模拟退火算法
模拟退火算法解决优化问题
模拟退火算法解决优化问题模拟退火算法(Simulated Annealing,SA)是一种基于模拟固体退火过程的全局优化算法,被广泛应用于解决各种优化问题。
它的基本思想源于固体退火过程中的原子热运动,通过模拟原子在退火过程中的状态变化,寻找全局最优解。
本文将介绍模拟退火算法的基本原理、算法流程以及在解决优化问题中的应用。
一、模拟退火算法的基本原理模拟退火算法的基本原理来自于固体物理学中的固体退火过程。
在固体退火过程中,固体在高温下加热后逐渐冷却,原子会随着温度的降低而逐渐趋于稳定状态。
类比到优化问题中,算法在搜索过程中允许一定概率接受比当前解更差的解,以避免陷入局部最优解,最终达到全局最优解。
二、模拟退火算法的基本步骤1. 初始化:随机生成初始解,并设定初始温度和终止条件。
2. 选择邻域解:根据当前解生成邻域解。
3. 接受准则:根据一定概率接受邻域解,更新当前解。
4. 降温策略:根据降温策略逐渐降低温度。
5. 终止条件:达到终止条件时停止搜索,输出最优解。
三、模拟退火算法的应用模拟退火算法在解决各种优化问题中都有广泛的应用,包括组合优化、函数优化、图像处理等领域。
下面以组合优化问题为例,介绍模拟退火算法的具体应用。
1. 旅行商问题(TSP):旅行商问题是一个经典的组合优化问题,目标是找到一条最短路径经过所有城市并回到起点。
模拟退火算法可以通过不断调整路径来寻找最优解。
2. 排课问题:在学校排课过程中,需要合理安排老师和班级的上课时间,避免冲突和空闲时间过长。
模拟退火算法可以优化排课方案,使得课程安排更加合理。
3. 装箱问题:在物流领域中,需要将不同大小的物品合理装箱,使得装箱空间利用率最大化。
模拟退火算法可以帮助优化装箱方案,减少空间浪费。
四、总结模拟退火算法作为一种全局优化算法,具有较好的全局搜索能力和收敛性。
通过模拟退火算法,可以有效解决各种优化问题,得到较优的解决方案。
在实际应用中,可以根据具体问题的特点调整算法参数和策略,进一步提高算法的效率和准确性。
模拟退火算法
Keynote:尤志强
背景
模拟退火算法是Kirkpatrick提出,应组合优化问题而产生的,主要解决的是NP-hard问题。 优化问题可以分为:函数优化问题和组合优化问题两大类
1、函数优化问题: 可以描述为:令S为上的有界子集(即变量的定义域),f:S—>R为n维实值函数,所谓函数f在S域上全局最 小化就是寻求点XminS使得f(Xmin)在S域上全局最小,即X S:f(Xmin)<=f(X)
pr exp[(E j Ei ) / kt]
大于[0,1)区间内的随机数则仍旧接受新状态j为当前状态,若不成立则保留i为当前状态,其中k为 Boltzmann常数。 这种重要性采样过程在高温下可接受与当前状态能量差较大的新状态,而在低温下基本只接受与当 前能量差较小的新状态,而且当温度趋于零时,就不能接受比当前状态能量高的新状态。
背景
计算复杂度
由于某些优化算法所需的计算时间和存储空间难以承受,因此算法可解的问题在实践中不 一定可解。如TSP问题,可能的路径有n!,暴力求解显然是不行的。所以只有了解了研究 问题的复杂性,才能有针对性地设计算法,进而提高优化效率。
算法的时间和空间复杂性对计算机求解非常重要。问题的时间复杂性是指求解该问题的所 有算法中时间复杂性最小的算法的时间复杂性,同理,空间复杂性也有类似定义。这样, 按照计算复杂性理论研究问题求解的难易程度,可把问题分为P类、NP类和NP完全类。
背景
4、基于系统动态演化算法
将优化过程转化为系统动态的演化过程,基于系统动态的演化来实现优化,如神经网络和混沌 搜索等。
5、混合型算法 上述算法从结果或者操作上相混合而产生的各类算法
模拟退火
模拟退火算法什么是模拟退火算法模拟退火算法(Simulate Anneal Arithmetic,SAA)是一种通用概率演算法,用来在一个大的搜寻空间内找寻命题的最优解。
模拟退火是S.Kirkpatrick, C.D.Gela tt和M.P.Vecchi在1983年所发明。
而V.Černý在1985年也独立发明此演算法。
模拟退火算法是解决TSP问题的有效方法之一。
模拟退火来自冶金学的专有名词退火。
退火是将材料加热后再经特定速率冷却,目的是增大晶粒的体积,并且减少晶格中的缺陷。
材料中的原子原来会停留在使内能有局部最小值的位置,加热使能量变大,原子会离开原来位置,而随机在其他位置中移动。
退火冷却时速度较慢,使得原子有较多可能可以找到内能比原先更低的位置。
模拟退火的原理也和金属退火的原理近似:将热力学的理论套用到统计学上,将搜寻空间内每一点想像成空气内的分子;分子的能量,就是它本身的动能;而搜寻空间内的每一点,也像空气分子一样带有“能量”,以表示该点对命题的合适程度。
演算法先以搜寻空间内一个任意点作起始:每一步先选择一个“邻居”,然后再计算从现有位置到达“邻居”的概率。
模拟退火算法的模型[1]模拟退火算法可以分解为解空间、目标函数和初始解三部分。
模拟退火的基本思想:o(1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点),每个T值的迭代次数Lo(2) 对k=1,……,L做第(3)至第6步:o(3) 产生新解S′o(4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数o(5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.o(6) 如果满足终止条件则输出当前解作为最优解,结束程序。
终止条件通常取为连续若干个新解都没有被接受时终止算法。
o(7) T逐渐减少,且T->0,然后转第2步。
算法对应动态演示图:模拟退火算法新解的产生和接受可分为如下四个步骤:o第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。
模拟退火算法
模拟退⽕算法模拟退⽕(SA)物理过程由以下三个部分组成1.加温过程问题的初始解2.等温过程对应算法的Metropolis抽样的过程3.冷却过程控制参数的下降默认的模拟退⽕是⼀个求最⼩值的过程,其中Metropolis准则是SA算法收敛于全局最优解的关键所在,Metropolis准则以⼀定的概率接受恶化解,这样就使算法跳离局部最优的陷进1.模拟退⽕算法求解⼀元函数最值问题使⽤simulannealbnd - Simulated annealing algorithm⼯具箱求y=sin(10*pi*x)./x;在[1,2]的最值下图是⽤画图法求出最值的x=1:0.01:2;y=sin(10*pi*x)./x;figurehold onplot(x,y,'linewidth',1.5);ylim([-1.5,1.5]);xlabel('x');ylabel('y');title('y=sin(10*\pi*x)/x');[maxVal,maxIndex]=max(y);plot(x(maxIndex),maxVal,'r*');text(x(maxIndex),maxVal,{['x:' num2str(x(maxIndex))],['y:' num2str(maxVal)]});[minVal,minIndex]=min(y);plot(x(minIndex),minVal,'ro');text(x(minIndex),minVal,{['x:' num2str(x(minIndex))],['y:' num2str(minVal)]});hold off;⽤模拟退⽕⼯具箱来找最值求最⼩值function fitness=fitnessfun(x)fitness=sin(10*pi*x)./x;end求最⼤值function fitness=fitnessfun(x)fitness=-sin(10*pi*x)./x;endOptimization running.Objective function value: -0.9527670052175917Maximum number of iterations exceeded: increase options.MaxIterations.⽤⼯具箱求得的最⼤值为0.95276700521759172.⼆元函数优化[x,y]=meshgrid(-5:0.1:5,-5:0.1:5);z=x.^2+y.^2-10*cos(2*pi*x)-10*cos(2*pi*y)+20;figuremesh(x,y,z);hold onxlabel('x');ylabel('y');zlabel('z');title('z=x^2+y^2-10*cos(2*\pi*x)-10*cos(2*\pi*y)+20');maxVal=max(z(:));[maxIndexX,maxIndexY]=find(z==maxVal);%返回z==maxVal时,x和y的索引for i=1:length(maxIndexX)plot3(x(maxIndexX(i),maxIndexY(i)),y(maxIndexX(i),maxIndexY(i)),maxVal,'r*');text(x(maxIndexX(i),maxIndexY(i)),y(maxIndexX(i),maxIndexY(i)),maxVal,{['x:' num2str(x(maxIndexX(i)))] ['y:' num2str(y(maxIndexY(i)))] ['z:' num2str(maxVal)] }); endhold off;function fitness=fitnessfun(x)fitness=-(x(1).^2+x(2).^2-10*cos(2*pi*x(1))-10*cos(2*pi*x(2))+20);endOptimization running.Objective function value: -80.50038894455415Maximum number of iterations exceeded: increase options.MaxIterations.找到的最⼤值:80.500388944554153.解TSP问题(⽤的数据和前⼏天⽤遗传算法写TSP问题的数据⼀致,但是结果⽐遗传算法算出来效果差很多,不知道是不是我写错了,怀疑⼈⽣_(:з」∠)_中。
模拟退火算法python
模拟退火算法python一、简介模拟退火算法(Simulated Annealing,SA)是一种全局优化算法,可以用于求解各种优化问题。
模拟退火算法最初由Kirkpatrick等人于1983年提出,其灵感来源于固体物理中的“退火”过程。
模拟退火算法通过随机搜索的方式,在搜索空间中寻找全局最优解。
二、算法流程1.初始化参数模拟退火算法需要设置初始温度T0,终止温度Tend,降温速率a以及每个温度下的迭代次数L。
其中初始温度T0应该足够高,以便跳出局部最优解;终止温度Tend应该足够低,以便保证找到全局最优解;降温速率a应该足够慢,以便保证能够在合理的时间内找到最优解;每个温度下的迭代次数L应该足够大,以便在当前温度下充分搜索。
2.生成初始解随机生成一个初始解x0。
3.进行迭代搜索对于当前温度T和当前解x,在邻域内随机生成一个新解y,并计算新旧两个解之间的能量差ΔE=E(y)-E(x)。
如果ΔE<0,则接受新解y;如果ΔE>0,则以概率exp(-ΔE/T)接受新解y。
通过这种方式,可以在搜索空间中跳出局部最优解,并逐渐趋向全局最优解。
4.降温每个温度下的迭代次数L结束后,降低温度T=a*T,直到T<Tend为止。
5.终止条件当达到终止温度Tend时,停止迭代搜索,并输出最优解。
三、Python实现以下是一个简单的Python实现:```pythonimport randomimport math# 目标函数def f(x):return x**2# 初始温度T0 = 1000# 终止温度Tend = 1e-8# 降温速率a = 0.99# 每个温度下的迭代次数L = 100# 随机生成初始解x = random.uniform(-10, 10)best_x = xwhile T0 > Tend:for i in range(L):# 在邻域内随机生成新解y = x + random.uniform(-1, 1)# 计算能量差delta_E = f(y) - f(x)if delta_E < 0:# 接受新解x = yif f(x) < f(best_x):best_x = xelse:# 以概率接受新解p = math.exp(-delta_E / T0)if random.uniform(0, 1) < p:x = y# 降温T0 *= aprint("最优解:", best_x)print("最优值:", f(best_x))```四、总结模拟退火算法是一种全局优化算法,在求解各种优化问题时具有广泛的应用。
模拟退火算法
模拟退火算法模拟退火是一种通用概率算法,目的是在固定时间内在一个大的搜寻空间内寻求给定函数的全局最优解。
它通常被用于离散的搜索空间中,例如,旅行商问题。
特别地,对于确定的问题,模拟退火算法一般是优于穷举法。
这是由于我们一般只需得到一个可接受的最优解,而不是精确的最优解。
退火一词来源于冶金学。
退火(见图1)是将材料加热后再经特定速率冷却,目的是增大晶粒的体积,并且减少晶格中的缺陷。
材料中的原子原来会停留在使内能有局部最小值的位置,加热使能量变大,原子会离开原来位置,而随机在其他位置中移动。
退火冷却时速度较慢,使得原子有较多可能可以找到内能比原先更低的位置。
因此,我们将热力学的理论应用到统计学上,将搜寻空间内每一点想象成空气内的分子;分子的能量,就是它本身的动能;而搜寻空间内的每一点,也像空气分子一样带有“能量”,以表示该点对命题的合适程度。
而模拟退火算法先以搜寻空间内一个任意点作起始:每一步先选择一个“邻居”,然后再计算从现有位置到达“邻居”的概率。
模拟退火原理最早是 S. Kirkpatrick, C. D. Gelatt 和 M. P. Vecchi 在1983年所创造的。
而 V . Černý 在1985年也独立发明了此算法。
1. 问题描述数学上的最优化问题一般描述为如下形式:()()minimize()g 0,1,2,,subject to 0,1,2,,i i f x x i m h x i p≤=⎧⎪⎨==⎪⎩ 其中,():R n f x R →称作问题的目标函数,()g 0i x ≤称作问题的不等式约束条件,()0i h x =称作问题的等式约束条件。
寻求上述问题的最优解的过程就类似于从热动力系统的任意一个初始状态向内能最小的状态转移的过程,即退火过程。
2. 模拟退火算法基本思想模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有图1 物理退火原理图序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。
模拟退火算法及其改进算法
模拟退火算法及其改进算法模拟退火算法(Simulated Annealing Algorithm)是一种基于概率的全局优化算法,它模拟了金属冶炼过程中的“退火”过程。
退火过程是指将高温物质逐渐降温,使之逐渐固化形成晶态结构。
同样地,模拟退火算法通过随机和接受不太好的解决方案的策略,以找到全局最优解。
算法的基本思路是在一个空间中随机生成一个起始解,然后通过一系列的变换和评估过程逐步更新当前解,直到找到满足优化目标的解决方案。
在每次迭代中,算法会通过采样邻域解决方案来将当前解转移到新的状态,并计算相应的目标函数值。
如果新的状态比当前解更优,则接受新的解作为当前解,并在下一次迭代中继续。
如果新的状态不是更优的解,则以一定的概率接受新的解,概率的大小与两个解之间的差距以及当前温度有关。
温度逐渐降低,使得算法在开始时可以接受较差的解决方案,但随着迭代次数的增加逐渐降低接受较差解决方案的概率,最终使算法收敛到一个较好的解。
尽管模拟退火算法在全局优化问题中表现优秀,但仍存在一些问题,例如收敛速度慢、易陷入局部最优解等。
因此,研究者提出了一些改进算法来提高模拟退火算法的性能。
一种改进算法是自适应模拟退火算法(Adaptive Simulated Annealing, ASA),它利用负自适应参数来调整算法自身的控制参数,从而提高收敛速度。
通过对负自适应参数进行精确建模和合适的调整,能够使算法自动地根据当前状态的差距和目标函数值的变化来调整的速度和方向。
另一种改进算法是量子模拟退火算法(Quantum Simulated Annealing, QSA),它引入了量子位操作和量子态演化来提高效率。
QSA利用一种特殊的迭代方式来更新解决方案,将随机排列算法与量子信息处理技术相结合,通过量子态的演化来寻找最优解,并避免陷入局部最优解。
此外,还有一些其他的改进算法,如多重爬山算法(Multi-startHill Climbing)、禁忌算法(Tabu Search)等,它们在模拟退火算法的基础上增加了一些启发式方法和约束条件,从而进一步提高性能。
模拟退火算法详解
车间调度问题求解
总结词
模拟退火算法在车间调度问题求解中具有较好的应用 效果,能够提高生产效率。
详细描述
车间调度问题是一个复杂的优化问题,旨在合理安排生 产任务和资源分配,以提高生产效率。模拟退火算法通 过随机搜索和接受不良解的概率,能够找到较为满意的 调度方案。在车间调度问题中,模拟退火算法可以与其 他启发式方法结合使用,以获得更好的性能。此外,模 拟退火算法还可以应用于其他生产调度问题,如作业车 间调度、装配线平衡等。
旅行商问题求解
总结词
模拟退火算法在旅行商问题求解中具有较好的性能, 能够找到高质量的解。
详细描述
旅行商问题是一个NP难问题,旨在寻找一条旅行路线 ,使得一个旅行商能够访问一系列城市并返回到起始 城市,且总旅行距离最短,同时满足每个城市恰好经 过一次。模拟退火算法通过随机搜索和接受不良解的 概率,能够探索更广阔的解空间,从而找到高质量的 解。在旅行商问题中,模拟退火算法可以与其他启发 式方法结合使用,以获得更好的性能。
迭代更新
重复产生新解、计算能量差和降低温度的 过程,直到满足终止条件。
终止条件
达到最大迭代次数
当达到预设的最大迭代次数时,算法终止。
温度低于阈值
当温度低于一个预设的阈值时,算法终止。
解的质量满足要求
当当前解的质量满足预设的要求或与最优解 的差距在可接受范围内时,算法终止。
03
模拟退火算法参数设置
温度衰减率
总结词
温度衰减率是模拟退火算法中温度变化的速率,它决定了算法的收敛速度和全局搜索能 力。
详细描述
温度衰减率决定了算法在迭代过程中温度下降的速度。较小的衰减率可以使算法在迭代 过程中有更多的时间来探索解空间,但可能会导致算法收敛速度较慢;而较大的衰减率 则可以使算法更快地收敛到最优解,但可能会牺牲一些全局搜索能力。因此,选择合适
模拟退火算法
模拟退火算法(Simulated Annealing)是一种随机优化算法,其基本思想是将问题转化为能量最小化问题,在解空间中以概率形式进行搜索空间,从而达到全局优化的目的。
一、算法原理的原理源于冶金学中的“模拟退火”过程。
在冶金学中,模拟退火是一种将材料加热到足够高的温度,使得原子以无序方式排列,并随着温度逐渐下降,原子逐渐重新排列成为有序状态的过程。
类似地,在算法中,模拟退火过程由三个参数组成:初始温度、降温速率和停止温度。
算法从一个初始解开始,随机产生新解,并计算新解与当前解之间的能量差。
如果新解的能量小于当前解的能量,则直接接受新解,如果新解的能量大于当前解的能量,则以一定的概率接受新解,以避免过早陷入局部最优解。
通过不断降温的过程,在搜索空间中进行随机跳跃,并慢慢收敛到全局最优解。
二、算法流程的流程如下:1. 设定初始温度、降温速率和停止温度。
2. 随机生成一个初始解,并计算其能量。
3. 生成一个新解,并计算新解与当前解之间的能量差。
4. 如果新解的能量小于当前解的能量,则接受新解。
5. 如果新解的能量大于当前解的能量,则以一定的概率接受新解。
6. 降温,更新温度。
7. 判断算法是否收敛,如果未收敛则返回步骤2。
三、应用场景广泛应用于组合优化问题、图论问题、生产调度问题等领域。
例如:1. 旅行商问题:在旅行商问题中,可以通过搜索空间中随机跳跃的方式找到最短路径,从而达到全局最优解。
2. 排课问题:在学校的排课问题中,可以帮助学校最优化考虑不同的课程安排,得到最优化的课程表。
3. 生产调度问题:在生产调度问题中,可以帮助生产企业在限制资源的条件下找到最优化的生产方案,提高生产效率。
四、优缺点作为一种优化算法,具有以下优点:1. 全局搜索能力强:能够在搜索空间中进行全局搜索,并趋向于全局最优解。
2. 算法收敛性好:在算法搜索到解后,能够很快地达到最优解,收敛速度较快。
3. 收敛到局部最优解的可能性较小:由于算法在跳跃过程中具有随机性,因此收敛到局部最优解的可能性较小。
模拟退火算法介绍
模拟退火算法介绍模拟退火算法(Simulated Annealing,SA)是一种基于蒙特卡洛方法的优化算法,由Kirkpatrick等人于1983年提出。
它模拟了固体物体从高温到低温时退火的过程,通过模拟这一过程来寻找问题的最优解。
首先,模拟退火算法需要生成一个初始解。
初始解是随机生成的,它代表了问题的一个可能解。
初始解的生成可以采用随机数生成方法,或者使用其他启发式算法生成。
然后,算法需要定义一个邻域结构来解空间。
邻域结构定义了问题的解的相邻解之间的关系。
在退火算法中,邻域结构是动态变化的,随着算法的进行,邻域结构会不断调整以适应的需求。
在退火准则方面,模拟退火算法使用了一个“接受准则”来决定是否接受一个邻域解。
接受准则基于Metropolis准则,它比较了当前解和邻域解之间的差异以及温度参数。
如果邻域解的质量更好,那么就接受它;否则,以一定的概率接受较差的解。
这个概率与温度成正比,随着温度降低,接受较差解的概率逐渐减小。
在算法的每个迭代中,温度参数会随着迭代次数逐渐降低,这意味着算法逐渐从随机转变为局部。
温度参数的降低速率决定了算法的接受较差解的概率的减小速率。
温度参数的决定是关键,它通常是一个退火函数的参数,根据经验选择。
总的来说,模拟退火算法是一种随机化的优化算法,通过模拟物理退火过程,在解空间时能够克服局部最优解,从而寻找全局最优解。
它的应用范围广泛,涵盖了诸多领域,如组合优化、图像处理、网络设计等。
但是,模拟退火算法的收敛速度相对较慢,需要很多次迭代才能找到最优解,因此在实际应用中需要根据具体问题进行合适的调整和优化。
模拟退火算法
模拟退火算法
模拟退火算法(simulated annealing,简称 SA)的思想最早是由Metropolis等(1953)提 出的,1983年Kirkpatrick等将其用于组合 优化。SA算法是基于Monte Carlo迭代求 解策略的一种随机寻优算法,其出发点 是基于物理中固体物质的退火过程与一 般组合优化问题之间的相似性。
降低温度Tk的方法有以下两种: Tk+1=Tk*r,其中r∈(0.95-0.99) Tk+1=Tk-ΔT
模拟退火算法流程图
开始 产生 i
S
k 0, Tk T0
设定 n T 外循环 产生 计算
n 1
f i
j
T k 8
模拟退火算法的应用
(3)
注释: 1.① ②无条件转移; 2.在③中,停在3-1-4-2状态,目标值仍为92; SA没有历史最优,不会终止在最优解,故算 法一定要保持历史最优。
Tk
模拟退火算法的应用
0-1背包问题 一个旅行者有一个最多能装M公斤的背 包,现在有N件物品, 它们的重量分别是W1,W2,...,Wn, 它们的价值分别为P1,P2,...,Pn. 若每种物品只有一件。 求旅行者能获得的最大总价值。
总结
模拟退火是一种贪心算法,但是它的搜 索过程引入了随机因素。模拟退火算法 以一定的概率来接受一个比当前解要差 的解,因此有可能会跳出这个局部的最 优解,达到全局的最优解。 模拟退火算法也是一种随机算法,并不 一定能找到全局的最优解,可以比较快 的找到问题的近似最优解。
模拟退火算法的应用
1. 问题的提出
单机极小化总流水时间的排序问题 四个工作:P1=8,P2=18,P3=5,P4=15,求 min∑Fi的最优顺序。
模拟退化算法
模拟退化算法一、引言模拟退火算法是一种基于概率的全局优化算法,它模拟了物质在高温下退火冷却的过程,通过不断降温来达到寻找全局最优解的目的。
模拟退火算法的应用范围非常广泛,包括图像处理、机器学习、组合优化等领域。
本文将介绍模拟退火算法的基本原理、优缺点以及应用实例。
二、模拟退火算法的基本原理模拟退火算法是一种基于概率的全局优化算法,它通过模拟物质在高温下退火冷却的过程来寻找全局最优解。
算法的基本流程如下:1. 初始化温度T和初始解x;2. 在当前温度下,随机生成一个新解x';3. 计算新解x'的目标函数值f(x')和当前解x的目标函数值f(x);4. 如果f(x')<f(x),则接受新解x';5. 如果f(x')>f(x),则以一定概率接受新解x',概率为exp(-(f(x')-f(x))/T);6. 降低温度T,重复步骤2-5,直到温度降至最低。
三、模拟退火算法的优缺点模拟退火算法具有以下优点:1. 全局搜索能力强:模拟退火算法能够在全局范围内搜索最优解,避免了局部最优解的陷阱;2. 可以处理非线性问题:模拟退火算法可以处理非线性问题,如组合优化问题、图像处理问题等;3. 算法简单易实现:模拟退火算法的算法流程简单,易于实现。
但是,模拟退火算法也存在以下缺点:1. 算法收敛速度慢:模拟退火算法需要不断降温才能达到全局最优解,因此算法收敛速度较慢;2. 参数设置困难:模拟退火算法需要设置初始温度、降温速度等参数,参数设置不当会影响算法的效果;3. 算法结果不稳定:模拟退火算法的结果受到随机因素的影响,因此算法结果不稳定。
四、模拟退火算法的应用实例模拟退火算法在实际应用中具有广泛的应用,以下是几个应用实例:1. 组合优化问题:模拟退火算法可以用于解决组合优化问题,如旅行商问题、背包问题等;2. 图像处理问题:模拟退火算法可以用于图像处理问题,如图像分割、图像去噪等;3. 机器学习问题:模拟退火算法可以用于机器学习问题,如神经网络训练、参数优化等。
模拟退火算法
大于 [0,1) 区间内的随机数则仍旧接受新状 态j为当前状态,若不成立则保留i为当前状 态,其中k为Boltzmann常数。
这种重要性采样过程在高温下可接受与当前 状态能量差较大的新状态,而在低温下基 本只接受与当前能量差较小的新状态,而 且当温度趋于零时,就不能接受比当前状 态能量高的新状态。这种接受准则通常称 为Metropolis准则。
①均匀抽样一组状态,以各状态目标值的方 差为初温。 ②随机产生一组状态,确定两两状态间的最 | 大目标值差 | max,然后依据差值,利用一 pr 定的函数确定初温。譬如 t 0 / ln,其中 pr 为初始接受概率 ③利用经验公式给出。
⑷温度更新函数 温度更新函数,即温度的下降方式,用于在 外循环中修改温度值。 目前,最常用的温度更新函数为指数退温函 数,即,其中且其大小可以不断变化。
Until 抽样稳定准则满足; ( ②退温 t k 1 updatet k ) ,并 k k 1 令 ; Until 算法终止准则满足; ⑶输出算法搜索结果。
3 模拟退火算法关键参数和操作的设定
从算法流程上看,模拟退火算法包括三函数 两准则,即状态产生函数、状态接受函数、 温度更新函数、内循环终止准则和外循环 终止准则,这些环节的设计将决定SA算法 的优化性能。此外,初温的选择对SA算法 性能也有很大影响。
模拟退火算法
模拟退火算法(simulated annealing, 简称SA) 的思想最早是由Metropolis等(1953)提出的, 1983年Kirkpatrick等将其用于组合优化。 SA算法是基于Monte Carlo迭代求解策略的 一种随机寻优算法,其出发点是基于物理 中固体物质的退火过程与一般组合优化问 题之间的相似性。
模拟退火算法
options = saoptimset('PlotFcns',{@saplotbestf,@saplottemperature, @saplotf,@saplotstopping}); simulannealbnd(@dejong5fcn,x0,lb,ub,options);
options = saoptimset('InitialTemperature',[300 50]);
模拟退火算法的数学模型:马尔可夫链(可达 性,渐近不依赖起点,分布稳定性,收敛到最 优解) 如果温度下降十分缓慢,而在每个温度都有足 够多次的状态转移,使之在每一个温度下达到 热平衡,则全局最优解将以概率1被找到。因 此可以说模拟退火算法能找到全局最优解。
模拟退火算法实现的技术问题
1)解的形式和邻域结构 •解的表现形式直接决定于邻域的构造
模拟退火算法对TSP的应用1)加ຫໍສະໝຸດ 数据表1 29个城市的坐标
城市序 号 X坐标 Y坐标 城市序 号 X坐标 Y坐标 1 1150.0 1760.0 11 840.0 550.0 21 830.0 1770.0 2 630.0 1660.0 12 1170.0 2300.0 22 490.0 500.0 3 40.0 2090.0 13 970.0 1340.0 23 1840.0 1240.0 4 750.0 1100.0 14 510.0 700.0 24 1260. 0 1500. 0 5 750.0 2030.0 15 750.0 900.0 25 1280.0 790.0 6 1030.0 2070.0 16 1280.0 1200.0 26 490.0 2130.0 7 1650.0 650.0 17 230.0 590.0 27 1460.0 1420.0 8 1490.0 1630.0 18 460.0 860.0 28 1260.0 1910.0 9 790.0 2260.0 19 1040.0 950.0 29 360.0 1980.0 10 710.0 1310.0 20 590.0 1390.0
模拟退火算法 寻参 -回复
模拟退火算法寻参-回复什么是模拟退火算法?模拟退火算法(Simulated Annealing)是一种基于概率的全局优化算法,它模拟了固体退火过程的行为。
在固体退火过程中,物质在高温状态下会不断摆脱局部能量极小的状态,逐渐降低温度并寻找新的、更低能量的状态。
模拟退火算法就是通过这种模拟退火的过程,以全局寻优为目标,在搜索空间中随机游走,寻找最优解。
模拟退火算法的基本原理是什么?模拟退火算法基于模拟退火的过程,通过接受差解的概率,跳出局部最优解并在搜索空间中随机搜索,最终朝着全局最优解的方向收敛。
该算法的基本原理如下:1. 初始化:设置初始解和初始温度,初始解可以是随机生成的解,初始温度通常较高,以允许算法跳过一些局部最优解。
2. 迭代过程:根据指定的收敛条件和计算资源,进行一定数量的迭代。
3. 生成新解:通过某种策略,在当前解的邻域内生成一个新解。
邻域可以是解空间中的一个子空间,新解可以通过改变当前解的某一部分或多个部分得到。
4. 判断新解的质量:计算新解的目标函数值,这个目标函数可以是问题本身的目标函数,也可以是某种适应度函数,用于量化新解的好坏。
5. 接受新解:根据一定的准则,决定是否接受新解。
具体而言,根据新解的质量和当前温度,计算接受新解的概率。
6. 更新温度:通过一个降温策略逐渐降低温度,降温策略可以是线性的、指数的或者其他曲线。
温度的降低会逐渐减小接受差解的概率,使算法朝着全局最优解方向收敛。
7. 收敛判断:根据收敛条件,判断算法是否达到停止迭代的条件,如果未达到,则返回到第3步,否则进入下一步。
8. 输出结果:得到最终的解或者一组解作为算法的输出。
模拟退火算法的关键参数有哪些?模拟退火算法中,有几个关键的参数需要调节,对算法的性能和效果有重要影响。
以下是三个重要的参数:1. 初始温度:初始温度决定了能否跳出局部最优解,并进一步对全局优化产生影响。
初始温度通常较高,使算法有足够的机会在搜索空间中自由游走。
模拟退火算法
在机器学习中的应用
总结词
模拟退火算法在机器学习中用于优化神经网 络结构和超参数调整。
详细描述
在机器学习中,神经网络结构和超参数的选 择对于模型性能至关重要。模拟退火算法可 以用于优化神经网络的结构,如神经元的数 量、层数等,以及调整超参数,如学习率、 正则化参数等。通过模拟退火算法,可以找 到一组最优的神经网络结构和超参数配置,
自适应调整策略
研究自适应调整策略,根据搜索过程 动态调整参数,以更好地适应问题变 化。
感谢您的观看
THANKS
局部搜索
在生成初始解之后,可以对初始解进行局部搜索,以改进其质量。局部搜索可以通过迭代更新当前解 的邻域来寻找更好的解。这种方法可以帮助模拟退火算法更快地收敛到全局最优解。
05
模拟退火算法应用实例
在旅行商问题中的应用
要点一
总结词
模拟退火算法在旅行商问题中表现出色,能够有效求解大 规模问题。
要点二
初始温度
初始温度的选择对算法的搜索效果有重要影响。初始温度太高可能导致算法陷入局部最优 解,而初始温度太低则可能使算法搜索不到全局最优解。通常,初始温度应根据问题的特 性进行设定。
最小温度
最小温度是算法终止时的温度,其选择同样重要。如果最小温度设置得太高,算法可能无 法收敛;如果设置得太低,则可能无法跳出局部最优解。最小温度通常根据问题的复杂度 和算法的迭代次数来设定。
模拟退火算法的相似性
通过模拟物理退火过程,模拟退火算法在搜索解空间时能够跳出局部最优解,寻找全局最优解。
Metropolis准则
Metropolis准则定义
对于当前解的任何小扰动,如果扰动后的解能量低于当前解,则接受该扰动;否则以一 定概率接受该扰动。
模拟退火算法简介:原理+实例
模拟退火算法(Simulated Annealing)主要内容◆算法原理◆算法应用◆作业现代智能优化算法,主要用于求解较为复杂的优化问题。
与确定性算法相比,其特点如下:第一,目标函数与约束函数不需要连续、可微,只需提供计算点处的函数值即可;第二,约束变量可取离散值;第三,通常情况下,这些算法能求得全局最优解。
现代智能优化算法,包括禁忌搜索,模拟退火、遗传算法等,这些算法涉及生物进化、人工智能、数学和物理学、神经系统和统计力学等概念,都是以一定的直观基础构造的算法,统称为启发式算法。
启发式算法的兴起,与计算复杂性理论的形成有密切的联系,当人们不满足常规算法求解复杂问题时,现代智能优化算法开始起作用。
现代智能优化算法,自20世纪80年代初兴起,至今发展迅速,其与人工智能、计算机科学和运筹学融合,促进了复杂优化问题的分析和解决。
模拟退火算法(Simulated Annealing, SA)是一种通用的随机搜索算法,是局部搜索算法的扩展。
最早于1953年由Metropolis提出,K irkpatric等在1983年将其成功用于组合优化问题的求解。
算法的目的:解决NP复杂性问题;克服优化过程陷入局部极小;克服初值依赖性。
一、算法原理启发:物质总是趋于最低的能态。
如:水往低处流;电子向最低能级的轨道排布。
结论:最低能态是最稳定的状态。
物质会“自动”地趋于最低能态。
猜想:物质趋于最低能态与优化问题求最小值之间有相似性,能否设计一种用于求函数最小值的算法,就像物质“自动”地趋于最低能态?退火,俗称固体降温。
先把固体加热至足够高的温度,使固体中所有的粒子处于无序的状态(随机排列,此时具有最高的熵值);然后将温度缓缓降低,固体冷却,粒子渐渐有序(熵值下降,以低能状态排列)。
原则上,只要温度上升得足够高,冷却过程足够慢,则所有粒子最终会处于最低能态(此时具有最低的熵值)。
模拟退火算法就是将退火过程中系统熵值类比为优化问题的目标函数值来达到优化问题寻优的一种算法。
模拟退火算法
开始
产生 i S k 0,Tk T0
设定 nTk n 0
产生 j N i n n 1 计算 f f j f i
f 0 N
exp f Tk U 0,1
N
n nTk N
Y k k 1,降温 Tk
N
Tk T f Y
停止
内循环
19
四.计算举例 (1)
➢ 问题旳提出
Tk
Ei与 E j 旳小差别带来Pi Tk 和 Pj Tk 旳巨大差别
例如: Ei=90,E j =100,
11
二.退火过程和Bolzman方程(6)
➢ 当 Tk =100时
90
Pi Tk
Pj Tk
Ck
e
100
Ck
100
e 100
u
0.406 Ck
0.367 Ck
0.406 0.367
12
二.退火过程和Bolzman方程(7)
➢ 当 Tk =1时
Pi Tk Pj Tk 8.194 1040 Ck 3.72 1044 Ck 20000 此时 n
Pi Tk Pi Tk
i 1
结论: Tk 0 时,以概率1趋于最小能量状态
13
三.SA旳算法构造及环节(1)
➢ SA旳模拟要求 ➢ 初始温度足够高 ➢ 降温过程足够慢 ➢ 终止温度足够低
四.计算举例 (4)
⑴ ① j 1324 ② j 43 21 ③ j 4 231
f j 98 f j 119 f j 132
f 20
ef Tk 0.8106 0.7414 ef Tk 0.8781 0.3991
i j i j i j
注释:
➢ ①无条件转移;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算法的关键参数和操作的设定
状态接受函数:
原则:函数一般以概率的方式给出,不同接受函数的差别主要在 于接受概率的形式不同。设计状态接受概率,应该遵循以下原则:
(1)在固定温度下,接受使目标函数下降的候选解的概率要大 于使目标函数上升的候选解概率;
(2)随温度的下降,接受使目标函数上升的解的概率要逐渐减 小; (3)当温度趋于零时,只能接受目标函数下降的解。 方法:状态接受函数的引入是模拟退火算法实现全局搜索的最关 键的因素,模拟退火算法中通常采用 min[1,exp(-△C/t)] 作为状态 接受函数
模拟退火算法的应用
• 初始温度的计算
for i=1:100
route=randperm(CityNum);
fval0(i)=CalDist(dislist,route);
end
t0=-(max(fval0)-min(fval0))/log(0.9);
模拟退火算法的应用
• 状态产生函数的设计
(1)互换操作,随机交换两个城市的顺序;
加温过程——增强粒子的热运动,消除系统原先可能存在的非均匀态; 等温过程——对于与环境换热而温度不变的封闭系统,系统状态的自发变化 总是朝自由能减少的方向进行,当自由能达到最小时,系统达到平衡态; 冷却过程——使粒子热运动减弱并渐趋有序,系统能量逐渐下降,从而得到 低能的晶体结构。
退火的作用
影响优化结果的主要因素
给定初温t=t0,随机产生初始状态s=s0,令k=0;
Repeat Repeat 产生新状态sj=Genete(s); if min{1,exp[-(C(sj)-C(s))/tk]}>=randrom[0,1] s=sj; Until 抽样稳定准则满足; 退温tk+1=update(tk)并令k=k+1; Until 算法终止准则满足; 输出算法搜索结果。
基本步骤
给定初温t=t0,随机产生初始状态s=s0,令k=0;
Repeat
Repeat 产生新状态sj=Genete(s); if min{1,exp[-(C(sj)-C(s))/tk]}>=randrom[0,1] s=sj; Until 抽样稳定准则满足; 退温tk+1=update(tk)并令k=k+1; Until 算法终止准则满足; 输出算法搜索结果。
2 8 3 5 9 1 4 6 7 2 8 1 5 9 3 4 6 7
(2)逆序操作,两个随机位置间的城市逆序;
2 8 3 5 9 1 4 6 7 2 8 3 4 1 9 某随机位置。
2 8 3 5 9 1 4 6 7 2 3 5 9 8 1 4 6 7
模拟退火算法的应用
降温图像
离散函数图像
组合优化与物理退火的相似比较
• 从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在 解空间中随机寻找全局最优解
组合优化问题 解 最优解 设定初温 Metropolis抽样过程 控制参数的下降 目标函数 金属物体 粒子状态 能量最低的状态 熔解过程 等温过程 冷却 能量
模拟退火算法原理
模拟退火算法
LOREM IPSUM DOLOR
导论
• 模拟退火算法(Simulated Annealing,SA)是一种通用的优化算法。 目前,已在:生产调度、控制工程、计算机视觉、神经网络、图像 处理等工程领域中得到了广泛应用。
• 最早的思想是由N.Metropolis等人于1953年提出。1983年,S. Kirkpatrick 等成功地将退火思想引入到组合优化领域。它是基于 Monte-Carlo迭代求解策略的一种随机寻优算法,其出发点是基于物 理中固体物质的退火过程与一般组合优化问题之间的相似性。模拟 退火算法从某一较高初温出发,伴随温度参数的不断下降 ,结合概率 突跳特性在解空间中随机寻找目标函数的全局最优解,即在局部最 优解能概率性地跳出并最终趋于全局最优。 • 模拟退火算法是通过赋予搜索过程一种时变且最终趋于零的概率突 跳性,从而可有效避免陷入局部极小并最终趋于全局最优的串行结 构的优化算法。
模拟退火算法的思想
• 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其 徐徐冷却;加温时,固体内部粒子随温升变为无序状,内能增大, 而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常 温时达到某种稳定状态,基态,内能减为最小。
缓慢下降
高温
高能状态
低温
低能状态
模拟退火算法的思想
物理退火过程
K
算法的关键参数和操作的设定
内循环终止准则:
常用的Metropolis抽样稳定准则: (1)检验目标函数的均值是否稳定;
(2)连续若干步的目标值变化较小;
(3)按一定的步数抽样。 外循环终止准则 (1)设置终止温度的阈值; (2)设置外循环迭代次数; (3)算法搜索到的最优值连续若干步保持不变; (4)概率分析方法。
模拟退火算法的优缺点
• 模拟退火算法的优点
(1)质量高;
(2)初值鲁棒性强;
(3)简单、通用、易实现。
• 模拟退火算法的缺点 由于要求较高的初始温度、较慢的降温速率、较低的 终止温度,以及各温度下足够多次的抽样,因此优化过 程较长。
模拟退火算法的应用
• 3.1 30城市TSP问题
• TSP Benchmark 问题 41 94;37 84;54 67;25 62; 7 64;2 99;68 58;71 44;54 62;83 69;64 60;18 54;22 60;83 46;91 38;25 38;24 42;58 69;71 71;74 78;87 76;18 40;13 40;82 7;62 32; 58 35;45 21;41 26;44 35;4 50
• 参数设定
截止温度 tf=0.01;
退温系数 alpha=0.90;
内循环次数 L=200*CityNum;
模拟退火算法的应用
• 运行过程
Thank you!
模拟退火算法具体步骤
Step1 设定初始温度t = tmax, 任选初始解r = r0 1. 目标函数均值稳定 Step2 内循环 2. 连续若干步的目标 值变化较小 Step2.1 从r的邻域中随机选一个解 rt, 计算r和rt对应目标函 数值, 如 3. rt; 固定的抽样步数 rt对应目标函数值较小,则令r = 否则若 exp(-(E(rt)-E(r))/t)>random(0,1), 则令r=rt. 1. 达到终止温度 Step2.2 不满足内循环停止条件时,重复 Step2.1 2. 达到迭代次数 3. 最优值连续若干步 Step3 外循环 保持不变 Step3.1 降温t = decrease(t) Step3.2 如不满足外循环停止条件,则转Step2;否则算法结束
算法的关键参数和操作的设定
温度更新函数: 温度更新函数,即温度的下降方式,用于在外循环中修改温度值。 常用的算法温度下降函数: 1) t t , k 0, 0 1 :α越接近1温度下降越慢,且其大小 k 1 k 可以不断变化; 2) t K k t :其中t0为起始温度,K为算法温度下降的总次数 k 0
算法的关键参数和操作的设定
初始温度:
初始温度、温度更新函数、内循环终止准则和外循环终止准则通常被称为 退火历程。
原则:通过理论分析可以得到初温的解析式,但解决实际问题时难以得到 精确的参数;实际应用时往往要让初温充分大。实验表明:初温越大,获 得高质量解的机率越大,但花费较多的计算时间。 方法: 1)均匀抽样一组状态,以各状态目标值的方差为初温; 2)随机产生一组状态,确定两两状态间的最大目标值差,根据差值,利 用一定的函数确定初温,譬如 t 0 / ln pr ,其中 p r 为初始接受概率; 3)利用经验公式。
模拟退火算法的流程图
初使化设定 随机产生一个初始解 扰动产生一个新解 No 是否接受? Yes 修改目前解 Yes
降温
缩减温度 No 是否达到中止条件? Yes 最佳解 No
算法的关键参数和操作的设定
状态产生函数: 原则:设计状态产生函数(邻域函数)的出发点应该是 尽可能保证产生的候选解遍布全部的解空间。通常,状 态产生函数由两部分组成,即产生候选解的方式和候选 解产生的概率分布 方法:在当前状态的邻域结构内以一定概率方式(均匀 分布、正态分布、指数分布等)产生
(1) 降低硬度,改善切削加工性. (2)消除残余应力,稳定尺寸,减少变形与裂纹倾向; (3)细化晶粒,调整组织,消除组织缺陷。 (4)均匀材料组织和成分,改善材料性能或为以后热处理做组织准备。
模拟退火算法的设计与原理猜想
• 物质自动趋向的最低能态与函数最小值之间有相似性!!! • 我们能不能设计一种算法求函数最小值,就像物质”自动”地趋向 最低能态?
• 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其 徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大, 而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常 温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时 趋于平衡的概率为exp(-Δ E/(kT)),其中E为温度T时的内能,Δ E 为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将 内能E 模拟为目标函数值 f ,温度T演化成控制参数 t ,即得到解组合 优化问题的模拟退火算法:由初始解 i和控制参数初值 t 开始,对当 前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并 逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于 蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却 进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子 Δ t、每个t值时的迭代次数L和停止条件S。