橡胶的基本结构与性能

合集下载

橡胶基本知识

橡胶基本知识

橡胶基本知识橡胶,同塑料、纤维并称为三大合成材料,是唯一具有高度伸缩性与极好弹性的高分子材料。

橡胶的最大特征首先是弹性模量非常小,而伸长率很高。

其次是它具有相当好的耐透气性以及耐各种化学介质和电绝缘的性能。

某些特种合成橡胶更具备良好的耐油性及耐温性,能抵抗脂肪油、润滑油、液压油、燃料油以及溶剂油的溶胀;耐寒可低到-60℃至-80℃,耐热可高到+180℃至+350℃。

橡胶还耐各种曲挠、弯曲变形,因为滞后损失小。

橡胶的第三个特征在于它能与多种材料进行并用、共混、复合,由此进行改性,以得到良好的综合性能。

橡胶的这些根本性能,是它成为工业上极好的减震、密封、屈挠、耐磨、防腐、绝缘以及粘接等材料。

第一章橡胶的种类、特性和用途在全世界,橡胶〔包括塑料改性的弹性体〕的种类已超过100种。

如果按牌号估算,实际上已超过1000种。

一:橡胶的分类1.按原材料来源与方法橡胶可分为天然橡胶和合成橡胶两大类。

其中天然橡胶的消耗量占1/3,合成橡胶的消耗量占2/3。

2.按橡胶的外观形态橡胶可分为固态橡胶〔又称干胶〕、乳状橡胶〔简称乳胶〕、液体橡胶和粉末橡胶四大类。

3.根据橡胶的性能和用途除天然橡胶外,合成橡胶可分为通用合成橡胶、半通用合成橡胶、专用合成橡胶和特种合成橡胶。

4.根据橡胶的物理形态橡胶可分为硬胶和软胶,生胶和混炼胶等。

根据橡胶种类及交联形式,在工业使用上,橡胶又可按如下分类。

一类按耐热及耐油等功能分为:普通橡胶、耐热橡胶、耐油橡胶以及耐天候老化橡胶、耐特种化学介质橡胶等。

另一类按橡胶的软硬程度划分为:一般橡胶、硬橡胶、半硬质胶、硬质胶、微孔胶、海绵胶、泡沫橡胶等。

具体分类方法见表一表一橡胶的分类二:常用橡胶的品种、特性和用途常用橡胶的品种、特性和用途见表二表二常用橡胶的品种、特性和用途第二章橡胶工业制品的种类橡胶工业制品是除轮胎、胶管、胶带等之外的其他橡胶制品。

主要包括以下几类。

一:橡胶密封制品橡胶密封制品包括O型橡胶密封圈、旋转轴唇形密封件〔油封〕、复合密封、异形断面橡胶密封件、制动皮碗皮圈、汽车制动气室橡胶隔膜、橡胶密封条、橡胶防尘套〔罩〕、皮膜、水封制品、吸水膨胀橡胶、桥面橡胶伸缩缝等。

【世界五百强企业绝密文件】橡胶结构与性能的关系

【世界五百强企业绝密文件】橡胶结构与性能的关系

第一章橡胶结构与性能的关系1.1 前言《高分子词典》中定义:在环境温度下显示高弹性的高分子化合物。

橡胶通常为无定形态,分子量很高(几十万到数百万),分子链呈卷曲状,分子间作用力小,玻璃化温度低,可以在较低应力下发生很大(100 %-1000 %)可逆变形。

由于历史原因,“橡胶”术语在应用中名称内涵不同,可以表示天然橡胶、合成橡胶、生胶、混炼胶、硫化胶、胶料,故ASTM D833推荐使用“弹性体”代替。

ASTM D1566 中定义:橡胶是一种材料,它在大的变形下能迅速而有力恢复其变形,能够被改性。

日本橡胶的定义:在无定形高分子液体状态下表现熵弹性的高分子;其非常柔软,变形大,具有可伸长百分之几百以上长度的力学性能,应力消除后瞬时完全恢复原长度。

塑料:主要是由高分子量的聚合物组成,其成品状态为为非弹性体的柔韧性或刚性固体,在制造或加工过程中有一阶段能够流动成型、或由原地聚合或固化定形而成的聚合物。

橡胶独有的特征—高弹性的特点:可逆弹性形变大(可达1000%或以上,金属1%以下);弹性模量小(约为105N/m2,金属1010~1011N/m2);T↑→弹性模量↑(与金属相反);形变时有明显的热效应,回缩时吸热;高弹性为熵弹性。

1.2 橡胶分子的组成和分子链结构橡胶的分子组成由一种单体组成的聚合物称为均聚体,由二种以上单体组成的聚合物称为共聚物。

共聚物根据其单体排列顺序可进一步分为无规共聚物、交替共聚物、嵌段共聚物和接枝共聚物。

1.2.1 主链结构橡胶分子在未硫化时主要呈线型,其长度大约相当于其直径的5万倍。

橡胶的分子量很大,是高分子化合物。

由重复单元(称为链节)构成,链节的数量称为聚合度n。

饱和碳链橡胶:橡胶主链上的碳原子之间全部由较高键能的δ键组成。

δ键的电子云围绕C原子直线轴对称分布,电子云的重迭程度大,具有轴对称性,从而使主链上的-C--C-单键能按一定的键角绕着相邻的键作自由内旋转。

形成大分子内旋的动力是大分子的热运动。

减震橡胶相关知识及应用

减震橡胶相关知识及应用

减震橡胶相关知识及应用减震橡胶作为现代工程领域中不可或缺的一部分,其重要性不言而喻。

它能够降低振动、减少噪音,进而提高设备的稳定性和可靠性,同时也有助于增加设备的使用寿命。

本文将介绍关于减震橡胶的相关知识和应用。

一、减震橡胶的组成和结构减震橡胶是由橡胶材料和所需添加的填料、助剂以及化学试剂等所组成。

不同的配方会决定橡胶的性质和特点,因此在不同的应用场合中,需要选择不同类型的减震橡胶。

减震橡胶的结构分为三种:薄层式、中空式和密封式。

薄层式的减震橡胶通常是由若干薄层的橡胶片和层间粘合剂构成,可以避免噪音和振动的产生。

中空式的减震橡胶是将橡胶材料制成中空形状,使其能够吸收来自各个方向的振动与冲击力。

而密封式的减震橡胶是将橡胶材料制成密封形状,在内部注入气体或液体,达到减震的效果。

二、减震橡胶的应用领域减震橡胶广泛应用于各种行业和领域中,主要包括以下几个方面:1、建筑工程领域中,减震橡胶常用于建筑物的基础和地下车库等地面的控制,以减少因地震或风雨等天气带来的振动和噪音。

2、机械制造领域中,减震橡胶常用于各种机械设备、车辆和船舶等中,以减少设备运转时产生的振动和噪音,以及保护机械装置和工具的稳定性。

3、电子电器领域中,减震橡胶常用于各种电子设备、电视机、音响和消费电子等中,以减少这些设备运转时产生的振动和噪音,保护设备的性能和寿命。

4、医疗领域中,减震橡胶常用于手术室和医疗设备中,以减少隆起的地板对手术室微小切口和精细手术的影响。

5、其他方面,减震橡胶可以应用于管道、阀门、制动器、减速器等。

三、减震橡胶的性能减震橡胶的性能有:抗压缩性能、剪切应变能力、回弹性、在动态应变下的刚度和耐磨性等。

其中,抗压缩性能是一项最基本的性能,它通过应力-应变曲线来描述。

在减震橡胶板材的生产制造中常用的材料是SBR橡胶,良好的SBR橡胶板材常具有良好的密封性能,以及坚韧耐用的特点。

四、减震橡胶的保养及维护在减震橡胶使用过程中,需要注意以下几点:1、定期检查减震橡胶的状况与安装位置。

氢化丁腈橡胶的结构与性能研究

氢化丁腈橡胶的结构与性能研究

氢化丁腈橡胶的结构与性能研究M olecular Structure and Properties ofH ydrogenated N itrile Rubber章菊华,王 珍,张洪雁,苏正涛(北京航空材料研究院,北京100095)ZH ANG Ju hua,WANG Zhen,ZH ANG H o ng y an,SU Zheng tao(Beijing Institute of Aeronautical M aterials,Beijing100095,China)摘要:使用红外光谱(IR)、差示扫描量热法(DSC),热失重(T GA)等方法研究氢化丁腈橡胶(H NBR)分子结构与其低温、高温下物理性能之间的关系。

研究结果显示,H NBR橡胶在720~730cm-1处具有明显的(CH2)n(n>4)红外特征吸收峰,由此可以鉴别H N BR与丁腈橡胶(N BR);随丙烯腈含量及氢化度的增大,H N BR的初始热分解温度升高;分子结构中丙烯腈含量越大,玻璃化转变温度越高,其硫化胶的拉伸强度和恒定压缩永久变形越大,这与H NBR分子中交替结构单元增多引起的结晶有关。

关键词:氢化丁腈橡胶;分子结构;低温性能;高温性能;物理性能中图分类号:T Q333.7 文献标识码:A 文章编号:1001 4381(2011)02 0031 04Abstract:A relationship of molecular structure and phy sical proper ties at low and high temperatur es of hydr ogenated nitrile r ubber(H NBR)w as inv estig ated by Infrared(IR)Spectrosco py,Differential Scanning Caloricity(DSC)and T herm o Grav imetric Analy sis(T GA).It is show n that H NBR has character istic peak of the(CH2)n(n>4)in the backbone at720 730cm-1fo r identified H NBR from NBR.T he initial decomposition tem perature rose w ith the increase o f the acrylo nitrile content and hy drog enatio n.It is also co ncluded that the higher acry lonitr ile content,the hig her T g,tensile str ength and co mpr ession set of H NBR,w hich could be attributed to the crystallization caused by mo re content of repeat units.Key words:hy dro genated nitrile rubber;mo lecular structure;low temper ature pro perty;hig h temper ature pr operty;mechanical per fo rmance氢化丁腈橡胶(H NBR)是由丁腈橡胶(NBR)经催化加氢而制得的新型弹性体。

丁基橡胶与卤化丁基橡胶的结构_性能及发展状况

丁基橡胶与卤化丁基橡胶的结构_性能及发展状况
丁基橡胶分子链的高饱和结构使之具有很高的耐 臭氧性和耐天候老化性, 以及具有较高的化学稳定性, 耐酸、耐碱、耐氧化还原。
丁基橡胶分子链主要由碳碳单键组成, 可极化的双 键数目极少, 取代基对称, 无极性, 不饱和程度极低, 是 典型的非极性橡胶。因此丁基橡胶的电绝缘性和耐电晕 性能比一般合成橡胶好。丁基橡胶的水渗透率极低, 在 常温下的吸水速率比其它橡胶低, 仅为后者 1/10~1/15。
基于丁基橡胶的上述优越性能,进步目标时, 曾积极推广丁基橡胶应用于轮胎内胎, 并提出“轮胎内胎 丁基化”的口号。目前, 丁基橡胶在轮胎工业等部门成了 不可缺少的橡胶原料, 是制造轮胎内胎的最好胶种。 2.3 在医药用瓶塞上的应用[3, 6- 7]
10
总第 154 期 2008 年第 4 期( 第 34 卷)
安徽化工
基胶塞, 即所谓“2004 年医用橡胶瓶塞全部丁基化”。 2.4 其它应用[4]
丁基橡胶除了上述用途外, 还有以下用途: ( 1) 化工设备衬里。由于丁基橡胶优异的抗化学腐 蚀性, 使之成为化工设备防腐蚀衬里的首选材料。丁基 橡胶在各种溶剂中体积溶胀非常低, 这也是丁基橡胶应 用于该领域的重要原因之一。 ( 2) 防护服装和防护用品。尽管许多塑料材料都具 有良好的隔离防护性能, 但只有弹性材料才可能兼顾低 渗透性和舒适性服装所必须的柔韧性。由于丁基橡胶对 液体和气体的低渗透性, 因此被广泛地用于防护服、雨 披、保护罩、防毒面具、手套、橡胶套鞋和长统靴。 ( 3) 化学电容器的密封。丁基橡胶在化学电容器密 封上的应用日益增多。对电容器密封的主要要求是: 在 整个使用寿命期内, 无论是端部还是外壳, 内表面均不 得泄漏电解液, 密封件还要防止外界的杂质进入电容 器, 避免由于渗透作用损耗电解液或杂质掺入。 ( 4) 空调器胶管和密封。由于法规对消耗臭氧层物 质氯氟烃的应用限制, 影响了致冷剂 R- 12 的应用, 而 R- 134a 正在成为一种可供选择的致冷剂。对于各种弹 性体材料在润滑剂/致冷剂介质中抗耐性试验表明, 丁 基橡胶对 R- 134a 显示了良好的抗渗透性。 ( 5) 管道缠绕带。丁基橡胶常被用作长达数百公里 的大直径钢管外包层, 这种管道主要用于输送原油和天 然气, 对这些长期埋在地下的管道的保护是十分重要的。 丁基橡胶外包层主要用于防止管道遭受氧侵蚀及水分的 渗透。管道的防护层是一种螺旋缠绕带, 它由柔软的塑料 支撑层与粘合剂组成。这种塑料一般用聚乙烯制作, 以耐 渗透的丁基橡胶为主体的粘合剂形成第二保护层。丁基 橡胶经特殊配合可以和聚乙烯保持良好的粘合。

橡胶方面知识培训

橡胶方面知识培训

橡胶方面知识培训橡胶方面知识培训橡胶是一种常见的塑料材料,广泛用于汽车、轮胎、电缆、管道、防水材料等行业。

了解橡胶的性质、加工工艺、检测方法等方面的知识,对于从事相关行业的工程师和技术员来说非常重要。

本文将介绍橡胶方面的知识培训内容。

一、橡胶的基本知识1. 橡胶的种类和特点橡胶主要分为天然橡胶和合成橡胶两大类。

天然橡胶具有良好的耐磨性、弹性和可加工性,但价格较高;合成橡胶可以根据需求进行定制,价格较低,但在某些方面性能不如天然橡胶。

2. 橡胶的结构和性质橡胶由聚合物链构成,不同的聚合物链之间通过交联作用相连。

橡胶具有良好的弹性、抗张强度和耐磨性,在高温、低温和化学物质的作用下仍能保持较好的性能。

3. 橡胶的加工方法橡胶加工主要分为静态成型和动态成型两种。

静态成型包括压缩成型和注塑成型,动态成型包括挤出成型、胶粘成型等。

不同的成型方法适用于不同的产品,需要根据实际需求进行选择。

二、橡胶的检测方法1. 物理性能测试橡胶的物理性能包括拉伸性能、硬度、耐磨性等。

通过拉伸试验机、硬度计等仪器进行测试,可以评估橡胶的性能。

2. 化学物质检测橡胶的化学性质很重要,包括抗氧化性、抗老化性等。

通过对橡胶样品进行荧光光谱、紫外-可见光谱、红外光谱等测试,可以评估橡胶的化学性质。

3. 微结构分析橡胶的微结构对其性能有重要影响,通过电子显微镜,扫描电镜等技术进行精细的结构分析,可以更好地理解橡胶的性能和应用。

三、橡胶的设计与应用1. 橡胶材料的选择在设计使用橡胶制品时,需要考虑到产品的环境条件、使用寿命、性能要求等因素,选取合适的橡胶材料。

2. 橡胶制品的设计橡胶制品的设计需要考虑到产品的结构、加工方法、性能要求等因素,通过CAD、PROE等软件进行设计和模拟分析,确保产品具有优良的性能和稳定的品质。

3. 橡胶制品的应用维护在橡胶制品的维护和保养过程中,需要考虑到产品的加工材料、使用环境、耐磨性等因素,采用正确的维护方法,延长产品的使用寿命。

橡胶基础知识

橡胶基础知识
3.电绝缘性:橡胶和塑料一样是电绝缘材料。
4.老化现象:如金属腐蚀、木材腐朽、岩石风化一样,橡胶也会因为 环境条件的变化而产生老化现象,使性能变坏,寿命下降。
5.必须进行硫化才能使用,热塑性弹性体除外。

6.必须加入配合剂。
其它如比重小、硬度低、柔软性好、气密性好等特点, 都属于橡胶的宝贵性能。
2
Polymer Materials
10
Polymer Materials
3.国内橡胶工业的发展概况
我国从1904年开始在雷州半岛等地种植NR,50年代将橡胶树北移种 植成功,并在云南、广西等地大面积种植,现在,我国NR产量占世界第 四位。
1915年,在广州建立第一个橡胶加工厂—广州兄弟创制树胶公司,生产鞋底 1919年,在上海建立清和橡皮工厂
1)塑炼:降低生胶的分子量,增加塑性,提高可加工性。
2)混炼:使配方中各个组分混合均匀,制成混炼胶。
3)压延:混炼胶或与纺织物、钢丝等骨架材料通过压片、压型、贴合、 擦胶、贴胶等操作制成一定规格的半成品的过程。
4)压出:混炼胶通过口型压出各种断面的半成品的过程,如内胎、胎面、 胎侧、胶管等。
5)硫化:橡胶加工的最后一道工序,通过一定的温度、压力和时间后, 使橡胶大分子发生化学反应产生交联的过程。
11
Polymer Materials
我国橡胶工业从50年代后开始飞速发展,逐渐形成了以上海的正泰、 大中华,青岛的橡胶二厂,黑龙江的桦林橡胶厂为中心的橡胶工业 格局号称橡胶界的四大家族。其中正泰、大中华生产胶鞋、胶带, 胶二和桦林生产轮胎。到1990年止,全国县级以上的橡胶企业就有 1000多家,产值180亿元,约占全国工业总产值的1.5%,约占化工工 业总产值的25%。90年代,我国橡胶工业得到了蓬勃发展,个体、 私营橡胶企业如雨后春笋般发展起来,仅山东省大小橡胶企业就有 1000多家,青岛市有几百家,96年以后由于受气候等因素的影响, 世界NR的产量锐减,致使NR的价格飞涨,橡胶工业的发展受到一 定程度的影响,但在国内工业总产值、化工工业总产值中仍然占有 相当比重。橡胶企业主要集中在北京、上海、山东、沈阳、贵阳、 重庆、牡丹江等地。我院为我国橡胶工业的发展作出了突出贡献, 为橡胶工业培养了近万名人才,许多毕业生已成为各个橡胶企业的 负责人和骨干技术人员。

橡胶的基本结构与性能

橡胶的基本结构与性能

橡胶的根本构造与性能橡胶的分子特征---构成橡胶弹性体的分子构造有以下特点:①其分子由重复单元〔链节〕构成的长链分子。

分子链柔软其链段有高度的活动性,玻璃化转变温度(Tg)低于室温;②其分子间的吸引力〔范德华力〕较小,在常态〔无应力〕下是非晶态,分子彼此间易于相对运动;③其分子之间有一些部位可以通过化学交联或由物理缠结相连接,形成三维网状分子构造,以限制整个大分子链的大幅度的活动性。

从微观上看,组成橡胶的长链分子的原子和链段由于热振动而处于不断运动中,使整个分子呈现极不规那么的无规线团形状,分子两末端间隔大大小于伸直的长度。

一块未拉伸的橡胶象是一团卷曲的线状分子的缠结物。

橡胶在不受外力作用时,未变形状态熵值最大。

当橡胶受拉伸时,其分子在拉伸方向上以不同程度排列成行。

为保持此定向排列需对其作功,因此橡胶是抵抗受伸张的。

当外力除去时,橡胶将收缩回到熵值最大的状态。

故橡胶的弹性主要是源于体系中熵的变化的“熵弹性〞。

橡胶的应力-应变性质应力-应变曲线是一种伸长结晶橡胶的典型曲线,其主要组分是由于体系变得有序而引起的熵变。

随着分子被渐渐拉直,使得分子链上支链的隔离作用消失,分子间吸引力变得显著起来,从而有助于抵抗进一步的变形,所以橡胶在被充分拉伸时会呈现较的高抗张强度.橡胶在恒应变下的应力是温度的函数。

随温度的升高橡胶的应力将成比例地增大。

橡胶的应力对温度的这种依赖称为焦耳效应,它可以说明金属弹性和橡胶弹性间的根本差异。

在金属中,每个原子都被原子间力保持在严格的晶格中,使金属变形所做的功是用来改变原子间的间隔,引起内能的变化。

因此其弹性称为“能弹性〞。

其弹性变形的范围比橡胶中主要由于体系中熵的变化而产生的“熵弹性〞的变化范围要小得多。

在一般的使用范围内,橡胶的应力-应变曲线是非线性的,因此橡胶的弹性行为不能简单地以杨氏模量来确定。

橡胶的变形与温度、变形速度和时间的关系橡胶分子的变形运动不可能在瞬时完成,因为分子间的吸引力必须由原子的振动能来抑制,假设温度降低时,这些振动变得较不活泼,不能使分子间吸引力迅速破坏,因此变形缓慢。

丁腈橡胶成分

丁腈橡胶成分

丁腈橡胶成分一、引言丁腈橡胶是一种重要的合成橡胶,具有优异的耐油、耐溶剂和耐磨损性能,广泛应用于汽车轮胎、密封件、手套等领域。

本文旨在详细介绍丁腈橡胶的成分。

二、丁腈橡胶的基本结构丁腈橡胶是由1,3-丁二烯和丙烯腈共聚而成,其基本结构为线性链状分子。

其中,1,3-丁二烯部分为弹性体,负责提供弹性和拉伸力;而丙烯腈部分则为刚性体,负责提供耐油和耐溶剂性能。

三、主要成分1. 1,3-丁二烯:是合成丁腈橡胶的主要原料之一,通常占总量的70%以上。

它是一种无色液体,在常温下易挥发,具有较好的弹性和拉伸力。

2. 丙烯腈:也是合成丁腈橡胶的主要原料之一,通常占总量的30%左右。

它是一种无色液体,在常温下稳定性较好,具有较好的耐油和耐溶剂性能。

3. 助剂:丁腈橡胶的生产过程中需要加入一些助剂,以改善橡胶的性能。

常用的助剂包括硫化剂、促进剂、防老化剂等。

四、制备方法1. 乳液聚合法:将1,3-丁二烯和丙烯腈分别与乳化剂混合后,进行共聚反应,得到丁腈橡胶乳液。

通过离心、过滤等工艺步骤,将乳液中的水分去除,得到固态丁腈橡胶。

2. 溶液聚合法:将1,3-丁二烯和丙烯腈溶于适当的溶剂中,并加入助剂后,在一定条件下进行共聚反应,得到丁腈橡胶溶液。

通过蒸发、干燥等工艺步骤,将溶液中的溶剂去除,得到固态丁腈橡胶。

五、应用领域由于其优异的性能,丁腈橡胶被广泛应用于汽车轮胎、密封件、手套等领域。

其中,汽车轮胎是丁腈橡胶的主要应用领域之一,占据了丁腈橡胶总需求量的60%以上。

六、结论综上所述,丁腈橡胶是一种由1,3-丁二烯和丙烯腈共聚而成的合成橡胶,其基本结构为线性链状分子。

其主要成分包括1,3-丁二烯、丙烯腈和助剂等。

通过乳液聚合法和溶液聚合法等制备方法可以得到固态丁腈橡胶。

由于其优异的性能,丁腈橡胶被广泛应用于汽车轮胎、密封件、手套等领域。

常见橡胶材料及性能

常见橡胶材料及性能

常见橡胶材料及性能橡胶材料是一种聚合物材料,由高分子化合物、填料、添加剂和加工助剂组成。

它具有高弹性、耐磨损、耐寒热性能好以及耐化学腐蚀等特点,广泛应用于汽车、电子、建筑和医疗行业等领域。

下面是常见的几种橡胶材料及其性能:1.丁苯橡胶(NBR)丁苯橡胶是一种合成橡胶材料,具有良好的油性能和耐油性能。

它具有良好的耐寒热性能、耐酸碱性能和抗氧化性能,在低温下具有较高的弹性。

丁苯橡胶广泛应用于汽车、航空航天和石油化工等领域。

2.丁腈橡胶(NBR)丁腈橡胶是一种合成橡胶材料,具有良好的耐磨性和耐油性能。

它具有较高的弹性和耐腐蚀性能,在高温环境下也有较好的性能稳定性。

丁腈橡胶广泛应用于汽车制造、化工和液压系统等领域。

3.氯丁橡胶(CR)氯丁橡胶是一种合成橡胶材料,具有良好的耐油性和耐气候性能。

它具有较高的弹性和耐磨性能,在宽温度范围内都有较好的性能稳定性。

氯丁橡胶广泛应用于汽车轮胎、输送带和电线电缆等领域。

4.乙丙橡胶(EPM/EPDM)乙丙橡胶是一种合成橡胶材料,具有良好的耐候性、耐酸碱性和耐老化性能。

它具有较高的弹性、耐热性和电绝缘性能,在宽温度范围内都有较好的性能稳定性。

乙丙橡胶广泛应用于汽车密封件、防水材料和电线电缆等领域。

5.丁腈-丁苯橡胶(NBR/PVC)丁腈-丁苯橡胶是一种合成橡胶材料,具有良好的耐油性、耐酸碱性和耐溶剂性能。

它具有较高的弹性和耐磨性能,在宽温度范围内都有较好的性能稳定性。

丁腈-丁苯橡胶广泛应用于汽车油封、工程机械和胶粘剂等领域。

总的来说,橡胶材料具有优异的弹性、耐磨损、耐寒热性能好以及耐化学腐蚀等特点,并具有各种不同的应用领域。

选择适合的橡胶材料可以根据所需的性能要求和使用环境来确定。

橡胶材料的研发和应用将会继续推动人类社会的发展和进步。

橡胶基本知识

橡胶基本知识

§橡胶基本知识一、定义橡胶又称弹性体,弹性高分子材料的总称,分子量在20000~10000000之间。

目前橡胶有近四十种(一万多种牌号)。

二、特性橡胶具有易加工、易成型,在相当宽的温度范围内具有高弹性、高物理机械性能和耐特殊介质性能等。

三、分类1、按生产来源可分为天然橡胶和合成橡胶。

2、按用途可分为通用橡胶(NR、SBR、BR、CR、IIR)、特种橡胶(NBR、SIL、FKM、ACM、ECO、PU、CSM、AFLAS)和热塑性弹性体(TPU、SBS、TPS、TPEE等)。

3、按分子结构可分为不饱和橡胶和饱和橡胶。

英文缩写号中带“BR”为不饱和橡胶(丁二烯),分子链上有双键,橡胶不饱和度越大,硫化速度越快。

4、按分子排列和结构可分为极性(耐油、半导电)和非极性橡胶(绝缘);结晶型和非结晶型橡胶。

四、主要橡胶性能与用途1、NBR(Nitrile-Butadiene Rubber)丁腈橡胶,由丙烯腈(Nitrile,CH2=CH-CN)与丁二烯(Butadiene,CH2-CH-CH-CH2)的聚合物。

1)属于非结晶性橡胶,比重为1.00~1.20g/cm3,纯胶扯断强度及撕裂强度很低,仅在3~4.4Mpa(兆帕),没有使用价值。

但用炭黑补强的NBR扯断强度可达24.5~30Mpa(兆帕),配合工艺对NBR使用影响很大。

2)优点a、耐油性能优良,丙烯腈含量越高耐油性越好,其耐油性仅次于ACM、FKM,而优于其它通用橡胶。

但对芳香烃油及氯化烃油类抵抗能力较差。

b、气透性小,气密性仅次于丁基橡胶,而优于其它通用橡胶。

c、耐热、耐老化、耐磨性能优于天然橡胶。

d、可与其它各种橡胶并用,改善加工性能。

3)缺点a、弹性、耐寒性较差,丙烯烃含量越高,弹性越差,耐寒性越差。

b、电绝缘性差(是各种橡胶最差者)。

c、耐臭氧性能不好。

d、耐酸性差。

它最不能抵抗硝酸,浓硫酸,但耐碱性比天然橡胶好。

4)主要用途制造油封皮碗,O形密封圈,耐油胶管,石油配件,机械运转,往复耐油密封等。

橡胶 耐腐蚀原理

橡胶 耐腐蚀原理

橡胶耐腐蚀原理1. 橡胶的基本特性橡胶是一种高分子化合物,由于其特殊的结构和性质,使其具有良好的耐腐蚀性能。

橡胶的主要成分是天然橡胶或合成橡胶,其中天然橡胶主要由聚异戊二烯(C5H8)组成,而合成橡胶则是通过合成不同的单体来制得。

橡胶的主要特性包括高弹性、高耐磨性、耐化学腐蚀性、耐热性、耐寒性等。

其中,橡胶的耐腐蚀性是由其特殊的结构和化学性质所决定的。

2. 橡胶的结构橡胶的基本结构是由聚异戊二烯分子通过共价键连接而成的网状结构。

这种结构使得橡胶具有高度的弹性和可变形性,能够在外力作用下发生形变,并在去除外力后恢复原状。

橡胶分子链上的双键结构使得橡胶具有活性,容易与其他物质发生化学反应。

橡胶分子链上的双键结构可以通过硫化反应进行交联,形成交联结构的橡胶,从而增强橡胶的强度和耐腐蚀性。

3. 橡胶的化学性质橡胶具有很好的化学稳定性,能够耐受许多化学物质的侵蚀。

这是由于橡胶分子链上的双键结构具有活性,能够与一些化学物质发生化学反应,从而形成稳定的化学键。

橡胶的化学稳定性主要体现在以下几个方面:3.1 耐酸碱性橡胶具有较好的耐酸碱性,能够耐受一定浓度的酸碱溶液的侵蚀。

这是由于橡胶分子链上的双键结构能够与酸碱溶液中的H+和OH-离子发生反应,形成稳定的化学键。

3.2 耐氧化性橡胶具有较好的耐氧化性,能够耐受氧气的侵蚀。

这是由于橡胶分子链上的双键结构能够与氧气发生反应,形成稳定的氧化产物。

同时,橡胶中的一些添加剂可以起到抗氧化的作用,进一步提高橡胶的耐氧化性。

3.3 耐腐蚀性橡胶具有较好的耐腐蚀性,能够耐受许多化学物质的侵蚀。

这是由于橡胶分子链上的双键结构能够与化学物质发生化学反应,形成稳定的化学键。

同时,橡胶中的一些添加剂可以起到抗腐蚀的作用,进一步提高橡胶的耐腐蚀性。

4. 橡胶的耐腐蚀原理橡胶的耐腐蚀性是由其特殊的结构和化学性质所决定的。

橡胶分子链上的双键结构使得橡胶具有活性,容易与其他物质发生化学反应,形成稳定的化学键,从而提高橡胶的耐腐蚀性。

橡胶各项性能简介

橡胶各项性能简介

配方与各种物性之间的关系:各种橡胶制品都有它特定的使有用性能和工艺要求.为了满足它的物性要求需选择最适合的聚合物和配合剂进行合理的配方设计.首先要了解配方设计与硫化橡胶物理性能的关系.硫化橡胶的物理性能与配方的设计有密切关系,配方中所选用的材料品种、用量不同都会产生性能上的差异.一、拉伸强度拉伸强度是制品能够抵抗拉伸破坏的根限能力.它是橡胶制品一个重要指标之一.许多橡胶制品的寿命都直接与拉伸强度有关.如输送带的盖胶、橡胶减震器的持久性都是随着拉伸强度的增加而提高的. 拉伸强度与橡胶的结构有关,分了量较小时,分子间相互作用的次价健就较小.所以在外力大于分子间作用时、就会产生分子间的滑动而使材料破坏.反之分子量大、分子间的作用力增大,胶料的内聚力提高,拉伸时链段不易滑动,那么材料的破坏程度就小.凡影响分子间作用力的其它因素均对拉伸强度有影响.如NR/CR/CSM这些橡胶主链上有结晶性取代基,分子间的价力大大提高,拉伸强度也随着提高.也就是这些橡胶自补强性能好的主要原因之一.一般橡胶随着结晶度提高,拉伸强度增大.拉伸强度还根温度有关,高温下拉伸强度远远低于室温下的拉伸强度.拉伸强度根交联密度有关,随着交联密度的增加,拉伸强度增加,出现最大值后继续增加交联密度,拉伸强度会大幅下降.硫化橡胶的拉伸强度随着交联键能增加而减小.能产生拉伸结晶的天然橡胶,弱键早期断裂,有利于主健的取向结晶,因此会出现较高的拉伸强度.通过硫化体系,采用硫黄硫化,选择并用促进剂,DM/M/D也可以提高拉伸强度,(碳黑补强除外,因为碳黑生热作用),拉伸强度与填充剂的关系,补强剂是影响拉伸强度的重要因素之一,填料的料径越小,比表面积越大、表面活性越大补强性能越好.结晶橡胶的硫化胶,出现单调下降因为是自补强性非结晶橡胶如丁苯随着用量增加补强性能增加、过度使用会有下降趣向.低不和橡胶随着用量的增加达到最在值可保持不变. 拉伸强度与软化剂的关系加入软化剂会降低拉伸强度,但少量加入,一般在开练机7份以下,密练机在5份以下会改善分散,有利于提高拉伸强度.软化剂的不同对拉伸强度降低的程度也不同.一般天然橡胶适用于植物油类.非极性橡胶用芳烃油如SBR/IR/BR. .如IIR /EPDM用石腊油、环烷油.NBR/CR 用DBP/DOP.之类. 提高拉伸强度的其它放法有,用橡胶与树脂共混、橡胶化学改性、填料表面改性(如加桂烷等)二、撕裂强度橡胶的撕裂是由于材料中的裂纹或裂口受力时迅速扩大开裂而导至破坏现象.撕裂强度与拉伸没有直接关系.在许多情况下撕裂与拉伸是不成正比的.一般情况下,结晶橡胶比非结晶橡胶撕裂强高.撕裂强度与温度有关.除了天然橡胶外,高温下撕裂强度均有明显地下降.碳黑、白炭黑填充的橡胶其撕裂强度有明显地提高.撕裂强度与硫化体系有关.多硫键有较高的撕裂强度.硫黄用量高撕裂强度高.但过多的硫黄用量撕裂强度会显着地降低.使用平坦性较好的促进剂有利于提高撕裂强度. 撕裂强度与填充体系有关,各种补强填充如、碳黑、白炭黑、白艳华、氧化锌等,可获较高的撕裂强度.某些桂烷等偶联剂可以提高撕裂强度.通常加入软化剂会使撕裂强度下降.如石腊油会使丁苯胶的撕裂强度极为不利.而芳烃油就变化不大.如CM/NBR用酯类增塑剂比其它软化剂就影响小多了.三、定伸应力与硬度定伸应力与硬度是橡胶材料的刚度重要指标,是硫化胶产生一定形变所需要的力,与较大的拉伸形变有关,两者相关性较好,变化规律基本一至.橡胶分子量越大,有效交联定伸应力越大.为了得到规定的定伸应力,可对分子量较小的橡胶适当提高交联密度.凡能增加分子间作用力的结构因素.都能提高硫化胶的网洛抵抗变形能力.如CR/NBR/PU/NR等有较高的定伸应力.定伸应力与交联密度影响极大.不论是纯胶还是补强硫化胶,随着交联密度的增加,定伸应力与硬度也随之直线增加.通常是通过对硫化剂、促进剂、助硫化剂、活性剂等品种的调节来实现的.含硫的促进对提高定伸应力更有显着的效果.多硫健有利于提高定伸应力.填充剂能提高制品的定伸应力、硬度.补强性能越高、硬度越高,定伸应力就越高.定伸应力随着硬度的增加,填充的增加越高.相反软化剂的增加,硬度降低,定伸应力下降.除了增加补强剂外还有并用烷基酚醛树脂硬度可达95度、高苯乙烯树脂.使用树脂RS、促进剂H并用体系硬度可达85度等等.四、耐磨性耐磨耗性能表征是硫化胶抵抗摩察力作用下因表面破坏而使材料损耗的能力.是与橡胶制品使用寿命密切相关的力学性能.它的形式有; 1.磨损磨耗,在摩擦时表面上不平的尖锐的粗糙物不断地切割、乱擦.致使橡胶表面接触点被切割、扯断成微小的颗粒,从橡胶表面脱落下来、形成磨耗 .磨耗强度与压力成正比与拉伸强度成反比.随着回弹性提高而下降. 2.疲劳磨耗,与摩擦面相接触的硫化胶表面,在反复的过程中受周期性的压缩、剪切、拉伸等变形作用,使橡胶表面产生疲劳,并逐渐在其中产生微裂纹.这些裂纹的发展造成材料表面的微观剥落.疲劳磨耗随着橡胶的弹性模量、压力提高而增加,随着拉伸强度的降低而和疲劳性能变差而加大. 3.巻曲磨耗,橡胶下光滑的表面接触时,由于磨擦力的作用,使硫化胶表面不平的地方发生变形,并被撕裂破坏,成巻的脱落表面. 耐磨性能和硫化胶的主要力学性能有关.在设计配方时要设法平衡各种性能之间的关系.耐磨性与胶种之间关系最大,一般来讲NBR>BR>SSBR>SBR(EPDM)>NR>IR (IIR)>CR 耐磨性与硫化体系有关,适量地提高交联徎度能提高耐磨性能.单硫健越多耐磨性越好,这就是半有效硫化体系的耐磨性最好的道理.用CZ做第一促进剂的耐磨性能要比其它促进剂好,最佳的补强剂用量会提高一定的耐磨性能.合理地使用软化剂会能最小地降低耐磨性.如天然胶、丁苯胶用芳烃油. 有效地使用防老剂,可防止疲劳老化.提高碳黑的分散性可提高耐磨性能. 使用桂烷表面处理剂改性可大大地提高耐磨性能. 采用橡塑共混来提高耐磨性能,如丁睛与聚氯乙烯并用,所制造的纺织皮结. 用丁睛与三元尼龙并用,丁晴与酚醛树脂并用. 添加固体润滑剂和减磨性材料.如丁睛胶橡胶胶料中添加石墨、二硫化钼、氮化硅、碳纤维,可使硫化胶的磨擦系数降低,提高其耐磨性能.五,疲劳与疲劳破坏.硫化胶受到交变应力作用时,材料的结构和性能发生变化的现象叫疲劳.随着疲劳过徎的进行,导至材料破坏的现象叫做疲劳破坏. 1. 橡胶结构的影响,玻璃化温度低的橡胶耐疲劳性能好.有极性基团的橡胶耐疲劳性能差.分子内有庞大基团或侧基的橡胶,耐疲劳性能差、结构序列规整的橡胶,容易聚向结晶,耐疲劳性差. 2. 橡胶硫化体系影响,单硫健的硫化体系,疲劳性能最小,耐疲劳性能好,增加交联剂的用量会使硫化胶的疲劳性能下降.所以应尽量减少交联剂的用量. 3. 填充剂的影响,补强性能越小的填充剂影响越小,填充剂用量越大影响越大,应尽量少用填充剂. 4. 软化体系的影响,尽可能选用软化点低的非粘稠性软化剂;软化剂的用量尽可能多一些,相反高粘度软化剂不宜多用,如松焦油的耐疲劳性差,脂类增塑剂的耐疲劳性就好.六,弹性橡胶最宝贵特性是弹性.高弹性源于橡胶分子运动,完全由卷曲分子的构象变化所造成的,除去外力后能立即恢复原状,称理想的弹性体.橡胶分子之间的作用会妨碍分子链段运动,表现出粘性或粘度.所以说橡胶的特性是既有弹性又有粘性.影响弹性的因素有形变大小、作用时间、温度等.橡胶分子间的作用增大,分子链的规整性高时,易产生拉伸结晶,有利于强度提高,显示出高弹性.在通用橡胶中的天然、顺丁胶弹性最好,其次是丁睛、氯丁.丁苯与丁基较差. 弹性与交联密度有关,随着交联密度的增加,硫化胶的弹性增加,并出现最大值,交联密继续增加弹性呈下的趣势.适当地提高流化程度对弹性有利.在高弹性配合中选用硫黄与CZ并用、与促进D并用硫化胶的回弹性较高,滞后损失小. 弹性与填充体系有关,提高含胶率是提高弹性的最直接、最有效的办法,补强性越好的填充对弹性越不利. 弹性与软化剂的关系.软化剂与橡胶的相溶性有关,相溶性越小,弹性越差.如天然、顺丁、丁基加石腊油,优于加环烷油.丁睛加DOP 优于使用环烷油、芳烃油.一般来说增塑剂会降低橡胶的弹性,应尽量少用增塑剂.七,扯断伸长率(延伸率)扯断伸长率与拉伸强度有关,只有具有较高的拉伸强度,保证其在变形过程中不受破坏,才会有较高的伸长率.一般随着定伸应力和硬度增大则扯断伸长率下降,回弹性大、永久变形小,则扯断伸长率大.不同的橡胶,它的扯断伸长率不同,天然胶它的含胶率在80%以上时它的扯断伸长率可达1000%.在形变时易产生塑性流动的橡胶也会有较高的伸长率.如丁基橡胶. 扯断伸长率随着交联密度的提高而降低.制造高定伸制品,硫化程度不宜过高,可以稍欠硫或降低硫化剂用量.增加填充剂的用量会降低扯断伸长率,结构越高的补强剂,扯断伸长率越低,曾加软化剂的用量,可以获较大的扯断伸长。

橡胶成分分析

橡胶成分分析

橡胶成分分析橡胶是一种非常重要的天然材料,广泛应用于各行各业,特别是在轮胎、橡胶管、橡胶密封件、橡胶带等方面具有广泛应用。

橡胶成分分析是探究橡胶的物理、化学及其他特性的关键性过程,也是保证橡胶产品质量的基本要求之一。

本文将对橡胶的成分进行详细讲解。

一、天然橡胶天然橡胶是由橡胶树的乳液获取而来,其主要成分为橡胶单体。

橡胶单体是由异戊二烯单体(polyisoprene)聚合而成的高分子化合物,分子量大约在1x10^6到10x10^6之间。

天然橡胶中含有约92%的橡胶单体,以及少量的水、蛋白质、脂肪、树脂、矿物盐等物质。

天然橡胶的分子结构是线性的,由若干个异戊二烯单体单元周期性链接而成。

天然橡胶的核心结构是由碳原子和氢原子组成的,其中异戊二烯单体的双键结构使得橡胶分子在其链轴方向和链轴平面方向上具有不同的弹性模量。

二、合成橡胶合成橡胶是用现代合成技术人造的高分子化合物,其成分遵循天然橡胶的成分,同时结合了其他的材料。

合成橡胶的组成变化很大,通常可以分为以下几个部分:1. 聚合物:合成橡胶的主要成分之一是聚合物,与天然橡胶一样,其主要成分为异戊二烯单体。

2. 交联剂:为了使合成橡胶具有更强的弹性和可塑性,必须将聚合物交联成网络结构。

交联剂的种类很多,通常可以用过氧化物或硫化剂进行交联。

3. 填充剂:为了增加合成橡胶的硬度和耐磨性,常常添加硅石、炭黑等填充剂。

4. 增塑剂:增塑剂用于提高合成橡胶的可塑性和扩大其使用范围,通常采用膨化剂、塑化剂等。

5. 抗氧剂:抗氧剂主要用于减缓合成橡胶在高温、高压、高湿度等环境下的氧化分解作用。

6. 其他添加剂:如脱型剂、分散剂、促成剂等。

合成橡胶的特点是可批量生产,具有稳定且高品质的物理性能,并具有更广泛的应用范围。

三、橡胶成分分析方法1. 平板法:将橡胶样品压成平板,然后用红外光谱仪进行分析。

2. 拉伸试验:采用拉伸试验机测试橡胶的物理性能,包括最大拉伸应力、最大拉伸应变、拉伸模量等。

橡胶的三个基本特征

橡胶的三个基本特征

橡胶的三个基本特征橡胶是一种广泛应用于工业和生活中的材料,具有许多特殊的性质和特征。

在本文中,我们将探讨橡胶的三个基本特征:弹性、可塑性和耐化学腐蚀性。

一、弹性橡胶最显著的特征之一就是其弹性。

弹性是指材料在受到外力作用后能够恢复到原来形状和大小的能力。

橡胶具有高度的弹性,这意味着它可以被拉伸和挤压而不会永久变形或破裂。

橡胶的弹性源于其分子结构。

橡胶分子由许多长链组成,这些长链可以像弹簧一样自由移动并重新排列。

当外力施加到橡胶上时,这些长链会被拉伸或挤压,并且它们会向周围环境施加反向力以保持原始形状。

另一个影响橡胶弹性的因素是温度。

当温度升高时,橡胶分子会变得更加活跃,这使得它们更容易重新排列并恢复原始形状。

相反,当温度降低时,橡胶分子会变得更加僵硬,这使得它们难以恢复原始形状。

二、可塑性除了弹性之外,橡胶还具有可塑性。

可塑性是指材料在受到外力作用后能够发生永久形变的能力。

橡胶可以被拉伸和挤压以产生永久形变,并且可以保持新的形状和大小。

橡胶的可塑性源于其分子结构中的交联结构。

交联结构是指两个或多个橡胶分子之间的化学键合作用。

这些化学键使得橡胶分子在受到外力时能够保持彼此连接,并且在释放外力后仍然保持连接。

可塑性对于许多应用来说都是非常重要的特征。

例如,在制造轮胎时,橡胶必须具有足够的可塑性以适应各种路况和驾驶条件。

三、耐化学腐蚀性最后一个基本特征是耐化学腐蚀性。

橡胶具有出色的耐化学腐蚀性,这意味着它可以抵御许多不同种类的化学物质的侵蚀。

橡胶的耐化学腐蚀性源于其分子结构中的惰性化学键。

这些键不容易与其他物质发生反应,从而使橡胶能够抵御化学物质的侵蚀。

此外,橡胶还可以通过添加特殊化合物来提高其耐化学腐蚀性。

结论综上所述,橡胶具有三个基本特征:弹性、可塑性和耐化学腐蚀性。

这些特征使得橡胶成为广泛应用于工业和生活中的材料,并且在许多领域都发挥着重要作用。

三元乙丙橡胶性能简介

三元乙丙橡胶性能简介

三元乙丙橡胶性能简介三元乙丙橡胶(EPDM)耐臭氧性、耐热性、耐候性、低温柔软性较好,可用于耐臭氧、耐候、耐紫外线场合,但基于自身的结构特点,其阻燃性、耐油性和粘结性较差。

这种橡胶均具有主链饱和结构,可共混,性能上可取长补短。

三元乙丙橡胶主链由化学性稳定的饱和烃组成,仅在侧链中含不饱和双键,故基本上属于种饱和型橡胶。

由于分子结构内无极性取代基,分子间内聚能低,故分子链可在较宽的温度范围内保持柔顺性。

乙丙橡胶的化学结构使其硫化制品具有独特的性能。

1 低密度高填充性:三元乙丙橡胶是一种密度较低的橡胶,其密度为0.8 7。

加之可大量充油和加入填充剂,因而可降低橡胶制品的成本,弥补了三元乙丙橡胶生胶价格高的缺点,并且对高门尼值的三元乙丙橡胶来说,高填充后物理机械性能降低幅度不大。

2 耐老化性:乙丙橡胶有优异的耐天候、耐臭氧、耐热、耐酸碱、耐水蒸汽、颜色稳定性、电性能、充油性及常温流动性。

三元乙丙橡胶制品在1 20 ℃下可长期使用,在1 50~200 。

C下可短暂或间歇使用。

加入适宜防老剂可提高其使用温度。

用过氧化物交联的三元乙丙橡胶可在更苛刻的条件下使用。

三元乙丙橡胶在臭氧浓度50×10~,拉伸30% ,可达1 50 h以上不龟裂。

3 耐腐蚀性:由于乙丙橡胶缺乏极性,不饱和度低,因而对各种极性化学品如醇、酸、碱、氧化剂、制冷剂、洗涤剂、动植物油、酮和脂等均有较好的抗耐性;但在脂属和芳属溶剂(如汽油、苯等及矿物油中稳定性较差。

在浓酸长期作用下性能也要下降。

在ISO/TR7620中汇集了近400种具有腐蚀性的气态和液态化学品对各种橡胶性能作用的资料。

刘乙丙橡胶作用程度为1级的化学品有80多种,在此不一~列举。

4 耐水蒸气:乙丙橡胶有优异的耐水蒸气性能并优于其耐热性。

在230℃过热蒸汽中,近1 00 h后外观无变化。

而氟橡胶、硅橡胶、氟硅橡胶、丁基橡胶、丁腈橡胶、天然橡胶在同样条件下,经历较短时间外观发生明显劣化现象。

常用橡胶的种类、性能和用途

常用橡胶的种类、性能和用途

常用橡胶品种的化学组成、性能特点和主要用途橡胶品种(简写符号)化学组成性能特点主要用途1、天然橡胶(NR)以橡胶烃(聚异戊二烯)为主,含少量蛋白质、水分、树脂酸、糖类和无机盐等。

弹性大,定伸强度高,抗撕裂性和电绝缘性优良,耐磨性和耐旱性良好,加工性佳,易于其它材料粘合,在综合性能方面优于多数合成橡胶。

缺点是耐氧和耐臭氧性差,容易老化变质;耐油和耐溶剂性不好,第抗酸碱的腐蚀能力低;耐热性不高。

使用温度范围:约-60℃~+80℃。

制作轮胎、胶鞋、胶管、胶带、电线电缆的绝缘层和护套以及其他通用制品。

特别适用于制造扭振消除器、发动机减震器、机器支座、橡胶-金属悬挂元件、膜片、模压制品。

2、丁苯橡胶(SBR)丁二烯和苯乙烯的共聚体。

性能接近天然橡胶,是目前产量最大的通用合成橡胶,其特点是耐磨性、耐老化和耐热性超过天然橡胶,质地也较天然橡胶均匀。

缺点是:弹性较低,抗屈挠、抗撕裂性能较差;加工性能差,特别是自粘性差、生胶强度低。

使用温度范围:约-50℃~+100℃。

主要用以代替天然橡胶制作轮胎、胶板、胶管、胶鞋及其他通用制品。

3、顺丁橡胶(BR)是由丁二烯聚合而成的顺式结构橡胶。

优点是:弹性与耐磨性优良,耐老化性好,耐低温性优异,在动态负荷下发热量小,易于金属粘合。

缺点是强度较低,抗撕裂性差,加工性能与自粘性差。

使用温度范围:约-60℃~+100℃。

一般多和天然橡胶或丁苯橡胶并用,主要制作轮胎胎面、运输带和特殊耐寒制品。

4、异戊橡胶(IR)是由异戊二烯单体聚合而成的一种顺式结构橡胶。

化学组成、立体结构与天然橡胶相似,性能也非常接近天然橡胶,故有合成天然橡胶之称。

它具有天然橡胶的大部分优点,耐老化由于天然橡胶,弹性和强力比天然橡胶稍低,加工性能差,成本较高。

使用温度范围:约-50℃~+100℃可代替天然橡胶制作轮胎、胶鞋、胶管、胶带以及其他通用制品。

5、氯丁橡胶(CR)是由氯丁二烯做单体乳液聚合而成的聚合体。

这种橡胶分子中含有氯原子,所以与其他通用橡胶相比:它具有优良的抗氧、抗臭氧性,不易燃,着火后能自熄,耐油、耐溶剂、耐酸碱以及耐老化、气密性好等优点;其物理机械性能也比天然橡胶好,故可用作通用橡胶,也可用作特种橡胶。

高分子材料第五章橡胶

高分子材料第五章橡胶

高分子材料第五章橡胶引言橡胶是一种重要的高分子材料,具有良好的拉伸性、可塑性和耐磨性。

它在各个领域中都有着广泛的应用,例如汽车制造、建筑材料和医疗器械等。

本文将详细介绍橡胶的性质、种类以及制备方法等内容。

橡胶的性质橡胶通常具有以下几种性质:1.弹性高:橡胶可以在外力作用下发生明显的变形,但在去除外力后能够恢复到原来的形状,这是由于其具有高的可延伸性和良好的回弹性。

2.拉伸性:橡胶可以被拉伸到极限而不会断裂,具有良好的拉伸性,这使得橡胶成为一种优秀的材料来承受外部力。

3.耐磨性:橡胶具有优良的耐磨性,能够抵御重压和磨损,这使得橡胶在机械设备中能够长时间地保持使用寿命。

4.导电性:某些特殊的橡胶可以导电,这使得它们在电子器件中有着广泛的应用。

橡胶的种类橡胶可以分为天然橡胶和合成橡胶两大类。

天然橡胶天然橡胶是从橡胶树的乳液中提取得到的,其主要成分是聚合物异戊二烯。

它具有优良的弹性、可塑性和耐磨性,是最早被人们所熟知和使用的橡胶种类。

天然橡胶的主要缺点是耐候性差,容易老化和变硬。

合成橡胶合成橡胶是通过人工合成材料得到的,其制备方法有多种。

合成橡胶具有较好的耐候性和热稳定性,在各个领域中有着广泛的应用。

合成橡胶根据其组成和性质的不同,可以分为丁苯橡胶、丁二烯橡胶、氯丁橡胶等几种主要类型。

橡胶的制备方法橡胶的制备方法主要有以下几种:1.高分子聚合法:通过将合适的单体进行聚合反应,得到橡胶材料。

这种方法广泛应用于合成橡胶的制备,例如丁苯橡胶的合成就是通过丁苯单体的聚合反应得到的。

2.塑化法:将天然橡胶加热到一定温度,然后加入塑化剂搅拌,使其变得柔软并具有一定的可塑性。

这种方法常用于橡胶制品的加工过程中。

3.交联法:将橡胶材料加热或添加交联剂,使其发生交联反应,从而提高其强度和耐热性。

这种方法常用于橡胶制品的加工过程中。

橡胶的应用领域橡胶由于其优良的性能,被广泛应用于各个领域:1.汽车制造:橡胶主要用于汽车轮胎、密封件、减震器等部件的制造。

橡胶的结构、分子运动、性能、交联

橡胶的结构、分子运动、性能、交联

橡胶的结构聚合物链的结构对聚合物的基本性能起着决定性的作用。

从链结构上看,橡胶多为碳链聚合物(如乙丙橡胶、天然橡胶等),C-C单键容易发生内旋;分子量较大的聚二甲基硅氧烷(硅橡胶)主链Si-O键长为0.164nm,键角分别为140°和110°,明显大于C-C单键(0.154nm,109°282)。

因此,它的单键旋转阻力很小,分子链弹性很好,在低温下可作为特种橡胶使用;当主链包含一个孤立的双键时,单键本身不能在内部旋转。

但由于双键两端的非键原子较少,连接双键两端的单键更容易发生内部旋转,如顺式- 1,4 -聚丁二烯和顺式异戊二烯。

这些分子链上含有许多孤立双键的大分子被用作橡胶(商品名称分别为丁二烯和天然橡胶)。

从分子量和分子量分布来看,为了满足产品性能和加工性能的要求,合成橡胶的分子量通常控制在20万聚合物分子量左右数值越大,分子间作力越大。

当子分子数大于链纠缠的临界分子量时,子链之间就会发生纠缠。

这种纠缠类似于物理交联,可以保证橡胶材料具有良好的高弹性。

另一方面,在橡胶加工过程中,通过精炼,使橡胶的分子量分布变宽,使橡胶分子中有更多的极长分子链和极短分子链。

极短的分子链不仅具有良好的流动性,还能在极长的分子链上起到增塑作用,可以显著提高橡胶的加工性能。

从集料结构来看,橡胶在室温下是一种无定形聚合物,但如果温度降低到足够低(低于橡胶的玻璃化转变温度),橡胶也可以结晶。

对于橡胶材料,希望它的结晶度低,因为结晶度高会使橡胶硬化,失去弹性,但少量的结晶可以提高橡胶的强度。

拉伸还能促进橡胶的结晶,如天然橡胶在室温下结晶非常缓慢;它需要很长时间才能结晶,但如果它被拉伸,就会产生瞬间结晶,一旦被外力移走就会融化。

橡胶的分子运动由于橡胶在常温下为非晶态聚合物,因而链段是其最主要的运动单元。

由于链段运动需要克服内摩擦力,当链段受力后,从一种平衡状态转变到与外力相适应的平衡状态时往往需要一定时间,所以形变总是落后于外力,表现出对时间的依赖性。

橡胶的结构特征

橡胶的结构特征

橡胶的结构特征
橡胶是一种聚合物,其主要成分是由异戊二烯(isoprene)单体组成的高分子链。

以下是橡胶的结构特征:
1.异戊二烯单体:橡胶的基本单体是异戊二烯,也称为2-甲基-1,3-丁二烯。

异戊二烯的分子式为C5H8,它包含五个碳原子和八个氢原子。

多个异戊二烯分子通过共价键连接形成高分子链。

2.高分子链:橡胶的主要结构特征是由许多异戊二烯单体通过共价键连接而成的高分子链。

这种链状结构赋予橡胶其弹性和柔韧性。

3.共轭结构:异戊二烯分子中存在着相邻碳碳双键,而这些双键的共轭结构对橡胶的性质有影响。

这种共轭结构赋予橡胶特殊的电子结构,使其具有较好的导电性。

4.天然橡胶vs.合成橡胶:天然橡胶主要是由橡胶树分泌的乳液中提取得到的,而合成橡胶则是通过聚合异戊二烯单体而制得。

合成橡胶的结构可以调控,以产生具有特定性质的橡胶材料,例如丁腈橡胶、丙烯橡胶等。

5.交联结构:橡胶分子链之间可以发生交联,形成三维网络结构,这赋予橡胶更强的弹性和抗拉性。

这种交联结构使橡胶在受力时能够发生形变而不破裂,并在解除应力后恢复原状。

总体而言,橡胶的结构特征使其成为一种具有高弹性、柔韧性和可变形性的材料,广泛应用于橡胶制品、轮胎、密封件等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

橡胶的基本结构与性能
橡胶的分子特征---构成橡胶弹性体的分子结构有下列特点:
①其分子由重复单元(链节)构成的长链分子。

分子链柔软其链段有高度的活动性,玻璃化转变温度(Tg)低于室温;
②其分子间的吸引力(范德华力)较小,在常态(无应力)下是非晶态,分子彼此间易于相对运动;
③其分子之间有一些部位可以通过化学交联或由物理缠结相连接,形成三维网状分子结构,以限制整个大分子链的大幅度的活动性。

从微观上看,组成橡胶的长链分子的原子和链段由于热振动而处于不断运动中,使整个分子呈现极不规则的无规线团形状,分子两末端距离大大小于伸直的长度。

一块未拉伸的橡胶象是一团卷曲的线状分子的缠结物。

橡胶在不受外力作用时,未变形状态熵值最大。

当橡胶受拉伸时,其分子在拉伸方向上以不同程度排列成行。

为保持此定向排列需对其作功,因此橡胶是抵制受伸张的。

当外力除去时,橡胶将收缩回到熵值最大的状态。

故橡胶的弹性主要是源于体系中熵的变化的“熵弹性”。

橡胶的应力-应变性质
应力-应变曲线是一种伸长结晶橡胶的典型曲线,其主要组分是由于体系变得有序而引起的熵变。

随着分子被渐渐拉直,使得分子链上支链的隔离作用消失,分子间吸引力变得显著起来,从而有助于抵抗进一步的变形,所以橡胶在被充分拉伸时会呈现较的高抗张强度.
橡胶在恒应变下的应力是温度的函数。

随温度的升高橡胶的应力将成比例地增大。

橡胶的应力对温度的这种依赖称为焦耳效应,它可以说明金属弹性和橡胶弹性间的根本差别。

在金属中,每个原子都被原子间力保持在严格的晶格中,使金属变形所做的功是用来改变原子间的距离,引起内能的变化。

因而其弹性称为“能弹性”。

其弹性变形的范围比橡胶中主要由于体系中熵的变化而产生的“熵弹性”的变化范围要小得多。

在一般的使用范围内,橡胶的应力-应变曲线是非线性的,因此橡胶的弹性行为不能简单地以杨氏模量来确定。

橡胶的变形与温度、变形速度和时间的关系
橡胶分子的变形运动不可能在瞬时完成,因为分子间的吸引力必须由原子的振动能来克服,如果温度降低时,这些振动变得较不活泼,不能使分子间吸引力迅速
破坏,因而变形缓慢。

在很低温度下,振动能不足以克服吸引力,橡胶则会变成坚硬的固体。

如果温度一定而变形的速度增大,也可产生与降低温度相同的效果。

在变形速度极高的情况下,橡胶分子没有时间进行重排,则会表现为坚硬的固体。

橡胶材料在应力作用下分子链会缓慢的被破坏,产生“蠕变”,即变形逐渐增大。

当变形力除去后,这种蠕变便形成小的不可逆变形、称为“永久变形”。

橡胶的热性能
①导热性橡胶是热的不良导体,其导热系数在厚度为25毫米时约为2.2~6.28瓦/米2·0K。

是优异的隔热材料,如果将橡胶做成微孔或海绵状态,其隔热效果会进一步提高,使导热系数下降至0.4~2.0瓦。

任何橡胶制件在使用中,都可能会因滞后损失产生热量,因此应注意散热。

②热膨胀由于橡胶分子链间有较大的自由体积,当温度升高时其链段的内旋转变易,会使其体积变大。

橡胶的线膨胀系数约是钢的20倍。

这在橡胶制品的硫化模型设计中必须加以考虑,因为橡胶成品的线性尺寸会比模型小1.2~3.5%。

对于同一种橡胶,胶料的硬度和生胶含量对胶料的收缩率也有较大的影响,收缩率与硬度成反比,与含胶率成正比。

各种橡胶在理论上的收缩率的大小顺序为:氟橡胶>硅橡胶>丁基橡胶>丁腈橡胶>氯丁橡胶>丁苯橡胶>天然橡胶
橡胶制品在低温使用时应特别注意体积收缩的影响,例如油封会因收缩而产生泄漏,橡胶与金属粘合的制品会因收缩产生过度的应力而导致早期损坏。

橡胶的电性能
通用橡胶是优异的电绝缘体,天然橡胶、丁基橡胶、乙丙橡胶和丁苯橡胶都有很好的介电性能,所以在绝缘电缆等方面得到广泛应用。

丁腈橡胶和氯丁橡胶,因其分子中存在极性原子或原子基团,其介电性能则较差。

在另一方面,在橡胶中配入导电炭黑或金属粉末等导电填料,会使它有足够的导电性来分散静电荷,或者甚至成为导电体。

橡胶的气体透过性(气密性)
橡胶的气透率是气体在橡胶中的溶解度与扩散度的乘积。

气体的溶解度随橡胶的溶解度参数增加而下降,气体在橡胶中的扩散速度取决于橡胶分子中侧链基团的多少。

气体在各种橡胶中的透过速度有很大的不同,在橡胶中气透性较低的是聚醚橡胶和丁基橡胶,丁基橡胶气透性只有天然胶的1/20。

而硅橡胶的气透性最大。

橡胶的气透性随温度的升高而迅速上升,对于使用炭黑作填料的制品来说,
其品种和填充量对气透性能影响不大。

但软化剂的用量大小对硫化胶的气透性能影响很大,对气透性能要求较高的橡胶制品,软化剂的用量尽可能减少为好。

橡胶的可燃性
大多数橡胶具有程度不同的可燃性。

而分子中含有卤素的橡胶如氯丁橡胶、氟橡胶等,则具一定的的抗燃性。

因此,含有氯原子的氯丁胶和氯磺化聚乙烯在移开外部火焰后,既便燃烧也是困难的,而氟橡胶则完全是自行灭火的。

在胶料中配入阻燃剂(例如磷酸盐或含卤素物质)可提高其阻燃性。

相关文档
最新文档