基于Matlab的数字图像处理系统毕业设计论文
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
论文(设计)题目:
基于MATLAB的数字图像处理系统设计
姓名宋立涛
学号201211867
学院信息学院
专业电子与通信工程
年级2012级
2013年6月16日
基于MATLAB的数字图像处理系统设计
摘要
MATLAB 作为国内外流行的数字计算软件,具有强大的图像处理功能,界面简洁,操作直观,容易上手,而且是图像处理系统的理想开发工具。
笔者阐述了一种基于MATLAB的数字图像处理系统设计,其中包括图像处理领域的大部分算法,运用MATLAB 的图像处理工具箱对算法进行了实现,论述了利用系统进行图像显示、图形表换及图像处理过程,系统支持索引图像、灰度图像、二值图像、RGB 图像等图像类型;支持BMP、GIF、JPEG、TIFF、PNG 等图像文件格式的读,写和显示。
上述功能均是在MA TLAB 语言的基础上,编写代码实现的。这些功能在日常生活中有很强的应用价值,对于运算量大、过程复杂、速度慢的功能,利用MATLAB 可以既能快速得到数据结果,又能得到比较直观的图示。
关键词:MATLAB 数字图像处理图像处理工具箱图像变换
第一章绪论
1.1 研究目的及意义
图像信息是人类获得外界信息的主要来源,近代科学研究、军事技术、工农业生产、医学、气象及天文学等领域中,人们越来越多地利用图像信息来认识和判断事物,解决实际问题,由此可见图像信息的重要性,数字图像处理技术将会伴随着未来信息领域技术的发展,更加深入到生产和科研活动中,成为人类生产和生活中必不可少的内容。
MATLAB 软件不断吸收各学科领域权威人士所编写的实用程序,经过多年的逐步发展与不断完善,是近几年来在国内外广泛流行的一种可视化科学计算软件。MATLAB 语言是一种面向科学与工程计算的高级语言,允许用数学形式的语言来编写程序,比Basic、Fortan、C 等高级语言更加接近我们书写计算公式的思维方式,用MATLAB 编写程序犹如在演算纸上排列出公式与求解问题一样。它编写简单、编程效率高并且通俗易懂。
1.2 国内外研究现状
1.2.1 国内研究现状
国内在此领域的研究中具有代表性的是清华大学研制的数字图像处理实验开发系统TDB-IDK 和南京东大互联技术有限公司研制的数字图像采集传输与处理实验软件。
TDB-IDK 系列产品是一款基于TMS320C6000 DSP 数字信号处理器的高级视频和图像系统,也是一套DSP 的完整的视频、图像解决方案,该系统适合院校、研究所和企业进行视频、图像方面的实验与开发。该软件能够完成图像采集输入程序、图像输出程序、图像基本算法程序。可实现对图像信号的实时分析,图像数据相对DSP独立方便开发人员对图像进行处理,该产品融合DSP 和FPGACPLD 两个高端技术,可以根据用户的具体需求合理改动,可以分析黑白和彩色信号,可以完成图形显示功能。
南京东大互联技术有限公司研制的数字图像采集传输与处理实验软件可实现数字图像的采集、传输与处理。可利用软件及图像采集与传输设备,采集图像并实现点对点的数字图像传输,可以观察理解多种图像处理技术的效果和差别,
其中包括图像的灰度直方图及其变换、锐化、平滑、滤波、伪彩、轮廓提取与增强、图像格式转换及其文件结构。
1.2.2 国外研究现状
目前大量的图像处理软件如PHOTOSHOP,PAINTSHOP等都是基于广告策划和图像修饰处理而设计的应用软件,针对图像处理技术基本知识的理解与掌握以及相关处理方法研究的软件甚少,不适合学习研究使用。随着计算机辅助设计的日益提高和成熟,用于学习与研究的软件也越来越多。如美国Southern Illinois University开发的CVIPtools计算机视觉与图像处理实验软件就是专门针对图像处理技术的实验软件,为初学者提供了一个消化理论知识的实验环境。
CVIPtools计算机视觉与图像处理实验软件,主要用于计算机数字图像分析和处理,主要宗旨是让图像处理的初学者、学生、老师和其它研究人员探索计算机数字图像处理的巨大力量。最新Windows版本的CVIPtools提供使用者四种层次应用方式:算法代码层,公共对象模块(组件)界面层,cvipimage层和图形用户界面(GUI)。最下面的阶层算法代码层主要是基于以前的版本CVIPtools ,包括所有的图像、数据处理程序和功能,是用标准C语言写的。最上的阶层为CVIPtools GUI,可以让生手实验一些图像处理的工具,而不需具备程序设计的能力。目前国外很多大学、研究院在数字图像处理的实验研究中都应用此软件。
1.3 数字图像处理研究的内容
一般的数字图像处理的主要目的集中在图像的存储和传输,提高图像的质量,改善图像的视觉效果,图像理解以及模式识别等方面。新世纪以来,信息技术取得了长足的发展和进步,小波理论、神经元理论、数字形态学以及模糊理论都与数字处理技术相结合,产生了新的图像处理方法和理论。数字图像处理技术主要包括:
1、图像增强
目前图像增强技术根据其处理的空间不同,可分为空域法和频域法两大类,前者根据在图像所在的像素空间进行处理,后者是通过对图像进行傅里叶变换后在频域上间接进行的。
2、图像恢复
图像恢复,也称为图像还原,其目的是尽可能地减少或者去除数字图像在获
取过程中的降质,恢复被退化图像的本来面貌,从而改善图像质量,以提高视觉观察效果。
3、图像变换
图像变换就是把图像从空域转换到频域,对原图像函数寻找一个合适变换的数学问题,众多图像变换方法不断出现,从傅里叶变换发展到余弦变换,再到现在非常流行的小波变换,图像变换分为可分离变换和统计变换两大类。
4、图像压缩
数字图像需要很大的存储空间,因此无论传输或存储都需要对图像数据进行有效的压缩。其目的是生成占用较少空间而获得与原图十分接近的图像
5、图像分割
图像分割的目的是把一个图像分解成它的构成成分,图像分割是一个十分困难的过程。图像分割的方法主要有 2 类:一种是假设图像各成分的强度值是均匀的,并利用这个特性,这种方法的技术有直方图分割,另外一种方法是寻找图像成分之间的边界,利用的是图像的不均匀性,基于这种方法的的技术有梯度法分割。
6、边缘检测
边缘检测技术用于检测图像中的线状局部结构。大多数的检测技术应用某种形式的梯度算子。边缘检测广泛应用于图像分割、图像分类、图像配准和模式识别,在大多数的实际应用中,边缘检测是当做一个局部滤波运算完成的。