(完整版)基于数字图像处理的车牌识别本科毕业论文

合集下载

基于数字图像处理的车牌识别技术研究

基于数字图像处理的车牌识别技术研究

1 数字 图像处理的相 关理论知识
数 字 图像 处 理 就 是 运 用 计 算 机 技 术 ,
来 处 理 由 图 像 转 来 的 数 字 信 号 , 满 足 人 来 们 对 其 信 息 的 需 求 。 字 图 像 技 术 最 早 起 数 源 于 2 世 纪 2 年 代 初 , 今 为 止 已 经 八 十 0 0 至 几 年 了 , 期 间随 着 计 算 机 技 术 和 信 息 技 这 术 的 飞 速 发 展 , 别 是 网络 技 术 的 高 速 发 特
但 是 为 了能 够 顺 利地 对车 牌 进 行分 割 和 识 同时 出 现 多 个 车 牌 的 识 别 问 题 。 重 要 的 更 别, 必须 对 车 牌 的 角度 进 行 校 正 , 常 情 况 是 , 清 产 生 过 大 的 数 据 量 , 通 高 不仅 占据 过 多
下 是 使 用Ra o 变 换 来 完 成 车牌 的 校正 。 d n 2 4 车牌分 割 . 车 牌 分 割 的过 程 首 先 对 车 牌 图 片 进 行 水 平 方 向 的 投影 , 除 水 平 边 框 , 后 再 进 去 然 行 垂 直 方 向 的 投 影 。 过 分 析 车 牌 投影 可 通 投 展 , 字 图像 凭 借 其 传输 速 度 快 、 远 程 服 以 得 知 , 影 中最 大 值 峰 所 对 应 的 是 车 牌 数 可 务 、 用 工 具 简单 以 及 信 息 量 非 常 丰 富 等 中 的 第 二 个 字 符 和 第 三 个 字 符 之 间 的 间 使 优 势 已 经 成 为 人 们 获 取信 息 的 重 要 源 泉 。 隔 , 二 大 峰 中 心 距 离 对 应 的 是 车 牌 字 符 第 而 数 字 图 像 处 理 凭 借 其 处 理 内容 丰 富 、 处 的 宽 度 , 以此 类推 就 可 以对 车 牌 进 行 分 割 。 理 精 度 高 以 及 可 处 理 复 杂 的 非 线 性 运 算 等 2 5 车 牌识 别和显 示 . 优 点 更 加 促 进 了其 自 身在 各 个 领 域 中的 发 字 符 识 别 的 方 法 有 很 多 种 , 般 来 讲 一 展。 模 板 匹 配 方 法 是 应 用 最 广 泛 的 。 进 行 识 在 般 来 说 , 字 图 像 处 理 系 统 大 致 可 别 的 过 程 中 , 数 要先 建立 标 准 字库 , 后将 分 然 以 分 为 输 入 部 分 的 图 像 数 字 化 设 备 、 作 割 所 得 到 的 字 符 进 行 分 类 , 分 类 后 的 字 用 将

基于数字图像处理的车牌识别技术研究

基于数字图像处理的车牌识别技术研究

基于数字图像处理的车牌识别技术研究数字图像处理技术的发展,推动了很多生活领域的发展,其中一个应用领域就是车牌识别技术。

随着机器视觉技术的不断进步和成熟,车牌识别技术也得到了广泛应用,从而改变了人们的生活和工作方式。

本文将从车牌识别技术的发展历程、技术原理和应用领域三个方面进行分析和探讨。

一、车牌识别技术的发展历程车牌识别技术起初主要应用在警务、交通违法处理、停车场管理等方面。

但随着技术的不断进步和应用需求的增加,车牌识别技术开始在一些商业领域得到广泛应用,如门禁系统、智慧停车场、道路收费系统等。

二、车牌识别技术的基本原理车牌识别技术是一项集成计算机视觉和数字图像处理技术的综合性技术,其基本原理为:通过采集、处理和识别车辆行驶过程中的数字图像信息,实现对车辆的追踪、预警、识别、管理、控制等功能。

车牌识别技术的核心技术包括图像采集和预处理、车牌定位和分割、字符识别和数字识别等三个方面。

图像采集和预处理是车牌识别技术中最基本的环节,直接影响后续处理的质量和精度。

采集过程需要保证光线的充足性和图像清晰度,同时要根据不同的场景和车速等因素调整采集参数,如曝光时间、快门速度等。

车牌定位和分割是车牌识别技术中比较重要的步骤,其主要任务是将图像中的车牌区域准确地划分出来。

车牌定位和分割方法主要有颜色阈值法、边缘检测法和形状检测法等。

其中,颜色阈值法是一种比较常用和简单的方法,其基本原理是设定一个基于颜色的阈值,将车牌区域和其他区域分割开来。

字符识别是车牌识别技术中最为核心的环节,其主要任务是对车牌上的字符进行识别。

车牌上的字符由数字和字母组成,因此字符识别主要分为数字识别和字母识别两种类型。

字符识别的主要技术包括模式匹配、神经网络、支持向量机、卷积神经网络等方法。

三、车牌识别技术的应用领域车牌识别技术广泛应用于智慧交通、安防监控、金融服务、互联网营销、智慧城市建设等多个领域。

其中,智慧交通是车牌识别技术的主要应用领域之一。

车牌识别毕业设计论文

车牌识别毕业设计论文

车牌识别毕业设计论文车牌识别是一项实用的技术,已广泛应用于交通管理、安全监控和智能导航等领域。

本毕业设计旨在研究和实现一种高效准确的车牌识别系统,通过图像处理和模式识别的方法,实现车牌的自动检测、字符分割和识别。

在车牌识别系统中,图像处理是最关键的环节之一、首先,需要对图像进行预处理,包括二值化、滤波和去噪等操作,以提高后续处理的准确性。

然后,通过边缘检测和形态学操作,可以实现车牌的自动检测。

通过比较不同车牌的特征,可以找到最佳的车牌位置。

在车牌的字符分割过程中,一般采用基于垂直和水平投影的方法。

首先,通过垂直投影,可以得到每个字符的位置和宽度。

然后,通过水平投影,可以得到字符的高度和行间距。

通过这些信息,可以将车牌字符逐个分割出来,为后续的字符识别提供准备。

字符识别是车牌识别系统的最后一步,也是最复杂的一步。

常用的方法包括基于模板匹配和基于机器学习的方法。

在模板匹配中,需要提前准备一组字符模板,并将待识别的字符与模板进行比较,找出最佳匹配的字符。

在机器学习方法中,常用的算法包括支持向量机(SVM)和深度学习等,通过训练大量的样本数据,建立一个分类模型,实现字符的自动识别。

在实际应用中,车牌识别系统还需要考虑到诸多因素,如车牌大小的变化、光线条件的差异和图像角度的旋转等。

为了提高系统的鲁棒性,可以采用自适应阈值处理、学习算法和特征提取等技术手段。

通过本毕业设计,可以深入了解车牌识别的原理和实现方法,并通过实验验证其准确性和效率。

此外,还可以进一步优化和改进车牌识别系统,以提高其性能和适应性。

基于数字图像处理技术在汽车牌照识别系统的应用研究

基于数字图像处理技术在汽车牌照识别系统的应用研究

基于数字图像处理技术在汽车牌照识别系统的应用研究摘要:随着生活水平的日益提高,各大城市汽车数量也不断增加,因此交通状况日益受到人们的重视。

如何进行有效地交通管理,成为各政府相关部门越来越关注的焦点。

汽车牌照自动识别是智能交通管理系统中的关键技术之一,本文介绍一种基于数字图像处理的车牌识别系统,该系统主要由图像的采集、图像预处理、牌照定位、字符分割和字符识别五部分组成。

牌照自动识别技术的工作是处理并分析摄取的视频流中具有复杂背景的车辆图像,即牌照字符定位、字符分割,最后自动识别汽车牌照上的字符。

关键词:汽车牌照识别;智能交通管理;数字图像处理中图分类号:tp391.41 文献标识码:a 文章编号:1007-9599 (2012)19-0000-02车辆牌照识别系统(vehicle license plate recognition system,简称lpr)是现代智能交通系统中的一项重要研究课题,是实现智能交通的重要环节,涉及领域异常广阔,包括模式识别、计算机视觉以及数字图像处理技术等。

随着智能交通系统的迅猛发展,对于汽车牌照识别技术的研究也随之发展起来。

如今的世界已经发展成为数字化信息时代,很多难以解决的问题依托这一平台得到完美的解决。

智能交通系统可以在不影响汽车正常行驶的状态下自动完成对牌照的有效识别,很显然这一技术的发明对于交通管理工作起到了很大的推动作用。

目前,车辆牌照识别技术已经广泛应用于高速公路的监测,电子收费,安全停车管理,交通违规管理,偷盗车辆辨别等重要领域,其发展对于人民的生活、社会经济以及城市的建设产生了积极而深远的影响,因此对于汽车牌照识别技术的研究具有重要的现实意义。

数字图像处理技术作为车牌识别系统中最为重要的技术之一,在其中发挥了不可估量的作用。

随着近些年来数字图像处理技术的高速发展,也为车牌识别系统的建立提供了有效的技术保障。

电子摄像得到的结果是彩色图像,而且不可避免地含有各种噪声干扰,为了能够分割出车牌的有效区域并在有效区域中分离中单个车牌字符,我们可以数字图像处理技术来进行相关处理,从而达到清晰识别的目的。

基于数字图像处理的车牌识别技术研究

基于数字图像处理的车牌识别技术研究

基于数字图像处理的车牌识别技术研究摘要:随着我国经济的日益增长,人们生活节奏的加快,汽车的数量也变得越来越多,随之人们对交通控制以及安全管理的要求也日益提高。

现在,交通管理正朝着智能交通系统的方向发展,车牌识别系统作为智能交通系统的一个重要组成部分,已经在城市交通中占据中非常重要的作用。

车牌识别系统在不影响汽车状态的情况下,利用计算机自动完成车牌的识别,从而大大简化了交通管理工作。

目前解决车辆牌照识别技术主要有车牌定位技术、车牌校正技术、图像处理技术、车牌分割技术等,本文主要研究基于数字图像处理的车牌识别技术,本文首先介绍了数字图像处理的定义和车牌识别技术的原理,最后分析了车牌识别技术在实际应用中的相关问题。

关键词:数字图像处理车牌识别智能模式识别最早运用数字图像处理技术解决汽车车牌识别是在20世纪80年代,当时在这个领域的研究只停留在讨论车牌识别中的某一个具体问题,通常是采用简单的图像处理技术,并没有形成比较完整的系统体系。

随着现代计算机技术以及视频技术的不断发展,基于数字图像处理的车牌识别技术已经广泛应用于车辆追查和跟踪、公路收费监控等领域。

目前,国内外已经有众多企业进行了车牌识别技术的研发,虽然取得了一定的成功,但是仍然存在着若干缺陷。

本文首先介绍了数字图像处理的相关理论知识,然后以车牌识别技术的原理为出发点,分析了车牌识别技术的相关应用问题。

1 数字图像处理的相关理论知识数字图像处理就是运用计算机技术,来处理由图像转来的数字信号,来满足人们对其信息的需求。

数字图像技术最早起源于20世纪20年代初,至今为止已经八十几年了,这期间随着计算机技术和信息技术的飞速发展,特别是网络技术的高速发展,数字图像凭借其传输速度快、可远程服务、使用工具简单以及信息量非常丰富等优势已经成为人们获取信息的重要源泉。

而数字图像处理凭借其处理内容丰富、处理精度高以及可处理复杂的非线性运算等优点更加促进了其自身在各个领域中的发展。

基于数字图像的车牌识别毕业设计论文 精品

基于数字图像的车牌识别毕业设计论文 精品

目录第一部分:1.1PCI总线 (4)1.1.1 PCI总线的基本结构 (4)1.1.2 PCI总线A/D卡的通用结构 (5)1.2 A/D卡的采集、存储和显示程序 (6)1.2.1 A/D卡的采集的基本原理 (6)1.2.2 实验结果与分析 (6)1.3.3设计程序 (9)1.4结果分析 (9)第二部分:中文摘要 (10)英文摘要 (11)1 引言 (12)1.1 车牌识别技术的研究背景 (12)1.2 国内外研究现状 (12)1.3 车牌识别系统研究目的及意义 (13)1.4别系统的构成 (13)1.5论文内容安排 (14)2 车牌图像的预处理 (14)2.1 预处理技术概述 (14)2.2 图像的灰度化 (15)2.3 图像的二值化 (17)2.4 边缘检测 (18)2.4.1 Canny算子 (18)2.4.2 Roberts算子 (19)2.5 本章小结 (22)3 车牌定位 (22)3.1 常用的车牌定位算法 (22)3.1.1 基于纹理特征的车牌定位 (22)3.1.2 基于数学形态的车牌定位 (24)3.2 本章小结 (26)4 字符切割 (26)4.1 车牌字符切割方法 (26)4.2 本章小结 (28)5 字符识别 (28)5.1 字符识别概述 (28)5.2 车牌字符识别特点 (29)5.3 基于模板匹配的字符识别算法 (30)5.4 实验分析 (31)5.5 结果分析 (32)6 设计评述 (32)附录A 车牌识别程序 (34)参考文献 (47)1.1 PCI总线1.1.1 PCI总线的基本结构:PCI,外设组件互连标准(Peripheral Component Interconnect)一种由英特尔(Intel)公司1991年推出的用于定义局部总线的标准。

此标准允许在计算机内安装多达10个遵从PCI标准的扩展卡。

最早提出的PCI总线工作在33MHz频率之下,传输带宽达到133MB/s(33MHz * 32bit/s),基本上满足了当时处理器的发展需要。

〔大学论文〕基于数字图像处理的车牌识别系统设计与实现(含word文档)

〔大学论文〕基于数字图像处理的车牌识别系统设计与实现(含word文档)

基于数字图像处理的车牌识别系统设计与实现目录摘要 (1)1.设计原理 (2)2.详细设计步骤 (3)2.1提出总体设计方案 (3)2.2预处理及边缘提取 (4)2.2.1图象的采集与转换 (4)2.2.2边缘提取 (5)2.3牌照的定位和分割 (9)2.3.1牌照区域的定位 (9)2.3.2牌照区域的分割 (10)2.3.3车牌进一步处理 (11)2.4字符的分割与归一化 (12)2.4.1字符分割 (13)2.4.2字符归一化 (13)2.5字符的识别 (13)3.设计结果及分析 (16)4.程序源代码 (19)4.1基于matlab的程序源代码 (19)4.2基于VC++的程序源代码 (31)5.结语 (57)6.心得体会 (58)7.参考文献 (59)摘要汽车牌照自动识别系统是制约道路交通智能化的重要因素,包括车牌定位、字符分割和字符识别三个主要部分。

本文首先确定车辆牌照在原始图像中的水平位置和垂直位置,从而定位车辆牌照,然后采用局部投影进行字符分割。

在字符识别部分,提出了在无特征提取情况下基于支持向量机的车牌字符识别方法。

实验结果表明,本文提出的方法具有良好的识别性能。

随着公路逐渐普及,我国的公路交通事业发展迅速,所以人工管理方式已经不能满着实际的需要,微电子、通信和计算机技术在交通领域的应用极大地提高了交通管理效率。

汽车牌照的自动识别技术已经得到了广泛应用。

关键字:车牌识别系统、智能化交通、车牌定位、字符分割、字符识别AbstractVehicle license plate recognition system is the intelligent road traffic constraints important factors,including the license plate location,character segmentation and character recognition of three main parts.Firstly,the vehicle license in the original image to determine the horizontal and vertical position,thereby positioning the vehicle license,and character segmentation using a local projection.In the character recognition part of the proposed feature extraction in the case of non-support vector machine based license plate recognition method.Experimental results show that the proposed method has good recognition performance.With the increasing popularity of road,road transport in China has developed rapidly,so the artificial management has not full of actual needs,microelectronics,communications and computer technology applications in the transport sector has greatly improved the efficiency of traffic management.Automatic license plate recognition technology has been widely used.Keywords:license plate recognition system,intelligent transportation,license plate localization,character segmentation,character recognition1.设计原理由于车辆牌照是机动车唯一的管理标识符号,在交通管理中具有不可替代的作用,因此车辆牌照识别系统应具有很高的识别正确率,对环境光照条件、拍摄位置和车辆行驶速度等因素的影响应有较大的容阈,并且要求满足实时性要求。

基于数字图像处理的车牌识别系统

基于数字图像处理的车牌识别系统

基于数字图像处理的车牌识别系统基于数字图像处理的车牌识别系统言经官电气学院电子112摘要:车牌识别系统(License Plate Recognition 简称LPR)技术基于数字图像处理,是智能交通系统中的关键技术,同时他的发展也十分迅速,已经逐渐融入到我们的现实生活中。

文章介绍了车牌识别系统的意义、图像去噪处理以及图像二值化方法,并通过仿真试验模拟了图像处理的过程。

本文所做的工作在于前期的图像预处理工作。

本次设计着重在于图像识别方面, 中心工作都为此而展开,文中没有进行车牌的定位处理,而是采用数码相机直接对牌照进行正面拍照,获取原始车牌图像。

之后利用Matlab编程对图片进行了大小的调整、彩色图片转化成灰度图片、图片去噪、以及图片二值化等工作。

其中,去噪与二值化是关系图像识别率的关键。

关键字:车牌识别系统;图像预处理;字符识别;Matlab;去噪;二值化引言智能交通系统(ITS)是当今世界交通管理体系发展的必然趋势,而作为智能交通系统中的重要组成部分之一的车牌自动识别技术,目前已被广泛应用于城市道路监控、高速公路收费与监控、小区与停车场出入口管理、公安治安卡口等场合,成为研究的热点。

伴随我国国民经济的高速发展,国内高速公路、城市道路、停车场建设越来越多,对交通控制,安全管理的要求也日益提高。

因此迫切需要采用高科技手段,对违法违章车辆牌照进行登记, 在这种情况下,作为信息来源的自动检索,图像识别技术越来越受到人们的重视。

车牌识别系统的出现成为了交通管制必不可少的有力武器。

1 车牌识别系统的目标利用计算机等辅助设备进行的自动汽车牌照自动识别就是在装备了数字摄像设备和计算机信息管理系统等软硬件平台的基础之上,通过对车辆图像的采集,采用先进的图像处理、模式识别和人工智能技术,在图像中找到车牌的位置,提取出组成车牌号码的全部字符图像,再识别出车牌中的文字、字母和数字,最后给出车牌的真实号码。

国外的车牌识别研究始于80 年代,90 年代始已有不少成套的产品出现。

车牌识别毕业设计论文

车牌识别毕业设计论文

本科毕业设计(论文)( 2010 届)题目:车牌号码识别仿真分院:电子信息分院专业:电子信息工程班级:06电子本1姓名:余俊杰学号:0651035226指导老师:孙跃完成时间:2010年4月摘要车牌识别系统在交通的智能监视和管理中有着重要的应用,近几年发展非常迅速。

基于图像和字符识别技术的车牌字符识别系统也是目前国内外模式识别应用研究领域的一个热点。

尽管车牌的先验知识比较丰富,但是在复杂的背景下,车牌中的字符识别仍然比较困难。

目前的车牌识别系统大多是针对简单场景、单一车牌。

车牌字符识别系统的关键技术包括数字图像处理、车牌定位、车牌字符分割和字符识别技术。

本文对已定位好的车牌进行图像位图读取、图像二值化、字符分割、提取字符特征、BP神经网络设计等模块进行了初步的研究。

在字符分割方面,分析了牌照图像二值化与标准归一化以及几何校正的各种算法。

借助牌照字符固定宽度、间距的固定比例关系等先验知识实现字符的分割。

在特征提取方面,将字符归一化,再采用13特征法进行字符特征提取。

在字符识别方面,分析比较了常用的字符识别方法。

在此基础上详细分析基于BP神经网络的识别方法。

实验结果证明,所采用的BP神经网络具有良好的性能满足在复杂环境下实时识别车牌的要求,具有一定的理论和实际意义。

关键词:车牌字符识别;特征提取;BP神经网络;MATLABABSTRACTLicense plate recognition system has important applications in the intelligent traffic monitoring and management developed rapidly in recent years. Based on image and character recognition technology license plate recognition system pattern recognition at home and abroad is also a hot field of applied research. Although the license plate of the prior knowledge rich, but in a complex background, the license plate of the character recognition is still more difficult. Most of the current license plate recognition system is a simple scenario for a single plate.The key technologies of license plate recognition system include digital image processing, license plate location, license plate character segmentation technology. This article has been positioning for a good license plate reads the bitmap image, image binarization, character segmentation, feature extraction of characters, BP neural network design module for a more detailed study.In the character segmentation area. Analyze of the license plate image binarization with the standard normalization and geometric correction algorithms. With fixed-width character license, a fixed proportion of the relationship between the pitch prior knowledge to achieve segmentation of characters.In feature extraction. The character normalization, again using 13 features of character feature extraction method.In character recognition, analyze and compared of the common character recognition. On the basis of this detailed analysis based on BP neural networks recognition. The results show that BP neural network used good performance in a complex environment to meet real-time identification license plate requirements, with some theoretical and practical significance.Keywords:License plate character recognition;Feature Extraction;BP neural network; MATLAB.目录摘要 (I)ABSTRACT (II)1 绪论 (1)1.1 课题背景 (1)1.2 国内外研究现状 (2)2 图像的预处理 (4)2.1 图像的二值化 (4)2.2 牌照上下边框和铆钉的去除 (5)2.3 车牌字符细化 (5)2.4本章小结 (6)3 车牌字符分割 (6)4 车牌字符特征提取 (8)4.1字符常用的特征提取方法 (9)4.2十三点网格特征提取方法 (9)5 车牌字符的识别 (10)5.1 字符识别简介 (10)5.2 基于BP神经网络的字符识别 (11)5.3BP神经网络的设计 (12)5.3.1 输入层神经元个数 (13)5.3.2 隐含层神经元数目 (13)5.3.3 输出层神经元个数 (13)5.3.4 传递函数的选择 (14)5.3.5 BP网络的参数设置 (14)5.3.6 BP神经网络的创建 (14)5.4 BP神经网络的运用 (18)6 结论 (19)致谢 (20)参考文献 (21)1 绪论1.1 课题背景近几年,我国道路交通迅猛发展.随之也带来了对交通管理自动化的迫切需求。

车牌识别论文

车牌识别论文

车牌识别论文车牌识别是一项涉及到计算机视觉和模式识别技术的研究领域,具有广泛的应用和研究价值。

随着计算机和图像识别技术的不断进步,车牌识别技术也得到了迅速发展,越来越被广泛应用于城市交通管理、公安安防、智能车辆等领域。

在这篇文章中,我们将深入探讨车牌识别论文的相关内容。

一、车牌识别的研究意义车牌识别是一项涉及到计算机视觉、机器学习和模式识别等多个学科的复杂研究题目。

这项技术的发展对于城市交通管理、公安安防、智能车辆等领域都具有重要的研究和应用价值。

首先,对于城市交通管理而言,车牌识别技术的应用可以提高其管理的效率和精度。

如可以通过车牌识别系统对车辆进入或通过的时间、地点等信息进行监控和管理,从而实现道路通行信息的实时收集和处理,为城市交通拥堵状况的分析和优化提供数据支持。

其次,对于公安安防领域而言,车牌识别技术的应用可以帮助提高交通安全和社会治安水平。

如可以通过车牌识别系统对车辆布控、追踪等工作进行处理和分析,从而辅助公安机关对违法犯罪行为进行快速识别和打击。

最后,对于智能车辆等应用领域而言,车牌识别技术的应用可以实现智能车辆的自主导航和路线规划等功能,从而为智慧城市的建设和发展提供支持。

二、车牌识别的技术研究车牌识别技术是一项综合性较强的技术研究项目,其中涉及到图像处理、增广现实技术、机器学习、深度学习等多个学科领域。

根据技术特点,车牌识别技术主要包括以下几个方面的研究:1、车牌图像预处理技术车牌图像预处理技术是车牌识别技术的重要组成部分,其作用是对车牌图像进行预处理,使识别算法能够更好地识别车牌图片中的车牌字符。

预处理技术主要包括图像二值化、滤波去噪、边缘检测、字符分割等。

2、车牌字符识别技术车牌字符识别技术是车牌识别技术的核心部分,其作用是对车牌图像中的字符进行分析识别。

字符识别技术可以分为基于传统机器学习和基于深度学习的两种方法。

目前,基于深度学习的车牌字符识别技术已经广泛应用于车牌识别领域。

毕业设计论文_车牌识别系统的设计与实现参考

毕业设计论文_车牌识别系统的设计与实现参考

毕业设计论文_车牌识别系统的设计与实现参考摘要:车牌识别系统是基于计算机视觉和图像处理技术的智能化交通系统的重要组成部分。

本文基于深度学习算法,结合图像处理技术,设计并实现了一套车牌识别系统。

该系统主要包括图像预处理、车牌定位、字符分割和字符识别四个模块。

经过大量实验和测试,验证了该系统具有较高的准确性和实用性。

本文的研究成果对于智能交通系统的发展和优化有着重要的意义。

关键词:车牌识别系统;深度学习算法;图像预处理;车牌定位;字符分割;字符识别1.引言车牌识别系统是智能交通系统中的一个重要组成部分,具有广泛的应用前景。

但是由于车牌图像的复杂性和多样性,传统的车牌识别方法存在一些问题,如准确率低、鲁棒性差等。

因此,本文基于深度学习算法,结合图像处理技术,设计并实现了一套车牌识别系统。

2.系统设计车牌识别系统主要由图像预处理、车牌定位、字符分割和字符识别四个模块组成。

图像预处理主要包括灰度化、二值化和图像增强等处理,旨在提高车牌图像的质量和清晰度。

车牌定位利用图像处理技术定位出图像中的车牌区域,为后续字符分割和字符识别提供基础。

字符分割将车牌图像中的字符进行分割,以便进行后续的字符识别。

最后,字符识别利用深度学习算法对分割好的字符进行识别。

3.系统实现本文使用Python编程语言和OpenCV、TensorFlow等开发工具实现了车牌识别系统。

首先,对原始图像进行灰度化处理,并使用图像增强技术提高图像的质量。

然后,利用二值化处理将图像转换为二值图像。

接下来,利用图像处理技术对二值图像进行车牌定位,找到车牌区域。

然后,对车牌区域进行字符分割,得到分割好的字符。

最后,利用TensorFlow实现的深度学习模型对字符进行识别。

4.实验结果通过大量实验和测试,本文的车牌识别系统在车牌图像的识别准确率和鲁棒性方面取得了较好的效果。

实验结果表明,该系统在光照条件不同、车牌类型不同等复杂环境下仍能实现较高的识别准确率。

基于数字图像处理的车牌定位与识别 毕业设计

基于数字图像处理的车牌定位与识别  毕业设计

毕业设计(论文)题目基于数字图像处理的车牌定位与识别姓名学号0911121106所在学院理学院专业班级09信科1指导教师日期2013年3月29 日毕业设计(论文)任务书学院理学院指导教师徐斌职称学生姓名专业班级09信科1学号0911121106 设计题目基于数字图像处理的车牌定位与识别设计内容目标和要求首先了解各种图像处理的基本方法,及其优缺点,结合车牌定位技术,熟悉图像定位技术的机制和原理,静态目标图像的识别方法和机理,然后熟悉单一环境下的运动图像识别和跟踪技术。

最后采用粗定位和精细定位相结合的车牌定位方法从运动图像中定位目标图像边缘,从而获取有用图像。

最好能够使用Matlab或者phtoshop对截取的图形进行加工处理,获得更高质量的目标图像。

要求:有一定的图像处理技术,能运用matlab或者phtoshop等软件处理图像。

指导教师签名:年月日基层教学单位审核学院审核此表由指导教师填写学院审核1毕业设计(论文)学生开题报告课题名称基于数字图像处理的车牌定位与识别课题来源课题类型指导教师学生姓名学号0911121106 专业班级09信科1本课题的研究现状、研究目的及意义随着我国经济的快速发展,智能交通系统将会成为现代交通管理发展的必然趋势。

车辆自动识别系统是智能交通系统(工TS)实现的前提。

车牌识别是车辆自动识别系统中最有发展前景的技术之一。

车牌识别系统主要由车牌定位、字符分割和字符识别三部分组成。

其中,车牌定位是字符分割和字符识别的基础,对整个系统的性能起着至关重要的作用,决定着系统的识别速度和识别精度。

从图像处理的性质来看,车牌定位主要分为基于灰度图像的车牌定位和基于彩色图像的车牌定位。

基于灰度图像的车牌定位速度较快,但定位精度不高,受环境、光照等因素影响较大;彩色图像包含的信息比灰度图像多得多,因而更易于车牌定位,但运算量大,因此,基于彩色图像的车牌定位研究较少。

近年来,随着计算机技术和图像处理技术的飞速发展,基于彩色图像的车牌定位将是车牌定位研究的热点。

车牌识别毕业论文

车牌识别毕业论文

摘要车牌自动识别技术是实现智能交通系统的关键技术,对我国交通事业的发展起着十分重要的作用,进而影响我国的经济发展速度及人们的生活质量。

车牌识别系统运用模式识别、人工智能技术,能够实时准确地自动识别出车牌的数字、字母及汉字字符,进而实现电脑化监控和管理车辆。

一个车牌识别系统的基本硬件配置有照明装置、摄像机、主控机、采集卡等。

而软件则是由具有车牌识别功能的图像分析和处理软件,以及能够具体满足应用需求的后台管理软件组成。

车牌自动识别系统主要分为图像预处理、车牌定位、字符分割和字符识别等主要模块,也包括后续应用程序的开发。

针对不同的模块,本文研究分析了现有的理论算法,并提出了具有实际应用意义的解决方案。

1.在图像预处理模块,因为人眼对于不同颜色分量的敏感度不同,图像灰度化采用加权平均值法;二值化过程中阈值的选取至关重要,本文采用动态自适应阈值法,效果理想;边缘提取利用了拉普拉斯算子;去噪过程采用的是中值滤波方法;2.车牌定位模块包括粗定位和细定位,本文通过分析车牌的尺寸、类型、颜色,得到不同的特征向量,即车牌的几何特征、灰度分布特征、投影特征和字符排列特征等,利用这些特征进行车牌定位;3.在车牌字符分割模块,提出了双向对比垂直投影分割法,该方法基于车牌的垂直投影,能够将字符准确的分割开,利于车牌字符识别: 4.本文对车牌数字和车牌字母及汉字提出了不同的处理方法,数字识别采用投影技术,汉字和字母识别应用BP神经网络技术,兼顾了识别准确率和识别速度;根据上述方法原理,基于MATLAB软件进行程序设计,编制了车牌自动识别软件。

关键字:车牌图像;图像处理;字符分割;BP神经网络AbstractLicense plate recognition technology is to realize the key technology of intelligent transportation system of our country, the development of the cause of traffic plays a very important role, then affects the economic development of our country and speed and people's quality of life. License plate recognition system with pattern recognition, artificial intelligence technology, to real-time accurately recognize the license plate number of automatic, letters and Chinese characters, and achieve computerized monitoring and management vehicles. A license plate recognition system of basic hardware configuration have lighting devices, video camera, master control machine, acquisition card, etc. And software is with license plate identification function by the image analysis and processing software, and can meet the demand of the specific application background management software component. License plate recognition system mainly divided into the image preprocessing, license plate location, character segment and character recognition and other major modules, including the follow-up application development.In view of the different module, this paper analyzed the existing algorithm theory, and puts forward the practical significance of the solution. 1. In the image preprocessing module, for the human eye to different color the sensitivity of the component is different, the image intensity by weighted average method; In the process of binary of the threshold is very important to select is adopted in this paper, dynamic adaptive threshold value method, the effect ideal; Using the Laplace operator edge extraction; Denoising the process is the median filtering method; 2. The license plate localization module contains coarse position and fine positioning, the paper analyzes the license plate size, type, color, get different characteristic vector, namely the geometrical characteristics of the license plate, gray distribution, projection characteristics and characters arrangement characteristics, use these characteristics of the license plate location; 3. In the license plate character segmentation module, and put forward the two-way contrast vertical projection segmentation method, this method is based on the license plate vertical projection, can make the character of accurate separated, beneficial to the license plate character recognition: 4. This article on license plate Numbers and letters and characters put forward different processing methods, number recognition by projection technology, Chinese characters and letters recognition application BP neural network technology, and taking account of the identification accuracy and recognition rate; According to the above method, based on the MATLAB software program design, compiled the license plate recognition software.Keywords License plate image, image processing, character segment, the BP neural network目录摘要............................................. 错误!未定义书签。

车牌识别系统的设计毕业论文

车牌识别系统的设计毕业论文

车牌识别系统的设计毕业论文摘要:随着现代交通的快速发展,车辆数量的剧增,传统的人工车牌识别系统已经无法满足实际需要。

为了解决这一问题,本文提出了一种基于图像处理和机器学习算法的车牌识别系统设计。

该系统由图像采集、图像预处理、车牌定位与分割、字符识别等模块组成。

通过实验证明,该系统具有较高的识别准确度和稳定性,能够有效提高车辆信息的自动化识别能力。

关键词:车牌识别系统;图像处理;机器学习;识别准确度1.引言车牌识别技术是现代交通管理和车辆管理的重要组成部分。

传统的车牌识别系统依靠人工操作,无法满足高效、准确的识别需求。

因此,设计一种基于图像处理和机器学习算法的车牌识别系统具有重要的意义和实际应用价值。

本文将从图像采集、图像预处理、车牌定位与分割、字符识别等方面进行研究,提出一种有效的车牌识别系统设计方案。

2.系统设计2.1图像采集2.2图像预处理车牌识别系统的图像预处理是为了提取图像中的车牌信息,主要包括图像增强、图像去噪和图像分割等。

图像增强可以通过调整图像的亮度、对比度和色彩等参数来提高车牌图像的质量。

图像去噪可以使用滤波算法来消除图像中的噪声,以提高后续处理的准确性。

图像分割是将图像中的车牌区域与其他区域进行分离,主要采用阈值分割和边缘检测等算法。

2.3车牌定位与分割车牌识别系统需要对图像中的车牌进行定位和分割,以便进行后续的字符识别。

车牌定位可以通过车牌的颜色、形状和纹理等特征进行判断。

分割车牌可以采用基于连通区域的分割算法,通过分析车牌区域中的字符间距和字符高度等特征,对车牌字符进行分割。

2.4字符识别车牌字符识别是车牌识别系统的核心部分,一般使用机器学习算法来实现。

可以采用基于模板匹配、基于统计特征、基于神经网络等方法进行字符识别。

通过训练样本和特征提取,建立车牌字符分类模型,对分割好的车牌字符进行识别。

3.实验结果与分析本文设计了一种基于图像处理和机器学习算法的车牌识别系统,并进行了实验验证。

基于数字图像处理技术的车牌识别技术研究

基于数字图像处理技术的车牌识别技术研究

基于数字图像处理技术的车牌识别技术研究随着数字图像处理技术的发展,基于数字图像处理技术的车牌识别技术已经越来越成熟。

本文将从技术原理、发展历程、应用前景等方面进行探讨。

一、技术原理基于数字图像处理技术的车牌识别技术是通过图像获取、特征提取、匹配识别等过程实现对车牌的快速准确识别和提取的技术。

其核心技术是数字图像处理,主要包括以下几个方面:1.图像获取:通过摄像机、高分辨率相机等设备获取车辆图片,然后对图片进行处理。

2.预处理:对图像进行灰度化、去噪、二值化、图像增强等操作,以提高图像的质量和清晰度。

3.特征提取:针对不同的车辆和车牌,提取不同的特征,比如车牌号码、车牌颜色、车牌字体、大小等,以便后续处理和识别。

4.识别匹配:使用模式识别、人工智能、机器学习等技术对提取的特征进行分析和识别,实现对车牌号码的准确识别。

二、发展历程数字图像处理技术的应用在车牌识别领域可以追溯到上世纪90年代。

在那个时候,人们只是简单地使用黑白相机和一些简单的图像处理算法,提取车牌的高度和长度等信息,进行简单的识别。

随着技术的发展,2000年左右,出现了一些基于嵌入式系统的车牌识别方案,可以在道路上实现对车辆的自动监测和识别。

2005年以后,随着数字图像处理技术的成熟,车牌识别技术得到了极大地发展。

这个时候已经有一些算法可以实现对车牌号码的自动识别,并且具有一定的准确度和鲁棒性。

2010年至今,随着深度学习、人工智能等技术的发展,车牌识别技术已经非常成熟,并且在现实生活中得到了广泛的应用,比如智慧城市交通管理、车辆管理、车位管理等方面。

三、应用前景基于数字图像处理技术的车牌识别技术具有广泛的应用前景。

以下是其中的一些方面:1. 智慧城市交通管理:在城市交通治理中,车牌识别技术可以帮助管理部门实现对违章车辆和黑车的自动监测和管理,提高交通管理效率和管理水平。

2. 车位管理:车牌识别技术可以应用在停车场和小区停车场等地方,实现对车位和车辆的自动识别和管理,帮助车主快速找到空车位。

毕业设计(论文)-基于图像的车牌自动识别处理系统

毕业设计(论文)-基于图像的车牌自动识别处理系统

摘要本设计是针对公路监控的需要,设计的基于单片机的车牌识别处理系统,可实现车牌的判断识别以及报警。

本设计分为四大部分,图像的采集,图像处理,stm32程序的快速开发,单片机的外围电路设计。

其中,用串口摄像头进行车牌图像的采集,利用MATLAB这个软件工具,将采集到的车牌图像数据通过MATLAB环境中建立的串口对象传到MATLAB中,接着进行图像的译码,译码完成后,就可对该车牌图像进行图像处理,提取图形的车牌区域,对该区域进行处理,最终识别出车牌图像中的车牌信息。

最后再是利用rapidstm32模块的可视化交互式程序设计环境,在Smiulink下建模转化为基于stm32的C程序及工程,实现stm32程序的快速开发,最后在对程序做一些调整,设计该系统的外围电路,进行电路设计。

【关键字】车牌识别、图像处理、MATLAB、电路设计AbstractThis design is the need for road monitoring, license plate recognition processing system based on single chip design, which can realize the judgment of license plate recognition and alarm. This design is divided into four parts, image acquisition, image processing, rapid development of the STM32 program, the external microcontroller circuit design. Among them, using serial camera were license plate image acquisition, and establish serial object in MATLAB, to receive image data. Then, Followed by image decoding. After the completion of the decoding can be on the license plate image for image processing, and license plate region extraction in graphics, then in the region carried out, finally identify the license plate vehicle license plate image.Finally using visual interactive programming environment of the rapidstm32 module in smiulink modeling into C program and project based on STM32 stm3 2 the rapid development of procedures, and make some adjustments to the program, the design of the external circuit of the system, circuit design.【Key words】license plate recognition, image processing,MTLAB,circuit design目录摘要 (I)Abstract ................................................................................................................................................ I I 目录............................................................................................................................................. I II 第1章前言. (1)1.1 基于图像的车牌识别系统的设计背景 (1)1.2 基于图像的车牌识别系统的国内外现状 (1)1.3 设计系统的情况 (2)第2章方案设计 (3)2.1 设计要求 (3)2.2方案选择 (3)2.3.1 设计方案的选择 (3)2.3.2 字符识别方案的选择 (3)2.3 系统方案 (4)2.4总体方案设计 (4)2.4.1硬件设计 (5)2.4.2软件设计 (5)第3章硬件设计 (7)3.1 主要原件介绍 (7)3.1.1 主芯片STM32T103C8T6 (7)3.1.2 语音芯片QGPN5 (8)3.1.3 电平转换MAX232 (9)3.1.4电压转换芯片 (11)3.1.5 TFT LCD液晶 (12)3.2 模块分析 (13)3.2.1 STM32控制模块 (13)3.2.2电源模块 (14)3.2.3 滤波电路 (15)3.2.4 语音输出模块 (16)3.2.5报警模块 (16)3.2.6 采集模块 (17)3.2.7 指示灯模块 (18)3.2.8 液晶显示模块 (18)3.2.9 下载调试模块 (19)第4章车牌图像采集 (20)4.1 PCTO1串口摄像头说明 (20)4.1.1 PCTO1串口摄像头介绍 (20)4.1.2 PCTO1串口摄像头界面说明 (21)4.1.3 PCTO1串口摄像头通讯协议 (21)4.1.4PCTO1串口摄像头上电初始化流程 (23)4.2 图像译码以及串口操作 (23)4.2.1 图像的基本概念 (23)4.2.2 JPEG档介绍 (24)4.2.3 JPEG译码过程 (27)第 5章车牌图像处理 (30)5.1 图像灰度化与二值化 (30)5.1.1图像灰度化 (30)5.1.2灰度直方图阀值提取及图像的二值化 (32)5.2 车牌图像边缘检测 (33)5.2.1 边缘检测概述 (33)5.2.2边缘检测方法 (33)5.3车牌定位和提取 (36)5.3.1车牌定位及提取概述 (36)5.3.2车牌定位 (36)5.3.3车牌提取 (38)5.4车牌字符分割 (39)5.4.1分割前的处理 (40)5.4.2字符分割 (41)5.5车牌字符识别 (43)5.5.1 字符归一化 (43)5.5.2字符识别 (44)5 .6 stm32软件快速开发 (45)总结与体会 (46)致谢词 (47)【参考文献】 (48)附录 (50)第1章前言1.1 基于图像的车牌识别系统的设计背景随着经济的发展,每个城市之间的交通越来越复杂,汽车越来越多,它们在给出行提供方便的同时增加了车辆管理的难度,目前人工管理的方式已经不能满足人们的需求。

毕业设计 车牌识别

毕业设计 车牌识别

毕业设计车牌识别车牌识别技术在近年来得到了广泛的应用和研究,它不仅在交通管理、安全监控等领域发挥着重要作用,还在智能驾驶、智慧城市建设等方面展现出巨大的潜力。

本文将从车牌识别技术的原理、应用场景和未来发展等方面进行探讨。

一、车牌识别技术的原理车牌识别技术主要基于计算机视觉和模式识别的理论和方法,通过对车牌图像进行处理和分析,提取出车牌上的字符信息,从而实现对车牌的自动识别。

其主要包括图像采集、图像预处理、特征提取和字符识别等步骤。

在图像采集方面,目前常用的方式是通过摄像头对车辆进行拍摄,获取车牌图像。

而随着摄像头技术的不断进步,高清晰度的图像可以更好地提供给后续处理算法使用。

在图像预处理方面,主要是对车牌图像进行灰度化、二值化、去噪等操作,以便更好地提取和分析车牌上的字符信息。

这一步骤的准确性和效率对于后续的识别结果有着重要的影响。

特征提取是车牌识别技术的核心部分,它通过对车牌图像进行形态学处理、边缘检测和轮廓提取等操作,提取出车牌上的字符特征。

这些特征可以是字符的形状、颜色、纹理等信息,通过对这些特征的分析和匹配,可以实现对车牌上的字符进行识别。

字符识别是车牌识别技术的最后一步,它主要利用机器学习和模式识别的方法,将车牌上的字符与已知的字符模板进行比对和匹配,从而得到最终的识别结果。

目前常用的字符识别算法包括基于模板匹配的方法、基于神经网络的方法和基于深度学习的方法等。

二、车牌识别技术的应用场景车牌识别技术在交通管理、安全监控等领域具有广泛的应用。

在交通管理方面,它可以实现对违章车辆的自动识别和记录,提高交通违法的查处效率;在安全监控方面,它可以用于对车辆的出入口进行监控和管理,提高安全防范的能力。

此外,车牌识别技术还可以应用于智能驾驶和智慧城市建设等领域。

在智能驾驶方面,它可以实现对车辆的自动跟踪和识别,提高自动驾驶系统的安全性和可靠性;在智慧城市建设方面,它可以用于停车场管理、道路拥堵监测等方面,提高城市交通的效率和便利性。

车牌识别毕业论文

车牌识别毕业论文

车牌识别毕业论文车牌识别毕业论文近年来,随着智能交通系统的迅猛发展,车牌识别技术成为了一个备受关注的研究领域。

车牌识别技术的应用范围广泛,不仅可以用于交通管理,还可以应用于停车场管理、车辆追踪等领域。

本篇文章将探讨车牌识别技术的原理、应用以及未来的发展趋势。

一、车牌识别技术的原理车牌识别技术主要依靠计算机视觉和模式识别的方法,通过对车牌图像的处理和分析,将车牌上的字符信息提取出来。

车牌识别的过程可以分为图像获取、预处理、字符分割和字符识别四个步骤。

首先,图像获取是车牌识别的第一步,可以通过摄像头、监控摄像头等设备获取车辆的图像。

然后,对获取到的图像进行预处理,包括灰度化、二值化、噪声去除等操作,以提高后续处理的效果。

接下来,进行字符分割,将车牌上的字符分离出来。

字符分割是车牌识别中的一个关键步骤,需要克服车牌上字符之间的相互干扰和字符形状的多样性等问题。

最后,对分割出的字符进行识别,可以使用模板匹配、神经网络等方法进行字符识别,以得到最终的车牌号码。

二、车牌识别技术的应用车牌识别技术在交通管理中有着广泛的应用。

首先,它可以用于交通违法监控,通过对车辆的车牌进行识别,可以实现对违法车辆的自动抓拍和追踪,提高交通管理的效率。

其次,车牌识别技术还可以应用于停车场管理,实现对车辆的自动进出和停车费的自动结算,方便了车主的停车体验。

此外,车牌识别技术还可以用于车辆追踪。

通过对车辆的车牌进行识别,可以实现对车辆的实时追踪和监控,有助于提高车辆的安全性和防盗能力。

三、车牌识别技术的未来发展趋势随着科技的不断进步,车牌识别技术也在不断发展。

未来,车牌识别技术将朝着以下几个方向进行发展。

首先,车牌识别技术将更加智能化。

随着人工智能技术的发展,车牌识别系统将具备更强的自学习和自适应能力,可以实现对不同类型车牌的自动识别,提高识别的准确性和稳定性。

其次,车牌识别技术将更加高效化。

未来的车牌识别系统将采用更快速、更高效的算法,实现对车牌的实时识别和处理,提高交通管理的效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科生毕业论文(设计)题目:基于数字图像处理的车牌识别设计**: ***学院: 数理与信息工程学院专业: 电子信息工程班级: 111学号:指导教师:刘纯利职称: 教授2014 年12 月24 日安徽科技学院教务处制目录摘要 ....................................................................关键词 ..................................................................1、设计目的 .............................................................2、设计原理: ............................................................3、设计步骤: ............................................................4、实行方案 .............................................................4.1. 总体实行方案:...................................................4.2. 各模块的实现:...................................................4.2.1输入待处理的原始图像: .......................................4.2.2图像的灰度化并绘制直方图: ...................................4.2.3 边缘检测....................................................4.2.4图像的腐蚀操作:............................................4.2.5平滑图像....................................................4.2.6除去二值图像的小对象 ........................................4.3车牌定位 .........................................................4.4字符的分割与识别..................................................4.4.1.车牌的再处理................................................4.4.2字符分割....................................................4.5车牌识别:........................................................5、总结: ................................................................6、致谢 .................................................................7、参考文献: ............................................................基于数字图像处理的车牌识别设计电子信息工程专业学生周金鑫指导教师刘纯利摘要:车牌识别在人类社会交通系统中担当重要角色,一个设计优良的车牌识别系统会给人们生活带来极大的方便,本文通过运用matlab和数字图像处理的一些知识简单通过图像预处理,车牌定位,字符分割,采用模板匹配法实现车牌字符的识别。

关键词:图像预处理边缘处理字符分割字符识别1、设计目的车牌识别系统主要是为了辨别所拍图片中的车牌部分,以此识别车辆。

通过车牌识别系统的设计,来实现经过我校西大门的车辆的识别。

2、设计原理:设计的原理主要如下图所示:3、设计步骤:流程图如下:4、实行方案4.1. 总体实行方案:用摄像机获取自然环境下的汽车彩色图像,将彩色图像用matlab软件处理成灰度图像并绘制直方图,然后进行边缘检测图像的腐蚀,平滑图像以及去除二值图像的小对象等操作,再进行车牌的定位和字符分割与识别最终达到识别车牌照的目的。

4.2. 各模块的实现:4.2.1输入待处理的原始图像:I=imread(‘car.jpg');imshow(I);%显示车牌的原始图片,结果如下:图4.2.1原始图像picture14.2.2图像的灰度化并绘制直方图:彩色图像的存储器所需的成本高,且减缓系统的速度执行,所以,在图像识别处理彩色图像一般都转换成灰度图像,以加快图像信息的处理速度。

从彩色图像到灰度图像的转换叫做灰度处理。

灰度直方图的横坐标代表图片的像素数,从左到右由暗到亮,灰度直方图的纵轴就表示其所占有图片的面积,峰值越低就意味着该明暗值的像素数量越少,从图4.2.2可以看出峰值最高的即为车牌区域。

I1=rgb2gray(I);%灰度处理subplot(1,2,1),imshow(I1);title('gray image');subplot(1,2,2),imhist(I1);title('灰度图直方图');%绘制灰度图和直方图显示结果图像如下:图4.2.2灰度化并绘制直方图picture24.2.3 边缘检测边缘是一定存在在两个拥有不一样灰度值的相邻的区域之间的,是灰度值不连续的一种表现,也是分割图象、纹理和形状特征提取等图像分析的基础。

本文用Roberts算子来实现边缘检测,他是一种利用局部差分算子寻找边缘的算子,Robert算子图像处理后结果边缘不是很平滑,当然还需要后续的腐蚀,平滑图像以及去除二值图像的小对象操作来提高精度。

由于阈值越小检测的边缘越丰富,结合选取的灰度图选择阈值为0.16较为合适。

用roberts算子实行边缘检测:I2=edge(I1,'roberts',0.16,'both');imshow(I2);title('roberts operator edge detection image');结果如下:图4.2.3边缘检测picture34.2.4图像的腐蚀操作:腐蚀操作就是通过不断的删除图片上的像素,将图片缩小,以此来达到去除小点状图形的效果。

se=[1;1;1];I3=imerode(I2,se);%图像腐蚀操作imshow(I3);title('corrosion image');图4.2.4图像腐蚀操作picture44.2.5平滑图像图像平滑是去掉图像中的高频信息,使图像变的模糊,噪声一般都是高频信息,平滑的过程也就意味着除去图片噪声的过程。

se=strel('rectangle',[16,16]);%建立正方形结构元素I4=imclose(I3,se);% 图像聚类和填充imshow(I4);title('smothing image');图2.5平滑图像picture54.2.6除去二值图像的小对象除去二值图像的小对象就为了去掉面积较小无关的白色区域,将车牌所在的大面积白色区域凸显出来。

I5=bwareaopen(I4,1900);% 除去聚团灰度值在1900以下的部分imshow(I5);title('remove the small objects'); %滤波后图像显示结果如下:图4.2.6除去二值图像的小对象picture64.3车牌定位自然环境下,汽车图像背景十分复杂,受光照不均匀、污渍等影响,所以在自然背景下准确的将车牌区域确定下来是整个识别过程的关键,所以先要对原图像进行大范围横向(X),纵向(Y)像素点相关搜索,找到符合汽车牌照的候选区,然后对候选区做进一步的分析,判断,最终确定一个最佳的区域作为牌照区域。

代码显示如下:[y,x,z]=size(I5);%返回I5各维的尺寸,存储在x,y,z中myI=double(I5);%将I5转换成双精度tic %tic计时开始,toc计时结束Blue_y=zeros(y,1);%产生一个y*1的零阵for i=1:yfor j=1:xif(myI(i,j,1)==1)%若myI的图像中坐标(i,j)的点值为1,则表示蓝色背景%则Blue_y(i,1)的值加1Blue_y(i,1)= Blue_y(i,1)+1;%蓝色像素点统计 endendend[temp MaxY]=max(Blue_y);%Y方向车牌区域确定% MaxY是yellow_y元素中最大值temp的索引PY1=MaxY;while ((Blue_y(PY1,1)>=5)&&(PY1>1))PY1=PY1-1;endPY2=MaxY;while ((Blue_y(PY2,1)>=5)&&(PY2<y))PY2=PY2+1;endIY=I(PY1:PY2,:,:);%行方向车牌区域确定%%%% X方向 %%%%Blue_x=zeros(1,x);%x车牌区域方向的再判断for j=1:xfor i=PY1:PY2if(myI(i,j,1)==1)Blue_x(1,j)= Blue_x(1,j)+1;endendendPX1=1;while ((Blue_x(1,PX1)<3)&&(PX1<x))PX1=PX1+1;endPX2=x;while ((Blue_x(1,PX2)<3)&&(PX2>PX1))PX2=PX2-1;endPX1=PX1-1;%车牌区域校正PX2=PX2+1;dw=I(PY1:PY2-8,PX1:PX2,:);t=toc;subplot(1,2,1),imshow(IY),title('Line direction areas');%车牌行方向区域的确定subplot(1,2,2),imshow(dw),title('positioning color images');%车牌已经定位后的区域显示如下:图4.3.1车牌的定位picture74.4字符的分割与识别4.4.1.车牌的再处理划分彩色图像需经过灰度变换,二值化,均值滤波,腐蚀和膨胀到一个字符,并对分割字符进二值化、归一化等图像预处理使车牌图像的车牌号字符分割构成隔离,然后分析识别已经分割字符识的图像并用文本的车牌号的形式呈现出来。

相关文档
最新文档