鲁教版五四学制六年级下第五章基本平面图形(经典)
鲁教版数学六年级下册第五章《基本平面图形》复习
A DC
B
2. 如图,AB=6cm,点C是线段AB的中点,点D 是线段CB的中点,那么AD有多长呢?
解:∵点C是线段AB的中点 A
∴AC=CB= 1 AB 3cm
CD
1
2
CB 1.5cm
2
AD AC CD 4.5cm
CDB
►考点二 角 例2 8点30分时,钟表的时针与分针的夹角为__________°
数学·新课标(BS)
线段中点的符号语言表示:
反之, A
C
B
如图,∵点C在线段AB上且AC=BC ∴点C是线段AB的中点.
如图,∵点C是线段AB的中点,
12 ∴AC=BC= AB
练习:1、如图,已知点C是线段AB的中点,点D是 线段AC的中点,完成下列填空:
(1)AB= _2_ BC ,BC= _2_ AD (2)BD= _3_ AD
圆 圆心 圆心角
B
A
O
钟表指针的运动
考点攻略
►考点一 直线、射线、线段 例1 如图4-1,C、D是线段AB上两点,若CB=4 cm,DB=7 cm,且D是AC的中点,则AC的长等于( )
数学·新课标(BS)
第四章 |过关测试
A.3 cm
B.6 cm
C.11 cm D.14 cm
[解析] B 先利用线段的和差求出DC的长,再根据线段的中点 定义求AC的长.
[答案] A
数学·新课标(BS)
4.在一次航海中,在一艘货轮的北偏东54°的方向上有一艘渔 船,那么货轮在渔船的________方向上.
[答案] 南偏西54°
数学·新课标(BS)
3计算: (1)90°-45°32″; (2)6°32′25″×7.
鲁教版六年级下第五章基本平面图形规律总结ppt课件
画
条直线.
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
3.直线上有n个点,则共有多少条线段?
4: 已知线段AB=10,点C在直线AB上, 且AC=4,若点D是AB的中点,求DC的长.
DC=1
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
(4)以点O为端点引5条射线时, 共有多少个角?怎样表示?
A
C
D
E
O
B
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
(5)以点O为端点 A 引n条射线,共有 多少个角?
···
O
B
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
(2)以点O为端点引3条射线时, 共有多少个角?怎样表示?
A C
O B
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
(3)以点O为端点引4条射线时, 共有多少个角
B
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
《配套》P7 第3题 P8 第5题
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
鲁教版五四学制六年级下第五章基本平面图形(经典)
CDB EA OCN M BA B图(6)D '第五章基本平面图形2016.4.5 梁通一、填空:1. 0.46°= ′ ″.28°7′12″= °.2. 如图所示,已知OE 平分∠AOB ,OD 平分∠BOC ,∠AOB 为直角, ∠EOD=70°,则∠BOC 的度数为 .3. 如图,直线上四点A 、B 、C 、D,看图填空:①AC=______+BC;②CD=AD —_______;③AC+BD—BC=_______. 4、如图所示,由泰山到青岛的某一次列车,运行途中停靠的车站依次是:泰山——济南——淄博——潍坊——青岛,那么要为这次列车制作的火车票有__________种.5.用一个钉子把一根细木条钉在墙上,木条就可能绕着钉子 ,原因是 ;当用两个钉子把木条钉在墙上时,木条就被固定住,其依据是 .6.如图,AB 的长为m ,BC 的长为n ,M 、N 分别是AB 、BC 的中点,则 MN= 7、如图(6),把一张长方形的纸按图那样折叠后,B 、D 两点落在B ′、D ′点处, 若得∠AOB ′=700, 则∠B ′OG 的度数为 。
8、如上右图,是一副三角板重叠而成的图形,则∠AOD+∠BOC=_____________. 4.如图,直线AB 、CD 相交于O ,∠COE 是直角,∠1=57°, 则∠2=9. 一个人从A 点出发向北偏东65°的方向走到B 点,再从B 点出发向南偏西15°方向走到C 点,那么∠ABC 的度数是 二、选择题:10、下列说法中,正确的是( )A .直线a 、b 经过点M B. 直线A 、B 相交于点C C. 直线A 、B 相交于点m D. 直线AB,CD 相交于点m11. 一轮船航行到B 处测得的小岛A 的方向为北偏东30°,那么从A 处观测此时B 处的方向为( )A.北偏东30°B.北偏东60°C.南偏西30°D.南偏西60°12、在时刻8:32时,时钟上的时针与分针之间的所成的夹角是( ) A.70° B.64° C.76° D.80° 13.如图,圆的半径为4,阴影部分扇形的面积是( ) A. πB. 2πC. 3πD. 4π14. 同一平面内有四点,每过两点画一条直线,则直线的条数是( ) A .1条 B .4条 C .6条 D .1条或4条或6条15、已知A 、B 两点之间的距离是10 cm ,C 是线段AB 上的任意一点,则AC 中点与BC 中点间的距离是( ) A.3 cmB.4 cmC.5 cmD.不能计算16、平面上有四点,经过其中的两点画直线最多可画出( ).A .三条B .四条C .五条D .六条 17、如图,O 为直线AB 上一点,∠COB =26°30′,则∠1=( ).A .153°30′B .163°30′C .173°30′D .183°30′18、如图6,∠AOB 为平角,且∠AOC =21∠BOC ,则∠BOC 的度数是( )19、如图7,军舰从港口沿OB 方向航行,它的方向是( )A.东偏南30°B.南偏东60°C.南偏西30°D.北偏东30° 20、 下列说法中正确的是( )A 、8时45分,时针与分针的夹角是30°B 、6时30分,时针与分针重合C 、3时30分,时针与分针的夹角是90°D 、3时整,时针与分针的夹角是90°21、如果线段AB=5cm,线段BC=4cm,那么A,C 两点之间的距离是( ) A. 9cm B.1cm C.1cm 或9cm D.以上答案都不对 22、如图,下列表示角的方法,错误的是( )A.∠1与∠AOB 表示同一个角;B.∠AOC 也可用∠O 来表示C.图中共有三个角:∠AOB 、∠AOC 、∠BOC;D.∠β表示的是∠BOC三、画图题:1.如图,在公路l 的两旁有两个工厂A 、B ,要在公路上搭建一个货场让A 、B 两厂使用,要使货场到A 、B 两厂的距离之和最小,问货场应建在什么位置?为什么?2.如图,A 、B 、C 、D 在同一条直线上,已知AC=BD=18cm ,且AB:AD=2:11,求AB,BC 的长度。
山东省六年级鲁教版(五四制)数学下册导学案:第五章基本平面图形
第五章基本平面图形回顾与思考【学习目标】1.掌握线段、射线、直线的区别及表示方法2.掌握直线的性质、线段的性质、两点之间的距离。
3.掌握线段的中点定义、角平分线定义4.能熟练求出线段的长度和角的度数【课前梳理】1. 叫做线段,它有个端点.就形成了射线,它有个端点.就形成了直线,它有个端点.2.(1)两点之间_______的长度叫做两点间的距离.(2)点B把线段AC分成两条相等的线段,点B就叫做线段AC的,这时,有AB_______BC,AB = BC =___AC, AC = __AB = __BC.3.(1)由条具有的射线组成的图形叫做角,这个公共端点是角的 .(2)角的表示方法: .(3)角的度量单位有、、 .(4)各单位之间的进率是 .4.(1)角的大小比较方法: .(2)角的平分线定义:从一个角的引出的一条,把这个角分成两个的角,这条叫做这个角的平分线.5.(1)多边形是由首尾顺次相连图形.(2)你能举出几个多边形的例子吗?(写出三个即可).(3)在多边形中,连接的线段叫做多边形的对角线.(4)正多边形的定义: .(5)在平面上,一条线段,另一个端点叫做圆.(6)圆上任意两点A、B间的部分叫做,记作________,读作;叫做圆心角叫做扇形.(7)若一个多边形有12个内角,则这个多边形为边形,若一个多边形有20个顶点,则这个多边形为边形.【课堂练习】知识点一线段、射线、直线的概念和性质以及相关计算典型例题1:下列说法正确的是()A.线段没有长度; B.射线上有无数个端点;C.两条相同端点的射线连结在一起就是一条直线; D.直线没有端点。
跟踪训练1:下列说法中,正确的个数有()1. 射线AB与射线BA一定不是同一条射线;2. 直线AB与直线BA一定是同一条直线;3. 线段AB与线段BA一定是同一条线段。
A. 0个B. 1个C. 2个D. 3个典型例题2:下列说法中,正确的有( )。(1)过两点有且只有一条线段(2)连结两点的线段叫做两点的距离(3)两点之间,线段最短 (4)AB=BC,则点B是线段AC的中点(5) 射线比直线短A.1个B.2个C.3个D.4个跟踪训练2:如图,点C在线段AB上,D是AC的中点,E是BC的中点,若ED=6,则AB长为( )A. 6B. 8C. 12D. 16知识点二角的概念和性质以及相关计算典型例题3:下列说法正确的是()A.两条相交直线组成的图形叫做角B.有一个公共端点的两条线段组成的图形叫做角C.一条射线绕着端点从一个位置旋转到另一个位置所成的图形叫做角D.角是从同一点引出的两条线段跟踪训练3:下列关于角的说法正确的是().A.两条射线组成的图形叫做角 B.角的大小与这个角的两边长短无关C .延长一个角的两边D .角的两边是射线,所以角不可以度量 典型例题4:下列对角的表示方法理解错误的是( )A .角可用三个大写字母表示,顶点字母写在中间,每边上的点写在两旁B .任何角都可以用一个字母表示C .记角时可靠近顶点处加上弧线,注上数字表示D .记角时可靠近顶点处加上弧线,注上希腊字母来表示跟踪训练4:下列图中角的表示方法正确的个数有( )A B ● ● ●∠ABC A O B∠AOB 是平角C● ●A B A B直线是平角 ∠CABA.1个B.2个C.3个D.4个典型例题5:下列关于角平分线的说法正确的是( )A.若∠AOP=∠BOP ,则射线OP 是∠AOB 的角平分线B.若∠AOP=2∠BOP ,则射线OP 是∠AOB 的角平分线C.若∠AOP= 0.5 ∠BOP ,则射线OP 是∠AOB 的角平分线D.若2∠AOP=2∠BOP=∠AOB ,则射线OP 是∠AOB 的角平分线跟踪训练5:如右图,∠AOB 为平角,且∠AOC =21∠BOC ,则∠BOC 度数是( )A.100°B.135C.120°D.60°知识点三 多边形和圆的初步认识以及相关计算典型例题6:一个圆分割成三个扇形,圆心角度数比2:3:4,分别求这三个扇形圆心角度数跟踪训练6:将一个圆分割成三个扇形,它们的百分比分别为20%,30%,40%,则其中最小扇形的圆心角的度数为【巩固训练】一.填空题(每题3分,共15分)1.以下说法中正确的是()A.延长射线ABB.延长直线ABC.延长线段AB到CD.画直线AB等于1cm2.如图,∠α的另一种正确的表示方法是:()A.∠1B.∠CC.∠ACBD.∠ABC3.在一个水平广场上,小明处在小颖的北偏东70°方向上,那么小颖应在小明的(假设两人的位置保持不变)()位置A. 南偏东20°B.南偏东70°C.南偏西70°D.南偏西20°4.如图,AC=AB,BD=AB,AE=CD,则CE与AB之比为()A.1:6B.1:8C.1:12D.1:165.如图,∠AOB=180°,OD、OE分别是∠AOC和∠BOC的平分线,则与OD垂直的射线是()A.OAB.OCC.OED. OB二.填空题(每题3分,共9分)6.把弯曲的公路改直,就能缩短路程,原理是7.一个扇形的圆心角为144°,则该扇形的面积是整个圆面积的8.21.54°= °′″三、解答题(共16分)9.如图所示,直线AB, CD相交于点O,OF平分∠AOC,EO⊥CD于点O, 且∠DOF=160°,求∠BOE的度数;10.如图,C是线段AB的中点,D,E分别是线段AC,CB上的点,且AD= AC,DE= AB,若AB=24cm,求线段CE的长.。
(完整)鲁教版六年级下册第五章基本平面图形全章教案.doc
第五单元知识结构↗多边形现实情境→基本元素→基本的平面图形→圆↘扇形↙↘线段、射线、直线角↙↓↘↓↘符号表示线段长短比较基本事实符号表示角的大小比较1、基本事实:两点确定一条直线。
两点之间线段最短。
重2、中点的意义。
点3、角平分线的意义。
4、圆及圆弧、圆心角的意义。
难1、理解线段的和、差,以及线段中点的意义。
点2、理解角的和、差、倍,角平分线的意义。
1、经历观察、测量、折叠、模型制作等活动,发展学生的空间观念。
2、在现实情境中认识线段、射线、直线、角、多边形、扇形、圆等简单的平面图形,了解其含义及其相关的性质。
教3、能用符号表示线段、射线、直线和角。
学4、会进行线段的长短或角的大小的比较,能估计一个角的大小,会进行角的单位的简单的换算。
目标5、能用尺规作图作一条线段等于已知线段。
6、经历在操作活动中探索图形性质的过程,了解简单图形的性质;丰富数学学习的成功体验,积累操作活动经验,发展有条理的思考与表达能力。
教学措施教学过程设计学法指导1. 针对教材特点,将观察、操作等实践活动以及实践活动的思考与交流贯穿于教学过程的始终。
2.认真备课,把握好重、难点,有针对性的讲解与练习1、充分挖掘和利用现实生活中的与线段、射线、直线、角、多边形、圆、扇形密切相关的现实背景,尽可能从学生感兴趣的话题出发,通过创设恰当的问题情境进行教学。
2、要让学生从事观察、测量、折叠等活动,帮助他们有意识的积累活动经验,获得成功的体验。
3、鼓励学生从事抽象与概括活动,归纳数学对象的特征,发展有条理的思考。
1.在教学中,既要注重对教学语言的解释,又要注重必要的句法分析,这是理解、掌握数学语言的基础2.要注意语言规范,数学有其专业术语而且要求表述准确,这是正确运用数学语言的保证3.加强文字语言、符号语言、几何语言的互译和转换,这是促进学生理解数学语言,学会灵活运用的有效手段,为此,首先在概念和定理教学中应多采取转换成符号语言和图形语言来表述的练习。
五四制鲁教版六年级数学下册 第五章 基本平面图形 线段的性质
2 若数轴上点A,B分别表示数2,-2,则A,B两点之 间的距离可表示为( ) B A.2+(-2) B.2-(-2) C.(-2)×2 D.(-2)-2
3 点B在直线AC上,线段AB=5,BC=3,则A,C两点 间的距离是( ) C A.8 B.2 C.8或2 D.无法确定
4 如图,AB=12,C为AB的中点,点D在线段AC上, 且AD∶CB=1∶3,则D,B两点间的距离为( ) D A.4 B.6 C.8 D.10
5 如图,从A地到B地有四条路线,由上到下依次记为路 线①,②,③,④,则从A地到B地的最短路线是路线
() A.C① B.② C.③ D.④
6 如图,将一块三角形木板截去一部分后,发现剩余木 板的周长要比原三角形木板的周长大,能正确解释这 一现象的数学知识是( ) A.两直线相交只有一个D交点 B.两点确定一条直线 C.经过一点有无数条直线 D.两点之间线段最短
其中可用基本事实“两点之间线段最短”来解释的现
象有( ) D
A.①② B.①③ C.②④ D.③④
【点拨】 本题易对直线、线段的基本事实区别不清而致错,①②可 用两点确定一条直线来解释.
11 如图,草原上有四口油井,位于四边形ABCD的四个 顶点上,现在要修建一个维修站H,试问H建在何处, 才能使它到四口油井的距离之和HA+HB+HC+HD 最小,说明理由.
解:少数学生这样走的理由是: 两点之间线段最短;
(2)请问学生这样走行吗?若不行请你在草坪上竖起一个牌 子,写上一句话来警示学生应该怎样做.
解:学生这样走不行.牌子上可写:脚下留情(答案 不唯一).
13 在数轴上,表示数m与n的点之间的距离为|m-n|.例如: 在数轴上,表示数-3与2的点之间的距离是5=|-3- 2|,表示数-4与-1的点之间的距离是3=|-4-(-1)|. 利用上述结论解决如下问题: (1)若|x-5|=3,求x的值;
鲁教版(五四制) 六年级下册第五章 基本平面图形学案设计
初一(下册)第五章基本平面图形第一节线段、射线、直线知识点一,线段、射线、直线的概念1,定义2,直线的性质:经过一点可以画条直线,经过两点只能画条直线,也就是说经过两点直线。
简述为点确定一条直线。
课堂巩固一,线段、射线、直线的表示1,下列结论中,不正确的是()A.点运动的轨迹是线B.线段有两个端点C.射线有一个端点D.直线有无数个端点2,给出下列图形,其表示方法不正确的是()3,如图,对于直线AB、线段CD、射线EF,其中能相交的是()4,如图,线段AD上有两点B、C,则图中共有线段()A.3条B.4条C.5条D.6条5,如图,下列说法错误的是()A.直线AC与射线BD相交于点AB.BC是线段C.直线AC经过点AD.点D在直线AB上6,已知四点A、B、C、D,按照下列语句画出图形。
(1)作线段AD,并以cm为单位,度量其长度。
(2)线段AC和线段DB相交于点O。
(3)反向延长线段BC至E,使BE=BC。
二,直线的性质7,观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,···,则6条直线相交最多有个交点。
8,在同一平面内有四条直线。
(1)这四条直线的交点个数可能有哪些情况?(2)请你画出两种交点个数是4的图形。
第二节比较线段的长短知识点一,线段的性质1,性质:两点之间所有连线中,最短。
这一事实可以简述为两点之间最短。
2,两点之间的距离:两点之间的长度,叫做这两点之间的距离。
知识点二,线段的中点1,定义:如果一点M把线段AB分成的两条线段AM与BM,那么这个点M就叫做线段AB的中点。
2,表示方式:AM=BM= AB,或AB= AM= BM.课堂巩固一,线段的性质与作图1,下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是()A.用两个钉子就可以把木条固定在墙上B.把弯曲的公路改直,就能缩短路程C.利用圆规可以比较两条线段的长短关系D.植树时,只要定出两个树的位置,就能确定同一行树所在的直线2,已知线段a、b(如图),画出线段AM,使AM=a+2b。
鲁教版(五四制)》六年级下册第五章 基本平面图形复习学案()
鲁教版(五四制)》六年级下册第五章基本平面图形复习学案()第五章基本平面图形复习学案复习目标:1、掌握本章基本知识,正确列出章节知识网络图。
2、理解所学概念,并能举例说明。
3、能运用所学知识解决生活中的实际问题。
4、熟练计算线段的和与差,角的和与差,实现线段、角度的相互转化。
复习重点:1、本章所学的概念(线段、射线、直线、线段的中点、角、角的平分线。
)2、公理“两点确定一条以直线”“两点之间线段最短”的理解与应用。
3、线段与角度之间的转化与计算。
复习难点:线段与角度之间的转化与计算,以及知识的应用与问题解决。
复习过程:一、看课本2-17页,找出以下问题(提问)1、线段、射线、直线的特征与表示方法。
2、线段大小的比较方法,线段中点的定义,3、尺规作图“做一条线段等于已知线段”的方法。
4、角的定义和表示方法,周角、平角的定义。
5、角的度量单位,及答案为之间的换算关系。
6、方位角的表示和钟表中的角度。
7、比较两个角的大小的方法,结果的表示。
8、角平分线的意义和应用,用折叠的方法画出角的平分线。
9、多边形和正多边形的概念,及相关概念。
10、圆的概念(圆心、半径、圆弧、圆心角、扇形、圆的周长和面积)二、知识网络图线段、射线、直线的意义和特征线段、射线、直线的表示方法“两点确定一条以直线”“两点之间线段最短”线段、射线、直线线段的比较和线段的中点的意义用尺规作图“做一条线段等于已知线段”角的定义和表示方法(始边、终边)角的度量单位及各单位之间第 2 页第 3 页分别是∠AOC、∠AOB的平分线,∠MON=40°,求∠AOC和∠AOB的度数.三、集中练习(一)填空题1、连结_______的_______叫作两点间的距离.2、点B把线段AC分成两条相等的线段,点B就叫做线段AC的_______,这时,有AB=_______,AC=_______BC,AB=BC=_______AC.点B和点C把线段AD分成三条相等的线段,则点B和点C就叫做AD的_______.3、如图,点C分AB为2∶3,点D分AB为1∶4,若AB为5 cm,则AC=_____cm, BD=_____cm,CD=__ ____cm.4、若线段AB=a,C是线段AB上任一点,MN分别是AC、BC的中点,则MN=_______+_______=_______AC+_______BC=_______.5、已知线段AB,在AB的延长线上取一点C,使BC=2AB,再在BA的延长线上取一点D,使DA=AC,则线段DC=______AB,BC=_____CD6、如图,∠AOB_____∠AOC,∠AOB____∠BOC.(填“>”、“=”或“<”)第6题图第7题图第10题图第11题图7、如图,∠AOC=______+__ ____=______-_____;∠BOC=______-_____=______-______8、OC是∠AOB内部的一条射线,若∠AOC=______,则OC平分∠AOB;若OC是∠AOB的角平分线,则____= 2∠AOC.9、平角=______直角,周角=_____平角=______直角,10、如图,∠AOB = ∠COD =900,∠AOD= 1460,则∠BOC=_______0.11、如图,∠AOB=900,OD平分∠BOC,∠DOE=450,则∠AOE____∠COE.(填“>”、“=”或“<”)二、解答题第 4 页第 5 页1、已知: AE=21 EB ,F 是BC 的中点,BF= 51AC=1.5㎝,求EF 的长。
鲁教版五四制 六年级下册 第五章 基本平面图形 复习习题 (含答案解析)
鲁教版五四制六年级下册第五章基本平面图形复习习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,有理数a,b,c,d 在数轴上的对应点分别是A,B,C,D,若a+c=0,则b+d()A.大于0B.小于0C.等于0D.不确定2.下列说法:①两点之间,线段最短;②同旁内角互补;③若AC=BC,则点C是线段AB的中点;④经过一点有且只有一条直线与这条直线平行,其中正确的说法有( ) A.1个B.2个C.3个D.4个3.如图,点O在直线AB上,射线OC,OD在直线AB的同侧,∠AOD=40°,∠BOC=50°,OM,ON分别平分∠BOC和∠AOD,则∠MON的度数为( )A.135°B.140°C.152°D.45°4.如图,O为直线AB上一点,OE平分∠BOC,OD⊥OE于点O,若∠BOC=80°,则∠AOD的度数是()A.70°B.50°C.40°D.35°5.如图,点C、D是线段AB上的两点,点D是线段AC的中点.若AB=10cm,BC=4cm,则线段DB的长等于()A.2cm B.3cm C.6cm D.7cm6.下列说法正确的是( )A.一个平角就是一条直线B.连结两点间的线段,叫做这两点的距离C.两条射线组成的图形叫做角D.经过两点有一条直线,并且只有一条直线7.下列有关中点的叙述正确的是()A.若,则点P为线段AB的中点.B.若AP=PB,则点P为线段AB的中点.C.若AB=2PB,则点P为线段AB的中点.D.若,则点P为线段AB的中点.8.点P在线段EF上,现有四个等式①PE=PF;②PE=EF;③EF=2PE;④2PE=EF;其中能表示点P是EF中点的有()A.4个B.3个C.2个D.1个9.如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为()A.45°B.55°C.135°D.145°10.平面上有三个点,,,如果,,,则()A.点在线段上B.点在线段的延长线上C.点在直线外D.不能确定11.如图,将一幅三角板叠在一起,使直角的顶点重合于点O,则的值为()A.小于180°B.等于180°C.大于180°D.不能确定12.如图,A、B、C、D是⊙O上的四点,BD为⊙O的直径,若四边形ABCO是平行四边形,则∠ADB的大小为()A.30°B.45°C.60°D.75°13.有下列说法:①等弧的长度相等;②直径是圆中最长的弦;③相等的圆心角对的弧相等;④圆中90°角所对的弦是直径;⑤同圆中等弦所对的圆周角相等.其中正确的有()A.1个B.2个C.3个D.4个14.点A在直线m外,点B在直线m上,A、B两点的距离记作a,点A到直线m的距离记作b,则a与b的大小关系是()A.a>b B.a≤b C.a≥b D.a<b15.如图,已知线段AB=a(a>2),CD=2,线段CD在线段AB上移动(点C不与点A 重合,点D不与点B重合),当线段AC=x时,图中所有线段的和为( )A.3a+2B.2a+2C.3a+x-2D.2a+x+216.如图是一块长,宽,高分别是6cm,4cm和3cm的长方体纸盒子,一只老鼠要从长方体纸盒子的一个顶点A处,沿着长方体的表面到长方体上和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长是()A.B.C.D.17.已知M,N,P,Q四点的位置如图所示,下列结论中,正确的是( )A.∠NOQ=42°B.∠NOP=132°C.∠PON比∠MOQ大D.∠MOQ与∠MOP互补18.给出下列说法:①半径相等的圆是等圆;②长度相等的弧是等弧;③半圆是弧,但弧不一定是半圆;④半径相等的两个半圆是等弧,其中正确的有()A.1个B.2C.3个D.419.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚20.如图,有一个正方体纸巾盒,它的平面展开图是()A.B.C.D.21.已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数是( )A.20°或50°B.20°或60°C.30°或50°D.30°或60°22.如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A.4cm B.2cm C.4cm或2cm D.小于或等于4cm,且大于或等于2cm 23.4点10分时,时针与分针所夹的小于平角的角为( )A.55°B.65°C.70°D.以上度数都不对24.如图,点C, D在线段AB上,若AC=DB, 则()A.AC=CD B.CD=DBC.AD=2DB D.AD=CB25.在四边形ABCD中,∠ABC=90°,AD∥BC,P为边AD上一点,点A关于BP的对称的点为E,AD=2,BC=4,AB=2,则△CDE的面积不可能为()A.4—B.3C.4—D.326.如图,C,D是线段AB上的两个点,CD=3 cm,M是AC的中点,N是DB的中点,AB=7.8 cm,那么线段MN的长等于( )A.5.4 cm B.5.6 cm C.5.8 cm D.6 cm27.一艘渔船从港口A沿北偏东60°方向航行至C处时突然发生故障,在C处等待救援.有一救援艇位于港口A正东方向20(﹣1)海里的B处,接到求救信号后,立即沿北偏东45°方向以30海里/小时的速度前往C处救援.则救援艇到达C处所用的时间为()A.小时B.小时C.小时D.小时28.如图,四个正六边形的面积都是6,则图中△ABC的面积等于().A.12 B. 13 C.14 D.15二、填空题29.如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=4,M是AB边上一动点,N是AC边上的一动点,则MN+MC的最小值为_____.30.在一条直线上取A,B,C三点,使得AB=5cm,BC=3cm.如果点D是线段AC的中点,那么线段DB的长度是___________cm.31.如图,直线AB,CD相交于点O,OA平分∠EOC,∠EOD=120°,则∠BOD=________ °32.如图,点C在线段AB的延长线上,且BC=2AB,点D是AC的中点,若AB=2cm,则BD=____________.33.如图,点A、O、B在一条直线上,∠AOC=130°,OD是∠BOC的平分线,则∠COD=____°.34.八时三十分,时针与分针夹角度数是_______.35.已知线段长为厘米,是线段上任意一点(不与、重合),是的中点,是的中点,则________厘米.36.若角α是锐角,则角α的补角比角α的余角大____度.37.如果一个角的余角的2倍比它的补角少,则这个角的度数是______.38.如图,点A、B、C在直线l上,则图中共有________条线段,有________条射线.39.木工师傅用两颗水泥钉就能将一根木条固定在墙壁上,这样做的数学依据是________.40.一副三角板按如图方式摆放,若α= ,则β的度数为_____________.41.如图,OA的方向是北偏东15°,OB的方向是北偏西40°,若∠AOC=∠AOB,则OC的方向是______________.42.已知线段AB=16,,点P、Q 分别是AM、AB 的中点.请从A、 B 两题中任选一题作答.A.如图,当点M 在线段AB 上时,则PQ 的长为______.B.当点M 在直线AB 上时,则PQ 的长为______.43.如图,C,D,E是线段AB上的三个点,下面关于线段CE的表示:①CE=CD+DE;②CE=BC﹣EB;③CE=CD+BD﹣AC;④CE=AE+BC﹣AB.其中正确的是_____(填序号).44.如图,把一张长方形纸片沿AB折叠后,若∠1=50°,则∠2的度数为______.45.如图,已知,射线是的平分线,则________度.46.如果一个角比它的余角大20°,则这个角的补角为____________度.47.将一副三角板如图放置,若∠AOD=20°,则∠BOC的大小为.48.已知一个角的余角为30°40′20″,则这个角的补角为____________.49.已知线段AB=acm,A1平分AB,A2平分AA1,A3平分AA2,…,A n平分AA n﹣1,则AA n=____cm.50.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为6,则GE+FH的最大值为_____.51.如图,在△ABC中,BC=AC=4,∠ACB =90°,点M是边AC的中点,点P是边AB上的动点,则PM+PC的最小值为_______.52.如下图,在已知角内画射线,画1条射线,图中共有个角;画2条射线,图中共有个角;画3条射线,图中共有个角;求画n条射线所得的角的个数 .53.如图,⊙O的半径是5,△ABC是⊙O的内接三角形,过圆心O,分别作AB、BC、AC 的垂线,垂足分别为E、F、G,连接EF,若OG=3,则EF为__.54.已知M、N是线段AB的三等分点,C是BN的中点,CM=6 cm,则AB=_________ cm.55.如图,已知点C(1,0),直线y= -x+7与两坐标轴分别交于A、B两点,D、E分别是AB,OA上的动点,当△CDE周长最小时,点D坐标为___________.56.钟表在整点时,时针与分针的夹角会出现5种度数相等的情况,请分别写出它们的度数____.57.如图,点P 是∠AOB 内任意一点,OP=5cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,∠AOB=30°则△PMN 周长的最小值=________58.已知线段AB=8,在直线AB 上取一点P ,,点Q 为线段PB 的中点.则AQ 的长为______________.59.如图,AB 是⊙O 的直径,已知AB=2,C ,D 是⊙O 的上的两点,且23BC BD AB += ,M 是AB 上一点,则MC+MD 的最小值是__________.60.4:10时针与分针所成的角度为_____.61.如图,已知∠A 1OA 11是一个平角,且∠A 3OA 2-∠A 2OA 1=∠A 4OA 3-∠A 3OA 2=∠A 5OA 4-∠A 4OA 3=……=∠A 11OA 10-∠A 10O A 9=3°,则 ∠A 11OA 10的度数为______.62.一天24小时中,时钟的分针和时针共组合成_____次平角,______次周角.63.已知 , ,射线OM 是 平分线,射线ON 是 平分线,则 ________ .64.如图,点C 、D 是线段AB 上的两点,若AC=4,CD=5,DB=3,则图中所有线段的和是_____.65.如图,在AOB ∠的内部有3条射线OC 、OD 、OE ,若50AOC ∠=︒,,则DOE ∠=__________(用含n 的代数式表示).66.点 是直线 上的一点,且线段 , ,点 为线段 的中点,那么 ___________cm .67.如图,在正八边形ABCDEFGH 中,若四边形BCFG 的面积是12cm 2,则正八边形的面积为___cm 2.68.如图,点P 是∠AOB 内部的一点,∠AOB =30°,OP =8 cm ,M ,N 是OA ,OB 上的两个动点,则△MPN 周长的最小值_____cm.69.在直角坐标系内有两点A(-1,1)、B(2,3),若M 为x 轴上一点,且MA+MB 最小,则M 的坐标是________,MA+MB=________。
鲁教版(五四学制)数学六年级下册 第五章 基本平面图形 5.1 线段、射线、直线
6.(柳州·中考)如图,点A,B,C是直线l上的三个点,
图中共有线段条数是( )
A.1条
B.2条
C.3条
D.4条
AB
Cl
【解析】选C.有线段AB,线段AC,线段BC.
通过本课时的学习,需要我们掌握: 1.线段、射线、直线的表示方法. 2.射线的表示有方向性,端点字母在前,射线上其他任 意一点字母在后,线段、直线的表示与字母顺序无关. 3.经过两点有且只有一条直线.
第五章 基本平面图形
1 线段、射线、直线
1.在现实情境中理解线段、射线、直线等简单的平面 图形,通过操作活动,了解两点确定一条直线等几何 事实; 2.学会线段、射线、直线的画法及表示方法; 3.理解直线的基本性质.
绷紧的琴弦、人行横道都可以近 似地看做线段.
将线段向一个方向无限延长就形 成了射线.
征服畏惧、建立自信的最快最有效的方法, 就是去做你害怕的 1.点P在直线a上(或说:直线a经过点P)
a P
2.点P在直线a外 (或说:直线a不经过点P) P
a
学以致用:
经过两点有且只有一条直线. 简记为:两点确定一条直线
学以致用: 植树时,要把一排树植整齐,该怎么办?
只要定出两个树坑的位置就能确定同 一行的树坑所在的直线.
不可延长 两个 可以
射线OP 一方 一个 不可以
直线EF 直线 m
两方 无 不可以
判断下列各题,对的打“√”,错的打“×”.
(1)线段有两个端点, 射线有一个端点, 直线没有端点.( √ )
(2)线段AB长2 000米,射线AB长2 000米. ( × ) (3)射线比直线短一半.( × ) (4)线段、射线可以度量长度,直线不能.( × ) (5)射线AB与射线BA是同一条射线.( × )
五四制鲁教版六年级数学下册 第五章 基本平面图形 圆的初步认识
【点拨】 易知 AD=BC=3 cm,则阴影部分的面积=扇形
MAD 的面积+长方形 ABCD 的面积-三角形 CMB 的面 积=39600·×π×32+3×9-12×3×(3+9)=94π+9(cm2).
5 如图,在半径为6的⊙O中,圆心角∠AOB=60°,则
阴影部分的面积为________.
6π
6 如图,在以点O为圆心的两个同心圆中,大圆的半径 为2,小圆的半径为1,∠AOB=100°,则阴影部分
的面积是____5____. 6π
7 如图,扇形纸折扇完全打开后,扇形BAC的面积为 300πcm2,∠BAC=120°,BD=2AD,则BD的长
度为________cm. 20
【点拨】 设 AD=x cm,则 AB=3x cm. 由题意得 300π=132600×π·(3x)2, 解得 x=10, 所以 BD=20 cm.
8 将一个半径为10cm的圆分成3个扇形,其圆心角度数 的比为2∶3∶5.求: (1)各个扇形的圆心角的度数;
解:设3个扇形的圆心角的度数分别是2x,3x,5x, 则2x+3x+5x=360°,解得x=36°. 故这3个扇形的圆心角的度数分别是72°,108°, 180°.
(2)其中最小的一个扇形的面积.(结果保留π)
解:圆心角为 72°的扇形最小, 其面积为37620×π×102=20π(cm2).
9 如图,建筑物旁边的空地上长满了青草,点M是AB边 的中点,AB=10m,在点M处拴着一只羊,绳长6m. (1)画图指出羊可以吃到草的范围;
解:如图,阴影部分即为所求.
(2)指出此范围的图形特征,并求出其面积.
鲁教版五四六年级下
第5章基本平面图形
5.5.2 圆的初步认识
鲁教版(五四制)六年级下学期第五章基本平面图形章节复习-习题课
知识回顾
1.直线、射线、线段
名称 直线 射线 线段
图形
表示方法 ①直线AB或直线BA
②直线m
射线AP
①线段AB或线段BA ②线段l
延伸方向 端点 长度
两个
无无
一个 一个 无
无
两个 有
知识回顾
2.直线的性质:两点确定一条直线.
3.线段的性质: 在连接两点的所有线中, 线段最段.即:两点之间线段最短。
4.两点间的距离:两点之间线段的长度.
A
B
5. 线段的中点: 把一条线段分成两条 相等的两条线段的点叫作线段的中点.
A
M
B
例如: M是线段AB的中点,
则AM = MB =
1 AB 2
或AB=2AM=2MB
6.角的定义:具有公共端点的两条射
线所组成的图形叫做角.
7. 角的表示: A
(1). 三个大写字母表示:
从一个角的顶点出发,把这个角 分成相等的两个角的射线叫做 角平分线
∠AOC=∠BOC
O
1 =2
∠AOB
A C
B
11.点方位:
北
∠1.北偏东60° ∠2.北偏西30° ∠3.西偏南60°
西3 ∠4.南偏东45°
∠5.东偏南45°
21
4 南
5东
12. 多边形的概念
上面这些图形都是多边形。你能说说他们有 什么共同的特征吗?
的度数是_____.
4.图中小于平角的角 的个数有__6___个.
5.下列说法,正确说法的个数是( C )
①直线AB和直线BA是同一条直线;②射线
AB与射线BA是同一条射线;③线段AB和线
鲁教版六年级下册第5章 基本平面图形-教案(含答案)
一、线段、射线、直线(一) 知识点知识点1 线段、射线、直线的概念(重点)知识点2 线段、射线、直线的表示方法(重点) (1)线段的表示方法①以两个大写英文字母A 、B 表示一条线段的两个端点,这条线段就可以表示为“线段AB ”或“线段BA ”。
A B a②用一个小写字母表示一条线段,如图所示,可表示为“线段a ”,此时要在图中标出此小写字母。
注意:若两条线段的两个端点都相同,则两条线段是同一条线段,例如线段AB 和线段BA 表示同一条线段。
(2)射线的表示方法以大写字母O 表示射线的端点,大写字母M 表示射线上的除O 点外的任意一点,这条射线就可以表示“射线OM ” 注意:①表示射线端点的大写字母一定要写在前面。
②两条射线是同一条射线必须具备两个条件:一是端点相同;二是延伸的方向相同。
例如:射线OM 和射线MO 表示的不是同一条射线 (3)直线的表示方法①在直线上任取两点,用表示这两点的大写字母表示这条直线,如图所示,可表示为“直线AB ”或“直线BA ”,与字母排列顺序无关②用一个小写字母代表一条直线。
可表示为“直线l”,此时要在图中标出此小写字母。
l注意:若表示两条直线的点都是同一条直线上的点,则这两条直线是同一条直线1.下列叙述正确的是()(1)线段AB可表示为线段BA;(2)射线AB可表示为射线BA;(3)直线AB可表示为直线BA;(4)射线AB和射线AC是同一条射线A.(1)(2)(3)(4B.(2)(3)C.(1)(3)D.(1)(2)(3)【答案】C知识点3 线段、射线、直线的区别与联系★联系:线段、射线、直线都是直的。
线段向一个方向无限延伸可得到射线,线段向两个方向无限延伸可得到直线。
在直线上任取一点就可以得到两条射线,在直线上任取两点就可以得到一条线段,在射线上任取一点(端点除外)就可以得到一条线段。
因此,射线、线段都是直线的一部分,线段是射线的一部分。
区别:直线可以向两个方向无限延伸,射线可以向一方无限延伸,线段本身不能延伸,所以线段有长度,可以度量,而射线和直线的长度不可度量;直线没有端点,射线有一个端点,线段有两个端点。
六年级数学下册 第五章 基本平面图形 1线段、射线、直线课件 鲁教五四制
AB BA
a
OA
AB BA
l
【预习思考】 “在直线、线段、射线中,直线最长”这句话正确吗? 提示:不正确,根据射线、线段、直线的定义判断,射线可向一方 无限延伸,直线向两方无限延伸,即射线和直线无长短,不可度量, 只有线段有长短.所以它们无法比较.
直线、射线、线段的表示方法 【例1】如图所示,点A,B,C在直线m上,
【规律总结】 直线、射线、线段的表示方法
(1)直线的表示方法 ①两个大写字母表示:任选线上两点表示,无顺序要求,切记不可重 复;②用一个小写字母表示,如直线m.
(2)射线的表示方法 只能用两个大写字母表示,端点字母在前,方向字母在后. (3)线段的表示方法 ①一个小写字母;②线段有两个端点,用两个大写字母表示时,无顺 序要求.
(1)请写出图中所有的线段和直线的名称. (2)请写出能用图中的字母表示的射线.
【解题探究】(1)①图中所有的线段可以从端点判断.不同的端点 确定不同的线段,所以线段共有3条,分别是线段AB,线段BC,线段 AC. ②图中直线的判断要依据图形,由图可知直线有一条,是直线m(或 直线AB,直线BC,直线AC). (2)射线的判断要找端点,看方向,所以图中射线有:以A为端点的 射线AB(或射线AC),以B为端点的射线BA和射线BC,以C为端点 的射线CB(或射线CA).
2.下列写法中正确的是 ( ) (A)直线AB,CD交于点a (B)直线ab,cd交于点M (C)直线AB,CD交于点N (D)直线a,b相交于n 【解析】选C.直线用两个大写字母或一个小写字母表示,点用一 个大写字母表示,故选C.
3.图中共有
条线段.
【解析】图中有线段AF,AD,AE,AB,BE,BC,DF,DC,CF,EF共10 条. 答案:10
鲁教版五四制六年级下册数学第五章基本平面图形综合复习题(含答案解析)
参照答案与试题分析一.选择题1.以下说法正确的选项是()A .画一条长3cm 的射线B.射线、线段、直线中直线最长C.射线是直线的一部分D .延长直线AB 到 C解: A.画一条长3cm 的射线,说法错误,射线能够向一个方向无穷延长;B.射线、线段、直线中直线最长说法错误,射线能够向一个方向无穷延长,直线能够向两个方向无穷延长;C.射线是直线的一部分,正确;D .延长直线AB 到 C 说法错误,直线能够向两个方向无穷延长.应选: C.2.在以下生活、生产现象中,能够用基本领实“两点确立一条直线”来解说的是()① 用两颗钉子就能够把木条固定在墙上;② 把笔尖当作一个点,当这个点运动时便获得一条线;③ 把曲折的公路改直,就能缩短行程;④ 植树时,只需栽下两棵树,就能够把同一行树栽在同一条直线上.A .①③B .②④C.①④D.②③解:① 用两颗钉子就能够把木条固定在墙上,能够用基本领实“两点确立一条直线”来解说;② 把笔尖当作一个点,当这个点运动时便获得一条线,能够用基本领实“无数个点构成线”来解说;③ 把曲折的公路改直,就能缩短行程,能够用基本领实“两点之间线段最短”来解说;④ 植树时,只需栽下两棵树,就能够把同一行树栽在同一条直线上,能够用基本领实“两点确立一条直线”来解说.应选: C.3.直线 AB,线段 CD,射线 EF 的地点如下图,以下图中不行能订交的是()A.B.C.D.解: A 选项中,直线AB 与线段 CD 无交点,切合题意;B 选项中,直线AB 与射线 EF 有交点,不合题意;C 选项中,线段CD 与射线 EF 有交点,不合题意;D 选项中,直线AB 与射线 EF 有交点,不合题意;应选: A.4.如图,以下说法中正确的选项是()A .直线 AC 在线段 BC 上B .射线 DE 与直线 AC 没有公共点C.直线 AC 与线段 BD 订交于点AD.点 D 在直线 AC 上解: A.直线 AC 上的点 C 在线段 BC 上,故本选项错误;B.射线 DE 与直线 AC 有公共点,故本选项错误;C.直线 AC 与线段 BD 订交于点A,故本选项正确;D .点 D 在直线 AC 外,故本选项错误;应选: C.5.以下表达中正确的选项是()①线段 AB 可表示为线段BA②射线 AB 可表示为射线BA③直线 AB 可表示为直线BA④射线 AB 和射线 BA 是同一条射线A .①②③④B .②③C.①③D.①②③解:①线段 AB 可表示为线段BA,正确;②射线 AB 不行表示为射线BA,错误;③直线 AB 可表示为直线BA,正确;④射线 AB 和射线 BA 不是同一条射线,错误;应选: C.6.如下图,某同学的家在 A 处,书店在 B 处,礼拜日他到书店去买书,想赶快赶到书店,请你帮助他选择一条近来的路线()A .A→ C→ D→B B .A→ C→ F→B C. A→C→E→ F→B D. A→C→ M→B解:依据两点之间的线段最短,可得 C、 B 两点之间的最短距离是线段CB 的长度,因此想赶快赶到书店,一条近来的路线是:A→ C→ F→B.应选: B.7.如图,延长线段AB 到点 C,使 BC= 2AB, D 是 AC 的中点,若AB= 5,则 BD 的长为()A .2B .2.5C. 3D. 3.5解:∵ AB =5, BC= 2AB,∴BC= 10,∴AC= AB+BC= 15,∵D 为 AC 的中点,∴AD = AC= 7.5,∴BD = AD﹣AB =7.5﹣ 5=2.5,应选: B.8.点 C 在线段 AB 上,以下条件中不可以确立点 C 是线段 AB 中点的是()A .AC= BCB .AC+BC= AB C. AB= 2AC D. BC=AB解: A、 AC=BC ,则点 C 是线段 AB 中点;B、AC+BC=AB ,则 C 能够是线段AB 上随意一点;C、AB=2AC,则点 C 是线段 AB 中点;D 、BC=AB,则点 C 是线段 AB 中点.应选: B.9.如图,用圆规比较两条线段AB 和 A′B′的长短,此中正确的选项是()A .A′ B′> AB B. A′B′= ABC.A′ B′< AB D.没有刻度尺,没法确立解:由图可知,A′ B′< AB;应选: C.10.线段 AB = 9,点 C 在线段 AB 上,且有AC=AB, M 是 AB 的中点,则MC 等于()A.3B.C.D.解:∵ AB =9,∴AC= AB=3,∵M 是 AB 的中点,∴AM= AB=∴MC=AM ﹣AC=﹣ 3=应选: B.11.如图,∠ 1= 20°,∠ AOC=90°,点 B, O, D 在同一条直线上,则∠ 2 的度数为()A .95°B .100°C. 110°D. 120°解:∵∠ 1= 20°,∠ AOC= 90°,∴∠ BOC=∠ AOC﹣∠ 1= 90°﹣ 20°= 70°,∴∠ 2= 180°﹣∠ BOC=180°﹣ 70°= 110°,应选: C.12.如下图, OB 是∠ AOC 均分线,∠ COD =∠ BOD,∠ COD=17°,则∠ AOD的度数是()A .70°B .83°C. 68°D. 85°解:∵∠ COD =∠ BOD,∠ COD=17°,∴∠ BOC= 2∠COD = 2× 17°= 34°,∵ OB 是∠ AOC 均分线,∴∠ AOC= 2∠BOC = 2×34°= 68°,∴∠ AOD =∠ AOC+∠ COD = 68° +17 °= 85°,应选: D.13.以下角度不可以用一副三角板画出来的是()A .75°B .65°C. 45°D. 15°解: A、用 45° +30 °角画出,故能画出;B、没有两个角的和或差是65°,故不可以画出;C、直接用三角板便可画出,故能画出;D 、用 60°﹣ 45°就能够画出,故能画出.应选: B.14.如图:假如∠1=∠ 3,那么()A .∠ 1=∠ 2B .∠ 2=∠ 3C.∠ AOC=∠ BOD D.∠ 1=∠ BOD解:依据题意,∠1=∠ 3,有∠ 1+∠ 2=∠ 3+∠ 2,即∠ AOC=∠ BOD;应选: C.15.如图,小明顺着大部分圆从A 地到 B 地,小红顺着两个小半圆从 A 地到 B 地,设小明、小红走过的行程分别为a、b,则 a 与 b 的大小关系是()A .a= bB .a< b C. a> b D.不可以确立解:设小明走的半圆的半径是R.则小明所走的行程是:πR.设小红所走的两个半圆的半径分别是:r 1与 r2,则 r 1+r2=R.小红所走的行程是:πr1+πr2=π(r1+r2)=πR.因而 a=b.应选: A.二.填空题16.如图, OB 均分∠ AOC,∠ AOD= 78°,∠ BOC= 20°,则∠ COD 的度数为38°.解:∵ OB 均分∠ AOC,∠ BOC= 20°,∴∠ COD = 40°,∵∠ AOD = 78°,∴∠ COD = 38°.故答案为38.三.解答题17.如图,平面内有A、 B、 C、D 四点.按以下语句绘图.(1)画直线 AB,射线 BD,线段 BC;(2)连结 AC,交射线 BD 于点 E.解:( 1)如下图,直线AB,射线 BD,线段 BC 即为所求;( 2)连结 AC,点 E 即为所求.18.如图, OE 均分∠ AOC, OF 均分∠ BOC,且∠ BOC= 60°,若∠ AOC+∠ EOF = 156°,求∠ EOF 的度数.解:∵ OF 均分∠ BOC,∠ BOC= 60°,∴∠ COF= 30°,∴∠ EOF=∠ COE﹣∠ COF =∠ COE﹣ 30°,∵OE 均分∠ AOC ,∴∠ AOC= 2∠COE ,又∵∠ AOC +∠ EOF = 156°,∴2∠COE+∠ COE﹣ 30°= 156°,解得∠ COE = 62°,∴∠ EOF= 62°﹣ 30°= 32°.。
鲁教版五四制六年级数学下册第五章《基本平面图形》第五节《多边形和圆的初步认识》教学课件
5
3
六边形 6 6 6
3
9
4
n边形 n n n
探究三:正多边形的特征
正多边形 正三角形 正四边形 正五边形 正六边形
边长
内角度数 600
900
1080 1200
每个正多边形的各边 相等 ,各角 相等 。
(二)圆的初步认识
以下图片中有圆和扇形吗?仔细看看。
探究:圆的有关概念
1.圆的动态定义
平面上,一条线段OA绕着它的 一个固定的端点O 旋转一周,
5.画一个半径为2cm的圆,并在其中画一个 圆心角为600的扇形,请计算这个扇形的面积。
6. 如图,一个四边形剪掉一个角后, 新多边形可能是 三角形或四边形或五边形 。
剪掉 ∠c
四、自我评价,检测反馈 (一)我的收获:
这节课你学到了什么吗? 学会了哪些方法? 你小组合作积极吗?你帮助过谁? 有哪些进步?有哪些惊喜?
2.经历从现实世界中抽象出多边形、圆、扇形的过程, 经历探究多边形对角线、三角形与边之间的数量关系的 过程,进一步体会类比、归纳、分类、整体、方程等数 学方法。
3.乐于思考,敢于质疑,言必有据。阳光展示,体验成功的乐 趣,能用美丽的多边形和圆打扮世界。
一、自主探究 明确疑难
你能发现几种平面图形?有三角形?四边形?还有…
规律提升
类比、归纳 多边形 边 过每个顶点引 对角线 过每个顶点引的对角 数 的对角线条数 总条数 线所产生的三角形个 数
n边形 n n-3
n-2
整体法
圆心角∠AOB+∠BOC+∠COA=
扇形AOB面积+扇形BOC的面积+扇形AOC的面积
r
=
三、运用规律,巩固提高
综合解析鲁教版(五四)六年级数学下册第五章基本平面图形必考点解析试题(含解析)
六年级数学下册第五章基本平面图形必考点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知线段AB 、CD ,AB 大于CD ,如果将AB 移动到CD 的位置,使点A 与点C 重合,AB 与CD 叠合,这时点B 的位置必定是( )A .点B 在线段CD 上(C 、D 之间)B .点B 与点D 重合C .点B 在线段CD 的延长线上D .点B 在线段DC 的延长线上2、下列说法正确的是( )A .正数与负数互为相反数B .如果x 2=y 2,那么x =yC .过两点有且只有一条直线D .射线比直线小一半 3、如图所示,若90AOB ∠=︒,则射线OB 表示的方向为( ).A .北偏东35°B .东偏北35°C .北偏东55°D .北偏西55°4、一副三角板按如图所示的方式摆放,则∠1补角的度数为( )A .45︒B .135︒C .75︒D .165︒5、如图,下列说法不正确的是( )A .直线m 与直线n 相交于点DB .点A 在直线n 上C .DA +DB <CA +CBD .直线m 上共有两点6、如图,BOC ∠在AOD ∠的内部,且20BOC ∠=︒,若AOD ∠的度数是一个正整数,则图中所有角...的度数之和可能是( )A .340°B .350°C .360°D .370°7、如图,点O 在直线AB 上,OD 平分COB ∠,3AOE EOC ∠=∠,50EOD ∠=︒,则BOD ∠=( )A.10°B.20°C.30°D.40°8、如图,点O在CD上,OC平分∠AOB,若∠BOD=153°,则∠DOE的度数是()A.27°B.33°C.28°D.63°9、上午8:30时,时针和分针所夹锐角的度数是()A.75°B.80°C.70°D.67.5°10、在9:30这一时刻,时钟上的时针和分针之间的夹角为()A.105︒B.100︒C.90︒D.85︒第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某人下午6点多钟外出购物,表上时针和分针的夹角恰好是110°,将近7点钟回到家,此时,表上时针和分针的夹角又恰好是110°,则此人外出购物所用时间是______分钟.2、在日常生活和生产中有很多现象可以用数学知识进行解释.如图,要把一根挂衣帽的挂钩架水平固定在墙上,至少需要钉______个钉子.用你所学数学知识说明其中的道理______.3、如果∠1与∠2互余,∠3与∠4互余,且∠1=∠3,∠2=55°,那么∠4=_____度.4、如图,在一条笔直的马路(直线l)两侧各有一个居民区(点M,N),如果要在这条马路旁建一个购物中心,使购物中心到这两个小区的距离之和最小,那么购物中心应建在线段MN与直线l的交点P处,这样做的依据是_______.5、已知∠α与∠β互余,且∠α=35°30′,则∠β=______度.三、解答题(5小题,每小题10分,共计50分)1、如图,已知平面上三点A,B,C,请按要求完成下列问题:(1)画射线AC,线段BC;(2)连接AB,并用圆规在线段AB的延长线上截取BD=BC,连接CD(保留画图痕迹);(3)利用刻度尺取线段CD的中点E,连接BE;(4)通过测量猜测线段BE和AB之间的数量关系.2、已知O是直线MN上一点,∠MOA=40°,∠AOB=90°,∠COD与∠AOB都在直线MN的上方,且射线OC在射线OD的左侧.(1)如图1,射线OC在∠AOB的内部,如果∠COD=90°,那么图中与∠AOC相等的角是,其依据是: .(2)如图2,用直尺和圆规作∠AOB 的平分线OP ,如果∠COD =60°,且OC 平分∠AOP ,那么∠DON = °;(保留作图痕迹,不要求写出作法和结论)(3)如果∠COD =60°,设∠AOC =m °(0<m <80,且m ≠30),用含m 的式子表示∠BOD 的度数.(直接写出结论)3、已知100AOB ∠=︒,40COD ∠=︒,OE ,OF 分别平分AOD ∠,BOD ∠.(1)如图1,当OA ,OC 重合时,EOF ∠= 度;(2)若将COD ∠的从图1的位置绕点O 顺时针旋转,旋转角AOC α∠=,满足090α︒<<︒且40≠︒α. ①如图2,用等式表示BOF ∠与COE ∠之间的数量关系,并说明理由;②在COD ∠旋转过程中,请用等式表示∠BOE 与COF ∠之间的数量关系,并直接写出答案.4、点M ,N 是数轴上的两点(点M 在点N 的左侧),当数轴上的点P 满足PM =2PN 时,称点P 为线段MN 的“和谐点”.已知,点O ,A ,B 在数轴上表示的数分别为0,a ,b ,回答下面的问题:(1)当a =﹣1,b =5时,求线段AB 的“和谐点”所表示的数;(2)当b =a +6且a <0时,如果O ,A ,B 三个点中恰有一个点为其余两个点组成的线段的“和谐点”,直接写出此时a 的值.5、如图,将两块三角板的直角顶点重合.(1)写出以C为顶点相等的角;(2)若∠ACB=150°,求∠DCE的度数.-参考答案-一、单选题1、C【解析】【分析】根据题意画出符合已知条件的图形,根据图形即可得到点B的位置.【详解】解:AB大于CD,将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,如图,∴点B在线段CD的延长线上,故选:C.【点睛】本题考查了比较两线段的大小的应用,主要考查学生的观察图形的能力和理解能力.2、C【解析】【分析】A 中互为相反数的两个数为一正一负;B 中两个数的平方相等,这两个数可以相等也可以互为相反数;C 中过两点有且只有一条直线;D 中射线与直线无法比较长度.【详解】解:A 中正数负数分别为12-,,()1210+-=-≠,错误,不符合要求; B 中22x y =,可得x y =或x y =-,错误,不符合要求;C 中过两点有且只有一条直线 ,正确,符合要求;D 中射线与直线都可以无限延伸,无法比较长度,错误,不符合要求;故选C .【点睛】本题考查了相反数,直线与射线.解题的关键在于熟练掌握相反数,直线与射线等的定义.3、A【解析】【分析】根据同角的余角相等90BOD AOD AOD AOC ∠+∠=∠+∠=︒即可得,35BOD AOC ∠=∠=︒,根据方位角的表示方法即可求解.【详解】如图,90,35AOB AOC ∠=︒∠=︒90BOD AOD AOD AOC ∠+∠=∠+∠=︒35BOD AOC ∴∠=∠=︒即射线OB 表示的方向为北偏东35°故选A【点睛】本题考查了方位角的计算,同角的余角相等,掌握方位角的表示方法是解题的关键.4、D【解析】【分析】根据题意得出∠1=15°,再求∠1补角即可.【详解】由图形可得1453015∠=︒-︒=︒∴∠1补角的度数为18015165︒-︒=︒故选:D .【点睛】本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键.5、D【解析】【分析】根据直线相交、点与直线、两点之间线段最短逐项判断即可得.【详解】解:A 、直线m 与直线n 相交于点D ,则此项说法正确,不符合题意;B 、点A 在直线n 上,则此项说法正确,不符合题意;C 、由两点之间线段最短得:DA DB AB CA CB +=<+,则此项说法正确,不符合题意;D 、直线m 上有无数个点,则此项说法不正确,符合题意;故选:D .【点睛】本题考查了直线相交、点与直线、两点之间线段最短,熟练掌握直线的相关知识是解题关键.6、B【解析】【分析】根据角的运算和题意可知,所有角的度数之和是∠AOB +∠BO C +∠COD +∠AOC +∠BOD + ∠AOD ,然后根据20BOC ∠=︒,AOD ∠的度数是一个正整数,可以解答本题.【详解】解:由题意可得,图中所有角的度数之和是∠AOB +∠BOC +∠COD +∠AOC +∠BOD +∠AOD=3∠AOD+∠BOC∵20BOC ∠=︒,AOD ∠的度数是一个正整数,∴A、当3∠AOD+∠BOC =340°时,则AOD ∠=3203︒ ,不符合题意; B 、当3∠AOD+∠BOC =3×110°+20°=350°时,则AOD ∠=110°,符合题意;C 、当3∠AOD+∠BOC =360°时,则AOD ∠=3403︒,不符合题意; D 、当3∠AOD+∠BOC =370°时,则AOD ∠=3503︒,不符合题意. 故选:B .【点睛】本题考查角度的运算,解题的关键是明确题意,找出所求问题需要的条件.7、A【解析】【分析】设∠BOD=x,分别表示出∠COD,∠COE,根据∠EOD=50°得出方程,解之即可.【详解】解:设∠BOD=x,∵OD平分∠COB,∴∠BOD=∠COD=x,∴∠AOC=180°-2x,∵∠AOE=3∠EOC,∴∠EOC=14∠AOC=18024x︒-=902x︒-,∵∠EOD=50°,∴90502xx︒-+=︒,解得:x=10,故选A.【点睛】本题考查角平分线的意义,通过图形表示出各个角,是正确计算的前提.8、D【解析】【分析】先根据补角的定义求出∠BOC的度数,再利用角平分线定义即可求解.【详解】解:∵∠BOD=153°,∴∠BOC=180°-153°=27°,∵CD为∠AOB的角平分线,∴∠AOC=∠BOC=27°,∵∠AOE=90°,∴∠DOE=90°-∠AOC=63°故选:D.【点睛】本题考查了平角的定义,余角和补角,角平分线定义,求出∠BOC的度数是解题的关键.9、A【解析】【分析】根据钟面平均分成12份,可得每份的度数;根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:钟面平均分成12份,钟面每份是30°,上午8:30时时针与分针相距2.5份,此时时钟的时针与分针所夹的角(小于平角)的度数是30°×2.5=75°.故选:A.【点睛】本题考查了钟面角,时针与分针相距的份数乘以每份的度数是解题关键.10、A【解析】【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:9:30时针与分针相距3.5份,每份的度数是30°,在时刻9:30,时钟上时针和分针之间的夹角(小于平角的角)为3.5×30°=105°.故选:A.【点睛】本题考查了钟面角,利用时针与分针相距的份数乘以每份的度数是解题关键.二、填空题1、40【解析】【分析】解设共用了x分,列方程6x-0.5x=110+110,求解即可.【详解】解:分针速度:6度/分,时针速度是:0.5度/分,设共用了x分,6x-0.5x=110+110,解得x=40,答:共外出40分钟,故答案为:40.【点睛】此题考查了一元一次方程的实际应用,正确理解题意是解题的关键.2、 2 两点确定一条直线【解析】【分析】根据两点确定一条直线解答.【详解】解:至少需要钉2个钉子,所学的数学知识为:两点确定一条直线,故答案为:2,两点确定一条直线.【点睛】此题考查了线段的性质:两点确定一条直线,熟记性质是解题的关键.3、55【解析】【分析】根据余角的定义及等角的余角相等即可求解.【详解】解:∵∠1与∠2互余,∴∠1+∠2=90°,∵∠3与∠4互余,∴∠3+∠4=90°,又∠1=∠3,∴∠2=∠4=55°,故答案为:55.【点睛】本题考查了余角的定义及等角的余角相等等知识点,属于基础题,计算过程中细心即可.4、两点之间,线段最短【解析】【分析】根据两点之间线段最短即可求出答案.【详解】解:依据是两点之间,线段最短,故答案为:两点之间,线段最短.【点睛】本题考查作图问题,解题的关键是正确理解两点之间线段最短,本题属于基础题型.5、54.5【解析】【分析】∠的值.根据90°-∠α即可求得β【详解】解:∵∠α与∠β互余,且∠α=35°30′, ∴∠β903530'=︒-︒896035305430'''=︒-︒=︒30300.560'==︒ 54.5β∴∠=︒故答案为:54.5 【点睛】本题考查了求一个角的余角,角度进制的转化,正确的计算是解题的关键. 三、解答题 1、 (1)见解析 (2)见解析 (3)见解析(4)3cm =1.5cm AB BE =,,猜测2AB BE = 【解析】 【分析】(1)根据题意画射线AC ,线段BC ;(2)根据题意,连接AB ,并用圆规在线段AB 的延长线上截取BD =BC ,连接CD ; (3)根据题意,利用刻度尺取线段CD 的中点E ,连接BE ;(4)测量线段BE 和AB 的长度,进而求得猜测BE 和AB 之间的数量关系. (1)如图所示,射线AC ,线段BC 即为所求; (2)如图所示,连接AB ,在线段AB 的延长线上截取BD =BC ,连接CD ;(3)如图所示,取线段CD 的中点E ,连接BE ;(4)通过测量3cm =1.5cm AB BE =,,猜测2AB BE = 【点睛】本题考查了直线、射线、线段以及线段的中点,正确区分直线、线段、射线是解题关键. 2、 (1)BOD ∠,等角的余角相等 (2)图见解析,57.5︒ (3)70m ︒-︒或30m ︒-︒ 【解析】 【分析】(1)根据等角的余角相等解决问题即可.(2)根据DON BON DOB ∠=∠+∠,求出BON ∠,DOB ∠即可.(3)分两种情形:当030m <<时,根据BOD AOM AOB AOC COD ∠=∠+∠-∠-∠求解,如图32-中,当3080m <<时,根据BOD AOC COD AOB ∠=∠+∠-∠,求解即可.(1)解:如图1中,90AOB COD ∠=∠=︒,90AOC COB COB BOD ∴∠+∠=∠+∠=︒,AOC BOD ∴∠=∠(等角的余角相等),故答案为:等角的余角相等. (2)解:如图2中,如图,射线OP 即为所求.40AOM ∠=︒,90AOB ∠=︒,180409050NOB ∴∠=︒-︒-︒=︒,OP 平分AOB ∠,190452AOP ∴∠=⨯︒=︒,OC 平分AOP ∠,122.52AOC AOP ∴∠=∠=︒,9022.5607.5BOD ∴∠=︒-︒-︒=︒, 57.5DON BON DOB ∴∠=∠+∠=︒.(3)解:如图31-中,当030m <<时,40906070BOD AOM AOB AOC COD m m ∠=∠+∠-∠-∠=︒+︒-︒-︒=︒-︒.如图32-中,当3080m <<时,609030BOD AOC COD AOB m m ∠=∠+∠-∠=︒+︒-︒=︒-︒.综上所述,满足条件的m 的值为70m ︒-︒或30m ︒-︒. 【点睛】本题考查作图-复杂作图,角平分线的定义等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题. 3、 (1)50(2)①90COE BOF ∠∠+=︒;②40α<︒时,150COF BOE α∠∠=+︒+;4090α︒<<︒时,30COF BOE α∠=-∠-︒【解析】 【分析】(1)由题意得出40AOD COD ∠=∠=︒,140BOD AOB COD ∠=∠+∠=︒,由角平分线定义得出1202EOD AOD ∠=∠=︒,1702DOF BOD ∠=∠=︒,即可得出答案; (2)①由角平分线定义得出112022EOD AOE AOD α∠=∠=∠=︒+,117022BOF BOD α∠=∠=︒+,求出1202COE AOE AOC α∠=∠-∠=︒-,即可得出答案;②由①得1202EOD AOE α∠=∠=︒+,1702DOF BOF α∠=∠=︒+,当40AOC ∠<︒时,求出1302COF DOF COD α∠=∠-∠=︒+,11202BOE BOD EOD AOB COD EOD αα∠=∠-∠=∠+∠+-∠=︒+,即可得出答案;当4090AOC ︒<∠<︒时,求出11502COF DOF DOC α∠=∠+∠=︒-,11202BOE BOD DOE α∠=∠-∠=︒+,即可得出答案.(1)OA ,OC 重合,40AOD COD ∴∠=∠=︒,10040140BOD AOB COD ∠=∠+∠=︒+︒=︒,OE 平分AOD ∠,OF 平分BOD ∠,11402022EOD AOD ∴∠=∠=⨯︒=︒,111407022DOF BOD ∠=∠=⨯︒=︒, 702050EOF DOF EOD ∴∠=∠-∠=︒-︒=︒;(2)①90COE BOF ∠∠+=︒;理由如下:OE 平分AOD ∠,OF 平分BOD ∠,111(40)20222EOD AOE AOD αα∴∠=∠=∠=︒+=︒+,1111()(10040)702222BOF BOD AOB COD ααα∠=∠=∠+∠+=︒+︒+=︒+, 11202022COE AOE AOC ααα∴∠=∠-∠=︒+-=︒-,1170209022BOF COE αα∴∠+∠=︒++︒-=︒;②由①得:1202EOD AOE α∠=∠=︒+,1702DOF BOF α∠=∠=︒+, 当40AOC ∠<︒时,如图2所示:1170403022COF DOF COD αα∠=∠-∠=︒+-︒=︒+,1110040(20)12022BOE BOD EOD AOB COD EOD αααα∠=∠-∠=∠+∠+-∠=︒+︒+-︒+=︒+,111203015022BOE COF AOC ααα∴∠+∠-∠=︒++︒+-=︒,∴150COF BOE α∠∠=+︒+当4090AOC ︒<∠<︒时,如图3所示:11(360140)4015022COF DOF DOC αα∠=∠+∠=︒-︒-+︒=︒-, 11140(20)12022BOE BOD DOE ααα∠=∠-∠=︒+-︒+=︒+, 11150(120)3022COF AOC BOE ααα∴∠+∠-∠=︒-+-︒+=︒; ∴30COF BOE α∠=-∠-︒综上所述,40α<︒时,150COF BOE α∠∠=+︒+;4090α︒<<︒时,30COF BOE α∠=-∠-︒【点睛】本题考查了角的计算、角平分线定义等知识;弄清各个角之间的数量关系是解题的关键.4、 (1)3或11;(2)a 的值为-12,-9,-4,-3.【解析】【分析】(1):设线段AB 的“和谐点”表示的数为x ,根据a =﹣1,b =5,分三种情况,①当1x <-时, 列出方程12(5)x x --=-.②当15x -≤<时,列出方程12(5)x x +=-.③当5x ≥时,列出方程12(5)x x +=-解方程即可.(2):点O 为AB 的“和谐点”OA =2OB ,列方程()020a b -=-或()020a b -=-,根据b =a +6且a <0,可得()0206a a -=--或()0260a a -=+-解方程,当A 为OB 的“和谐点”当b <0时,AB =2AO ,即6=-a ,不合题意,当b >0时,AO =2AB ,a =12>0,不合题意,当点B 为AO 的“和谐点”BA =2BO ,点B 在点O 的左边,6=2(-a -6),点B 在点O 的右边,6=2(a +6),解方程即可.(1)解:设线段AB 的“和谐点”表示的数为x ,①当1x <-时,列出方程12(5)x x --=-.解得11x =.(舍去)②当15x -≤<时,列出方程12(5)x x +=-.解得3x =.③当5x ≥时,列出方程12(5)x x +=-解得11x =.综上所述,线段AB 的“和谐点”表示的数为3或11.(2)解:点O 为AB 的“和谐点”OA =2OB ,()020a b -=-或()020a b -=-,∵b =a +6且a <0,()0206a a -=--,解得12a =-,()0260a a -=+-,解得4a =-,当A 为OB 的“和谐点”,当b <0时,a <-6,AB =2AO ,即6=-a ,解得a =-6,不合题意,当b >0时,AO =2AB ,即a =2×(b -a ),∵b =a +6,解得a =12>0,不合题意,当点B 为AO 的“和谐点”BA =2BO ,点B 在点O 的左边,6=2(-a -6),解得:a =-9,点B 在点O 的右边,6=2(a +6),解得:a =-3,综合a 的值为-12,-9,-4,-3.【点睛】本题考查新定义线段的和谐点,数轴上两点距离,一元一次方程,线段的倍分关系,掌握新定义线段的和谐点,数轴上两点距离求法,解一元一次方程,线段的倍分关系是解题关键.5、 (1)∠ACE =∠BCD ,∠ACD =∠ECB(2)30°【解析】【分析】(1)根据余角的性质即可得到结论;(2)根据角的和差即可得到结论.(1)∵∠ACD=∠BCE=90°,∴∠ACE+∠DCE=∠BCD+∠DCE=90°,∴∠ACE=∠BCD;∠ACD=∠ECB=90°(2)∵∠ACB=150°,∠BCE=90°,∴∠ACE=150°-90°=60°.∴∠DCE=90°-∠ACE=90°-60°=30°【点睛】本题考查了余角和补角,关键是熟练掌握余角的性质,角的和差关系.。
鲁教版(五四制)数学六年级下册 第五章基本平面图形复习 (24张PPT)
图中,线段的数目为:( )条 图中,线段的数目为:( )条 图中,线段的数目为:( )条 图中,线段的数目为:( )条
图形
线
段 .A a B.
射 线
· O
直. 线A
· A
a· B
表示法 端点 延伸 度量 方向性 个数 方向
线段AB
或线段 BA或线
2
无
可 度 量
无
段a
射线OA
不可
1
一方
度量
有
直线AB或 直线BA或 直线a
那么∠ AOC=380 , ∠ AOC= ∠ AOB, ∠ AOB= 2 ∠ COB
EDC B
O
A
已知OB是∠AOC的平分线, OD是
∠COE的平分线, 如果 ∠AOE=1300,
那么∠BOD是多少度? 650
问题:
1、已知,如图,∠AOB=130°∠AOD=30°∠BOC=70°问: OC是∠AOB的平分线吗?OD是∠AOC的平分线吗?为什么?
角为270°的扇形的面积为
()
A.36π
B.18π
C.12π
D.27π
小结: 本章内容较为简单,重点在于定义的掌握。
线段中点、角平分线、扇形圆心角等知识点在 后面的学习中,还要涉及,所以要掌握透彻。
D
C
B O
A
一条射线把一个角分成两个相等的角, 则这条射线叫这个角的角平分线。
∵∠1=∠2 (或∠AOB= 2∠1 , ∠AOB=
符 2∠2)
号 ∴射线OC平分∠AOB
语 言
∵射线OC平分∠AOB
B
C
∴∠1=∠2 (或∠AOB=
2∠1 , ∠AOB= 2∠2)
五四制鲁教版六年级数学下册 第五章 基本平面图形 多边形
第5章基本平面图形
5.5.1
多边形
习题链接
温馨提示:点击 进入讲评
1C 2D 3B 4D
5 -7 6D 7B 8D
答案呈现
9 10
1 下列图形中,属于多边形的是( C ) A.线段 B.角 C.六边形 D.圆
2 一个四边形截去一个角后,可以变成( D ) A.三角形 B.四边形 C.五边形 D.以上都有可能
3 在研究多边形的几何性质时.我们常常把它分割成三
角形进行研究.从八边形的一个顶点引对角线,最多
把它分割成三角形的个数为( )
A.5 B.6
B
C.7 D.8
4 如果过一个多边形的一个顶点的对角线有6条,则该 多边形对角线一共有( ) D A.18条 B.14条 C.20条 D.27条
【点拨】 因为过一个多边形的一个顶点的对角线有 6 条, 所以多边形的边数为 6+3=9, 所以这个多边形是九边形. 所以该多边形对角线一共有9×(92-3)=27(条).
解:若是n边形,用三种方法分割所得三角形的个数依 次为n-2,n,n-1.
10 如图,用三种方法分割五边形.
(1)三种分割方法将多边形分成的三角形的个数与多边形 的边数有没有关系?若有关系,具体是什么关系?
解:有关系. 题图①中,三角形的个数=多边形的边数-2; 题图②中,三角形的个数=多边形的边数; 题图③中,三角形的个数=多边形的边数-1.
(2)若是n边形,请分别写出用上述三种方法分割所得三角 形的个数.
5 过m边形的一个顶点有7条对角线,n边形没有对角线, 则n-m=__-__7____.
【点拨】 由题意得m-3=7,n=3, 解得m=10. 所以n-m=3-10=-7.
鲁教版六年级下册第五章基本平面图形全章教案
鲁教版六年级下册第五章基本平面图形全章教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第五单元授课内容线段、射线、直线课型新授授课日期教学目标知识目标在现实情境中在现实情境中了解线段、射线、直线等简单的平面图形;通过操作活动,理解两点确定一条直线等事实,积累操作活动经验。
能力目标让学生经历观察、思考、讨论、操作的过程,培养学生抽象化、符号化的数学思维能力,建立从数学中欣赏美,用数学创造美的思想观念。
情感目标感受图形世界的丰富多彩,能够主动参与教师组织的数学活动。
教学重点线段、射线、直线的符号表示方法。
教学难点培养学生学会一些几何语言,培养学生的空间观念。
措施自学引导教法引导发现、尝试指导以及学生的互动合作相结合。
学法教师引导,学生自主学习教学准备教师:图片,三角板,窄木条。
学生:直尺,几枚图钉,薄窄木条或硬纸板条。
教师活动学生活动二次备课一、认识图形1、看一看,观察美丽的图片,从数学角度阐述你观察到的与数学有关的事实,尽可能用数学词汇来表达极光铁轨学生观察。
︒︒︒︒教学重点求扇形圆心角的度数教学难点求扇形圆心角的度数措施动手操作教法和谐高效,思维对话学法练习讨论交流教学准备多媒体教师活动学生活动二次备课(一)、创设情境,激发兴趣.这些有趣的图形是由哪些基本图形组成的?它们有什么共同特征?学生观察。
让学生从观看中发现数学、体会数学的奥秘(二)、读一读:P15学习新课:1、多边形的概念: 在平面内,是由若干条不在同一直线上的线段首尾顺次相接组成的封闭的平面图形叫做多边形。
2、组成多边形的各条线段叫做多边形的边,每相邻两条边的公共端点叫做多边形的顶点。
3、在多边形中,连接不相邻两个顶点的线段叫做多边形的对角线3、观察下面一组多边形,说说它们的边、角 有什么共同的特征?4、正多边形:各边相等、各角也相等的多边形叫做正多边形.如果一个正多边形有n(n≥3)条边,就叫正n 边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形. 讨论交流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
D
B E
A O
C
A D
B
C N M B
A 21
E O
D C B
A
图(6)D '
B '
A
O
C
G
D
B
第五章基本平面图形
一、填空:
1. 0.46°= ′ ″.28°7′12″= °.
2. 如图所示,已知OE 平分∠AOB ,OD 平分∠BOC ,∠AOB 为直角, ∠EOD=70°,则∠BOC 的度数为 .
3. 如图,直线上四点A 、B 、C 、D,看图填空:
①AC=______+BC;②CD=AD —_______;③AC+BD —BC=_______. 4、如图所示,由泰山到青岛的某一次列车,运行途中停靠的车站依次是:泰山——济南——淄博——潍坊——青岛,那么要为这次列车制作的火车票有__________种.
5.用一个钉子把一根细木条钉在墙上,木条就可能绕着钉子 ,
原因是 ;当用两个钉子把木条钉在墙上时,木条就被固定住,其依据是 .
6.如图,AB 的长为m ,BC 的长为n ,M 、N 分别是AB 、BC 的中点,则 MN= 7、如图(6),把一张长方形的纸按图那样折叠后,B 、D 两点落在B ′、D ′点处, 若得∠AOB ′=700, 则∠B ′OG 的度数为 。
8、如上右图,是一副三角板重叠而成的图形,则∠AOD+∠BOC=_____________. 4.如图,直线AB 、CD 相交于O ,∠COE 是直角,∠1=57°, 则∠2=
9. 一个人从A 点出发向北偏东65°的方向走到B 点,再从B 点出发向南偏西15°方向走到C 点,那么∠ABC 的度数是 二、选择题:
10、下列说法中,正确的是( )
A .直线a 、b 经过点M B. 直线A 、
B 相交于点
C C. 直线A 、B 相交于点m D. 直线AB,C
D 相交于点m
11. 一轮船航行到B 处测得的小岛A 的方向为北偏东30°,那么从A 处观测此时B 处的方向
为( )
A.北偏东30°
B.北偏东60°
C.南偏西30°
D.南偏西60°
12、在时刻8:32时,时钟上的时针与分针之间的所成的夹角是( ) A.70° B.64° C.76° D.80° 13.如图,圆的半径为4,阴影部分扇形的面积是( ) A. π
B. 2π
C. 3π
D. 4π
14. 同一平面内有四点,每过两点画一条直线,则直线的条数是( ) A .1条 B .4条 C .6条 D .1条或4条或6条
15、已知A 、B 两点之间的距离是10 cm ,C 是线段AB 上的任意一点,则AC 中点与BC 中点间的距离是( ) A.3 cm
B.4 cm
C.5 cm
D.不能计算
16、平面上有四点,经过其中的两点画直线最多可画出( ).
A .三条
B .四条
C .五条
D .六条 17、如图,O 为直线AB 上一点,∠COB =26°30′,则∠1=( ).
A .153°30′
B .163°30′
C .173°30′
D .183°30′
18、如图6,∠AOB 为平角,且∠AOC =2
1
∠BOC ,则∠BOC 的度数是( )
19、如图7,军舰从港口沿OB 方向航行,它的方向是( )
A.东偏南30°
B.南偏东60°
C.南偏西30°
D.北偏东30° 20、 下列说法中正确的是( )
A 、8时45分,时针与分针的夹角是30°
B 、6时30分,时针与分针重合
C 、3时30分,时针与分针的夹角是90°
D 、3时整,时针与分针的夹角是90°
21、如果线段AB=5cm,线段BC=4cm,那么A,C 两点之间的距离是( ) A. 9cm B.1cm C.1cm 或9cm D.以上答案都不对 22、如图,下列表示角的方法,错误的是( ) A.∠1与∠AOB 表示同一个角; B.∠AOC 也可用∠O 来表示
C.图中共有三个角:∠AOB 、∠AOC 、∠BOC;
D.∠β表示的是∠BOC
23、已知OA ⊥OC ,∠AOB :∠AOC=2:3,则∠BOC 的度数为( )
(1)b
a (3)a (2)B A 1O B A 1O 1B A
O 1B A O A.30 B.150 C.30或150 D.以上都不对 24、如图,四条表示方向的射线中,表示北偏东60°的是( )
25.下列各角中,不能用一副三角板拼出的角度为( ) A. 60° B.75° C. 135° D. 140° 26.关于中点的说法正确的是( ) A.若AB=BC,则点B 是线段AC 的中点
B.若AB=21
AC ,则点B 是线段AC 的中点
C. 若BC=2
1
AC ,则点B 是线段AC 的中点
D. 若AB=BC =2
1
AC ,则点B 是线段AC 的中点
27.在下列时刻,钟面上时针与分针成直角的情况( )
A.12时15分
B.9时
C.3时30分
D.6时45分 28.直线l 上顺次三点A 、B 、C ,M 是AB 中点,N 是AC 若AB=12cm ,BC=8cm,则MN=( ) A.2 cm B.4 cm C.8 cm D.10 cm 29.如图,下列说法错误的是( ) A. A 点在O 点的北偏东60°方向
B. B 点在O 点的西偏北30°方向
C. C 点在O 点的正南方向
D. D 点在O 点的东南方向 30.下面四个选项中,能用∠1,∠AOB ,∠O 三种方法表示同一个角的是( )
A B C D
31. 一根绳子弯曲成如图(1)所示的形状,当剪刀像图(2)那样沿虚线a 把绳子剪断时,绳子被剪为5段;当剪刀像图(3)那样沿虚线b(b ∥a)把绳子再剪一次时,绳子被剪为9段.若剪刀在虚线a,b 之间再剪(n-1)次(剪刀的方向与a 平行),这样一共剪n 次时(不含沿虚线a 剪的一次)绳子的段数为( ) A.4n+1 B.4n+2 C.4n+3 D.4n+5
三、画图题:
30°45°60°东
南D
C
B
A O
D
C
B
A 32、(本题8分)
如图,已知线段a, 用尺规作一条线段AB,使AB =2a-b ;
33、如图,在公路l 的两旁有两个工厂A 、B ,要在公路上搭建一个货场让A 、B 两厂使用,
要使货场到A 、B 两厂的距离之和最小,问货场应建在什么位置?为什么?
34.你能在图中找出一点P ,使点P 到点A 、B 、C 、D 四个点的距离之和最小吗?你能说明理
由吗?
四、解答题:
35. (本题8分)如图,A 、B 、C 、D 在同一条直线上,已知AC=BD=18cm ,且AB:AD=2:11,
求AB,BC 的长度。
36. (本题8分)
已知:如图,∠AOB 是直角,∠AOC =30°,ON 是∠AOC 的平分线,OM 是∠BOC 的平分线.求∠MON 的大小.
a
26题图
A B
C D
37、(本题8分)如图,将一张长方形纸斜折过去,使顶点A 落在A ′处,BC 为折痕,然后把BE 折过去,使之与A ′B 重合,折痕为BD ,那么两折痕BC 、BD 间的夹角是多少度? 38、把一副三角尺如图所示拼在一起,求∠A 、∠B 、∠AEB 、∠ACD 的度数
39、如图8,已知∠1∶∠3∶∠4=1∶2∶4,∠2=80°,求∠1、∠3、∠4的度数.
40、在直线l 上任取一点A ,截取AB =16 cm ,再截取AC =40 cm ,求AB 的中点D 与AC 的中点E 之间的距离.
A
B
C A ′
D
E
A E
B C D
第20题图
A B
C D E C
O
E D B A 41、已知线段AB=12cm ,在直线AB 上有一点C ,且BC=4cm ,M 是线段AC 的中点,求线
段AM 的长.
42、如图已知点C 为AB 上一点,AC =12cm, CB =
3
2
AC ,D 、E 分别为AC 、AB 的中点求DE 的长。
43. 如图,DO 平分∠AOC 、OE 平分∠BOC ,若O A ⊥OB ,
(1)当∠BOC=30°,∠DOE= ; 当∠BOC=60°,∠DOE= .
(2)通过上面的计算,猜想∠DOE 的度数与∠AOB 有什么关系, 并说明理由.
44. (本题8分)如图,线段AB 上的点数与线段的总数有如下关系:如果线段AB 上有三个点时,线段总共有3条,如果线段AB 上有4个点时,线段总数有6条,如果线段AB 上有5个点时,线段总数共有10条,……
3=2+1 6=3+2+1 10=4+3+2+1 (1)、当线段AB 上有6个点时,线段总数共有 条。
(2)、当线段AB 上有n 个点时,线段总数共有 条。
A C
B A
C
D B A C D
E B。