六年级数学:按比例分配问题的几种解题思路.doc

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级数学:按比例分配问题的几种解题思

将一个总量按照一定的比分成若干个分量,叫做按比例分配。解题时,确定分配总量和分配的比是关键。

按比例分配的方法是,将已知整数比或者分率比变为按份数分配,把比的各项相加得到总份数,各项和总分数的额比就是各个分量在总量中所占的份数,由此可以求得各个分量。具体有以下三种情形:

(1)已知分配比时,要明确分配总量;已知总数量不是几个分量的总和时,需要进行计算、转换、调整后,再按比例进行分配。

(2)当已知三个量中的两个量两两相比时,需将两两相比的中间量的份数转化为相同的份数,将两两纸币转化为三个量的比,再按比例进行分配。

(3)当已知与总数量相关联的两个量的比是,应根据基本的数量关系式把两个关联量的比转化为分配比,再按比例进行分配。

下面我们通过下面几个典型的例题来说明。

例1

做这类题目时,先求出连比,然后再找到题目中已知量对应的份数,求出每一份数,得出结果。

例2

求分数的比时,我们可以先找出分母的最小公倍数,然后用每个分数乘以这个最小公倍数,把分数变成整数比。当分母相同时,分子的比就是分数化简后的比。

例3

已知几个数之间的关系时,先根据等式换比求出这几个数的比,然后再按比例分配。

例4

根据三个量之间的数量关系及其中两个量的比,可以求出另一个量的比。

相关文档
最新文档