1 2
= 0 0 0 0 0
2.7 提示: Bs = (D − L)−1 U = − 1 2 0 值 λ1 = 0, λ2 = λ3 0 1 BJ = 2 −2 1 Jacobi 迭代发散. = −1 , 2
1 2
0 1
1 2

2.2218 ≤ n ≤ 2.9208 ⇒ n √ = 2. 1.8 提示: x1,2 =
282 − √781 28+ 783
= 28 ±

783, x1 = 28 + 27.982 = 55.982 ≈ 55.98, x2 = 28 −
1−cos2 1◦ 1+cos 1◦
=
1 55.982
≈ 0.01786. =

5 2
> 1, 故

2.8 提示: (1) A = 1 3 a > 1, ⇒ a3 − 14a + 12 > 0, Seidel 迭代收敛.
a > 0, a 2 − 1 > 0, ⇒ 2 , 当 |a| > 5 时, Jacobi 迭代收敛. (2) a3 − 14a + 12 > 0, a 所以, 当 a ≥ √ 14 时, A 对称正定, 从而 Gauss-
10 +1+10
1.11 (1) (A) 比较准确; (2) (A) 比较准确. 1.12 算法 2 准确. 在算法 1 中, ε0 ≈ 0.2231 带有误差 0.5 × 10−4 , 而这个误差在以后的每次计算中 顺次以 41 , 42 , · · · 传播到 In 中. 而算法 2 中的误差是按

数值计算方法课后习题答案

数值计算方法课后习题答案

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。

[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。

2、设x 的相对误差为2%,求n x 的相对误差。

[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。

3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。

[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。

4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。

(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。

数值计算方法答案

数值计算方法答案

n i =1
f
( x1 ,
xi x2 ,⋯ ,
xn
)
∂f
( x1 ,
x2 ,⋯ , ∂xi
xn
)
δ
(
xi
)


a ∂S(a, b, C)
b ∂S(a, b, C)
C ∂S(a,b,C)
δ (S(a, b, C)) =
δ (a) +
δ (b) +
δ (C)
S(a,b,C) ∂a
S(a,b,C) ∂b
S(a,b,C) ∂C
内, f (x) =0 有根。
同题(1)的方法可得:(2),(3),(4)的零点附近的含根区间分别为
[0,1]

⎡⎢⎣0,
π 2
⎤ ⎥⎦

[
0,1]
6
2.用二分法求方程 x sin x −1 = 0 在[0, 2] 内的根的近似值并分析误差。
解 : 令 f (x) = x sin x −1 , 则 有 f (0) = −1 < 0 , f (2) = 0.8186 > 0 ,
= 0.123 ×101 × 0.219 ×101 − 1= 0.169 ×101 即 f (x) = 0.167 ×101 , g(x) = 0.169 ×101 而当 x = 2.19 时 x3 − 3x2 + 3x −1的精确值为 1.6852,故 g(x) 的算法较正确。
8.按照公式计算下面的和值(取十进制三位浮点数计算):
x
Байду номын сангаас
x
(4)(A) y = 9 − 80 ,(B) y = 1 9 + 80
解:当两个同(异)号相近数相减(加)时,相对误差可能很大,会严重丧失有效数字;当两

数值计算方法课后习题答案吕同富

数值计算方法课后习题答案吕同富

数值计算方法课后习题答案吕同富【篇一:《数值计算方法》(二)课程教学大纲】txt>课程编号: l124008课程类别:专业必修学分数: 3 学时数:48 适用专业:信息与计算科学应修(先修)课程:数学分析、高等代数一、本课程的地位和作用数值分析(二)为数值分析课程的第二部分,它是信息与计算科学专业的一门专业必修课。

主要内容包括函数最佳逼近、数值积分、数值微分、常微分方程数值解法。

通过本课程的学习,学生将初步具备用计算机去有效地解决实际问题的能力。

二、本课程的教学目标通过本课程的学习,使学生了解和掌握求解函数最佳逼近、数值积分、数值微分、常微分方程等问题所涉及的各种常用的数值计算方法、数值方法的构造原理及适用范围。

本课程坚持理论与实践教学并重的原则,理论上主要讲述求解函数最佳逼近、数值积分、数值微分、常微分方程等问题的基本理论和基本方法。

与此同时,通过上机实验加深学生对各种计算方法的理解,为今后用计算机去有效地解决实际问题打下基础。

三、课程内容和基本要求(“*”记号标记难点内容,“▽”记号标记重点内容,“▽*”记号标记既是重点又是难点的内容)第六章函数最佳逼近 1.教学基本要求(1)理解:几类常用的正交多项式。

(2)掌握:最佳一致逼近和最佳平方逼近。

(3)掌握:曲线拟合的最小二乘法。

2.教学内容(1)*正交多项式。

(2)▽*最佳一致逼近。

(3)▽最佳平方逼近。

(4)正交多项式的逼近性质。

(5)▽曲线拟合的最小二乘法。

第七章数值积分 1.教学基本要求(1)理解:机械求积公式的基本思想、插值型求积公式的特点。

(2)掌握:newton-cotes求积公式、复合求积公式。

(3)掌握:romberg求积公式、gauss求积公式。

2.教学内容(1)*机械求积公式。

(2)▽newton-cotes求积公式。

(3)▽复合求积公式。

(4)变步长求积公式。

(5)▽romberg求积公式。

(6)▽*gauss求积公式第八章数值微分 1.教学基本要求(1)了解:数值微分的中点法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档