6.2中位数与众数(2)教案
《中位数与众数》教案 (公开课)2022年2
§6.2 中位数与众数一、教学目标:1.掌握中位数、众数等数据代表的概念,能根据所给信息求出相应的数据代表。
2.合具体情境体会平均数、中位数和众数三者的差异,能初步选择恰当的数据代表对数据做出自己的判断。
3.培养学生对统计数据从多角度进行全面的分析,从而防止机械的、片面的解释。
二、教学重点和难点:重点:掌握中位数、众数等数据代表的概念。
难点:选择恰当的数据代表对数据做出判断。
三、教学过程:〔一〕创设情景,引出课题师:在当今信息时代,信息的重要性不言而喻,而人们又经常要求一些信息“用数据说话〞,所以对数据做出恰当的分析是很重要的。
今天我们一起来学习数据的代表以及如何选择恰当的数据代表对数据做出判断。
我们一起来看以下一组数据:课件显示:问题1:数据误导:某次数学考试,婷婷得到78分。
全班共30人, 其他同学的成绩为1个100分,4个90分, 22个80分,以及一个2分和一个10分。
婷婷计算出全班的平均分为77分,所以婷婷告诉妈妈说,自己这次成绩在班上处于“中上水平〞。
师:婷婷有欺骗妈妈吗?【板书:平均数:对于n 个数x 1,x 2,…,x n ,我们把n1(x 1+x 2+…+x n )叫做这n 个数的算术平均数(mean),简称平均数。
】生:没有。
师:平均数是我们常用的一个数据代表,但是在这里,利用平均数把倒数第三的分数说成处于班级的“中上水平〞显然有投机取巧之嫌,大家思考:那么问题出在哪里呢?生:平均分受两个极端数据2分和10分的影响。
师:你对此有何评价?生:…〔复习了平均数的概念,同时说明有些数据利用平均数是反响不出问题的,为引入其他数据代表奠定根底。
另外新课伊始,力求创设一种引人入胜的教学情景,挖掘出趣味因素,最大限度地吸引学生的课堂投入,符合学生的心理特征和认识规律。
〕师:类似的受平均数误导例子还是很多的。
婷婷的爸爸的公司在一次招聘时就出现了如下的情景。
问题2 阿冲应聘先请一位同学给画面编一段话。
6.2中位数与众数(2)
6.2中位数与众数(2)课前准备1、如何合理地选用平均数、中位数和众数?2、某同学一次考试成绩78分,高于班级的均分72分,因此他告诉家长,自己属于班级中等偏上水平,你认为对吗?3、某商店三、四月份出售同一品牌各种规格的空调销售数如下表,根据表中数据回答:1匹 1.2匹 1.5匹2匹三月12台20台8台4台四月16台30台14台8台(1)商店平均每月销售空调______台;(2)商店出售的各种规格的空调中,众数是_______;(3)在研究六月份进货时,商店经理决定______匹的空调要多进,_____匹的空调要少进。
探索新知问题1 :草地上有6个人在玩游戏,他们的平均年龄是15岁,请你想象一下是怎样年龄的6个人在玩游戏?问题2 :甲乙两班举行跳绳比赛,比赛学生的成绩经统计后得下表:比较两班学生成绩的平均数、优秀率(大于150为优秀)的高低。
交流讨论:某公司职工的月工资及人数如下:你认为该公司总经理、工会主席、普通职工将分别关心职工月工资数据的平均数、中位数和众数中的那一个?说说你的理由,并相互交流。
总结:在实际生活中针对同一份材料,同一组数据,当人们怀着不同的目的,选择不同的数据代表,从不同的角度进行分析时,看到的结果可能是截然不同的,作为信息的接受者,分析数据应从多角度对统计数据人出较全面的分析,从而避免机械的,片面的解释。
[议一议]平均数、中位数与众数都有哪些自己的特点?[想一想]高一级学校录取新生主要是依据考生的总分,这与平均数、中位数、众数中的哪一个关系较大?当堂反馈1、的教室里,三位同学正在为谁的数学成绩最好而争论,他们的五次数学成绩分别是小玲:62、94、95、98、98、小明:62、62、98、99、100 小丽:40、62、85、99、99,他们都认为自己的成绩比另两位同学的好,请你结合各组数据的三个代表,谈谈你的观点2、校在一次考试中,甲乙两班学生的数学成绩统计如下:分数50 60 70 80 90 100人数甲 1 6 12 11 15 5 乙 3 5 15 3 13 11请根据表格提供的信息回答下列问题:(1) 甲班众数为______分,乙班众数为______分,从众数看成绩较好的是______班.(2) 甲班的中位数是_______分,乙班的中位数是______分.(3) 若成绩在85分以上为优秀,则成绩较好的是______班.1、某商场进了一批苹果,每箱苹果质量约5千克,进仓库前,从中随机抽出10箱检查,称得10箱苹果的质量如下(单位:千克)4.8,5.0,5.1,4.8,4.9,4.8,5.1,4.9,4.7,4.7请指出这10箱苹果质量的平均数、中位数和众数2、甲、乙两家公司同时招聘业务员,工作性质相同,甲公司称员工平均工资为1500元,乙公司称员工平均工资为1300元,如果你想应聘,你会选择哪家公司?3据调查,某班30位同学所穿鞋子的尺码如下表所示:码号/码33 34 35 36 37人数7 6 15 1 1在这组数据的平均数\中位数和众数中,哪个指标是鞋厂最感兴趣的?4某市部分学生参加了2005年全国初中数学竞赛决赛,并取得优异成绩,已知竞赛成绩都是整数,试题满分为140分,参赛学生的成绩分布情况如下:根据以上信息解答下列问题:(1)全市共有多少人参加本次数学竞赛决赛?最低分和最高分在什么范围内?(2)经竞赛组委会评定,竞赛成绩在60分以上(含60分)的考生均可获得不同等级的奖励,求此次参加本次竞赛决赛考生的获奖比例;(3)决赛成绩的中位数落在哪个分数段内?(4)上表还提供了其他信息,例如:“没获奖的人数为105人”等等,请你再写出两条此表提供的信息。ww w.x kb1. com5、平均数,中位数和众数都是数据的代表,它们从不同侧面反映了数据的平均水平.有一次:小王、小李和小张三位同学举行射击比赛,每人打10发子弹,命中环数如下:小王:9 7 6 9 9 10 8 8 7 10小李:7 10 9 8 9 10 6 8 9 10小张:10 8 9 10 7 8 9 9 10 10某种统计结果表明,三人的“平均水平”都是9环.根据这一结果,请判断三人运用了平均数、中位数和众数中的哪一种“平均水平”?(每人写出一个“平均水平”即可)6、为增强学生的法律意识,开展了对全市学生的普法教育活动.为检验活动效果,组织全市八年级学生参加法律知识测试,并对测试成绩做了详细统计,将测试成绩(成绩都是整数,试卷满分30分)绘制了如下“频数分布直方图”.请回答:(1)参加全市法律知识测试的学生有______名同学.(2)中位数落在______分数段内.(3)若用各分数段的中间值(如5.5~10.5的中间值为8)来代替本段均分,请你估算本次测试成绩全市均分约是多少?人数(千人)4.03.12.81.30.70.10.5 5.5 10.5 15.5 20.5 25.5 30.5 分数(分)。
6.2.中位数与众数
6.2 中位数与众数【学习目标】1.能说出中位数、众数等数据代表的概念,能根据所给信息求出一组数据的中位数、众数等的数据代表。
2.能结合具体情境体会平均数、中位数、众数三者的差别;3.能从各类统计图中获取数据,能初步选择恰当的数据代表对数据作出自己的评判。
过程与方法:通过解决实际问题的过程,区分刻画“平均水平”的三个数据代表,让学生获得一定的评判能力,进一步发展其数学应用能力。
一、复述回顾:(二人小组完成)1.什么是算术平均数?加权平均数?二、设问导读:阅读课本P142-143完成下列问题:1. 如果你是应聘者,你怎样看待公司员工的收入?经理所说的公司的平均月薪2000元是否欺骗了应聘者?平均月薪2000元能客观反映公司员工的平均收入吗?若不能,你认为用哪个数据表示该公司员工收入的平均水平更合适?2. 中位数和众数的概念.中位数——把n个数据按大小、顺序排列,处于______________的一个数据(或_________________的平均数)叫做这组数据的中位数.众数——组数据中____________的那个数据,叫做这组数据的众数. ①如果数据有奇数个时,如何求中位数?②如果数据有偶数个时,如何求中位数?③如果数据中两个数据出现次数相等,众数是哪一个?如果数据中每个数据都只有出现一次呢?一组数据总是重复一个数呢?3.P143议一议.①_____________________________都是数据的代表,它们都刻画了一组数据的“_______________”.②比较可靠和稳定但容易受到极端数据的影响的是__________________.③可靠性比较差,但不受极端数据的影响的是________________________.④当一组数据中的个别数据变动较大时,可用_________来描述其集中趋势.三、自学检测:1. 数据1, 2, 8, 5, 3, 9, 5, 4, 5, 4, 的众数、中位数分别为()A.4.5, 5 B.5, 4.5C.5, 4 D.5, 52.对于数据组:“3,3,2,3,6,3,10,3,6,3,2”①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等。
中位数和众数的教学设计
中位数和众数的教学设计中位数和众数的教学设计3篇中位数和众数的教学设计篇1一、教学内容分析1.教学主要内容本节课“中位数和众数”是北师大版数学五年级下册第七单元《统计》的第三课时。
2.教材编写特点本节课是在学生认识、理解并会求平均数的基础上学习的,学生在生活实例中体会中位数、众数这两个统计量的实际意义,初步体会数据可能产生误导,使学生认识平均数、中位数、众数的特点,根据问题,能选择适当的统计量表示一组数据的不同特征。
3.教材内容的数学核心思想本节课的数学核心思想是学生通过生活中大量的实例,认识、体会平均数、中位数、众数在统计中的实际意义,根据实际需要,会求一组数据的平均数、中位数、众数,并能解释结果的实际意义,能选择适当的统计量表示一组数据的不同特征。
根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:(1)知识与技能目标:掌握中位数和众数的概念,会求一组数据的中位数和众数。
(2)数学思考:通过实际背景,初步体会平均数、中位数、众数三者的差别。
(3)解决问题:能结合具体情况选择利用平均数、中位数和众数解决一些实际的问题(4)情感态度价值观:培养学生认真的科学态度,深刻体会现实世界离不开数学,同时培养学生合作意识。
二、教材内容及重点、难点分析本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点教学重点:中位数和众数的意义和求法。
教学难点:对统计数据需从多角度进行全面分析三、教学对象分析1.学生已有知识基础(包括知识技能,也包括方法)本节课是在学生认识、理解并会求平均数的基础上学习的,学生理解平均数及其含义,能正确地求出平均数,对中位数、众数这两个统计量的实际意义,只有朦胧的认识,生活中有运用,但没有被明确提出过。
2.学生已有生活经验和学习该内容的经验对中位数、众数这两个统计量的实际意义,只有朦胧的认识,生活中有运用,但学生明确运用较少,没有被明确提出过。
学生该部分知识缺少生活经验。
《中位数与众数》教案
《中位数与众数》教案一、教学目标1. 让学生理解中位数和众数的概念,掌握求一组数据中位数和众数的方法。
2. 培养学生分析数据、处理数据的能力,提高学生的数学思维能力。
3. 培养学生合作学习、积极参与的精神,提高学生的数据分析观念。
二、教学内容1. 中位数的定义:将一组数据按照大小顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
2. 众数的定义:一组数据中出现次数最多的数就是这组数据的众数。
3. 求一组数据的中位数和众数的方法。
三、教学重点与难点1. 教学重点:中位数和众数的定义,求一组数据中位数和众数的方法。
2. 教学难点:理解中位数和众数的含义,掌握求一组数据中位数和众数的方法。
四、教学方法2. 利用多媒体课件辅助教学,增强课堂的趣味性。
3. 注重学生动手操作和实践能力的培养。
五、教学过程1. 导入新课:通过一组数据,让学生找出其中的中位数和众数,引发学生对中位数和众数的思考。
2. 自主学习:学生自主探究中位数和众数的定义,理解中位数和众数的概念。
3. 实例分析:分析一组数据,引导学生掌握求中位数和众数的方法。
6. 课后作业:布置有关中位数和众数的练习题,巩固所学知识。
六、教学策略1. 案例教学:通过具体案例的分析和讨论,让学生更好地理解中位数和众数的概念及求法。
2. 互动教学:鼓励学生提问和分享,促进师生之间的互动,提高学生的参与度。
3. 分层次教学:针对不同学生的学习水平,设计不同难度的教学内容,使所有学生都能在课堂上得到有效的学习。
七、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答等情况,评价学生的学习态度和效果。
2. 作业评价:通过学生完成的作业,评估学生对中位数和众数的理解和掌握程度。
3. 小组讨论评价:对学生在小组讨论中的表现进行评价,包括合作态度、交流能力和问题解决能力。
八、教学资源1. 教学课件:制作包含生动实例和动画的课件,帮助学生直观理解中位数和众数的概念。
6.2中位数与众数(教案)
本节课的核心素养目标旨在培养学生的数据分析观念、数学抽象思维和解决实际问题的能力。
1.数据分析观念:通过探讨中位数和众数的概念,让学生能够理解并运用这两种统计量分析数据,培养数据敏感性和数据分析意识。
2.数学抽象思维:在探究中位数和众数的过程中,引导学生抽象出数学概念,提升数学思维能力,培养逻辑推理和数学表达的能力。
2.在小组讨论环节,加强对学生问题分析的引导,帮助他们深入思考。
3.通过更多的生活实例,让学生更好地理解众数的概念和应用。
4.加强与学生的互动,鼓励他们在课堂上提问,及时解答他们的疑惑。
我相信,通过以上措施,能够让学生们更好地掌握中位数和众数这一知识点,并在实际应用中灵活运用。
-理解中位数的定义;
-学会计算奇数个数据和偶数个数据的中位数;
-掌握中位数的性质和它在描述数据集中趋势中的作用。
2.众数的概念与应用:
-了解众数的定义;
-学会在一组数据中找出众数;
-讨论众数在数据集合中的代表性和应用场景。
3.实际问题中的应用:
-分析现实生活中使用中位数和众数的例子;
-练习运用中位数和众数解决简单的统计问题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“6.2中位数与众数”。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要找出数据中的典型值的情况?”比如,我们在统计班级同学的身高时,想要知道一般同学的身高是多少。这个问题与我们将要学习的中位数和众数密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索中位数和众数的奥秘。
-实际问题中的应用:学生需要学会将中位数和众数应用于解决实际生活中的统计问题,理解其应用场景。
八(上)6.2中位数与众数2
6.2中位数与众数(2)-- [ 教案]班级姓名学号学习目标:1.能结合具体的情景理解平均数、中位数和众数的区别和联系,并能根据具体问题,选择合适的统计量表示数据的集中程度.2.能对日常生活中的有关问题与现象做出恰当的判断.学习重点:根据统计数据对问题与现象作出判断.学习难点:对统计数据从多角度进行全面分析,形成一定的统计观念.学习过程:一.复习巩固:1.某饮料店为了了解本店一种罐装饮料上半年的销售情况,随机抽查了8天该种饮料的日销售量,结果如下(单位:听):33,32,28,32,25,24,31,35.(1)这8天的平均日销售量是_________听,销量的众数是_________,中位数是_________;(2)根据上面的计算结果,估计上半年(按181天计算)该店能销售这种饮料___________听.2.某鞋店试销一款女鞋,试销期间对不同颜色鞋的销售情况统计如表所示:鞋店经理最关心的是哪种颜色的鞋最畅销,则对鞋店经理最有意义的统计量是()A.平均数 B.众数 C.中位数 D.方差二.新课学习:(一)初步感受:问题1:甲、乙两位选手练习打靶,每发成绩如下(单位:环):(1)6,6,6,1,6,甲的平均成绩是每发___________环,若甲偶尔失误了一次,则甲的成绩为每发___________环更恰当;(2)2,3,4,5,10,乙的平均成绩是每发___________环,若乙偶尔撞上了10环,则乙的成绩为每发___________环更恰当.问题2:一个小组有12位同学,其中有11位同学50米跑的成绩在8秒和10秒之间,另外一位同学的成绩是11秒2,你认为用这12位同学50米跑成绩的平均数还是中位数中的哪一个,更能客观反映这个小组的集体成绩,为什么?(二)讨论交流:1、随着汽车的日益普及,越来越多的城市发生了令人头痛的交通堵塞问题.你认为用过往车辆一天车速的平均数衡量某条交通主干道的路况合适吗?2、为筹备班级里的新年晚会,班长对全班同学爱吃哪几种水果作了民意调查.最终买什么水果,该由调查数据的平均数、中位数还是众数决定呢?(三)综合运用:1.小明和小颖5次数学单元测试成绩如下(单位:分):小明:89,67,89,92,96;小颖:86,62,89,92,92.他们都认为自己的成绩比另一位同学好.(1)请你分析他们各自的理由;(2)你认为谁的成绩更好一些?说明你的理由.2.某中学开展英语演讲比赛活动,初二(1)、初二(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如下图所示.(1)根据左图填写表格.(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好?(3)如果在每班参加复赛的选手中分别选出2人参加决赛,你认为哪个班的实力更强一些,选手编号三.小结与交流:你对平均数、众数和中位数的合理选择有何体会?。
北师大版八年级数学上册6.2中位数与众数2教案
6.2 中位数与众数一、学生知识状况分析学生的知识技能基础:经过前两节课的学习,学生已理解算术平均数和加权平均数的联系与区别,会求一组数据的算术平均数和加权平均数,能利用平均数解决实际问题。
学生活动经验基础:学生在算术平均数和加权平均数的学习活动中,解决了一些相关的实际问题,体会到权的差异对平均数的影响,获得了从事统计活动所必须的一些数学活动经验,初步形成了动手实践、自主探索、合作交流的学习方式。
二、教学任务分析本节课的教学任务是:掌握中位数、众数的概念,多角度地认识“平均水平”,能根据所给的信息求出一组数据的中位数与众数。
在具体情境中,能搞清平均数、中位数和众数三者的区别,并会选择恰当的数据代表对问题作出自己的正确评判;进一步发展学生的数学应用能力, 达成有关的情感态度目标。
为此,本节课的教学目标是:1. 知识与技能:掌握中位数、众数的概念,会求出一组数据的中位数与众数;能结合具体情境体会平均数、中位数和众数三者的区别,能初步选择恰当的数据代表对数据作出自己的正确评判。
2. 过程与方法:通过解决实际问题的过程,区分刻画“平均水平”的三个数据代表,让学生获得一定的评判能力,进一步发展其数学应用能力。
3. 情感与态度:将知识的学习放在解决问题的情境中,通过数据分析与处理,体会数学与现实生活的联系,培养学生求真的科学态度。
三、教学过程设计本节课设计了五个教学环节:第一环节:情境引入;第二环节:合作探究;第三环节:运用提高;第四环节:课堂小结;第五环节:布置作业。
第一环节:情境引入内容:在当今信息时代,信息的重要性不言而喻,人们经常要求一些信息“用数据说话”,所以对数据作出恰当的评判是很重要的。
下面请看一例:某次数学考试,小英得了78分。
全班共32人,其他同学的成绩为1个100分,4个90分,22个80分,2个62分,1个30分,1个25分。
小英计算出全班的平均分为77.4分,所以小英告诉妈妈说,自己这次数学成绩在班上处于“中上水平”。
掌握众数与中位数的教案
掌握众数与中位数的教案一、教学目标1.了解众数与中位数的含义和计算方法2.掌握众数与中位数在数据分析中的应用二、课前准备1.教师:准备讲义、课件、实例2.学生:预习教材,掌握初步概念三、教学内容与方法1.引入教师将常见的数据统计问题提出,引导学生思考和讨论,如何去计算数据的中心趋势值。
2.概念讲解教师介绍众数和中位数的概念,并解释这两个值对数据有何作用。
(1)众数:出现次数最多的值称为众数(2)中位数:将一组数据按照大小的顺序排列,位于中间的那个数就是中位数3.计算方法教师介绍如何对一组数据进行众数和中位数的计算:(1)众数的计算方法:寻找出现次数最多的数,每一组数据必须进行排列。
(2)中位数的计算方法:将一组数据按照大小的顺序排列,若数据的个数为奇数,则中位数为排序后处于中间位置的数值;若数据的个数为偶数,则中位数为排序后中间位置两个数的平均值。
4.应用实例教师通过实例进行应用练习,以帮助学生掌握众数和中位数在实际问题中的应用:(1)一所学校的年级总人数为200人,各班级的人数如下:50,90,30,10,20,其中的众数是多少?(2)某班学生的数学分数如下:76,55,89,66,90,70,87,72,86,64。
请问这组数据的中位数是多少?5.归纳总结教师让学生自行总结众数与中位数的概念、计算方法和应用,帮助学生加深对知识点的理解和记忆。
6.拓展延伸教师提供更多的问题和练习,让学生继续掌握和熟练运用众数与中位数。
四、教学评估1.通过课堂练习,对学生的应用能力进行检测2.对学生针对性提出问题,促进学生的认知升华3.对教学过程中的实例和讲义进行定期评价,完善教材素材五、教学反馈教师在教学过程中要发现学生的掌握程度及问题,及时进行调整。
同时,还可以与学生进行交流,听取他们的看法和建议,为下一次教学改进和提升提供充足的保障。
北师版数学八年级上册6.2中位数与众数教案
-中位数和众数在实际问题中的应用:通过具体实例,讲解如何利用中位数和众数分析数据,解决实际问题,突出其在数据分析中的重要性。
举例:在一组考试成绩中,学生可能需要找出中位数来了解整体水平,而众数则可以帮助了解最常出现的成绩区间。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“中位数和众数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-中位数和众数与平均数的比较:学生需要理解在不同情况下选择哪种统计量更能反映数据的特点,比如在受异常值影响较大的数据集中,中位数通常比平均数更有代表性。
举例:在教学过程中,可以通过以下方式帮助学生突破难点:
-使用具体的数据集,引导学生进行实际操作,如使用卡片或计算机软件进行数据排序。
-通过绘制频数分布直方图或条形图,让学生直观地理解中位数和众数的概念。
4.中位数和众数与平均数的比较:探讨中位数、众数和平均数在不同情境下的适用性,理解它们的优缺点。
本节课旨在让学生掌握中位数和众数的概念,学会求一组数据的中位数和众数,并能运用它们解决实际问题。同时,通过比较中位数、众数和平均数,提高学生对数据处理和分析的能力。
二、核心素养目标
1.数据分析:通过探究中位数和众数的概念,培养学生数据分析的核心素养,使其能够从实际数据中提取有用信息,进行合理的统计和分析。
中位数与众数
平均数、中位数与众数都是反映一组数据集中趋势的特征数,因分析的角度与评判的需要不同,一般选择不同的指标。
在学习本节课内容以前,在学生的认知结构中,多是单一的用算术平均数理解一组数据的平均水平。
本节课教材一开始以一个有争议的话题为背景,弓I起学生对“平均水平”的认知冲突,创造引入新知识的环境,从而引入中位数与众数的概念,让学生从不同的角度认识平均,体会集中趋势。
本节课“中位数与众数”,内容相对单一,概念的识别与计算也不复杂,教材为了知识间的前后联系,有意识用图表信息呈现数据,在学生了解了中位数与众数概念后将描述“平均水平”的三个特征量同时出现,借以突出它们的意义与区别,让学生体会三者在不同情境中的意义。
一、教学目标:1、知识与技能:掌握中位数、众数的概念,能根据问题提供的信息分析数据,求出中位数和众数。
2、过程与方法:能结合具体情境体会平均数、中位数与众数的区别与联系。
初步体会选择恰当的数据代表对数据从不同角度描述并作出自己的评判。
3、情感与态度:在大量真实的现实情境中丰富活动体验,增强学生数据处理和评判的主动意识,培养学生求真的科学态度和自主探索与合作交流的意识与能力。
二、教学重点:根据所提供的数据或信息能熟练的求出众数和中位数。
三、教学难点:在生活情境中选择恰当的数据代表对数据作出合理的评判。
成因诊断:教材中呈现的以实际生活的原始数据或加工后数据为题材的信息,信息量大,在为学生评判数据提供充足背景资料的同时,也干扰和误导着他们对数据的读取和选择。
这与获取平均数、中位数、众数不同,也与以前的代数运算,几何求证不同,那时题目本身有选择指向,所提供的数字都是有用的、必不可少的,结论也是唯一的、明确的。
而这里对数据的评判,既与统计数据本身有关,也与学生的知识经验有关,不同的学生从不同的角度可以有不同的结论,这些思维经历对学生来说是陌生的、富有挑战性的,定势的负迁移影响学生的选择。
解决策略:(1)合作学习,引导学生充分研讨和广泛交流,在独立思考的基础上发表自己的观点,推介自己的评判依据及设想的实际价值,然后小组交流,互相建议,在对比中选择最佳方案。
九年级数学上册《中位数与众数》教案、教学设计
1.教师通过多媒体展示一组与学生生活密切相关的数据,如某班级学生的身高、体重等。引导学生观察数据,思考如何描述这些数据的集中趋势。
2.学生可能会提到平均数、数和众数,并提问:“中位数和众数分别是什么?它们在描述数据集中趋势方面有什么作用?”
(2)自主探索(10分钟)
将学生分成小组,让他们通过讨论、交流,自主探究中位数和众数的计算方法。在此过程中,教师巡回指导,解答学生的疑问。
(3)案例分析(15分钟)
展示具有代表性的案例,让学生运用中位数和众数进行分析,并解释其在实际问题中的作用。同时,针对一些特殊情况,如数据量为偶数时的中位数计算,进行讲解和指导。
(4)知识巩固(10分钟)
设计课堂练习,让学生运用所学知识解决实际问题。课后,布置相关作业,巩固学生对中位数和众数的理解和运用。
(5)总结与反思(5分钟)
对本节课的学习内容进行总结,让学生明确中位数和众数在实际问题中的应用价值。同时,鼓励学生反思学习过程中的收获和不足,为下一节课的学习做好准备。
四、教学内容与过程
2.数据分析过程中,如何正确找出中位数和众数,以及如何处理一些特殊情况(如数据量为偶数时中位数的计算)。
3.培养学生将理论知识应用于实际问题的能力。
教学设想:
1.创设情境导入:通过展示与学生生活密切相关的数据,如班级同学的身高、体重等,引发学生对中位数和众数的思考,激发他们的学习兴趣。
2.自主探索:引导学生运用已有知识,通过小组合作、讨论交流等方式,自主探究中位数和众数的概念及计算方法。
2.作业完成后,认真检查,确保无误;
3.遇到问题时,及时与同学或老师沟通交流,寻求帮助;
4.按时提交作业,养成良好的学习习惯。
八年级数学上册 6.2 中位数与众数教案 (新版)北师大版
课题:6.2中位数与众数教学目标:1.经历用中位数和众数描述数据集中趋势的过程,发展数据分析观念.2.理解中位数和众数的概念,能求出一组数据的中位数和众数.3.在具体情境中体会平均数、中位数和众数三者的差别,能根据问题的背景选择合适的量描述一组数据的集中趋势.教学重点与难点:重点:会求中位数和众数,能结合实际情景理解其实际意义.难点:理解平均数、中位数和众数这三个概念之间的联系与区别,能根据具体问题选择适当的统计量分析数据信息并作出决策.课前准备:多媒体课件.教学过程:一、创设情境,引入新课在当今信息时代,信息的重要性不言而喻,而人们又经常要求一些信息“用数据说话”,所以对数据做出恰当的分析是很重要的.今天我们一起来学习数据的代表以及如何选择恰当的数据代表对数据做出判断.我们一起来看下列一组数据:某次数学考试,婷婷得到78分,全班共30人,其他同学的成绩为1个100分,4个90分,22个80分,以及一个2分和一个10分.婷婷计算出全班的平均分为77分,所以婷婷告诉妈妈说,自己这次成绩在班上处于“中上水平”.婷婷对妈妈说的情况属实吗?你对此有何看法?平均数是我们常用的一个数据代表,但是在这里,利用平均数把倒数第三的分数说成处于班级的“中上水平”显然有投机取巧之嫌,请大家思考:那么问题出在哪里呢?本节课我们就来探究这一问题【教师板书课题:6.2中位数与众数】处理方式:交流讨论,并发表自己的看法.设计意图:通过给学生提供现实背景,吸引学生的注意力,激发好奇心和求知欲;让学生通过亲自经历体会从具体情境中发现数学问题,进而寻求解决问题方法,让学生理解实际生活中,平均数很难反映问题真实的一面,从而引入新课.二、探究学习,获取新知活动内容1:中位数问题1 :上面的问题出在哪里呢?你对此有何评价?问题2 :小王应聘小王大学毕业后到处寻找工作,某天他在报纸上看到了一条招聘广告:小王觉得这家公司的待遇还不错,于是就到这家公司进行面试,并被该公司聘用了.可是到公司上班两个月之后,他找到经理,说:“你们欺骗了我,我的工资才1800元,而且我也问过其他职员,职员C说他的工资是1900元,在公司算中等收入,职员D说他们好几个人的工资都是1800元,他们都没有得到过2700元呀﹗月平均工资怎么可能是2700元?”而经理却不慌不忙的对小王说:“小王啊,不要这么激动嘛.我们公司的月平均工资确实是2700元!这是我们公司的工资表,你自己看啊!”说着拿出了一张工资报表:××公司×月工资报表:问题1:请大家帮小王看一看工资表,该公司的月平均工资到底是不是2700元?经理有没有欺骗小王呢?问题2:为什么月平均工资比他得到的工资高那么多呢?问题3:该公司的月平均工资能否客观地反映员工的工资收入?如果能,请说明理由;如果不能,那你认为哪个数据反映员工的工资收入比较合适呢?问题4:职员C说他的工资是1900元,在公司算是中等收入.那么如何理解“中等收入”?初步形成中位数的概念:将一组数据按照由小到大(或由大到小)的顺序排列,处于中间位置的数称为这组数据的中位数.处理方式:让学生先独立思考,然后再小组交流,最后在全班发表自己的想法.学生的观点可以不同,而且也不应该相同,因此不强求结论的一致性.这里没有正误之分.学生只要能正确表达自己的想法就可以了.设计意图:提出一个真实的问题,揭示学生认识上的矛盾,产生新的疑点,引起学生对“平均水平”的认知冲突,让学生交流讨论,初步感受员工的中等收入实际上就是找中位数的过程.从而初步引出中位数的概念.(出示某工资表)问题:这组数据的中位数是多少?学生:分小组交流讨论.设计意图:通过交流讨论,让学生知道一组数据的个数是偶数时,如何确定中位数.师生共同总结完整中位数的概念:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.练习巩固:【温馨提示】:求中位数要先把数据按大小顺序排列,可以从小到大,也可以从大到小.如果数据个数n为奇数时,第12n+个数据为中位数;如果数据个数n为偶数时,第2n、12n+个数据的平均数为中位数.活动内容2:众数小明妈妈的服装店,在前一段时间内销售了200件某品牌内衣,其中各型号内衣的销售量如下表:小明算出平均数为95厘米,就建议妈妈下次进货时型号95厘米的内衣多进些.问题1:你知道小明求平均数的方法吗?问题2:你觉得妈妈会采纳他的建议吗?问题3:妈妈下次进货时应多进什么型号的?为什么?初步形成众数的概念:一组数据中出现次数最多的那个数据叫做这组数据的众数.练习巩固是相应的次数.众数有可能不唯一,注意不要遗漏. 2、平均数、中位数和众数都是有单位的,和原数据的单位一致.处理方式:此问题与学生生活贴近,知识背景并不复杂,解决问题的渴望和原有经验的支撑,足以使思维活跃,课堂热烈.可以分组学习,教师巡回其中,参与讨论,适时点拨.设计意图:从问题情境中,体会得到众数的概念,通过有争议的问题情境,再次引起学生的认知冲突,激发学生的学习兴趣和学习热情;通过讨论交流,培养了学生的自主探索、合作交流的意识与能力,改变学生的学习方式,通过解决问题,让学生多角度地认识平均,使他们的认知冲突得到升华.活动内容3:平均数、中位数和众数的特征1.某厂家研制A、B、C三种环保电池,各取10节进行使用寿命的跟踪调查,结果如下(单位:月)A:4,5,5,6,6,7,7,7,7,9.B:3,4,4,4,5,7,10,10,10,13.C:3,5,5,5,7,7,8,8,9,11.该厂家做广告时,声称三种电池使用寿命都是7个月.请用学到的知识识别广告是否全为真实?若真实,依据什么?你如果需要,想选购哪种电池?2.学校举行歌咏比赛,选出10名教师担任评委,并事先拟定从以下4个方案中选择合理的方案来确定每个歌手的最后得分.方案1:所有评委打分的平均值.方案2:在所有评委打分中,去掉一个最高分和一个最低分,然后再计算其余打分的平均值.方案3:所有评委打分的中位数.方案4:所有评委打分的众数.为了探究上述方案的合理性,先对某个选手的演唱成绩进行了统计实验.下面是这个同学的得分统计:3.2, 7, 7.8, 8,8, 8,8.4, 8.4, 8.4, 9.8.问题1:分别按上述4个方案计算这个选手的最后得分;问题2:根据(1)的结果,请用统计的知识说明哪些方案不适合这个选手的最后得分. 处理方式:小组合作来计算平均数、中位数和众数,然后小组讨论选择决策. 设计意图:通过方案选择,让学生明白平均数、中位数和众数都是描述数据平均水平的特征量.重点考查三个描述平均水平的特征数的意义、计算及不同应用.议一议:平均数、中位数和众数有哪些特征? 师生共同总结:1.用平均数作为一组数据的代表,比较可靠和稳定,它与这组数据中的每一个数都有关系,对这组数据所包含的信息的反映最为充分,因此在现实生活中较为常用,但它容易受极端值的影响.2.用中位数作为一组数据的代表,可靠性比较差,它不能充分利用所有数据的信息,但它不受极端值的影响,当一组数据中有个别数据变动较大时,可用它来描述这组数据的“集中趋势” .3.用众数作为一组数据的代表,可靠性也比较差,其大小只与这组数据中的部分数据有关,但它不受极端值的影响.当一组数据中某些数据多次重复出现时,众数往往是人们尤为关心的一种统计量.要根据不同的实际需要,确定是用平均数、中位数还是众数来反映数据的平均水平. 三、训练反馈,应用提升1.在演讲比赛中,你想知道自己在所有选手中处于什么水平,应该选择哪个数据的 代表( )A .平均数B .中位数C .众数D .不确定2.已知一组数据1,a ,4,4,9,它的平均数是4,则a 等于 ,这组数据的众数是 .3.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是( ).A .7,7B .8,8.5C .7,7.5D .8,6.54.某公司销售部有营销人员1515人某月的销售如下:人数 1 1 3 5 3 2(2)假设销售部负责人把每位营销员的月销售额定为320件,你认为是否合理?为什么?如不合理,请你制定一个合理的销售定额,并说明理由.处理方式:学生独立完成,然后小组之间交流.设计意图:结合生活实际问题进行数据分析,体会平均数、中位数、众数这三个数据代表的区别及中位数、众数在生活中的应用.四、回顾反思,提炼升华通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?先想一想,再分享给平均数中位数众数优点充分利用数据所提供信息通过中位数可以小于或大于这个中位数的数据约各占一半.受极端值影响较小,反映各数据出现的频率.缺点容易受极端值影响不能充分利用数据所提供信息.数据重复出现的次数大致相等时,众数没有特别的意义.联系都是数据的代表,刻画数据的“平均水平”.处理方式:学生畅谈自己的收获!设计意图: 通过回顾本节所学知识,体验到中位数、众数与现实生活的联系,感受到自己进步和成功的喜悦,有信心更好地学习下去,学生畅所欲言,相互进行补充,能用自己的话进行归纳总结.五、达标检测,反馈提高1.要调查多数同学们喜欢看的电视节目,应关注的是哪个数据的代表()A.平均数 B.中位数 C.众数 D.不确定2.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是()A.6 B.7 C.8 D.93.毕节市今年5月的某一周每天的最高气温(单位:℃)统计如下:19,20,24,22,24,26,27,则这组数据的中位数与众数分别是()A.23,24 B.24,22 C.24,24 D.22,244.如图,是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.(1)计算这些车的平均速度;(2)车速的众数是多少?(3)车速的中位数是多少?设计意图:学以致用,当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.六、布置作业,课堂延伸基础作业:课本 P144 第1、2题.拓展作业:课本 P144 第4题.板书设计:§6.2 中位数与众数1.引入2.中位数与众数的概念:3.例题解析:4.练习投影区学生活动区。
北师大版数学五年级下册《中位数和众数》教学设计
《中位数和众数》教学设计一、教学设计【教学目标】(1)理解掌握中位数、众数的概念,会求一组数据的中位数、众数,培养学生初步的统计意识和数据处理能力。
(2)结合具体情景体会平均数、中位数、众数三者的差别,能初步选择适当的数据代表来表示这组数据的“平均水平”,并作出恰当的判断。
从而培养学生的评判能力。
(3)培养学生具体问题具体分析的能力;体会数学服务于生活。
【教学重、难点】重点:1、中位数与众数的意义。
2、对统计量的选择能力。
难点:对众数意义的理解二、教学过程(一)创设情景,制造认知冲突。
1、回顾平均数的含义。
展示姚明的一张照片。
一美国女孩是姚明的球迷,看了姚明的比赛后感叹道:“噢,原来中国人是世界上最高的人。
”接着引导孩子们就美国女孩的话,发表看法。
哦,不能用这样极端的数据来代表所有人中国人的身高,也就是说姚明身高不具有我们中国人身高的代表性。
那究竟哪个数才能代表中国人的身高呢?是的,平均数能比较好的代表一组数据的一般水平。
平均数在日常生活中运用的非常多,作用很大。
这个平均数应该怎样求?你会求吗?试试看。
2、求下列各题的平均数。
25、30、35、40。
12、15、18二、创设具体情境,初步认识中位数和众数出事公司工作人员月工资一览表。
1、学生观察表格,交流自己的感受。
思考:1000元是这组数据的平均数为什么大部分人得到工资不到1000元呢?用1000元反映公司员工的月收入合适吗?2、思考:你认为用怎样的数反映员工的月工资比较合适?学生先独立思考,然后小组交流。
教师在肯定学生意见的基础上向学生介绍:除了平均数以为,数学上还有两个统计量可以表示一组数据的平均水平,那就是“中位数”和“众数”。
4理解“中位数”和“众数”的概念。
学生先按照自己的理解说一说,然后师生共同小结。
中位数:将一组数据按顺序排列,中间的数就是这组数的中位数。
众数:一组数据中出现次数最多的数就是这组数的众数。
5、学生找出员工收入的中位数及众数,与平均数比较,感觉中位数与众数的特点。
《中位数与众数》教案
《中位数与众数》教案第一章:中位数的基本概念1.1 导入:通过一组数据,让学生感受中位数的重要性。
1.2 讲解中位数的定义:将一组数据按照大小顺序排列,位于中间位置的数称为中位数。
1.3 讲解中位数的性质:对于一组数据,中位数将数据分为两部分,一部分大于中位数,一部分小于中位数。
1.4 举例说明中位数的求法。
第二章:众数的基本概念2.1 导入:通过一组数据,让学生感受众数的重要性。
2.2 讲解众数的定义:在一组数据中,出现次数最多的数称为众数。
2.3 讲解众数的性质:众数能够反映出数据的出现频率。
2.4 举例说明众数的求法。
第三章:中位数和众数的关系3.1 导入:通过一组数据,让学生感受中位数和众数之间的关系。
3.2 讲解中位数和众数的关系:中位数是将数据分为两部分,而众数是出现频率最高的数,两者有时相同,有时不同。
3.3 举例说明中位数和众数的关系。
第四章:中位数和众数在实际应用中的作用4.1 导入:通过实际案例,让学生了解中位数和众数在实际应用中的作用。
4.2 讲解中位数和众数在统计学中的应用:中位数和众数可以用来描述数据的集中趋势。
第五章:中位数和众数的求法及应用5.1 导入:通过一组数据,让学生学会求中位数和众数的方法。
5.2 讲解中位数的求法:将数据按照大小顺序排列,找到中间位置的数即为中位数。
5.3 讲解众数的求法:统计每个数出现的次数,出现次数最多的数为众数。
5.4 举例说明中位数和众数的求法及应用。
第六章:中位数的性质与应用6.1 导入:通过问题引导学生思考中位数的性质及其在实际问题中的应用。
6.2 讲解中位数的稳定性:无论数据如何变化,只要数据个数不变,中位数的位置不变。
6.3 讲解中位数的应用:中位数在评估数据集中趋势、解决争议数据等问题上的作用。
6.4 举例说明中位数的应用。
第七章:众数的性质与应用7.1 导入:通过问题引导学生思考众数的性质及其在实际问题中的应用。
7.2 讲解众数的唯一性与非唯一性:一组数据中可能有一个众数,也可能有多个众数。
北师版八年级数学 6.2 中位数与众数(学习、上课课件)
感悟新知
知3-练
例3 [母题 教材P144习题T4 ]如表是某公司员工月收入的
资料 .
职位
总经 理
财务 总监
部门 经理
人数 / 名
1
1
2
月收 入 /元
40 000
30 000
6 000
技术 人员
10
5 000
前台 2
3 500
保安 3
3 000
保洁 1
2 000
感悟新知
知3-练
(1)这家公司员工月收 入的平均数是 7 500 元,中位数是 5_0_0_0__元_,众数是_5__0_0_0_元__ .
感悟新知
求中 位数 的步 骤 中位 数的 作用
第 1 步:将所有数据按大小顺序排列 . 知1-讲 第 2 步:确定数据个数的奇偶性 . 第 3 步:确定最中间一个数据或最中间两个 数据的平均数为中位数 中位数是刻画一组数据的“中等水平”的 一个代表,反映了一组数据的集中趋势,它 只与数据的排列顺序有关
反映了一组数据的平 均 大 小, 常 用 来代表数 据总体的“平均水平”
反映一组数据 的一般水平
反映的是一组数据 的多数水平,其大 小只 与部分数据有 关
区别
个 数
唯一
唯一
一个或多个或没有
优 点
所有数据都参与运算, 能充分利用数据所提供 的信息
计算方便,不 受极端值的 影响
某些数据多次重复 出现时,众数往往 更能反映问题
解:这 10 名运动员的成绩按从小到大的顺序排列后, 最中间的两个成绩分别为 1.60 m,1.60 m,
故这
10
名运动员成绩的中位数为
1.60+1.60 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§6.2中位数与众数(2)教案
制卷:卞文辉审核:张传美时间:2010.1.7
班级:姓名:学号:
一、教学目标
1.能结合具体的情境理解平均数、中位数和众数的区别与联系,并能根据具体问题,选择合适的统计量表示数据的集中程度.
2.能对日常生活中的有关问题与现象做出一定的评判.
重点:理解平均数、中位数和众数的区别与联系.
难点:根据具体问题,选择合适的统计量表示数据的集中程度.
二、教学过程
你认为该公司总经理、工会主席、普通职工将分别关注职工月工资数据的平均数、中位数和众数中的哪一位?说说你的理由.平均数、中位数和众数它们都有什么各自的优缺点.
在实际问题中,平均数是最常用的指标,但不能一味的使用平均数来确定数据的特征,根据不同的实际需要,确定用平均数、中位数还是众数反映数据的特征.平均数、中位数、和众数各有所长,也各有其短.
1、用平均数作为一组数据的代表,比较可靠和稳定,它与这组数据中的每一个数都有关系,
对这组数据所包含的信息的反映最为充分,因而其应用也最为广泛,特别是在进行统计推断时有最要的作用,但计算时比较繁琐,并且容易受到极端数据的影响.
2、用众数作为一组数据的代表,着眼于对数据出现的频数的考察,其大小只与这组数据中的
部分数据有关,可靠性比较差,但众数不受极端数据的影响.当一组数据中有不少数据多次重复出现时,其众数往往是我们关心的一种统计量.
3、用中位数作为一组数据的代表,可靠性也比较差,但中位数也不受极端数据的影响,当一
组数据中的个别数据变动较大时,可用他来描述其集中趋势.
思考:某员工月工资为1000元,那么他属于公司中等偏上水平还是中等偏下水平?说说理由.
(中等偏上水平.应以“中位数”为准,高于“中位数”属于中等偏上水平,低于“中位数”属于中等偏下水平.)
2.P177数学实验:教师捏住一根绳子的两端,将绳子拉直,面对全体学生.
(1)请全班同学目测并估计这根绳子的长度.
(2)将全班每位同学的估计值制成统计表和统计图,并计算全班同学估计值的平均数、中位数和众数.
(3)根据(2)中计算的结果,请你确定一个最后的估计值,作为全班同学对这根绳子长度的估计值.
(适当指导制成统计表和统计图)
3.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示:
(1)请填写下表:
(2)请从下列三个不同角度对测试结果进行分析: ①从平均数和中位数结合看,谁的成绩好些?;
②从平均数和9环以上(包括9环)的次数看,谁的成绩好些?; ③从折线图两人射击环数的走势看,谁更有潜力?
学生练习P 177
小结:平均数、中位数、众数区别练习、优缺点.
965432。