分子生物学课程教学讲义 朱玉贤
朱玉贤《分子生物学》课件Part 1 Replication 复制
DNA 通过半保留方式进行复制
课后作业: 请阅读教材P39~40和补充资料的 有关内容,然后以图解说明的方式解释DNA的 半保留复制机理。
(注:半保留复制机理的证实实验被誉为最美丽的实验之一。本 作业目的是促进同学们自主阅读、学习回忆和进一步深入掌握复 制的基本特征,有利于培养同学们良好的思维习惯。该作业占最 后评分的5%。 )
复制起点(Origin) :复制起始的固定位点。一般具
有特定的序列,并可以通过之与相关的调控因子结合而 形成复制引发体。
13 bp repeats
GATCTNTTNTTTT
9 bp reverse repeats
TTATCCACA
Distribution of repeats in oriC of E.coli DNA
引物前体转录起点
RNaseH: 降解RNA使之3’-OH暴露。
RNA引物前体500nt
反义RNA
复制起点 反义RNA转录起点
反义RNA的合成以及它与引物前体的结合阻止了RNaseH 的作用;
反义RNA的浓度决定了胞内有效引物的浓度,从而影响复 制的起始。
正调控: 由G1期积累的执照因子参与
复制的终止和子代分子的分离
终止:Tus蛋白+终 止陷阱
子代分离:拓扑异 构酶IV;XerCD蛋 白(位点特异的重 组酶)
1-3、复制的模型
Replication Models
θ复制 ( θ model) 滚环复制(Rolling-circle replication) D-环复制(Displacement-loop model)
150
2200
复制的过程
起始:引发体的形成 延伸:复制体形成以及单脱氧核糖核苷酸的添
分子生物学课件整理朱玉贤
1、广义分子生物学:在分子水平上研究生命本质的科学,其研究对象是生物大分子的结构和功能。
22、狭义分子生物学:即核酸(基因)的分子生物学,研究基因的结构和功能、复制、转录、翻译、表达调控、重组、修复等过程,以及其中涉及到与过程相关的蛋白质和酶的结构与功能3、基因:遗传信息的基本单位。
编码蛋白质或RNA等具有特定功能产物的遗传信息的基本单位,是染色体或基因组的一段DNA序列(对以RNA作为遗传信息载体的RNA病毒而言则是RNA序列)。
4、基因:基因是含有特定遗传信息的一段核苷酸序列,包含产生一条多肽链或功能RNA所必需的全部核苷酸序列。
5、功能基因组学:是依附于对DNA序列的了解,应用基因组学的知识和工具去了解影响发育和整个生物体的特定序列表达谱。
6、蛋白质组学:是以蛋白质组为研究对象,研究细胞内所有蛋白质及其动态变化规律的科学。
7、生物信息学:对DNA和蛋白质序列资料中各种类型信息进行识别、存储、分析、模拟和转输8、蛋白质组:指的是由一个基因组表达的全部蛋白质9、功能蛋白质组学:是指研究在特定时间、特定环境和实验条件下细胞内表达的全部蛋白质。
10、单细胞蛋白:也叫微生物蛋白,它是用许多工农业废料及石油废料人工培养的微生物菌体。
因而,单细胞蛋白不是一种纯蛋白质,而是由蛋白质、脂肪、碳水化合物、核酸及不是蛋白质的含氮化合物、维生素和无机化合物等混合物组成的细胞质团。
11、基因组:指生物体或细胞一套完整单倍体的遗传物质总和。
12、C值:指生物单倍体基因组的全部DNA的含量,单位以pg或Mb表示。
13、C值矛盾:C值和生物结构或组成的复杂性不一致的现象。
14、重叠基因:共有同一段DNA序列的两个或多个基因。
15、基因重叠:同一段核酸序列参与了不同基因编码的现象。
16、单拷贝序列:单拷贝顺序在单倍体基因组中只出现一次,因而复性速度很慢。
单拷贝顺序中储存了巨大的遗传信息,编码各种不同功能的蛋白质。
17、低度重复序列:低度重复序列是指在基因组中含有2~10个拷贝的序列18、中度重复序列:中度重复序列大致指在真核基因组中重复数十至数万(<105)次的重复顺序。
现代分子生物学(第3版)-朱玉贤-课后答案(全)上课讲义
现代分子生物学(第3版)-朱玉贤-课后答案(全)第一章1 简述孟德尔、摩尔根和沃森等人对分子生物学发展的主要贡献答:孟德尔的对分子生物学的发展的主要贡献在于他通过豌豆实验,发现了遗传规律、分离规律及自由组合规律;摩尔根的主要贡献在于发现染色体的遗传机制,创立染色体遗传理论,成为现代实验生物学奠基人;沃森和克里克在1953年提出DAN反向双平行双螺旋模型。
2写出DNARNA的英文全称答:脱氧核糖核酸(DNA, Deoxyribonucleic acid),核糖核酸(RNA, Ribonucleic acid)3试述“有其父必有其子”的生物学本质答:其生物学本质是基因遗传。
子代的性质由遗传所得的基因决定,而基因由于遗传的作用,其基因的一半来自于父方,一般来自于母方。
4早期主要有哪些实验证实DNA是遗传物质?写出这些实验的主要步骤答:一,肺炎双球菌感染实验,1,R型菌落粗糙,菌体无多糖荚膜,无毒,注入小鼠体内后,小鼠不死亡。
2,S型菌落光滑,菌体有多糖荚膜,有毒,注入到小鼠体内可以使小鼠患病死亡。
3,用加热的方法杀死S型细菌后注入到小鼠体内,小鼠不死亡;二,噬菌体侵染细菌的实验:1,噬菌体侵染细菌的实验过程:吸附→侵入→复制→组装→释放。
2,DNA中P的含量多,蛋白质中P 的含量少;蛋白质中有S而DNA中没有S,所以用放射性同位素35S标记一部分噬菌体的蛋白质,用放射性同位素32P标记另一部分噬菌体的DNA。
用35P 标记蛋白质的噬菌体侵染后,细菌体内无放射性,即表明噬菌体的蛋白质没有进入细菌内部;而用32P标记DNA的噬菌体侵染细菌后,细菌体内有放射性,即表明噬菌体的DNA进入了细菌体内。
三,烟草TMV的重建实验:1957年,Fraenkel-Conrat等人,将两个不同的TMV株系(S株系和HR株系)的蛋白质和RNA分别提取出来,然后相互对换,将S株系的蛋白质和HR株系的RNA,或反过来将HR株系的蛋白质和S株系的RNA放在一起,重建形成两种杂种病毒,去感染烟草叶片。
分子生物学研究方法朱玉贤
• 50年代末至60年代,相继提出了"中心法则"和操纵子学说, 成功地破译了遗传密码,充分认识了遗传信息的流动和表 达。
完整版课件ppt
26
• 1972-1973 H.Boyer,P.Berg等人发展了DNA重组技术, 于1972年获得第一个重组DNA分子,1973年Cohen第一例成 功的克隆实验:完成第一例细菌基因克隆。
常用的滤膜有尼龙滤膜、硝酸纤维素滤 膜,叠氮苯氧甲基纤维素滤纸(DBM)和 二乙氨基乙基纤维素滤膜(DEAE)
完整版课件ppt
5
核酸分子杂交实验包括如下两个步骤: 1.将核酸样品转移到固体支持物滤膜上,
这个过程特称为核酸印迹(nucleic acid blotting)转移,主要有电泳凝胶核酸印迹法、 斑点和狭线印迹法(dot and slot blotting)、 菌落和噬菌斑印迹法(colony and plaque blotting);
完整版课件ppt
9
4. DNA序列分析 a. Sanger的双脱氧链终止法
Cambridge的F. Sanger在1977年发明用双脱氧 链终止法测定单链DNA的序列,其基本原理如下: ①DNA聚合酶能够用单链DNA作为模板,合成准确 的DNA互补链; DNA聚合酶常用Klenow大片段, 无5'→3'外切酶活性。
2.将具有核酸印迹的滤膜同带有放射性标 记或其它标记的DNA或RNA探针进行杂交。 所以有时也称这类核酸杂交为印迹杂交。
完整版课件ppt
6
完整版课件ppt
7
完整版课件ppt
《教学分析》-北大分子生物学课件朱玉贤170页PPT
26、机遇对于有准备的头脑有特别的 亲和力 。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。
ቤተ መጻሕፍቲ ባይዱ 41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
现代分子生物学朱玉贤
现代分子生物学朱玉贤一、教学内容本节课的教学内容选自现代分子生物学教材,主要涵盖第五章“基因表达的调控”的相关内容。
具体包括:基因表达的概念、转录和翻译的过程、调控元件的作用及其在生物体内的意义。
二、教学目标1. 让学生理解基因表达的概念,掌握转录和翻译的过程。
2. 培养学生了解调控元件的作用,理解基因表达调控在生物体内的意义。
3. 提高学生运用分子生物学知识分析问题和解决问题的能力。
三、教学难点与重点重点:基因表达的概念、转录和翻译的过程、调控元件的作用。
难点:基因表达调控的机制和意义。
四、教具与学具准备教具:多媒体教学设备、黑板、粉笔。
学具:教材、笔记本、彩色笔。
五、教学过程1. 实践情景引入:通过介绍医学领域中基因治疗的应用,引发学生对基因表达调控的兴趣。
2. 知识讲解:详细讲解基因表达的概念、转录和翻译的过程,以及调控元件的作用。
3. 例题讲解:分析具体的基因表达调控实例,引导学生理解调控机制。
4. 随堂练习:设计相关的练习题目,巩固所学知识。
5. 小组讨论:分组讨论基因表达调控在生物体内的意义,分享各自的见解。
六、板书设计板书内容主要包括:基因表达的概念、转录和翻译的过程、调控元件的作用、基因表达调控的意义。
七、作业设计1. 作业题目:(1)简述基因表达的概念及其意义。
(2)请画出转录和翻译的过程示意图。
(3)举例说明调控元件在基因表达调控中的作用。
2. 答案:(1)基因表达是指基因在生物体内转化为蛋白质的过程,其意义在于实现生物体的遗传信息传递和生物学功能的执行。
(2)转录是指DNA模板链上的核苷酸序列转化为mRNA的过程,翻译是指mRNA上的核苷酸序列转化为蛋白质的过程。
(3)调控元件是指在基因表达过程中,能够影响基因转录和翻译的DNA序列,如启动子、增强子等。
八、课后反思及拓展延伸本节课通过实践情景引入、知识讲解、例题讲解、随堂练习、小组讨论等形式,使学生掌握了基因表达的概念、转录和翻译的过程,以及调控元件的作用。
2024版朱玉贤现代分子生物学第四版
朱玉贤现代分子生物学第四版•绪论•基因与基因组•DNA复制与修复•转录与转录后加工•蛋白质翻译与翻译后加工•基因表达的调控•基因工程与基因组学01绪论分子生物学的定义与发展分子生物学的定义分子生物学是研究生物大分子,特别是蛋白质和核酸的结构、功能及其相互作用的一门科学。
分子生物学的发展自20世纪50年代以来,随着DNA双螺旋结构的发现、遗传密码的破译、基因工程技术的建立等,分子生物学得到了迅速的发展,并在医学、农业、工业等领域产生了广泛的应用。
基因与基因组的结构与功能研究基因的结构、表达调控及其在生物体发育和进化中的作用。
DNA复制、转录与翻译的过程与调控研究DNA的复制、转录和翻译等过程及其调控机制,揭示生物体遗传信息传递的规律。
蛋白质的结构与功能研究蛋白质的结构、功能及其与生物体代谢和生理功能的关系。
基因表达的调控研究基因表达的时空特异性及其调控机制,揭示生物体发育和适应环境的分子基础。
包括DNA 重组技术、基因克隆技术、核酸序列分析技术等,用于研究基因的结构和功能。
分子生物学实验技术生物信息学方法细胞生物学和遗传学方法结构生物学方法利用计算机科学和数学的方法对生物大分子数据进行处理和分析,揭示生物大分子的结构和功能。
通过细胞培养和遗传学手段研究基因在细胞和组织中的表达和功能。
利用X 射线晶体学、核磁共振等技术解析生物大分子的三维结构,揭示其结构与功能的关系。
02基因与基因组基因的概念与结构基因是遗传信息的基本单位,控制生物性状的基本因子。
基因的结构包括编码区和非编码区,编码区又可分为外显子和内含子。
基因通过DNA序列的特异性来实现其遗传信息的传递和表达。
基因组的组成与特点基因组是一个生物体所有基因的总和,包括核基因组和细胞器基因组。
基因组具有高度的复杂性和多样性,不同生物体的基因组大小和基因数量差异巨大。
基因组中存在着大量的重复序列和非编码序列,这些序列在生物进化、基因表达和调控等方面发挥着重要作用。
2024版《现代分子生物学》朱玉贤第五版北大课件
新生肽链经过加工修饰,如剪切、 折叠、修饰等,成为具有生物活性 的蛋白质。
20
蛋白质翻译后加工修饰类型举例
2024/1/28
N-端fMet或Met的切除
新生肽链N-端的甲硫氨酸或甲酰甲硫氨酸通常被切 除。
二硫键的形成
半胱氨酸残基之间可以形成二硫键,对蛋白质的稳 定性和活性有重要作用。
化学修饰
生物工程
表观遗传学机制可以影响细胞的分化和发育,因此通过表观遗传学手段来改造细胞或生物体可能成为一种新 的生物工程技术。例如,利用表观遗传学手段来实现细胞重编程和再生医学应用。
26
06
现代分子生物学技术应用与 发展趋势
2024/1/28
27
DNA测序技术原理及应用领域拓展
DNA测序技术原理
通过特定的生物化学方法,将 DNA片段化并逐一测定其碱基序 列,从而获得完整的基因序列信
组修复等。
DNA损伤修复对于维持细胞基 因组稳定性和防止突变具有重要
意义。
2024/1/28
11
基因突变与遗传多样性
基因突变是指DNA序列中碱基的替换、 插入或缺失。
基因突变是生物进化的原材料,对于 生物适应环境和进化具有重要意义。
2024/1/28
基因突变可以产生新的等位基因,增 加遗传多样性。
序列比对与注释
01
利用生物信息学方法对基因序列进行比对和注释,揭示基因功
能和进化关系。
基因表达谱分析
02
通过高通量测序技术,研究基因在不同条件下的表达谱变化,
解析基因调控网络。
蛋白质结构与功能预测
03
利用生物信息学方法预测蛋白质的三维结构和功能,为药物设
计和蛋白质工程提供理论支持。
现代分子生物学(3版.朱玉贤).pdf
现代分子生物学(3版.朱玉贤).pdf本书共分11部分,分别对染*sè*体结构、DNA的复制形式与特点、DNA的转座、遗传密码的破译、Dan*白质的He*成和运转、基因表达调控的原理、癌症与癌基因活化、免疫缺损病dú*(HIV)的分子机制等现代分子生物学中的重大问题做了全(Quan*)面系统的分析。
其中第(Yi*)、二章介绍了分子生物学、染*sè*体与DNA 的基本概念,第Three**至四章回顾7从DNA到RNA以及从mRNA到Dan*白质的生物信息liú*,第七至八章叙述了参与原核、真核细胞基因表达调控的各种元件,探讨了DNA甲基化、Dan*白质磷酸化、乙酰化修饰及各种不同环境因子对基因活*Xing*和功能的影响,第Jiu*至十章讨论了疾病与人类健康、基因与发(Fa*)育等重要生命现象的分子生物学基础,第十一章则讨论了基因组学与比较基因组学研究的Zui*新成果。
此外,本书还在第五、Liu*(Six*)两章讨论了主要分子生物学实验的技术和原理。
编辑推荐本书在第3版修订中突出强调了分子生物学的实验技术和原理,在“疾病与人类健康”一章中增加了关于人禽(Qin*)(Liu*)Gan*和严重急*Xing*呼(口++及)xī*系统综He*征(SARS)分子机制的讨论。
根据学科发展的**动态,对第(Yi*)1章(原第(Yi*)0章)“基因组与比较基因组学”做了较大规模的修改和充实。
本书可供高等院校生物科学和生物技术专(Zhuan*)业的教师和学生使用,也可作为相关专(Zhuan*)业研究人员的参考书。
内容推荐•下载地址:•现代分子生物学(第Three**版.朱玉贤).pdf本书共分11部分,分别对染*sè*体结构、DNA的复制形式与特点、DNA的转座、遗传密码的破译、Dan*白质的He*成和运转、基因表达调控的原理、癌症与癌基因活化、免疫缺损病dú*(HIV)的分子机制等现代分子生物学中的重大问题做了全(Quan*)面系统的分析。
北大分子生物学课件朱玉贤优秀ppt文档-2024鲜版
分子生物学与其他生物学科的交叉融合
分子生物学与遗传学、细胞生物学、发育生物学等生物学科相互渗透、交叉融合,共同推动 着生命科学的发展。
2024/3/27
分子生物学在医学、农业等领域的应用
分子生物学的研究成果在医学、农业等领域得到广泛应用,为疾病的诊断、治疗和农作物的 改良等提供了有力支持。
2024/3/27
20
DNA损伤的修复机制
直接修复
针对某些简单的DNA损伤,如碱 基错配或脱落,可通过特定的酶
直接进行修复。
2024/3/27
切除修复
对于较复杂的DNA损伤,如嘧啶 二聚体等,需要先将损伤部位切除, 然后通过DNA聚合酶和连接酶的 作用进行修复。
重组修复
在某些情况下,DNA损伤过于严重, 无法直接修复,此时可通过DNA重 组的方式,利用未损伤的同源序列 进行修复。
基因克隆技术应用
用于基因功能研究、基因工程疫苗研制、基因治疗等。
2024/3/27
25
DNA测序技术及应用
DNA测序技术
通过特定的方法和技术,对DNA序列进行测定和分析。
DNA测序技术应用
用于基因组学研究、疾病相关基因鉴定、个性化医疗等。
2024/3/27
26
分子生物学在医学、农业等领域的应用
医学领域应用
2024/3/27
12
RNA的二级结构
01 02
A型RNA双螺旋
RNA的二级结构大多数都是单链,但是可以形成局部双链结构,这些双 链结构是由于碱基配对形成的,常见的A型RNA双螺旋结构中的碱基对 是A-U和G-C。
朱玉贤分子生物学教案
朱玉贤分子生物学教课设计【篇一:《分子生物学》教课设计】教案课程名称:分子生物学学时数: 36讲课对象:生物技术专业、生物科学专业主讲教材:《分子生物学》第三版朱玉贤等 . 科学第一版社 .2008参照资料:《 molecular biology》科学第一版社影印版《分子生物学》精要速览影印版. turner.pc et al科学第一版社2001 《 gene Ⅶ》 lewin.b. oxford university press199912345【篇二:分子生物学教课设计[1] 】《分子生物学》教课设计一、课程性质必修课二、教课目标要求分子生物学是一门最近几年来发展快速而且在生命科学领域里应用愈来愈宽泛、影响愈来愈深远的一个学科。
从学科角度来讲,分子生物学函盖面特别广,与生物化学和细胞生物学等生命科学骨干课程有一些交错。
在学习本课程以前,要修业生已掌握了必需的数、理、化知识,并学习了植物学、动物学、微生物学与生物化学等基础课程。
经过对本课程的学习,使学生掌握基因观点在分子水平上的发展与演变、基因的分子构造和特色、基因的复制、基因表达(在转录、翻译水平)的基来源理、基因表达调控的基本模式、基因发生突变与互换及 dna 遗传多型性检测的分子生物学原理,认识新盛行的基因组学和后基因组学研究现状。
经过与实验课相联合,系统地介绍与基因克隆有关的 dna 技术,使学生们掌握一些基本的分子生物学技术。
三、教材及有关参照书朱玉贤等,《现代分子生物学》高等教育第一版社, 2002benjamin lewin 编著余龙等主译,《 gene Ⅷ》科学第一版社,2005赵寿元等,《现代遗传学》高等教育第一版社,2001孙乃恩等,《分子遗传学》南京大学第一版社, 1990四、合用专业生物科学、生物技术、生物工程、科学教育等专业五、讲课学时36学时六、课程内容第一章绪论教课目标:使学生对分子生物学的发展简史、分子生物学的研究内容及发展远景有较全面的认识。
现代分子生物学(第四版)朱玉贤课件 PPT 第1章 绪论
主要教材与参考书
1.《现代分子生物学》 第3版(2007)朱玉贤、李毅、郑晓峰
2. 现代生物学精要(Instant Notes)系列 《分子生物学》第二版(2002)刘进元 《Molecular Biology》2e P.C.turner,et al 3. Principles of Biochemistry
1994 Gilman Rodbell 美国
1995
Lewis Nusslein-Volhard Wieschaus
美国 德国 美国
建立DNA测序方法
诺贝尔生理医学奖
建立和发展了单克隆抗体技术
诺贝尔生理医学奖
发现可移动癌基因
诺贝尔化学奖 诺贝尔生理医学奖
G蛋白在细胞内信息传导中的作用 诺贝尔生理医学奖
发现了控制果蝇体节发育的基因
诺贝尔生理医学奖
年份
科学家
Doherty 1996 Zinkernagel
国籍
澳 瑞士
1997 Prusiner
美
Furchgott
美
1998
Ignarro Murad
1999 Blobel
美
Carlsson
德
2000 Greengard
预计到2020年,生物医药占全球药品的比重 将超过1/3,生物质能源占世界能源消费的比 重将达5%左右,生物基材料将替代10%-20%的 化学材料。
生物制造、生物能源、生物环保等一 批新兴产业正在快速形成。
据Ernst&Young研究报告,2010年生 物环境、生物工业处理、生物海洋技术世界市 场规模将达到 134亿美元、327亿美元、288 亿美元。
分子生物学课件整理朱玉贤
1、广义分子生物学:在分子水平上研究生命本质的科学,其研究对象是生物大分子的结构和功能。
2?2、狭义分子生物学:即核酸(基因)的分子生物学,研究基因的结构和功能、复制、转录、翻译、表达调控、重组、修复等过程,以及其中涉及到与过程相关的蛋白质和酶的结构与功能??3、基因:遗传信息的基本单位。
编码蛋白质或RNA等具有特定功能产物的遗传信息的基本单位,是染色体或基因组的一段DNA序列(对以RNA作为遗传信息载体的RNA病毒而言则是RNA序列)。
?4、基因:基因是含有特定遗传信息的一段核苷酸序列,包含产生一条多肽链或功能RNA所必需的全部核苷酸序列。
?5、功能基因组学:是依附于对DNA序列的了解,应用基因组学的知识和工具去了解影响发育和整个生物体的特定序列表达谱。
?6、蛋白质组学:是以蛋白质组为研究对象,研究细胞内所有蛋白质及其动态变化规律的科学。
?7、生物信息学:对DNA和蛋白质序列资料中各种类型?信息进行识别、存储、分析、模拟和转输?8、蛋白质组:指的是由一个基因组表达的全部蛋白质?9、功能蛋白质组学:是指研究在特定时间、特定环境和实验条件下细胞内表达的全部蛋白质。
?????10、单细胞蛋白:也叫微生物蛋白,它是用许多工农业废料及石油废料人工培养的微生物菌体。
因而,单细胞蛋白不是一种纯蛋白质,而是由蛋白质、脂肪、碳水化合物、核酸及不是蛋白质的含氮化合物、维生素和无机化合物等混合物组成的细胞质团。
?11、基因组:指生物体或细胞一套完整单倍体的遗传物质总和。
?12、C值:指生物单倍体基因组的全部DNA的含量,单位以pg或Mb表示。
??13、C值矛盾:C值和生物结构或组成的复杂性不一致的现象。
?14、重叠基因:共有同一段DNA序列的两个或多个基因。
?15、基因重叠:同一段核酸序列参与了不同基因编码的现象。
?16、单拷贝序列:单拷贝顺序在单倍体基因组中只出现一次,因而复性速度很慢。
单拷贝顺序中储存了巨大的遗传信息,编码各种不同功能的蛋白质。
现代分子生物学全部重点(朱玉贤院士版)
现代分子生物学笔记(朱玉贤版)现代分子生物学笔记(朱玉贤版)第一讲序论二、现代分子生物学中的主要里程碑分子生物学是研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。
当人们意识到同一生物不同世代之间的连续性是由生物体自身所携带的遗传物质所决定的,科学家为揭示这些遗传密码所进行的努力就成为人类征服自然的一部分,而以生物大分子为研究对像的分子生物学就迅速成为现代社会中最具活力的科学。
从1847年Schleiden和Schwann提出"细胞学说",证明动、植物都是由细胞组成的到今天,虽然不过短短一百多年时间,我们对生物大分子--细胞的化学组成却有了深刻的认识。
孟德尔的遗传学规律最先使人们对性状遗传产生了理性认识,而Morgan的基因学说则进一步将"性状"与"基因"相耦联,成为分子遗传学的奠基石。
Watson和Crick所提出的脱氧核糖酸双螺旋模型,为充分揭示遗传信息的传递规律铺平了道路。
在蛋白质化学方面,继Sumner在1936年证实酶是蛋白质之后,Sanger利用纸电泳及层析技术于1953年首次阐明胰岛素的一级结构,开创了蛋白质序列分析的先河。
而Kendrew和Perutz利用X射线衍射技术解析了肌红蛋白(myoglobin)及血红蛋白(hemoglobin)的三维结构,论证了这些蛋白质在输送分子氧过程中的特殊作用,成为研究生物大分子空间立体构型的先驱。
1910年,德国科学家Kossel第一个分离了腺嘌呤,胸腺嘧啶和组氨酸。
1959年,美国科学家Uchoa第一次合成了核糖核酸,实现了将基因内的遗传信息通过RNA翻译成蛋白质的过程。
同年,Kornberg实现了试管内细菌细胞中DNA的复制。
1962年,Watson(美)和Crick(英)因为在1953年提出DNA的反向平行双螺旋模型而与Wilk ins共获Noble生理医学奖,后者通过X射线衍射证实了Watson-Crick模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分子生物学课程教学讲义朱玉贤第一讲序论二、现代分子生物学中的主要里程碑分子生物学是研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。
当人们意识到同一生物不同世代之间的连续性是由生物体自身所携带的遗传物质所决定的,科学家为揭示这些遗传密码所进行的努力就成为人类征服自然的一部分,而以生物大分子为研究对像的分子生物学就迅速成为现代社会中最具活力的科学。
从1847年Schleiden和Schwann提出\细胞学说\,证明动、植物都是由细胞组成的到今天,虽然不过短短一百多年时间,我们对生物大分子--细胞的化学组成却有了深刻的认识。
孟德尔的遗传学规律最先使人们对性状遗传产生了理性认识,而Morgan的基因学说则进一步将\性状\与\基因\相耦联,成为分子遗传学的奠基石。
Watson和Crick所提出的脱氧核糖酸双螺旋模型,为充分揭示遗传信息的传递规律铺平了道路。
在蛋白质化学方面,继Sumner在1936年证实酶是蛋白质之后,Sanger利用纸电泳及层析技术于1953年首次阐明胰岛素的一级结构,开创了蛋白质序列分析的先河。
而Kendrew和Perutz利用X 射线衍射技术解析了肌红蛋白(myoglobin)及血红蛋白(hemoglobin)的三维结构,论证了这些蛋白质在输送分子氧过程中的特殊作用,成为研究生物大分子空间立体构型的先驱。
1910年,德国科学家Kossel第一个分离了腺嘌呤,胸腺嘧啶和组氨酸。
1959年,美国科学家Uchoa第一次合成了核糖核酸,实现了将基因内的遗传信息通过RNA翻译成蛋白质的过程。
同年,Kornberg实现了试管内细菌细胞中DNA的复制。
1962年,Watson(美)和Crick(英)因为在1953年提出DNA的反向平行双螺旋模型而与Wilkins共获Noble生理医学奖,后者通过X射线衍射证实了Watson-Crick模型。
1965年,法国科学家Jacob和Monod提出并证实了操纵子(operon)作为调节细菌细胞代谢的分子机制。
此外,他们还首次推测存在一种与DNA序列相互补、能将它所编码的遗传信息带到蛋白质合成场所(细胞质)并翻译产生蛋白质的mRNA(信使核糖核酸)。
1972年,Paul Berg(美)第一次进行了DNA重组。
1977年,Sanger和Gilbert(英)第一次进行了DNA序列分析。
1988年,McClintock由于在50年代提出并发现了可移动遗传因子(jumping gene或称mobile1element)而获得Nobel奖。
1993年,美国科学家Roberts和Sharp因发现断裂基因(introns)而获得Nobel奖。
Mullis由于发明PCR仪而与加拿大学者Smith(第一个设计基因定点突变)共享Nobel化学奖。
此外,Griffith(1928)及Avery(1944)等人关于致病力强的光滑型(S型)肺炎链球菌DNA导致致病力弱的粗糙型(R型)细菌发生遗传转化的实验;Hershey和Chase (1952)关于DNA是遗传物质的实验;Crick于1954年所提出的遗传信息传递规律(即中心法则):Meselson和Stahl(1958)关于DNA半保留复制的实验以及Yanofsky和Brener (1961)年关于遗传密码三联子的设想都为分子生物学的发展做出了重大贡献。
我国生物科学家吴宪20世纪20年代初回国后在协和医科大学生化系与汪猷、张昌颖等人一道完成了蛋白质变性理论、血液生化检测和免疫化学等一系列有重大影响的研究,成为我国生物化学界的先驱。
20世纪60年代、70年代和80年代,我国科学家相继实现了人工全合成有生物学活性的结晶牛胰岛素,解出了三方二锌猪胰岛素的晶体结构,采用有机合成与酶促相结合的方法完成了酵母丙氨酸转移核糖核酸的人工全合成,在酶学研究、蛋白质结构及生物膜结构与功能等方面都有世所瞩目的建树。
三、分子生物学的主要研究内容所有生物体中的有机大分子都是以碳原子为核心,并以共价键的形式与氢、氧、氮及磷以不同方式构成的。
不仅如此,一切生物体中的各类有机大分子都是由完全相同的单体,如蛋白质分子中的20种氨基酸、DNA及RNA中的8种碱基所组合而成的,由此产生了分子生物学的3条基本原理:1.构成生物体有机大分子的单体在不同生物中都是相同的; 2.生物体内一切有机大分子的建成都遵循着各自特定的规则; 3.某一特定生物体所拥有的核酸及蛋白质分子决定了它的属性。
分子生物学研究内容: DNA重组技术------基因工程基因表达调控-------核酸生物学生物大分子结构功能----结构分子生物学 DNA重组技术(又称基因工程)这是20世纪70年代初兴起的技术科学,目的是将不同DNA片段(如某个基因或基因的一部分)按照人们的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。
严格地说,DNA重组技术并不完全等于基因工2程,因为后者还包括其他可能使生物细胞基因组结构得到改造的体系。
DNA重组技术是核酸化学、蛋白质化学、酶工程及微生物学、遗传学、细胞学长期深入研究的结晶,而限制性内切酶DNA连接酶及其他工具酶的发现与应用则是这一技术得以建立的关键。
DNA重组技术有着广阔的应用前景:DNA重组技术可用于定向改造某些生物基因组结构,使它们所具备的特殊经济价值或功能得以成百上千倍的地提高。
DNA重组技术还被用来进行基础研究。
如果说,分子生物学研究的核心是遗传信息的传递和控制,那么根据中心法则,我们要研究的就是从DNA到RNA,再到蛋白质的全过程,也即基因的表达与调控。
在这里,无论是对启动子的研究(包括调控元件或称顺式作用元件),还是对转录因子的克隆及分析,都离不开重组DNA技术的应用。
基因表达调控研究因为蛋白质分子参与并控制了细胞的一切代谢活动,而决定蛋白质结构和合成时序的信息都由核酸(主要是脱氧核糖核酸)分子编码,表现为特定的核苷酸序列,所以基因表达实质上就是遗传信息的转录和翻译。
在个体生长发育过程中生物遗传信息的表达按一定的时序发生变化(时序调节),并随着内外环境的变化而不断加以修正(环境调控)。
原核生物的基因组和染色体结构都比真核生物简单,转录和翻译在同一时间和空间内发生,基因表达的调控主要发生在转录水平。
真核生物有细胞核结构,转录和翻译过程在时间和空间上都被分隔开,且在转录和翻译后都有复杂的信息加工过程,其基因表达的调控可以发生在各种不同的水平上。
基因表达调控主要表现在信号传导研究、转录因子研究及RNA剪辑3个方面。
转录因子是一群能与基因5'端上游特定序列专一结合,从而保证目的基因以特定的强度在特定的时间与空间表达的蛋白质分子。
真核基因在结构上的不连续性是近10年来生物学上的重大发现之一。
当基因转录成pre-mRNA后,除了在5'端加帽及3'端加多聚A[polyA]之外,还要将隔开各个相邻编码区的内含子剪去,使外显子(编码区)相连后成为成熟mRNA。
研究发现,有许多基因不是将它们的内含子全部剪去,而是在不同的细胞或不同的发育阶段有选择地剪接其中部分内含子,因此生成不同的mRNA及蛋白质分子。
结构分子生物学生物大分子的结构功能研究(又称结构分子生物学)一个生物大分子,无论是核酸、蛋白质或多糖,在发挥生物学功能时,必须具备两个前提:首先,它拥有特定的空间结构(三维结构);其次,在它发挥生物学功能的过程中必定存在着结构和构象的变化。
3结构分子生物学就是研究生物大分子特定的空间结构及结构的运动变化与其生物学功能关系的科学。
它包括结构的测定、结构运动变化规律的探索及结构与功能相互关系的建立3个主要研究方向。
最常见的研究三维结构及其运动规律的手段是X射线衍射的晶体学(又称蛋白质晶体学),其次是用二维核磁共振和多维核磁研究液相结构,也有人用电镜三维重组、电子衍射、中子衍射和各种频谱学方法研究生物高分子的空间结构。
第二讲染色体与DNA一、 DNA的组成与结构Avery在1944年的研究报告中写道:\当溶液中酒精的体积达到9/10时,有纤维状物质析出。
如稍加搅拌,它就会象棉线在线轴上一样绕在硬棒上,溶液中的其它成份则呈颗粒状沉淀。
溶解纤维状物质并重复数次,可提高其纯度。
这一物质具有很强的生物学活性,初步实验证实,它很可能就是DNA(谁能想到!)\。
对DNA分子的物理化学研究导致了现代生物学翻天覆地的革命,这更是Avery所没有想到。
所谓DNA的一级结构,就是指4种核苷酸的连接及其排列顺序,表示了该DNA分子的化学构成。
核苷酸序列对DNA高级结构的形成有很大影响,如B-DNA中多聚(G-C)区易出现左手螺旋DNA(Z-DNA),而反向重复的DNA片段易出现发卡式结构等。
DNA不仅具有严格的化学组成,还具有特殊的高级结构,它主要以有规则的双螺旋形式存在,其基本特点是:1、DNA分子是由两条互相平行的脱氧核苷酸长链盘绕而成的。
2、DNA分子中的脱氧核糖和磷酸交替连接,排在外侧,构成基本骨架,碱基排列在内侧。
3、两条链上的碱基通过氢键相结合,形成碱基对,它的组成有一定的规律。
这就是嘌呤与嘧啶配对,而且腺嘌呤(A)只能与胸腺嘧啶(T)配对,鸟嘌呤(G)只能与胞嘧啶(C)配对。
如一条链上某一碱基是C,另一条链上与它配对的碱基必定是G。
碱基之间的这种一一对应的关系叫碱基互补配对原则。
组成DNA分子的碱基虽然只有4种,它们的配对方式也只有A与T,C与G两种,但是,由于碱基可以任何顺序排列,构成了DNA分子的多样性。
例如,某DNA分子的一条多核苷酸链有100个不同的碱基组成,它们的可能排列方式就是4100。
二、 DNA聚合酶与DNA的合成The accuracy of translation relies on the specificity of base pairing. The actual rate in bacteria4seems to be --10-8-10-10. This corresponds to -1 error per genome per 1000 bacterial replication cycles, or -10-6 per gene per generation.DNA polymerase might improve the specificity of complementary baseselection at either (or both) of two stages:1,It could scrutinize the incoming base for the proper complementarity with the template base; for example, by specifically recongnizing matching chemical features. This would be a presynthetic error control.2,Or it could scrutinize the base pair after the new base has been added to the chain, and, in those cases in which a mistake has been made, remove the most recently added base. This would be a proofreading control.三、DNA的生理意义及成分分析早在1928年英国科学家Griffith等人就发现肺炎链球菌使小鼠残废的原因是引起肺炎。