抽 象 函 数 的 解 题 方 法
1.2.2-函数的表示法(要用)
0 x ≤5 5 x ≤10 10 x ≤15 15 x ≤20
票价 y(元)
2
3
4
5
此分段函数的定义域为 (0,20]
此分段函数的值域为 {2,3,4,5}
①自变量的范围是怎样得到的? ②自变量的范围为什么分成了四个区间?区间端点
是怎样确定的? ③每段上的函数解析式是怎样求出的?
作函数图象:
王伟 张城 赵磊 班级平均分
第一次 98 90 68 88.2
第二次 87 76 65
78.3
第三次 91 88 73 85.4
第三次 92 75 72 80.3
第五次 88 86 75 75.7
第六次 95 80 82 82.6
请你表对格这能三否直位观同地学分在析高出一三学位年同度学成的绩数高学低学? 如习何情才况能做更一好的个比分较析三。个人的成绩高低?
分段函数
2. 化简函数 y | x 5 | x2 2x 1
解:由题意知 y = | x + 5 | + | x -1 |
y
当 x ≤-5 时,
y = -( x + 5 ) -( x -1 )=-2x-4
当 -5 < x ≤ 1 时,
6
y = ( x + 5 ) -( x -1 ) = 6
一函次数函解数析:式y=一kx定+b是(方k≠程0);
可看成关于x、y的方程。
二方次程函不数一:定y=是ax函2+数bx+解c 析(式a≠。0) 例如:x2+y2=1
复习回顾
(1)炮弹发射
(解析法)
h=130t-5t2 (0≤t≤26)
(2)南极臭氧层空洞 (图象法)
压轴题型03 抽象函数问题(解析版)-2023年高考数学压轴题专项训练
压轴题03抽象函数问题抽象函数是高中数学的一个难点,也是近几年来高考的热点。
考查方法往往基于一般函数,综合考查函数的各种性质。
本节给出抽象函数中的函数性质的处理策略,供内同学们参考。
抽象函数是指只给出函数的某些性质,而未给出函数具体的解析式及图象的函数。
由于抽象函数概念抽象,性质隐而不显,技巧性强,因此学生在做有关抽象函数的题目时,往往感觉无处下手。
○热○点○题○型1定义域问题解决抽象函数的定义域问题——明确定义、等价转换。
函数的定义域是指自变量的取值范围,求抽象函数的定义域的关键是括号内式子的地位等同(即同一对应法则后括号内的式子具有相同的取值范围)。
○热○点○题○型2求值问题通过观察已知与未知的联系,巧妙地赋值,赋值法是解此类问题的常用技巧。
○热○点○题○型3值域问题○热○点○题○型4解析式问题通常情况下,给某些变量适当赋值,使之在关系中“消失”,进而保留一个变量,是实现这种转化的重要策略。
○热○点○题○型5单调性与奇偶性问题○热○点○题○型6周期性与对称性问题○热○点○题○型7几类抽象函数解法(1)求解方法:1.借鉴函数模型进行类比探究(化抽象为具体)2.赋值法(令0=x 或1,求出)0(f 或)1(f 、令x y =或x y -=等等)(2)几种抽象函数模型:1.正比例函数:)0()(≠=k kx x f ——————————)()()(y f x f y x f ±=±;2.幂函数:2)(x x f =——————————————)()()(y f x f xy f =,)()()(y f x f y x f =;注:反比例函数:1)(-=x x f 一类的抽象函数也是如此,有部分资料将幂函数模型写成反比例函数模型。
3.指数函数:x a x f =)(———————————)()()(y f x f y x f =+,)()()(y f x f y x f =-4.对数函数:x x f a log )(=————————)()()(y f x f xy f +=,)()()(y f x f yxf -=5.三角函数:x x f tan )(=————————————)()(1)()()(y f x f y f x f y x f -+=+6.余弦函数:x x f cos )(=———————)()(2)()(y f x f y x f y x f =-++一、单选题1.已知定义在()0,∞+上的函数()f x 满足()()()102f xy f x f y +--=,若一组平行线()1,2,...,i x x i n ==分别与()y f x =图象的交点为()11,x y ,()22,x y ,...,(),n n x y ,且()2121n i i x x f -+=⎡⎤⎣⎦,其中1,2,...,i n =,则1nii y n==∑A .1B .12C .2nD .2n 【答案】B【分析】令1x y ==得到()112f =;令1,n i i x x y x -+==得到()()11n i i f x f x -++=,代入计算得(6)()6f x f x +-≥,则(2016)f =A .2015B .2016C .2017D .2018【答案】D【分析】根据递推式可得(6)()6f x f x +-=,再由(2016)f =[(2016)(2010][(2010)(2004)]......[(6)(0)](0)f f f f f f f -+-++-+即可得答案.【详解】解:(2)()2,f x f x +-≤ (4)(2)2,f x f x ∴+-+≤(6)(4)2f x f x ∴+-+≤三是相加得:(6)()6f x f x +-≤,又(6)()6f x f x +-≥,则(6)()6f x f x +-=,当且仅当(2)()2f x f x +-=时等号成立,(2016)f =[(2016)(2010][(2010)(2004)]......[(6)(0)](0)f f f f f f f -+-++-+633622018=⨯+=,故选:D.3.已知定义域为R 的函数()f x 满足()31f x +是奇函数,()21f x -是偶函数,则下列结论错误的是()A .()f x 的图象关于直线=1x -对称B .()f x 的图象关于点(1,0)对称C .()31f -=D .()f x 的一个周期为8【答案】C【分析】根据()31f x +是奇函数,可得()()20f x f x +-+=,判断B;根据()21f x -是偶函数,推出()()2f x f x --=,判断A;继而可得()()4f x f x +=-,可判断D ;利用赋值法求得(1)0f =,根据对称性可判断C.【详解】由题意知()31f x +是奇函数,即()()()()3131,11f x f x f x f x -+=-+∴-+=-+,即()()2f x f x -+=-,即()()20f x f x +-+=,故()f x 的图象关于点(1,0)对称,B 结论正确;又()21f x -是偶函数,故()()()()2121,11f x f x f x f x --=-∴--=-,即()()2f x f x --=,故()f x 的图象关于直线=1x -对称,A 结论正确;由以上可知()()()22f x f x f x =--=--+,即()()22f x f x -=-+,所以()()4f x f x +=-,则()()4()8x x f f f x =-=++,故()f x 的一个周期为8,D 结论正确;由于()()3131f x f x -+=-+,令0x =,可得(1)(1),(1)0f f f =-∴=,而()f x 的图象关于直线=1x -对称,故()30f -=,C 结论错误,故选:C【点睛】方法点睛:此类抽象函数的性质的判断问题,解答时一般要注意根据函数的相关性质的定义去解答,比如奇偶性,采用整体代换的方法,往往还要结合赋值法求得特殊值,进行解决.4.已知定义在R 上的函数()f x 在(),4-∞-上是减函数,若()()4g x f x =-是奇函数,且()40g =,则不等式()0f x ≤的解集是A .(](],84,0-∞-⋃-B .[)[)8,40,--⋃+∞C .[][)8,40,--⋃+∞D .[]8,0-【答案】C【详解】∵()()4g x f x =-是奇函数,∴函数()()4g x f x =-图象的对称中心为(0,0),∴函数()f x 图象的对称中心为()4,0-.又函数()f x 在(),4-∞-上是减函数,∴函数()f x 在()4,-+∞上为减函数,且()()400f g -==.∵()()400g f ==,∴()80f -=.画出函数()f x 图象的草图(如图).结合图象可得()0f x ≤的解集是[][)8,40,--⋃+∞.选C .点睛:本题考查抽象函数的性质及利用数形结合求不等式的解集.解题时要从函数()f x 的性质入手,同时也要把函数()()4g x f x =-的性质转化为函数()f x 的性质,进一步得到函数()f x 的单调性和对称性,进而画出其图象的草图,根据图象写出不等式的解集.其中在解题中不要忘了()f x 是定义在R 上的函数,故应该有()()400f g -==这一结论,即函数()f x 的图象中要有()4,0-这一个点.5.已知函数()y f x =是定义域为R 的偶函数,当0x ≥时()()()5sin ,014211,14xx x f x x π⎧⎛⎫≤≤ ⎪⎪⎝⎭⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩,若关于x 的方程()()20f x af x b ⎡⎤++=⎣⎦有6个根,则实数a 的取值范围是()A .59,24⎛⎫-- ⎪⎝⎭B .9,14⎛⎫-- ⎪⎝⎭C .59,24⎛⎫-- ⎪⎝⎭9,14⎛⎫⋃-- ⎪⎝⎭D .5,12⎛⎫-- ⎪⎝⎭二、多选题(共0分)6.下列说法中错误的为()A .若函数()f x 的定义域为[]0,2,则函数()2f x 的定义域为[]0,1B .若(121f x =+,则()[)2243,1,f x x x x ∞=++∈+C .函数的421x x y =++值域为:1,4⎡⎫-+∞⎪⎢⎣⎭D .已知()25,1,1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩在R 上是增函数,则实数a 的取值范围是[]3,2--7.若定义在R 上的函数()f x 满足:(ⅰ)存在R a +∈,使得()0f a =;(ⅱ)存在R b ∈,使得()0f b ≠;(ⅲ)任意12,R x x ∈恒有()()()()1212122f x x f x x f x f x ++-=.则下列关于函数()f x 的叙述中正确的是()A .任意x ∈R 恒有()()4f x a f x +=B .函数()f x 是偶函数C .函数()f x 在区间[]0,a 上是减函数D .函数()f x 最大值是1,最小值是-18.已知的定义域为R ,且对任意,有1f x f y f x y ⋅=+-,且当1x >时,()1f x >,则()A .()11f =B .()f x 的图象关于点()()1,1f 中心对称C .()f x 在R 上不单调D .当1x <时,()01f x <<故选:AD9.已知定义域为()0,∞+的函数()f x 满足:①()0,x ∀∈+∞,()()55f x f x =;②当(]1,5x ∈时,()5f x x =-,则()A .105f ⎛⎫= ⎪⎝⎭B .m Z ∀∈,()30mf =C .函数()f x 的值域为[)0,∞+D .n Z ∃∈,()512019nf +=10.已知()f x 为非常值函数,若对任意实数x ,y 均有()()()1f x y f x f y +=+⋅,且当0x >时,()0f x >,则下列说法正确的有()A .()f x 为奇函数B .()f x 是()0,∞+上的增函数C .()1f x <D .()f x 是周期函数对于D:因为()f x 是()0,∞+上的增函数,又因为()f x 为奇函数且()00f =,所以()f x 是(),-∞+∞上的增函数,故()f x 不是周期函数,故D 错误.故选:ABC.11.定义在R 上的函数()f x 满足()()()312f x f x f +++=,()()24f x f x -=+,若1122f ⎛⎫= ⎪⎝⎭,则()A .()f x 是周期函数B .1(2022)2f =C .()f x 的图象关于1x =对称D .200111002k k f k =⎛⎫-=- ⎪⎝⎭∑可得())1(3f x f x +=-,从而可得()f x 是周期为4的周期函数,是解决本题的关键.12.已知函数()f x ,()g x 的定义域均为R ,其导函数分别为()f x ',()g x '.若()()32f x g x -+=,()()1f x g x ''=+,且()()20g x g x -+=,则()A .函数()2g x +为偶函数B .函数()f x 的图像关于点()2,2对称C .()202410i g n ==∑D .()202414048i f n ==-∑【答案】ACD【分析】由()()1f x g x ''=+,可设()()()1,R f x a g x b a b +=++∈,,由()()32f x g x -+=,得()()321g x a g x b --+=++,赋值1x =,则有2a b -=,即()()31g x g x -=+,函数()g x 的图像关于直线2x =对称,又()()20g x g x -+=得()()4g x g x =+,()f x 也是周期为4的函数,通过赋值可判断选项【详解】因为()()1f x g x ''=+,所以()()()1,R f x a g x b a b +=++∈.又因为()()32f x g x -+=,所以()()23f x g x +=-.于是可得()()321g x a g x b --+=++,令1x =,则()()31211g a g b --+=++,所以2a b -=.所以()()31g x g x -=+,即函数()g x 的图像关于直线2x =对称,即()()4g x g x -=+.因为()()20g x g x -+=,所以函数()g x 的图像关于点()1,0对称,即()()20g x g x ++-=,所以()()24g x g x +=-+,即()()2g x g x =-+,于是()()4g x g x =+,所以函数()g x 是周期为4的周期函数.因为函数()g x 的图像关于直线2x =对称,所以()2g x +的图像关于y 轴对称,所以()2g x +为偶函数,所以A 选项正确.将()g x 的图像作关于y 轴对称的图像可得到()y g x =-的图像,再向右平移3个单位长度,可得到()()33y g x g x =--=-⎡⎤⎣⎦的图像,再将所得图像向下平移2个单位长度,即可得到()()32g x f x --=的图像,因此函数()f x 也是周期为4的函数.又()g x 的图像关于点()1,0对称,所以()f x 的图像关于点()2,2-对称,所以B 选项不正确.因为()()20g x g x -+=,令1x =,得()()110g g +=,即()10g =,所以()()130g g ==;令0x =,得()()200g g +=,所以()()240g g +=,所以()()()()12340g g g g +++=,所以()202410i g n ==∑,所以C 选项正确.因为()()32f x g x =--,所以()()0322f g =-=-,()()2122f g =-=-,()()122f g =-,()()302f g =-,()()402f f ==-,则有()()()()()()()123422202f f f f g g +++=-+-+-()28+-=-,可得()202414048i f n ==-∑,所以D 选项正确.故选:ACD .【点睛】方法点睛:一般地,若函数的图像具有双重对称性,则一定可以得到函数具有周期性,且相邻的两条对称轴之间的距离为半个周期;相邻的两个对称中心之间的距离也是半个周期;相邻的一条对称轴和一个对称中心之间的距离为四分之一个周期.三、填空题13.下列命题中所有正确的序号是__________.①函数1()3x f x a -=+(1a >)在R 上是增函数;②函数(1)f x -的定义域是(1,3),则函数()f x 的定义域为(2,4);③已知53()8f x x ax bx =++-,且(2)8f -=,则(2)8f =-;④11()122x f x =--为奇函数.⑤函数()f x =[]0,4(3)构造奇函数求对应的函数值;(4)定义法判断函数奇偶性;(5)直接法求具体函数的值域.14.给出下列四个命题:①函数与函数表示同一个函数;②奇函数的图象一定通过直角坐标系的原点;③函数的图像可由的图像向上平移1个单位得到;④若函数的定义域为,则函数的定义域为;⑤设函数是在区间上图象连续的函数,且,则方程在区间上至少有一实根;其中正确命题的序号是_____________.(填上所有正确命题的序号)【答案】③⑤【详解】试题分析:①因为函数的定义域为R ,函数的定义域为{}|>0x x ,所以函数与函数不表示同一个函数;②奇函数的图像一定通过直角坐标系的原点,此命题错误,若奇函数在x=0处没定义,则奇函数的图像就不过原点;③函数的图像可由的图像向上平移1个单位得到;,正确.④因为函数的定义域为,所以0<2<2,0<x<1x 即,所以函数的定义域为[0,1];⑤设函数是在区间上图象连续的函数,且,则方程在区间上至少有一实根,正确.考点:函数的定义;奇函数的性质;图像的变换;抽象函数的定义域;函数零点存在性定理.点评:此题考查的知识点较多,较为综合,属于中档题.抽象函数的有关问题对同学们来说具有一定的难度,特别是求函数的定义域,很多同学解答起来总感棘手,鉴于此,我们在学习时要善于总结.①已知的定义域求的定义域,其解法是:若的定义域为,则在中,,从中解得x 的取值范围即为的定义域;②已知的定义域,求的定义域,其解法是:若的定义域为,则由确定的的范围即为的定义域.15.已知函数()241f x x -+-的定义域为[]0,m ,则可求得函数()21f x -的定义域为[]0,2,求实数m 的取值范围__________.【答案】[]24,【详解】 函数()21f x -的定义域为[]0,2,02,1213x x ∴≤≤∴-≤-≤,令241t x x =-+-,则13t -≤≤,由题意知,当[]0,x m ∈时,[]1,3t ∈-,作出函数241t x x =-+-的图象,如图所示,由图可得,当0x =或4x =时,1t =-,当2x =时,3,24t m =∴≤≤,时[]1,3t ∈-,∴实数m 的取值范围是24m ≤≤,故答案为24m ≤≤.16.给出下列说法:①集合{}1,2,3A =,则它的真子集有8个;②2(),((0,1))f x x x x=+∈的值域为(3,)+∞;③若函数()f x 的定义域为[0,2],则函数(2)()2f xg x x =-的定义域为[)0,2;④函数()f x 的定义在R 上的奇函数,当0x >时,()1f x x =-+,则当0x <时,()1f x x =-⑤设53()=5f x ax bx cx +++(其中,,a b c 为常数,x R ∈),若(2012)3f -=-,则(2012)13f =;其中正确的是_______(只写序号).【答案】②⑤【详解】试题分析:①集合{1,2,3}A =,则它的真子集有个;③由函数()f x 的定义域为[0,2]得:,解得;④设,则,所以,又因为()f x 是定义在R 上的奇函数,所以()f x =-;⑤设g(x)=,则g(x)是奇函数且()f x =g(x)+5,因为(2012)3f -=-,所以,所以.考点:本题考查真子集的性质、抽象函数的定义域、函数的奇偶性.点评:此题主要考查集合子集个数的计算公式、函数的奇偶性和抽象函数定义域的求法,是一道基础题,若一个集合的元素个数为n ,则其子集的个数为2n ,真子集的个数为2n -1个.17.函数()f x 满足()11f x f x ⎛⎫= ⎪+⎝⎭对任意[)0,x ∈+∞都成立,其值域是f A ,已知对任何满足上述条件的()f x 都有(){},0f y y f x x a A =≤≤=,则a 的取值范围为___________.18.对任意集合M ,定义()0,M f x x M⎧=⎨∉⎩,已知集合S 、T X ⊆,则对任意的x X ∈,下列命题中真命题的序号是________.(1)若S T ⊆,则()()S T f x f x ≤;(2)()1()X S S f x f x =-ð;(3)()()()S T S T f x f x f x =⋅ ;(4)()()1()[2S S T T f x f x f x ++= (其中符合[]a 表示不大于a 的最大正数)19.设()1f x -为()cos 488f x x x ππ=-+,[]0,x π∈的反函数,则()()1y f x f x -=+的最大值为_________.R ,对任意的都有且当0x ≥时,则不等式()0xf x <的解集为__________.【答案】(2,0)(0,2)- 【详解】当0x ≥时,由()220f x x x =->,得2x >;由()220f x x x =-<,得02x <<.∵()()f x f x -=-,∴函数()f x 为奇函数.∴当0x <时,由()220f x x x =->,得20x -<<;由()220f x x x =-<,得2x <-.不等式()0xf x <等价于()00x f x >⎧⎨<⎩或()00x f x <⎧⎨>⎩,解得02x <<或20x -<<.∴不等式()0xf x <的解集为()()2,00,2-⋃.答案:()()2,00,2-⋃21.已知函数21,0()21,0,x x f x x x x +≤⎧=⎨-+>⎩若关于x 的方程2()()0f x af x -=恰有5个不同的实数解,则实数a 的取值范围是_____.【答案】01a <<【分析】采用数形结合的方法,由2()()0f x af x -=确定有两个解()0f x =或()f x a =,在通过图象确定a 的范围.【详解】由2()()0f x af x -=得()0f x =或()f x a =,如图,作出函数()f x 的图象,由函数图象,可知()0f x =的解有两个,故要使条件成立,则方程()f x a =的解必有三个,此时0<a <1.所以a 的取值范围是(0,1).故答案为:01a <<.22.已知函数()f x 满足1(1)()f x f x +=-,且()f x 是偶函数,当[1,0]x ∈-时,2()f x x =,若在区间[1,3]-内,函数()()log (2)a g x f x x =-+有个零点,则实数a 的取值范围是______________.【答案】所以可得132a log ≥+(),∴实数a 的取值范围是[5+∞,).故答案为[5+∞,).考点:函数的周期性的应用,函数的零点与方程的根的关系【名师点睛】本题主要考查函数的周期性的应用,函数的零点与方程的根的关系,体现了转化的数学思想,属于基础题.四、双空题23.设函数()f x 是定义在整数集Z 上的函数,且满足()01f =,()10f =,对任意的x ,y ∈Z 都有()()()()2f x y f x y f x f y ++-=,则()3f =______;()()()()22222122023122023f f f f 2++⋅⋅⋅+=++⋅⋅⋅+______.五、解答题24.已知()f x 定义域为R 的函数,S ⊆R ,若对任意1212,,x x x x S ∈-∈R ,均有()()12f x f x S -∈,则称()f x 是S 关联.(1)判断函数()()12112f x xg x x =-=-、是否是[)1,+∞关联,并说明理由:(2)若()f x 是{}2关联,当[)0,2x ∈时,()2f x x x =-,解不等式:()02f x ≤≤;(3)判断“()f x 是{}2关联”是“()f x 是[]1,2关联”的什么条件?试证明你的结论.25.设函数(),f x x x M=⎨-∈⎩其中P ,M 是非空数集.记f (P )={y |y =f (x ),x ∈P },f (M )={y |y =f (x ),x ∈M }.(Ⅰ)若P=[0,3],M=(﹣∞,﹣1),求f(P)∪f(M);(Ⅱ)若P∩M=∅,且f(x)是定义在R上的增函数,求集合P,M;(Ⅲ)判断命题“若P∪M≠R,则f(P)∪f(M)≠R”的真假,并加以证明.【答案】(Ⅰ)[0,+∞);(Ⅱ)P=(﹣∞,0)∪(0,+∞),M={0};(Ⅲ)真命题,证明见解析【解析】(Ⅰ)求出f(P)=[0,3],f(M)=(1,+∞),由此能过求出f(P)∪f(M).(Ⅱ)由f(x)是定义在R上的增函数,且f(0)=0,得到当x<0时,f(x)<0,(﹣∞,0)⊆P.同理可证(0,+∞)⊆P.由此能求出P,M.(Ⅲ)假设存在非空数集P,M,且P∪M≠R,但f(P)∪f(M)=R.证明0∈P∪M.推导出f(﹣x0)=﹣x0,且f(﹣x0)=﹣(﹣x0)=x0,由此能证明命题“若P∪M≠R,则f(P)∪f(M)≠R”是真命题.【详解】(Ⅰ)因为P=[0,3],M=(﹣∞,﹣1),所以f(P)=[0,3],f(M)=(1,+∞),所以f(P)∪f(M)=[0,+∞).(Ⅱ)因为f(x)是定义在R上的增函数,且f(0)=0,所以当x<0时,f(x)<0,所以(﹣∞,0)⊆P.同理可证(0,+∞)⊆P.因为P∩M=∅,所以P=(﹣∞,0)∪(0,+∞),M={0}.(Ⅲ)该命题为真命题.证明如下:假设存在非空数集P,M,且P∪M≠R,但f(P)∪f(M)=R.首先证明0∈P∪M.否则,若0∉P∪M,则0∉P,且0∉M,则0∉f(P),且0∉f(M),即0∉f(P)∪f(M),这与f(P)∪f(M)=R矛盾.若∃x0∉P∪M,且x0≠0,则x0∉P,且x0∉M,所以x0∉f(P),且﹣x0∉f(M).因为f(P)∪f(M)=R,所以﹣x0∈f(P),且x0∈f(M).所以﹣x0∈P,且﹣x0∈M.所以f(-x0)=﹣x0,且f(-x0)=﹣(﹣x0)=x0,根据函数的定义,必有﹣x0=x0,即x0=0,这与x0≠0矛盾.综上,该命题为真命题.【点睛】本题考查函数新定义问题,考查学生的创新意识,考查命题真假的判断与证明,考查并集定义等基础知识,考查运算求解能力,是中档题.26.已知()f x 是定义在[]1,1-上的奇函数,且(1)1f =.若对任意的[],1,1m n ∈-,0m n +≠都有()()0f m f n m n+>+.(1)用函数单调性的定义证明:()f x 在定义域上为增函数;(2)若()()214f a f a +>,求a 的取值范围;(3)若不等式()()122f x a t ≤-+对所有的[]1,1x ∈-和[]1,1a ∈-都恒成立,求实数t 的取值范围.于难题.根据抽象函数的单调性解不等式应注意以下三点:(1)一定注意抽象函数的定义域(这一点是同学们容易疏忽的地方,不能掉以轻心);(2)注意应用函数的奇偶性(往往需要先证明是奇函数还是偶函数);(3)化成()()()()f g x f h x ≥后再利用单调性和定义域列不等式组.27.已知函数()f x ,若存在非零实数a 、b ,使得对定义域内任意的x ,均有()f x a +=()f x b +成立,则称该函数()f x 为阶梯周期函数.(1)判断函数()[]|sin |()f x x x x π=+∈R 是否为阶梯周期函数,请说明理由.(其中[]x 表示不超过x 的最大整数,例如:[3,5]4-=-,[2,1]2=)(2)已知函数()g x ,x ∈R 的图像既关于点(1,0)对称,又关于点(3,2)对称.①求证:函数()g x 为阶梯周期函数;②当[0,4]x ∈时,()[,]g x p q ∈(p 、q 为实数),求函数()g x 的值域.【答案】(1)是,理由见解析;(2)①证明见解析;②[4,4]n p n q ++,n ∈Z .【解析】(1)根据阶梯周期函数的定义求解判断.(2)①根据函数()g x 的图像既关于点(1,0)对称,又关于点(3,2)对称,得到()()()()2064g x g x g x g x ⎧-++=⎪⎨-++=⎪⎩求解.②根据①的结论,分[]()4,44,x n n n N ∈+∈和[]()4,44,x n n n N ∈--+∈两种情况讨论求解.【详解】(1)因为()()(1)[1]|sin 1|[]1|sin |1f x x x x x f x ππ+=+++=++=+,所以存在1,1a b ==,使得函数()f x 为阶梯周期函数(2)①因为函数()g x 的图像既关于点(1,0)对称,又关于点(3,2)对称,所以()()()()2064g x g x g x g x ⎧-++=⎪⎨-++=⎪⎩,两式相减得:()()624g x g x +-+=,即()()44g x g x +=+所以函数()g x 为阶梯周期函数;②当[]()4,44,x n n n N ∈+∈时,[]40,4x n -∈,由()()44g x g x +=+,得()()()444242...g x g x g x =-+=-⨯+⨯=()[]()444,4g x n n n p n q n N =-+∈++∈,当[]()4,44,x n n n N ∈--+∈时,[]40,4x n +∈,由()()44g x g x +=+,得()()()444242...g x g x g x =+-=+⨯-⨯=()[]()444,4g x n n n p n q n N =+-∈-+-+∈,综上:函数()g x 的值域是[4,4]n p n q ++n ∈Z .【点睛】关键点点睛:本题关键是阶梯周期函数定义的理解以及()f x 若关于点(),a b 对称,则()()22f x f a x b -++=结合应用.28.已知函数()f x 对于任意的,x y ∈R ,都有()()()f x y f x f y +=+,当0x >时,()0f x <,且1(1)2f =-.(1)求(0)f ,(1)f -的值;(2)当34x -≤≤时,求函数()f x 的最大值和最小值;(3)设函数2()()3()g x f x m f x =--,判断函数g (x )最多有几个零点,并求出此时实数m的取值范围.29.已知函数,如果存在给定的实数对,使得恒成立,则称()f x 为“S -函数”.(1)判断函数()1f x x =,()23xf x =是否是“S -函数”;(2)若()3tan f x x =是一个“S -函数”,求出所有满足条件的有序实数对(),a b ;(3)若定义域为R 的函数()f x 是“S -函数”,且存在满足条件的有序实数对()0,1和()1,4,当[]0,1x ∈时,()f x 的值域为[]1,2,求当[]2018,2018x ∈-时函数()f x 的值域.1(1)3f =-.(1)求证()f x 是奇函数;(2)求()f x 在区间[3,3]-上的最大值和最小值.【答案】(1)详见解析;(2)最小值-1,最大值1.【分析】(1)利用赋值法,令0x =,0y =代入函数式,可求得(0)f ,再令y x =-代入函数式,即可31.已知函数的定义域为,且同时满足①13f =;②2f x ≥恒成立,③若12120,0,1x x x x ≥≥+≤,则有()()()12122f x x f x f x ++-≥.(1)试求函数()f x 的最大值和最小值;(2)试比较f (12n)与122n +(n ∈N )的大小.(3)某人发现:当12nx =(n ∈N )时,有()22f x x <+,由此他提出猜想:对一切x ∈(0,1],都有()22f x x <+,请你判断此猜想是否正确,并说明理由.32.已知,1,2,n 是定义在M 上的一系列函数,满足:()1f x x =,()()11i i x f x f i x ++-⎛⎫== ⎪⎝⎭N .(1)求()()()234,,f x f x f x 的解析式;(2)若()g x 为定义在M 上的函数,且()11x g x g x x -⎛⎫+=+ ⎪⎝⎭.①求()g x 的解析式;②若方程()()()()222121318420x m x x g x x x x x ---++++++=有且仅有一个实根,求实数m 的取值范围.都有()()f x s f x s +-=,则称()y f x =是S -关联的.(1)判断函数2y x =和函数[]y x =是否是{1}-关联的,无需说明理由.([]x 表示不超过x 的最大整数)(2)若函数()y f x =是{2}-关联的,且在[0,2)上,()2x f x =,解不等式2()4f x <<.(3)已知正实数,a b 满足a b <,且函数()y f x =是[,]a b -关联的,求()f x 的解析式.【答案】(1)函数2y x =不是{1}-关联的,函数[]y x =是{1}-关联的;(2)(1,3)x ∈(3)()f x x C=+【分析】(1)根据()y f x =是S -关联的定义逐个判断可得结果;(2)根据函数()y f x =是{2}-关联的定义求出()f x 在[2,4)上的解析式,将()f x 代入2()4f x <<可解得结果;(3)根据()()f x t f x t +-=,得()()()f x t x t f x x +-+=-,令()()g x f x x =-,得()()g x t g x +=34.已知定义域为的函数y f x =满足:①对0,x ∈+∞,恒有22f x f x =;②当(]1,2x ∈时,()2f x x =-.(1)求18f ⎛⎫⎪⎝⎭的值;(2)求出当(12,2n n x +⎤∈⎦,Z n ∈时的函数解析式;(3)求出方程()12f x x =在(]0,100x ∈中所有解的和.【答案】(1)0;35.f(x)=x3+2ax2+bx+a,g(x)=x2﹣3x+2,其中x∈R,a、b为常数,已知曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l.(Ⅰ)求a、b的值,并写出切线l的方程;(Ⅱ)若方程f(x)+g(x)=mx有三个互不相同的实根0、x1、x2,其中x1<x2,且对任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,求实数m的取值范围.【答案】(Ⅰ)x﹣y﹣2=0(Ⅱ)(﹣,0)【详解】试题分析:(I)利用曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l,可得f(2)=g(2)=0,f'(2)=g'(2)=1.即为关于a、b的方程,解方程即可.(II)把方程f(x)+g(x)=mx有三个互不相同的实根转化为x1,x2是x2﹣3x+2﹣m=0的两相异实根.求出实数m的取值范围以及x1,x2与实数m的关系,再把f(x)+g(x)<m(x ﹣1)恒成立问题转化为求函数f(x)+g(x)﹣mx在x∈[x1,x2]上的最大值,综合在一起即可求出实数m的取值范围.解:(I)f'(x)=3x2+4ax+b,g'(x)=2x﹣3.由于曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l.故有f(2)=g(2)=0,f'(2)=g'(2)=1.由此得,解得,所以a=﹣2,b=5..切线的方程为x﹣y﹣2=0.(II)由(I)得f(x)=x3﹣4x2+5x﹣2,所以f(x)+g(x)=x3﹣3x2+2x.依题意,方程x(x2﹣3x+2﹣m)=0,有三个互不相等的实根0,x1,x2,故x1,x2是x2﹣3x+2﹣m=0的两相异实根.所以△=9﹣4(2﹣m)>0,解得m>﹣.又对任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,特别地取x=x1时,f(x1)+g(x1)<m(x1﹣1)成立,得m<0.由韦达定理得x1+x2=3>0,x1x2=2﹣m>0.故0<x1<x2.对任意的x∈[x1,x2],x﹣x2≤0,x﹣x1≥0,x>0.则f(x)+g(x)﹣mx=x(x﹣x1)(x﹣x2)≤0,又f(x1)+g(x1)﹣mx1=0.所以f(x)+g(x)﹣mx在x∈[x1,x2]上的最大值为0.于是当m<0,对任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,综上得:实数m的取值范围是(﹣,0).点评:本题主要考查函数,导数,不等式等基础知识,同时考查综合运用数学知识进行推理论证的能立,以及函数与方程和特殊与一般的思想.。
初中数学常见计算错误的解析及处理方法
教育观察初中数学常见计算错误的解析及处理方法高洁本文立足于中学生数学学习中出现的计算问题,对普遍现象及问题进行具体分析。
根据教学经验和长期积累、观察,我搜集了学生在数学运算中常见的问题及错误现象,总结过后,将主要从以下四个方面进行详细论述,探究问题产生的原因,并在此基础上提出教改措施,通过理论分析反映一定的实践效果,并最终提出解决该类问题的方法,帮助学生解决特定类型中计算方法不扎实的弊病。
1 常见的计算错误及分析1.1 代数运算——“概念混淆,运用不当”对于代数运算,应该说是每位学生从刚接触数学起便不断在反复练习的计算内容,是所有数学应用的基础。
中学的代数式,归根结底,即为研究实数和复数,以及以它们为系数的多项式的代数运算理论和方法的数学分支。
而对有理数、无理数、整式、分式等的区分,还是需要以概念作为落脚点。
在教学过程中,不难发现,教材的灵活性对能力较强的学生而言是如鱼得水,而对能力偏弱的学生来说则是一头雾水。
以有理数的减法及代数和为例,在有理数的减法中,10-3被看成是一道减法题,3之前的符号的含义是两个数相减的意思;但学到代数和,学生又被灌输新的概念:10-3看成10+(-3)的意思,因此这里3前面的符号应该看作是“负号”,而绝非“减号”了。
这样,对于数学思维强、吸收速度快的学生来说,是举一反三,能够透过现象看本质,但对于学习能力薄弱的学生而言,对概念的把握没有前者如此清晰,这种理解上的偏差很容易导致做题时“想太多”,不知应该是“减号”还是“负号”了。
再比如,平方和和平方差公式。
两者虽一字之差,结果却是千差万别,在做题中,如果没有对二者清楚的记忆和理解,写错、写反都是常有的情况。
1.2 方程运算——“系数、符号是难题”对于方程类的题目而言,最重要的是解题思路,但除此以外,计算同样是解题的关键。
不论是一元一次方程还是二元一次方程,重要的都是要将“元”解出来。
但是,这其中涉及到了许多解方程的便捷方法,甚至隐藏着许多计算陷阱。
高中数学题型方法图
基本不等式实际是对勾函数的特例,可以考虑利用对勾实际应用题考虑解析式有意义且考虑实际问题有意义解析式表示的斜率、截距、距离等几何意义一般适用含有绝对值的函数6种基本函数及其加减形式形如f[g(x)]确定函数的定义域.将复合函数分解成基本初等函数y =f(u),u =g(x).分别确定这两个函数的单调区间.如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,对称轴是两个横坐标的中点对称中心为函数对称两点的中点,可以利用中点坐标如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有奇偶性的判断利用奇偶性求解析式负数和零没有对数含义分数指数幂的意义是解决根式与分数指数幂互化0的正分数指数幂等于0,0的负分数指数幂没有意义注意:(1)要求指数的底数都大于0(2)有理数指数幂的运算性质也适用于无理数指数幂幂函数判断定义域利用幂函数的特征及性质列式根据求定义域法则列式(1)指数的底数大于0且不等于1定义辨析根据3个1和底数范围列式解不等式将两个函数值放两边,再根据单调性比大小,若f 前有负号借助所有与角α终边相同的角,连同角α在内,可构成一个集合特征解法分式或等式,弦的次数相同奇变偶不变,符号看象限求含有绝对值符号的三角函数的周期时可画出函数的图象,通过观察图象得出周期(1)根据函数定义域求解法则列不等式组(2)根据三角函数线或者三角函数图像解不等式公式法利用二倍角、两角和差、辅助角公式进行化简已知两角和一边已知两边一对应角已知三角求边已知两边一角求边A +∠B +∠C =π在三角形中大边对大角,大角对大边中项性质中项分母可拆成偶数个因式因式相乘裂项后通分过程的总结,除了k为指数函数指数相同前面系数差(1)两式相减时最后一项因为没有对应项而忘记变号.(2)对相减后的和式的结构认识模糊,错把中间的n-前n项和与项、项数的关系一个数列的前n项和中,可两两结合求解,则称之为并项求和“在”曲线上一点处的切线,该点为切点函数在某个区间存在单调区间可转化为不等式有解问题极小值点:左减右增如果平面外一条直线与此平面内的一条直线平行,如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行如果一条直线与一个平面内的两条相交直线垂直,那么该直线与平面垂直[0,π]l⊥α,l⊥b⊄α⊥β两个平面垂直,如果一个平面内的有一直线垂直与这两个平面的交线,那么这条直线与另一个平面垂直若一条直线垂直于一个平面,则这条直线垂直于这个平面内若两条平行线中的一条垂直于一个平面,则另一条也垂直于垂直于同一条直线的两个平面平行空集的性质:是任何集合的子集,任何非空集合的真子集集合为不等式画数轴、点集数形结合、抽象集合用韦恩图明确集合中的元素是什么,例如数集、点集等解题常用思路用语言、符号或式子表达可以判断真假的陈述句叫做命题.①两个命题互为逆否命题,它们具有相同的真假性.对于不等式,小范围可以推出大范围,大范围推不出小范围命题的否定”与“否命题”的区别口诀:p∨q见真即真,p∧q见假即假,p与非p真假相反①先分类再分步②有无特殊条件的限制;③检验是否有重复或遗漏特殊优先法优先安排特殊元素或特殊位置1.并(和)事件包含三种情况:①事件A 发生,事件B 不发生;②事件A 不发生,事件B 发生;③事件A ,B 都发生.即事件A ,B 至少有一个发生.2.互斥事件具体包括三种不同的情形:①事件A 发生且事件B 不发生;曲线与x 轴之间的面积为1若Y =aX +b ,其中a ,b 为常数,X 是随机变量,①Y 也是随机变量;随机变量的方差和标准差都反映了随机变量的取值偏离于均任何事件的条件概率都在0和1之间“X 与Y 有关系”这种推断犯错误的概率不超过α;否则,就认为在犯错误的概率不超过α的前提下不能推特殊方程平行相交重合标准方程一般方程平面内与定点的距离等于定长的点的集合(轨迹)(x -a)2+(y -b)2=r 2(r >0)圆心:(a ,b),半径: rx 2+y 2+Dx +Ey +F =0,(D 2+E 2-4F >0)(1)当D 2+E 2-4F =0时,方程表示一个点;(2)当D 2+E 2-4F <0时,方程不表示任何图形.,y 1),B(x 2,y 2)为直径端点的圆的方程为1)(x -x 2)+(y -y 1)(y -y 2)=0.相交相交线直线方程:两个圆方程相减平面内与两个定点F 1,F 2的距离的和等于常数2a(2a >|F 1F 2|=2c)的动点P 的轨迹叫做椭圆,这两个定点F 1,F 2叫做椭圆的离心率表示椭圆的扁平程度.当e 越接近于1时,c 越接近于a ,从而b =越小,因此椭圆越扁.中点弦相关问题是椭圆双曲线上不同的三点,A 、B 关于原点对称根据题意列式,算出某点的横坐标或纵坐标为一个常数从要证明的结论出发,逐步寻求使它成立的充分条件,直至三种表示代数式z=a+bi点(a,b)向量OZ。
解决抽象函数问题的常用方法
解决抽象函数问题的常用方法一、赋值法观察与分析抽象函数问题中的已知与未知的关系,巧妙地对一般变量赋予特殊值,或把函数赋予特殊函数等,从而达到解决问题的目的,这是常用的方法 1、赋特殊值例 1. 设函数)0x R x )(x (f y ≠∈=且,对任意实数1x 、2x 满足)x x (f )x (f )x (f 2121=+。
(1)求证:0)1(f )1(f =-=; (2)求证:)x (f y =为偶函数;(3)已知)x (f y =在),0(+∞上为增函数,解不等式0)21x (f )x (f <-+。
证明:(1)令1x x 21==,得)11(f )1(f )1(f ⨯=+,故0)1(f =;令1x x 21-==,得0)1(f )]1()1[(f )1(f )1(f ==-⨯-=-+-,故0)1(f =-。
(2)令x x x 21==,得)x (f )x (f 22=;令x x x 21-==,得)x (f )x (f 22=-,所以)x (f )x (f =-,即)x (f y =为偶函数。
(3)0)21x (f )x (f <-+,即)1(f )]21x (x [f <-,或)1(f )]21x (x [f -<-,由(2)和)x (f y =在),0(+∞上为增函数,可得0)21x (x 11)21x (x 0<-<-<-<或,解得4171x 4171+<<-且21,0x ≠。
2、赋特殊函数例2. 对于任意的函数)x (f y =,在同一个直角坐标系中,函数)1x (f y -=与函数)x 1(f y -=的图像恒( )(A )关于x 轴对称 (B )关于直线1x =对称(C )关于直线1x -=对称(D )关于y 轴对称解:取函数2x )x (f =,则22)x 1()x 1(f y ,)1x ()1x (f y -=-=-=-=,这两个函数是同一个函数,它们的对称轴为1x =,故选(B )。
求函数解析式的几种思路
2 1+ 一 = f +身 (
’
.
。
求 g ) 。 ( ]
) =
。
解’ + ) 2 1( { 2 : {: + : + ) , . ’ 一
・
.
.
- = 厂 ( )
2 。
5特殊值法 . 例7 设 ) 是定义在 Ⅳ上的函数 , 足 厂1 满 ()
一
设 ) :戤 +C a ) + ( ≠0 , 贝 ( 一2 =0 一2 +b 一2 +c 0厂 ) ( ) ( ) = +( 一 a +( a一2 b 4 ) 4 b+c 。 ) 又 厂 一2 =2 9 ( ) x 一 x+1 , 3 比较 系 数 得 r 口:2 , r a=2 ,
( )高 高
,
+} :+ 一) ( 1 — 1( 1+£ ) 一:
t一t ,- ( = 一 +1 +1 ., ) . 。
4 消 去法 .
I。 )
‘
例 6 若
析式 。
) 羔 ) + , 厂 ) 十 :1 求 ( 的解 () 1
一
解 :. ) 一5 +6 .f +1 .( + 1 。 ‘ / : ,‘ ( . )- 7 ) 5 +1 + ~3 2 ( ) 6: x+ 。
I配 凑 法 .
1 1 '
) , 一 1 ) + ( =
。
() 2
代替( ) 中的 得 1式
,一 (
) ) - + =x 2
。
() 3
() 3 一() 得 1 +() 2 ,
例 3 设
1
,
+ ) 2 , +- = + = + ( L) 3
“ ”
【 c:3 。
厂 ( =2 2 +3 ) x 一 。 3 换 元 法 .
抽象函数解题点滴
f一 )f一 T 的大小 。解 : (4 、 叮 ) ( 由函数 fx 的最小正 周期为 ()
2 可 分 别 得 f 一 g 2=( )f14_( )f一 )f , (l )f 1=(+ )f5 ,(4 - o
丁
Cf 1) i f1 . : ( ) (
Df一 )f ) (x . x <0 (
【 教法研究】
抽 象函数解题 点滴
韦绍龙 ( 广西壮族 自治 区南丹县 高级 中学 , 广西
摘要 : 中数学抽 象函数解题策略 高
关键词 : 象函数 ; 抽 解析 ; 策略
南丹
57 0 ) 4 2 0
引言
令 x y -=1
=
,
人 的逻辑思 维总是抽象 的思维 ,但是数 学 的抽象 有 自己的特征 , 同一事 物 , 同思 维特征 的人 , 以 对 不 可 从不 同的角度 提出互 不相同的问题 。 而进行数学抽象 , 可以对 照 自己头脑 中的数学模 型 ,也 可 以提 出新 的问 题 。顾 名思义 , 抽象 函数不 是一种具 体形态 的函数 , 对 这一类 的题 目, 要依据 已知提供有关 函数 的一般 特征 , 结合 问题的需要 , 抽象 出问题 的实质 或将 问题 特征化 , 从 而获 得问题 的解决思路 。以下从不 同的角度对 高 中 常见 的一些抽象 函数进行点滴解析 。
成立 。选 D。 二、 利用 函数 的性质
1 . 函数 的定 义域 。 利用 例 4若 函数 f3 2 ) . (— x 的定义 域为 [ 12 , 函数 f 一 ,] 则 () x 的定义域为 ( ) .
、
赋值法
例 1 . 设定 义 在实 数集 R上 的函数 fx 对任 意 的 ()
高考微专题三 构造法解导数问题
答案:(-1,0)∪(0,1)
方法点晴
(1)由于[xf(x)]′=f(x)+xf′(x),[ f x ]′= xf x f x ,后者导数的符号与
x
x2
xf′(x)-f(x)一致.在含有 xf′(x)±f(x)类问题中,可以考虑构造上述函数. (2)F(x)=xnf(x),F′(x)=nxn-1f(x)+xnf′(x)=xn-1[nf(x)+xf′(x)];
sin x
sin2 x
tan x-f(x)符号相同.在含有 f(x)±f′(x)tan x 的问题中,可以考虑构造函数
f(x)sin x,f(x)cos x, f x , f x 等.
sin x cos x
技巧五 构造具体函数解析式 【例 6】 若α ,β ∈[- π , π ],且α sin α -β sin β >0,则下列结论正确的是( )
技巧三 含xf′(x)±nf(x)类
【例3】 f(x)是定义在R上的偶函数,当x<0时,f(x)+xf′(x)<0,且f(-4)=0,则
不等式xf(x)>0的解集为
.
解析:构造F(x)=xf(x),则F′(x)=f(x)+xf′(x),当x<0时,f(x)+xf′(x)<0, 可以推出x<0,F′(x)<0,F(x)在(-∞,0)上单调递减. 因为f(x)为偶函数,y=x为奇函数,所以F(x)为奇函数, 所以F(x)在(0,+∞)上也单调递减.根据f(-4)=0可得F(-4)=0,根据函数的单调 性、奇偶性可得函数图象,根据图象可知xf(x)>0的解集为(-∞,-4)∪(0,4). 答案:(-∞,-4)∪(0,4)
常见的几个抽象函数问题及其求解策略
常见的几个抽象函数问题及其求解策略杜红全(甘肃省康县教育局教研室㊀746500)摘㊀要:抽象函数问题是高中数学的一个重点问题ꎬ也是一个难点问题ꎬ对初学者来说有一定困难.本文举例说明抽象函数问题的求解策略:赋值法ꎬ转化法ꎬ迭代法ꎬ性质法ꎬ定义法ꎬ换元法等.关键词:常见ꎻ抽象函数ꎻ问题ꎻ求解策略中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2020)19-0002-03收稿日期:2020-04-05作者简介:杜红全(1969.9-)ꎬ男ꎬ甘肃省康县人ꎬ中学高级教师ꎬ从事高中数学教学研究.㊀㊀抽象函数是相对个体的函数而言的ꎬ是指没有给出具体的函数解析式或对应关系ꎬ只是给出函数所满足的一些条件或性质的一类函数.抽象函数问题一般是由所给的条件或性质ꎬ讨论函数的其他性质ꎬ下面举例说明.㊀㊀一㊁根据条件等式求解析式例1㊀已知3f(x)+2f(-x)=x+3ꎬ求f(x).分析㊀xꎬ-x同时使得f(x)有意义ꎬ用-x代替x建立关于f(x)ꎬf(-x)的两个方程即可求得f(x).解㊀因为3f(x)+2f(-x)=x+3ꎬ㊀①用-x代替xꎬ得3f(-x)+2f(x)=-x+3.㊀②联立①②解得f(x)=x+35.点评㊀求解本题的策略是利用方程消元法ꎬ所谓方程消元法就是指利用方程组通过消参㊁消元的途径达到求函数解析式的目的.㊀㊀二㊁求抽象函数的值例2㊀已知f(x)对于任意实数xɪR+ꎬ都有f(x1 x1)=f(x1)+f(x2)ꎬ且f(8)=3ꎬ求f(2)的值.分析㊀根据已知条件f(x1 x1)=f(x1)+f(x2)ꎬ寻找f(8)与f(2)之间的关系.解㊀因为f(8)=f(2ˑ4)=f(2)+f(2ˑ2)=3f(2)=3f(2ˑ2)=6f(2)ꎬ所以f(8)=6f(2)=3ꎬ所以f(2)=12.点评㊀本题求值策略是利用迭代法.求抽象函数的值还有赋值法㊁代换法等.㊀㊀三㊁求抽象函数的定义域例3㊀已知函数f(x+1)的定义域为[-2ꎬ3]ꎬ求函数f(2+1x)的定义域.分析㊀由f(x+1)的定义域求f(x)的定义域ꎬ然后由f(x)的定义域求出f(2+1x)的定义域ꎻ要注意函数f(x+1)ꎬf(x)ꎬf(2+1x)中的x并不是同一个量ꎬ当f(x)的定义域为[-1ꎬ4]时ꎬf(x+1)与f(2+1x)分别是中间变量(x+1)和(2+1x)的函数ꎬf(2+1x)的定义域由中间变量(2+1x)ɪ[-1ꎬ4]求得.解㊀由题意知-2ɤxɤ3ꎬ则-1ɤx+1ɤ4ꎬ所以f(x)的定义域为[-1ꎬ4].由-1ɤ2+1xɤ4得-3ɤ1xɤ2ꎬ则有0<1xɤ2ꎬ或-3ɤ1x<0ꎬ解得x的取值范围是xȡ12或xɤ-13.所以函数f(2+1x)的定义域为(-¥ꎬ-13]ɣ[12ꎬ+¥).点评㊀求抽象函数的定义域的策略是利用函数的概念ꎬ即由f(x)的定义域[aꎬb]ꎬ求f[g(x)]的定义域的方法:由aɤg(x)ɤbꎬ求出x的取值范围ꎬ即为函数y=f[g(x)]的定义域ꎻ由f[g(x)]的定义域[aꎬb]ꎬ求f(x)的定义域的方法:由aɤxɤbꎬ求出g(x)的取值范围即可ꎬ2即与由f(x)的定义域[aꎬb]ꎬ求y=f[g(x)]的定义域恰好相反.㊀㊀四㊁求抽象函数的值域例4㊀已知函数f(x)的值域是[38ꎬ49]ꎬ求函数y=f(x)+1-2f(x)的值域.分析㊀利用换元法求解.解㊀设t=1-2f(x)ꎬ则f(x)=1-t22ꎬ因为f(x)的值域是[38ꎬ49]ꎬ所以1-2f(x)ɪ[13ꎬ12]ꎬ即tɪ[13ꎬ12].又因为y=f(x)+1-2f(x)ꎬ所以y=1-t22+t=-12t2+t+12(13ɤtɤ12)ꎬ所以79ɤyɤ78.所以函数y=f(x)+1-2f(x)的值域为[79ꎬ78].点评㊀求解本题的策略是利用换元法ꎬ但必须把新元的取值范围弄清楚.㊀㊀五㊁求抽象函数单调区间例5㊀若函数f(x)在(-¥ꎬ+¥)上是减函数ꎬ求函数f(2x-x2)单调递增区间.分析㊀用复合函数的单调性来求.解㊀因为f(x)在(-¥ꎬ+¥)上是减函数ꎬ所以f(2x-x2)单调递增区间应是u=2x-x2单调递减区间ꎬ又u=2x-x2的单调递减区间是[1ꎬ+¥)ꎬ所以函数f(2x-x2)单调递增区间是[1ꎬ+¥).点评㊀求解本题的策略是利用复合函数单调性的求法.㊀㊀六㊁比较抽象函数值的大小例6㊀已知偶函数f(x)在[2ꎬ4]上单调递减ꎬ比较f(log8)与f(3log)的大小.分析㊀首先化简log8与3logꎬ然后再根据函数的奇偶性和单调性ꎬ将函数值的比较大小问题转化为自变量值的比较大小问题.解㊀log8=-3ꎬ3log=π24ꎬ因为f(x)是偶函数ꎬ所以f(-3)=f(3)ꎬ又3>π24ꎬf(x)在[2ꎬ4]上单调递减ꎬ所以f(3)<f(π24)ꎬ即f(log8)<f(3log).点评㊀求解本题的关键是把对应的两个变量的值转化到同一个单调区间内ꎬ求解策略是利用函数的单调性和转化思想.㊀㊀七㊁抽象函数图象问题例7㊀由函数y=f(x-1)的图象ꎬ通过怎样的图象变换可得函数y=f(-x+2)的图象.分析㊀解答此题须综合应用函数图象的变换的对称㊁平移变换.解㊀将函数y=f(x-1)的图象向左平移1个单位ꎬ得到函数y=f(x)的图象ꎬ将函数y=f(x)的图象沿y轴翻折ꎬ得到函数y=f(-x)的图象ꎬ将函数y=f(-x)的图象向右平移2个单位ꎬ就可以得到函数y=f(-x+2)的图象.点评㊀求解本题的策略是利用函数图象变换的规律.㊀㊀八㊁解抽象不等式例8㊀已知f(x)在(0ꎬ+¥)上单调递增ꎬ解不等式f(x)>f8(x-2)[].分析㊀求解本题的关键在于由f(x)>f8(x-2)[]去掉函数关系符号 f ꎬ使抽象的不等式问题转化为具体不等式问题ꎬ注意函数的定义域也是一个限制条件.解㊀由f(x)>f8(x-2)[]和f(x)在(0ꎬ+¥)上是增函数ꎬ得x>0ꎬ8(x-2)>0x>8(x-2)ꎬìîíïïïꎬ解不等式组ꎬ得2<x<167ꎬ所以原不等式的解集为{x|2<x<167}.点评㊀单调性定义要能够逆用ꎬf(x)是[aꎬb]上的增函数ꎬ则f(x1)<f(x2)⇒x1<x2ꎻ求解此类问题的策略是运用了单调性的定义和转化思想.㊀㊀九㊁证明等式例9㊀设函数f(x)是定义在R+上的增函数ꎬ且f(xy)=f(x)-f(y)ꎬ求证:f(1)=0ꎬf(xy)=f(x)+f(y).分析㊀对f(xy)=f(x)-f(y)中的xꎬy赋值即可求出f(1)=0ꎬ利用f(x)=f(x yy)即可证明f(xy)=f(x)+f(y).证明㊀因为f(xy)=f(x)-f(y)ꎬ令x=y=1ꎬ所以f(1)=f(1)-f(1)ꎬ即f(1)=0.因为f(xy)=f(x)-f(y)ꎬ所以f(x)=f(x yy)=f(xy)-f(y)ꎬ所以f(xy)=f(x)+f(y).点评㊀求解此类问题的策略是适当的赋值(代入特殊值).3㊀㊀十㊁抽象函数的综合问题例10㊀函数f(x)的定义域为Rꎬ且对任意xꎬyɪRꎬ有f(x+y)=f(x)+f(y)ꎬ又当x>0时ꎬf(x)<0ꎬf(1)=-2.(1)证明f(x)是奇函数ꎻ(2)证明f(x)在R上是减函数ꎻ(3)求f(x)在区间[-3ꎬ3]的最大值和最小值.分析㊀给出函数满足的条件关系式而未给出解析式ꎬ要证明函数的奇偶性与单调性ꎬ关键是紧扣条件f(x+y)=f(x)+f(y)ꎬ且当x>0时ꎬf(x)<0ꎬ对其中的xꎬy不断赋值ꎬ根据f(x)在R上是减函数求出最值.解㊀(1)令y=-xꎬ得f[x+(-x)]=f(x)+f(-x)ꎬ所以f(x)+f(-x)=f(0).又因为f(0+0)=f(0)+f(0)ꎬ所以f(0)=0ꎬ所以f(x)+f(-x)=0ꎬ即f(-x)=-f(x)ꎬ所以f(x)是奇函数.(2)任取x1ꎬx2ɪRꎬ且x1<x2ꎬ则f(x1)-f(x2)=f(x1)-f[x1+(x2-x1)]=f(x1)-[f(x1)+f(x2-x1)]=-f(x2-x1).因为x1<x2ꎬ所以x2-x1>0.又因为当x>0时ꎬf(x)<0ꎬ所以f(x2-x1)<0ꎬ所以-f(x2-x1)>0ꎬ即f(x1)>f(x2)ꎬ所以f(x)在R上是减函数.(3)因为f(x)在R上是减函数ꎬ所以f(x)在区间[-3ꎬ3]上的最大值是f(-3)ꎬ最小值是f(3).f(3)=f(1)+f(2)=3f(1)=3ˑ(-2)=-6ꎬ所以f(-3)=-f(3)=6.从而f(x)在区间[-3ꎬ3]上的最大值是6ꎬ最小值是-6.点评㊀求解此类问题的策略是利用赋值法ꎬ即对抽象函数的奇偶性与单调性的证明ꎬ围绕证明奇偶性与单调性所需要的关系式ꎬ对所给的函数关系式赋值.㊀㊀参考文献:[1]杜红全ꎬ黄海虹.例谈抽象函数定义域的求法[J].数理天地(高中版)ꎬ2019(10):13-14.[责任编辑:李㊀璟]等差乘等比型数列求和的另类解法构造数列法赵圣涛㊀武金仙(山东省淄博中学㊀255000)摘㊀要:等差乘等比型数列的求和一般使用错位相减法ꎬ但在求解过程中ꎬ学生出错率一直很高ꎬ基于此ꎬ笔者从构造数列的角度探索出两种求和方法ꎬ进一步拓宽了该类问题的研究思路.关键词:数列ꎻ解题ꎻ构造数列法中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2020)19-0004-02收稿日期:2020-04-05作者简介:赵圣涛(1984.10-)ꎬ男ꎬ山东省淄博人ꎬ硕士ꎬ中学一级教师ꎬ从事高中数学教学研究.武金仙(1984.4-)ꎬ女ꎬ河北省张家口人ꎬ硕士ꎬ中学一级教师ꎬ从事高中数学教学研究.基金项目:本文系淄博市 十二五 重点课题«基于学情的国家课程校本化研究»的研究成果ꎬ课题编号:2015ZJZ024.㊀㊀已知数列an{}满足an=bncnꎬ其中bn{}是等差数列ꎬcn{}是公比不为1的等比数列.数列an{}通常称为等差乘等比型数列.该类数列求和的常规方法是错位相减法ꎬ除此之外ꎬ文献[1]中笔者从构造常数列的角度另辟蹊径ꎬ为该类问题的求解提供了一个新思路ꎬ本文分别从构造常数列和等比数列的角度ꎬ又探索出了两种求和方法ꎬ现将其介绍如下:㊀㊀一㊁方法介绍不失一般性ꎬ设等差乘等比型数列an{}的通项公式为an=(kn+b)qnꎬ(其中kꎬbꎬq均为常数ꎬ且qʂ1)ꎬ其前n项和记为Sn.方法1:构造常数列{Sn+(xn+y)qn}.对数列an{}ꎬ由an=(kn+b)qn(qʂ1)得an+1=[k(n4。
抽象函数常见题型解法
且存在,使得,求函数的值域。 解:令,得,即有或。 若,则,对任意均成立,这与存在实数,使得成立矛盾,故,必
有。 由于对任意均成立,因此,对任意,有 下面来证明,对任意 设存在,使得,则 这与上面已证的矛盾,因此,对任意。所以 评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的
五、单调性问题 例6. 设f(x)定义于实数集上,当时,,且对于任意实数x、y, 有,求证:在R上为增函数。 证明:在中取,得 若,令,则,与矛盾 所以,即有 当时,;当时, 而所以 又当时,。所以对任意,恒有
设,则 所以,所以在R上为增函数。 评析:一般地,抽象函数所满足的关系式,应看作给定的运算法 则,则变量的赋值或变量及数值的分解与组合都应尽量与已知式或所给 关系式及所求的结果相关联。
, ( ),考察下列结论,① ;②
为偶函数;③数列
为等差数列;④数列
为等比数列,其中正确的是_______(填序号) 答案 ①③④ 3.(岳阳联考题)若
是定义在
上的函数,对任意的实数
,都有
和
且
,则
的值是( )答案 C
A.2008
B.2009
C.2010
4.(成都市石室中学高三三诊模拟)定义在[0,1]上的函数
抽象函数专题训练
1 线性函数型抽象函数
【例题1】已知函数对任意实数,均有,且当时,求在区间上的值域。 【例题2】已知函数对任意实数,均有,且当时,求不等式的解。
2 指数函数型抽象函数
【例题3】已知函数定义域为R,满足条件:存在,使得对任何和,成 立。 求:(1) (2) 对任意值,判断值的正负。 【例题4】是否存在函数满足下列三个条件:
函数问题的题型与解题方法
函数问题的题型与解题方法一、函数的概念函数有二种定义,一是变量观点下的定义,一是映射观点下的定义.复习中不能仅满足对这两种定义的背诵,而应在判断是否构成函数关系,两个函数关系是否相同等问题中得到深化,更应在有关反函数问题中正确运用.具体要求是:1.深化对函数概念的理解,明确函数三要素的作用,并能以此为指导正确理解函数与其反函数的关系.2.系统归纳求函数定义域、值域、解析式、反函数的基本方法.在熟练有关技能的同时,注意对换元、待定系数法等数学思想方法的运用.3.通过对分段定义函数,复合函数,抽象函数等的认识,进一步体会函数关系的本质,进一步树立运动变化,相互联系、制约的函数思想,为函数思想的广泛运用打好基础.本部分的难点首先在于克服“函数就是解析式”的片面认识,真正明确不仅函数的对应法则,而且其定义域都包含着对函数关系的制约作用,并真正以此作为处理问题的指导.其次在于确定函数三要素、求反函数等课题的综合性,不仅要用到解方程,解不等式等知识,还要用到换元思想、方程思想等与函数有关概念的结合.Ⅰ深化对函数概念的认识例1.下列函数中,不存在反函数的是()分析:处理本题有多种思路.分别求所给各函数的反函数,看是否存在是不好的,因为过程太繁琐.从概念看,这里应判断对于给出函数值域内的任意值,依据相应的对应法则,是否在其定义域内都只有惟一确定的值与之对应,因此可作出给定函数的图象,用数形结合法作判断,这是常用方法。
此题作为选择题还可采用估算的方法.对于D,y=3是其值域内一个值,但若y=3,则可能x=2(2>1),也可能x=-1(-1≤-1).依据概念,则易得出D中函数不存在反函数.于是决定本题选D.说明:不论采取什么思路,理解和运用函数与其反函数的关系是这里解决问题的关键.由于函数三要素在函数概念中的重要地位,那么掌握确定函数三要素的基本方法当然成了函数概念复习中的重要课题.例1.函数)23(log21-=xy的定义域是(D)A、[1,)+∞B、23(,)+∞C、23[,1]D、23(,1]例2.函数123-=xy(01<≤-x)的反函数是(D)A、)31(log13≥+=xxy B、)31(log13≥+-=xxyC 、)131(log 13≤<+=x x yD 、)131(log 13≤<+-=x x y 也有个别小题的难度较大,如 例3.函数,,(),,x x P f x x x M ∈⎧=⎨-∈⎩其中P 、M 为实数集R 的两个非空子集,又规定f P y y f x x P (){|(),}==∈,f M y y f x x M (){|(),}==∈,给出下列四个判断: ①若P M ⋂=∅,则f P f M ()()⋂=∅ ②若P M ⋂≠∅,则f P f M ()()⋂≠∅ ③若P M ⋃=R ,则()()f P f M ⋃=R ④若P M R ⋃≠,则()()f P f M ⋃≠R 其中正确判断有( B )A 、 1个B 、 2个C 、 3个D 、 4个分析:若P M ⋂≠∅,则只有}0{=⋂M P 这一种可能.②和④是正确的.Ⅱ 系统小结确定函数三要素的基本类型与常用方法1.求函数定义域的基本类型和常用方法由给定函数解析式求其定义域这类问题的代表,实际上是求使给定式有意义的x 的取值范围.它依赖于对各种式的认识与解不等式技能的熟练.这里的最高层次要求是给出的解析式还含有其他字例2.已知函数()f x 定义域为(0,2),求下列函数的定义域:分析:x 的函数f(x 2)是由u=x 2与f(u)这两个函数复合而成的复合函数,其中x 是自变量,u 是中间变量.由于f(x),f(u)是同一个函数,故(1)为已知0<u <2,即0<x 2<2.求x 的取值范围.解:(1)由0<x 2<2, 得说明:本例(1)是求函数定义域的第二种类型,即不给出f(x)的解析式,由f(x)的定义域求函数f[g(x)]的定义域.关键在于理解复合函数的意义,用好换元法.(2)是二种类型的综合.求函数定义域的第三种类型是一些数学问题或实际问题中产生的函数关系,求其定义域。
抽象函数问题及解法
抽象函数问题及解法原创/O客本文谈及的抽象函数问题是高考的必考内容,是高中函数与大学函数的衔接内容。
打开窗子说亮话,是高中教材没有,高考要考,大学不教但要经常用的内容。
如果一个关于函数f(x)的题目,已知f(x)的性质及f(x)满足的关系式,求证f(x)的其他性质,题目做完了,我们还不知道f(x)的具体的解析式,这就是抽象函数问题.一般地,抽象函数是指没有(直接或间接)给出具体的解析式,只给出一些函数符号及其满足某些条件的函数.解决抽象函数问题,我们可以用函数性质、特殊化、模型函数、联想类比转化、数形结合等多种方法.(1)函数性质法.函数的特征是通过其性质(如单调性、奇偶性、周期性、特殊点等)反映出来的,抽象函数也如此. 我们可以综合利用上述性质,包括借助特殊点布列方程等来解决抽象函数问题.(2)特殊化法.特殊化法又叫特取法. 为达到我们预期的目的,将已知条件进行适当的变换,包括式子的整体变换与具体数字的代换. 如在研究函数性质时,一般将x换成-x或其他代数式;在求值时,用赋值法,常用特殊值0,1,-1代入.(3)模型函数法.模型函数在解决抽象函数问题中的作用非同小可. 一方面,可以用借助具体的模型函数解答选择题、填空题等客观题. 另一方面,可以用“特例探路”,联想具体的模型函数进行类比、猜想,为解答题等主观题的解决提供思路和方法. 一般地,抽象函数类型有以下几种:①满足关系式f(x+y)=f(x)+f(y) (ⅰ)的函数f(x)是线性型抽象函数. 其模型函数为正比例函数f(x)=kx (k≠0).事实上,f(x+y)=k(x+y)=kx+ky=f(x)+f(y).令x=y=0,得f(0)=0,故f(x)的图象必过原点.令y=-x,得0=f(0)=f(x)+f(-x),即f(-x)=-f(x),所以f(x)为奇函数.命题(ⅰ)可以推广为f(x+y)=f(x)+f(y)+b(b是常数),其模型函数为一次函数f(x)=kx-b(k ≠0).②满足关系式f(x+y)=f(x) f(y) (ⅱ)的函数f(x)是指数型抽象函数. 其模型函数为指数函数f(x)=a x(a>0,a≠1).事实上,f(x+y)=a x+y=a x·a y=f(x) f(y).令x=y=0,得f(0)=1,故曲线f(x)必过点(0,1).命题(ⅱ)等价于f(x-y)=f(x) f(y).③满足关系式f(xy)=f(x)+f(y) (x,y∈R+) (ⅲ)的函数f(x)是对数型抽象函数. 其模型函数为对数函数f(x)=log a x(a>0,a≠1).令x=y=1,得f(1)=0,故曲线f(x)必过点(1,0).命题(ⅲ)等价于f( xy)=f(x)-f(y) (x,y∈R+) .④满足关系式f(xy)=f(x) f(y)的函数f(x)是幂型抽象函数. 其模型函数为幂函数f(x)=x n.⑤满足关系式f(x+y)=f(x)+f(y) 1- f (x) f(y)的函数f(x)是正切型抽象函数. 其模型函数为正切函数f(x)=tan x.需要指出的是,不是每种抽象函数都可以找到在中学阶段所熟知的函数作模型函数. 抽象函数的种类还有很多,这里罗列的仅是常见的,尤其是类型①、②、③最常见.我们就上述方法的应用,先进行例说,再分类例说.例如(2008·重庆),若定义域在R上的函数f(x)满足:对任意x1,x2∈R,有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确的是()A.f(x)为奇函数B.f(x)为偶函数C. f(x)+1为奇函数D. f(x)+1为偶函数这是线性型抽象函数问题. 联想模型函数f(x)=kx-1(k≠0),易知选C.如果此题改为解答题,题设条件不变,“判断并证明函数g(x)=f(x)+1的奇偶性”.那么我们首先联想模型函数,窥测解题方向,构建解题思路. 猜测g(x)是奇函数. 于是心中有“底”. 目标就是需要证明g(-x)+g(x)=0,即f(-x)+f(x)+2=0. 又抽象函数奇偶性问题,一般要先用赋值法确定f(0)的值,再用x,-x进行代换,进而得到g(-x)与g(x)的关系式.于是解答如下.g(x)是奇函数. 证明如下:令x1=x2=0,有f(0)=f(0)+f(0)+1,得f(0)=-1.再令x1=x,x2=-x,有f(0)=f(x)+f(-x)+1,即f(-x)+f(x)+2=0,从而g(-x)+g(x)= f(-x)+f(x)+2=0,所以函数g(x)是奇函数.1. 与单调性相关的问题例1已知函数f(x)的定义域为R,对任意x,y∈R,都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,又f(1)=-2. 求f(x)在区间[-3,3]上的最大值和最小值.解析联想模型函数f(x)=kx(k≠0),猜想“f(x)是奇函数,且为减函数”.设m<n,则f(n)-f(m)=f((n-m)+m)-f(m)=f(n-m)+f(m)-f(m)=f(n-m).因为当x>0时,f(x)<0,而n-m>0,所以f(n-m)<0,即f(n)<f(m),所以f(x)是减函数.根据最值定理,f(x)在[-3,3]上的最大值为f(-3),最小值为f(3).因为f(1)=-2,所以f(2)=f(1+1)=2f(1)=-4,f(3)=f(2)+f(1)=-6.又令x=y=0,得f(0)=f(0+0)=f(0)+f(0),故f(0)=0,再令x=1,y=-1,得0=f(0)=f(1)+f(-1),故f(-1)=2,f(-3)=f(-2)+f(-1)=3f(-1)=6.所以f(x)在[-3,3]上的最大值为6,最小值为-6.点评我们可以举出具有这种性质的一个函数y=-2x(x∈[-3,3]).此外,我们还可以用奇偶性来证明单调性和求f(-3)的值. 由0=f(0)=f(x-x)=f(x)+f(-x),得f(-x)=-f(x),故f(x)是奇函数.因此f(n)-f(m)=f(n)+f(-m)=f(n-m)<0,f(-3)=-f(3)=6.注意这两种证明抽象函数单调性的技巧,为创造条件利用关系式,前者是作自变量变换n=n-m +m ;后者是用奇偶性巧妙地实现了“-”向“+”的转化.例2 已知函数f (x )的定义域为R ,对任意m ,n ,均有f (m +n )=f (m )+f (n )-1,且f (-12)=0,当x >-12时,f (x )>0. 求证f (x )是单调递增函数,并举出具有这种性质的一个函数. 解 设m >n ,则m -n >0,m -n -12>-12, 所以f (m )-f (n )=f (n +m -n )-f (n )=[f (n )+f (m -n )-1]-f (n )=f (m -n )+f (-12)-1=f (m -n -12)>0,即f (m )>f (n ). 从而f (x )为单调递增函数. 具有这种性质的一个函数是y =2x +1.例3 已知函数f (x )的定义域是(0,+∞),且f (xy )=f (x )+f (y ),当x >1时,f (x )>0.(1)求f (1),并证明f (x )在定义域上是增函数;(2)如果f (13)=-1,求满足f (x )-f (1x -2)≥2的x 的取值范围. 解 (1)令x =y =1,则f (1)=f (1)+f (1),得f (1)=0.设0<m <n ,则f (n ) - f (m )= f (n m ·m ) - f (m )= [f (n m )+f (m )] - f (m )= f (n m )>0 (因为n m>1). 即f (m )<f (n). 所以f (x )在(0,+∞)上是增函数.(2)由f (1)=0, f (1)=f (1x ·x )=f (1x )+f (x ),得f (1x)=-f (x ). 有f (13)=-f (3)=-1,得f (3)=1,故2=f (3)+f (3)=f (9), 有f (x )-f (1x -2)=f (x )+f (x -2)=f (x (x -2)), 所以原不等式可化为f (x (x -2))≥f (9),于是从而所求x 的取值范围是[1+10,+∞).点评 题(2)实质上是解抽象函数不等式. 一般地,先把不等式中的常数项化成某个函数值(如这里的2=f (9)),以便利用单调性“脱去”函数符号,转化成一般不等式. 特别注意抽象函数定义域. 不等式组的前两个不等式是定义域要求(这里也是单调区间的要求,因为只有同一个单调区间,才能“脱去”函数符号),第三个是单调性的逆用.此外,我们可以写出满足题设条件的一个函数y =log 3x .2. 与奇偶性相关的问题例4(2002·北京)已知f (x )是定义域在R 上不恒为0的函数,且对任意a ,b ∈R 都满足f (a ·b )=af (b )+bf (a ). 求f (0)和f (1),判断并证明f (x )的奇偶性.解 令a =b =0,则f (0·0)=0,即f (0)=0.令a =b =1,则f (1)=2 f (1),即f (1)=0.x >0,x -2>0, 解得x ≥1+10.x (x -2)≥9.f (x )为奇函数,证明如下.令a =-1,b =x ,则f (-x )=-f (x )+xf (-1),又f (1)=f ((-1)·(-1))=-f (-1)-f (-1),即f (-1)=0,从而f (-x )=-f (x ).所以f (x )为奇函数.点评 当然,也可以只令a =-1,推得f (-b )=-f (b )而得结论.例5(2009·全国)函数f (x )的定义域为R . 若f (x +1)与f (x -1)都是奇函数,则( )A. f (x )是偶函数B. f (x )是奇函数C. f (x )=f (x +2)D. f (x +3)是奇函数解析 由f (x +1)是奇函数,知f (-x +1)=-f (x +1), ①由f (x -1)是奇函数,知f (-x -1)=-f (x -1), ②在①中,用x -1代换x ,得f (2-x )= -f (x ),在②中,用x +1代换x ,得f (-2-x )=-f (x ),所以f (2-x )= f (-2-x ),再用-2-x 代换x ,得f (4+x )=f (x ),知4为f (x )的周期.于是由②,f (-x -1+4)=-f (x -1+4),即f (-x +3)=-f (x +3),所以f (x +3)是奇函数,可知选D.点评 我们还可以构造模型函数f (x )=cosπx 2来解此选择题,可知选 D. 事实上f (x +3)=sin πx 2. 还有,由f (x +1)是奇函数,可令h (x )=f (x +1),则h (-x )=-h (x ),即f (-x +1)=-f (x +1).此外,对上述变量代换法可以用换元法帮助理解. 例如,令t =x +1,则x =t -1,代入①式得f (2-t )=-f (t ),即f (2-x )=-f (x ). 注意这里的代换和换元的前提是,不能改变函数f (x )的定义域.例6(2014•全国)已知偶函数f (x )在[0,+∞)上单调递减,且f (2)=0,若f (x -1)>0,则x 的取值范围是 .解析 实际上是解抽象不等式f (|x -1|)>f (2).因为f (x )是偶函数,所以f (x -1)= f (|x -1|),因为f (2)=0,f (x -1)>0,所以f (|x -1|)>f (2).又f (x )在[0,+∞)上单调递减, |x -1|,2∈[0,+∞),所以|x -1|<2,解得-2<x -1<2,即-1<x <3综上可知,x 的取值范围是(-1,3).例7(2015•全国)设函数f ´(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ´(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A. (-∞,-1)∪(0,1)B. (-1,0)∪(1,+∞)C. (-∞,-1)∪(-1,0)D. (0,1)∪(1,+∞)解析 因为f (x )是R 上的奇函数,所以f (-x )=-f (x ) ①,对等式两边求导,注意左边用复合函数求导法则,得[f (-x )]´=[ -f (x )]´ ,f ´(-x )•(-x )´=-f ´(x ),即f ´(-x ) =f ´(x ) ②.因为当x >0时,xf ´(x )< f (x ),故当x <0时,则-x >0,-xf ´(-x )< f (-x ),将①,②代入得-xf ´(x )<- f (x ),即xf ´(x )> f (x ) (x <0).由f (x )>0,知xf ´(x )>0,得f ´(x )<0 (x <0),因此,f (x )在(-∞,0)上是减函数,又f (-1)=0,所以x <0时,由不等式f (x )>0,即f (x )> f (-1),解得x <-1.由奇偶性与单调性的关系知,f (x )在(0,+∞)上也是减函数,又f (1)=-f (-1)=0,所以x >0时,由不等式f (x )>0,即f (x )> f (1),解得0<x <1.综上可知,选A.评注(1)这里,我们由f (-x )=-f (x ),推得f ´(-x ) =f ´(x ). 这表明奇函数的导函数是偶函数. 同理可得,偶函数的导函数是奇函数.(2)另法. 我们可以构造辅助函数来解此题. 令g (x )=f (x )x ,得g ´(x )=xf ´(x )-f (x )x 2.当x >0时,g ´(x )<0,知g (x )单调递减. 由f (-1)=-f (1)及f (-1)=0,知g (1)=0,所以由不等式f (x )>0,即g (x )>g (1),解得0<x <1. 可证g (-x )=g (x ),g (x )是偶函数,知g (x )在(-∞,0)上是单调递增. 当x <0时,同理,由g (x )<g (-1)解得x <-1. 一般地,题目条件出现“xf ´(x )-f (x )<0( >0)”时,可以考虑构造辅助函数g (x )=f(x )x;出现“xf ´(x )+f (x )<0( >0)”时,可以考虑构造辅助函数 h (x )=xf (x ).(3)为加深对此题的理解,我们可以举出这类函数的一个特例:它的图象如图1.3. 与周期性相关的问题例8(2001·全国)设f (x )是定义域在R 上的偶函数,其图象关于直线x =1对称,对任意x 1,x 2∈[0,12 ],都有f (x 1+x 2)=f (x 1)f (x 2),且f (1)=a >0. 求f (12),f (14),并证明f (x )是周期函数.解 由题设得a =f (1)=f (12+12)=f (12)f (12),即f (12)=21a . 21a = f (12)=f (14+14)=f (14)f (14),即f (14)=41a . 因为f (x )是偶函数,所以f (-x )= f (x ),又f (x )图象关于直线x =1对称,得f (1+x )=f (1-x ),用x +1代换x ,得f (2+x )=f (-x ),于是f (2+x )=f (x ),所以f (x )是周期函数.例9 设函数f (x )定义在R 上,且对任意的x 有f (x )=f (x +1)-f (x +2),求证f (x )是周期函数,并找出它的一个周期.解 因为f (x )=f (x +1)-f (x +2),所以f (x +1)= f (x +2)-f (x +3),两式相加,得f (x )= -f (x +3),即f (x +3)= - f (x ).因此,f (x +6)=f ((x +3)+3)=-f (x +3)=-(-f (x ))=f (x ).所以,f (x )是周期函数,它的一个周期是6.点评 对于由关系式f (x +3)= - f (x ),推得f (x +6)=f (x ). 这个我们可以这样理解,“自变量每增加3,函数值反号一次”. 我们增加6,反号两次,不就“负负得正”了吗. 类似的还有f (x +2)=-x +1,x >0, 0, x =0, -x -1, x <0. f (x )= 图1±1f(x ),可得f (x +4)=f (x )等. 例10(2011·上海)设g (x )是定义在R 上的以1为周期的函数,若函数f (x )=x +g (x )在区间[3,4]上的值域为[-2,5],求f (x )在区间[-10,10]上的值域.解 由g (x +1)=g (x ),知g (x +n )=g (x ),n ∈Z .所以f (x +n )=x +n + g (x +n )=x +g (x )+n =f (x )+n ,n ∈Z .因为x ∈[3,4]时,f (x )∈[-2,5],故当x ∈[-10,-9]时,x +13∈[3,4],有f (x +13)∈[-2,5],即f (x )+13∈[-2,5],所以f (x )∈[-15,-8].当x ∈[-9,-8]时,x +12∈[3,4],同理,f (x )∈[-14,-7].……当x ∈[9,10]时,x -6∈[3,4],从而f (x -6)∈[-2,5],即f (x )-6∈[-2,5],所以f (x )∈[4,11].综上,当x ∈[-10,10]时,有f (x )∈[-15,-8]∪[-14,-7]∪…∪[4,11]=[-15,11].所以f (x )值域为[-15,11].4. f (x )=af (x +b )的问题关于已知f (x )所满足的方程求f (x )的解析式问题,我们在7.3节讲述过. 我们现在来研究函数f (x )满足关系式f (x )=af (x +b ),求解与f (x )相关的问题.例11(2010·广东)已知函数f (x )对任意实数x 均有f (x )=kf (x +2),其中常数k 为负数,且f (x )在区间[0,2]上有表达式f (x )=x (x -2).(1)求f (-1),f (2. 5)的值;(2)写出f (x )在[-3,3]上的表达式,并讨论f (x )在[-3,3]上的单调性.解析 (1)因为当0≤x ≤2时,f (x )=x (x -2),故f (1)=-1,f (12)=-34. 又x ∈R 时,f (x )=kf (x +2)(k <0), 所以f (-1)=kf (-1+2)=kf (1)=-k ; f (2. 5)=f (2+12)=1k f (12)=-34k. (2)因为当0≤x ≤2时,f (x )=x (x -2),设-2≤x <0,则0≤x +2<2,有f (x +2)=(x +2)(x +2-2)=x (x +2),所以f (x )=kf (x +2)=k x (x +2).设-3≤x <-2,则-1≤x +2<0,有f (x +2) =k (x +2)(x +4),所以f (x )=kf (x +2)=k 2(x +2)(x +4). 设2<x ≤3, 则0<x -2≤1,又f (x -2)=kf (x ),所以f (x )=1k f (x -2)=1k(x -2)(x -4).因为k <0,由二次函数性质知,f (x )在[-3,-1],[1,3]上为增函数;在[-1,1]上为减函k 2(x +2)(x +4),-3≤x <-2, k x (x +2), -2≤x <0, x (x -2), 0≤x ≤2, 1k (x -2)(x -4), 2<x ≤3. 综上所述,f (x )=数. (图2)例12(2003·上海)已知集合M 是满足下列性质的函数f (x )的全体:存在非零常数T ,对任意x ∈R ,有f (x +T )=Tf (x )成立.(1)函数f (x )=x 是否属于集合M ,说明理由;(2)设函数f (x )=a x (a >0且a ≠1)的图象与y =x 的图象有公共点,证明:f (x )=a x ∈M . 解 (1)对于非零常数T ,f (x +T )=Tf (x )=Tx ,因为对任意x ∈R ,x +T = Tx 不能恒成立,所以f (x )=x M .(2)因为函数f (x )=a x (a >0且a ≠1)的图象与y =x 的图象有公共点,显然x =0不是方程a x =x 的解,所以存在非零常数T ,使a T =T .于是对于f (x )=a x 有f (x +T )=a x +T = a T ·a x = T ·a x = Tf (x ),所以f (x )=a x ∈M .所以方程组 有解,消去y 得a x =x , y =a x , y =x。
一些与基本初等函数相对应的抽象函数的解法
形如f(x+y)川x—y)=2f(x)附)的抽象函数的解法
【例5】定义在实数集上的函数f(x)对任意x、yER,都有f(x+y)+f(x—y) =2f(x)tb-)且f㈣≠0
量xo转化为用“x0)表示,即将不等式转化为f(x.瑚由形式,然后利用函
数单调性.脱去“f’符号,注意要等价转化。
(1)求证:frO)=I;(2)判断y司x)的奇偶性
.・.上_>9—8a-了9一面即l‘a<当
.・.a的取值范围为l<K÷ a
实质上.满足上述条件的抽象甬数与对数函数y=loga(a>1)相对应。 四、与。三角函数”相对应的抽象函数
+x.是作差转化关键一步,而对条件“当x>O时,“x)>l”的理解和运用也
是判断符号的关键,认真体会所用方法。 (2)利用函数单调性来解函数关系不等式,首先求出3对应的自变
李晓燕
又’.‘当x<O时-x>O.‘.Od(一x)(1
1
.‘.1=f(x-x)==f(x砸一x)
.‘.f(x)=孑j>l
tt-x]
(2)由(1)可知.对一切xER㈣>0设Xl<X2则 f(x2)--qxl唯f-X1)l---f(x1)f(x2-xI)且xr-xI>O 0<f(xz-x1)<l
f(x.)>0.。』(】0姐xt)即fix)在R上递减
即3m2-ⅡI-2也解得一l<m<睾 j .・.原不等式的解集为(.1,睾) j
实质上,符合上述条件抽象函数与一次函数y=x+l相对应。 二、与“指数函数”相对应的抽象函数 形如f(x+y)---'qx)f(y)的抽象函数的解法
【例3】设函数y川x)对任意实数m、n∈R都有“m+n)川rnmn),并且
(2)利用函数单调性定义.脱去。f..等价转化为不等式组。
初中数学解题技巧方法总结
初中数学解题技巧方法总结初中数学解题技巧方法总结数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段。
以下是小编带来的初中数学解题技巧方法总结,一起来看看吧。
一、选择题的解法1、直接法:根据选择题的题设条件,通过计算、推理或判断,,最后得到题目的所求。
2、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关,在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。
3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。
4、逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略,每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。
5、数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。
二、常用的数学思想方法1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。
数学学科的各部分之间也是相互联系,可以相互转化的。
在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。
如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。
3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查,这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。
高一数学抽象函数常见重点题型解析归纳
高一数学抽象函数常见重点题型解析归纳对于刚上高一的学生而言,掌握好抽象函数常见题型的解法,有助于他们在高考数学的考试中发挥的更加出色。
下面是小编为大家整理的高一数学必修1常见题型解法,希望对大家有所帮助!高一数学抽象函数常见题型高一数学填空题解题方法一、直接法从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。
二、特殊化法当填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以把题中变化的不定量用特殊值代替,即可以得到正确结果。
三、数形结合法对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果。
四、等价转化法将问题等价地转化成便于解决的问题,从而得出正确的结果。
解决恒成立问题通常可以利用分离变量转化为最值的方法求解。
高一数学复习答疑问题1:我的基础还可以,上课老师讲的也都能听懂,但是一到自己做就做不出来了,帮忙分析一下原因。
答:数学这个东西是靠着逻辑吃饭的,是靠着逻辑演绎向前推进和发展的。
当一个老师把你抱到了逻辑的起点上,告诉你这个逻辑关系是怎样的,比如说饿了就应该找饭吃,下雨了就应该找伞来打,告诉你了这个逻辑规则,你自己肯定会按照逻辑的顺序往前跑,这就叫为什么上课听得懂。
为什么课下自己不会做了呢?是因为课下你找不到逻辑的起点,就像一个运动员空有一身本领,跑得飞快,没有找到起点,没有到起点做好认真的准备,结果人家一发令,你没反应。
有两种学习的模式,一种是靠效仿,老师给我变一个数,出两道类似的练习题,照老师的模子描下来,结果做对了,好象我学会了,这就是效仿的方式来学数学,这种方式在小学是主要手段,在初中,这种手段还占着百分之六七十的分量,但是到了高中就不行了,靠模仿能得到的分数也就是五六十分,其他的分数都要靠你的理解。
所谓理解就是听了老师的一段讲解,看了老师的一个解题过程,你要把他提炼、升华成理性认识,在你的头脑中,应该存下老师讲解的这一段知识和解答的这一道题,他所体现出来的规律性的东西。
数学解题方法(抽象函数)
数学解题方法(抽象函数)。
抽象函数是指没有明确给出具体的函数表达式,只是给出一些特殊条件的函数,它是中学数学函数部分的难点.因为抽象,学生难以理解,接受困难;因为抽象,教师对教材难以处理,何时讲授,如何讲授,讲授哪些内容,采用什么方式等等,深感茫然无序.其实,大量的抽象函数都是以中学阶段所学的基本函数为背景抽象而得,解题时,若能从研究抽象函数的“背景”入手,根据题设中抽象函数的性质,通过类比、猜想出它可能为某种基本函数,常可觅得解题思路,本文就上述问题作一些探讨.1. 正比例函数型的抽象函数例1已知函数f(x)对任意实数x、y均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(-1)=-2求f(x)在区间[-2,1]上的值域.分析:先证明函数f(x)在R上是增函数(注意到f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1));再根据区间求其值域.例2已知函数f(x)对任意实数x、y均有f(x+y)+2=f(x)+f(y),且当x>0时,f(x)>2,f(3)= 5,求不等式 f(a2-2a-2)<3的解.分析:先证明函数f(x)在R上是增函数(仿例1);再求出f(1)=3;最后脱去函数符号.2. 幂函数型的抽象函数例3已知函数f(x)对任意实数x、y都有f(xy)=f(x)f(y),且f(-1)=1,f(27)=9,当0≤x<1时,f(x)∈[0,1].(1)判断f(x)的奇偶性;(2)判断f(x)在[0,+∞]上的单调性,并给出证明;(3)若a≥0且f(a+1)≤,求a的取值范围.分析:(1)令y=-1;(2)利用f(x1)=f(·x2)=f()f(x2);(3)0≤a≤2.3. 指数函数型的抽象函数例4设函数f(x)的定义域是(-∞,+∞),满足条件:存在x1≠x2,使得f(x1)≠f(x2);对任何x和y,f(x+y)=f(x)f(y)成立.求:(1) f(0);(2)对任意值x,判断f(x)值的符号.分析:(1)令y=0;(2)令y=x≠0.例5是否存在函数f(x),使下列三个条件:①f(x)>0,x∈N;②f(a+b)= f(a)f(b),a、b∈N;③f(2)=4.同时成立?若存在,求出f(x)的解析式,若不存在,说明理由.分析:先猜出f(x)=2x;再用数学归纳法证明4. 对数函数型的抽象函数例6设f(x)是定义在(0,+∞)上的单调增函数,满足f(x·y)=f(x)+f(y),f(3)=1,求:(1) f(1);(2)若f(x)+f(x-8)≤2,求x的取值范围.分析:(1)利用3=1×3;(2)利用函数的单调性和已知关系式.例7设函数y= f(x)的反函数是y=g(x).如果f(ab)=f(a)+f(b),那么g(a+b)=g(a)·g (b)是否正确,试说明理由.分析:设f(a)=m,f(b)=n,则g(m)=a,g(n)=b,进而m+n=f(a)+f(b)= f(ab)=f [g(m)g(n)]….5. 三角函数型的抽象函数例8已知函数f(x)的定义域关于原点对称,且满足以下三个条件:① x1、x2是定义域中的数时,有f(x1-x2)=;② f(a)=-1(a>0,a是定义域中的一个数);③当0<x<2a时,f(x)<0. 试问:(1) f(x)的奇偶性如何?说明理由;(2)在(0,4a)上,f(x)的单调性如何?说明理由. 分析:(1)利用f [-(x1-x2)]=-f [(x1-x2)],判定f(x)是奇函数;(3)先证明f(x)在(0,2a)上是增函数,再证明其在(2a,4a)上也是增函数. 对于抽象函数的解答题,虽然不可用特殊模型代替求解,但可用特殊模型理解题意.有些抽象函数问题,对应的特殊模型不是我们熟悉的基本初等函数.因此,针对不同的函数要进行适当变通,去寻求特殊模型,从而更好地解决抽象函数问题.例9已知函数f(x)(x≠0)满足f(xy)=f(x)+f(y),(1)求证:f(1)=f(-1)=0;(2)求证:f(x)为偶函数;(3)若f(x)在(0,+∞)上是增函数,解不等式f(x)+f(x-)≤0.分析:函数模型为:f(x)=loga|x|(a>0)(1)先令x=y=1,再令x=y=-1;(2)令y=-1;(3)由f(x)为偶函数,则f(x)=f(|x|). 例10已知函数f(x)对一切实数x、y满足f(0)≠0,f(x+y)=f(x)·f(y),且当x<0时,f(x)>1,求证:(1)当x>0时,0<f(x)<1;(2) f(x)在x ∈R上是减函数.分析:(1)先令x=y=0得f(0)=1,再令y=-x;(3)受指数函数单调性的启发:由f(x+y)=f(x)f(y)可得f(x-y)=,进而由x1<x2,有=f(x1-x2)>1.高一数学抽象函数的经典题定义域(0,+∞)上的增函数f(x)满足:f(x/y)=f(x)-f(y),(1)求证:f(x^n)=nf(x)(2)求证:f(xy)=f(x)+f(y)分析:做这题的时候,先要证明(2)再证(1)(2)证明:因为y∈(0,+∞)所以1/y∈(0,+∞)f(xy)-f(y)=f(x/(1/y))-f(y)因为f(x/y)=f(x)-f(y)所以f(x/(1/y))-f(y)=f{[x/(1/y)]/y}=f(x)也就是f(xy)-f(y)=f(x)所以 f(xy)=f(x)+f(y) (证毕)(1)证明:由上述证明结论可知,f(xy)=f(x)+f(y)则f(x^2)=f(x*x)=f(x)+f(x)=2f(x)f(x^3)=f(x^2*x)=f(x^2)+f(x)=2f(x)+f(x)=3f(x)f(x^4)=f(x^3*x)=f(x^3)+f(x)=3f(x)+f(x)=4f(x)…….同理可求得f[(x^(n-1)]=f[x^(x-2)*x]=f[x^(x-2)]+f(x)=(n-2)f(x)+f(x)=(n-1)f(x)f(x^n)=f[x^(n-1)*x]=f[x^(x-1)]+f(x)=(n-1)f(x)+f(x)=nf(x)综上所述得:f(x^n)=nf(x) (证毕)希望对你有帮助补充:(1)证明时,第一步应包括n=1的情况,即则f(x^1)=1*f(x)f(x^2)=f(x*x)=f(x)+f(x)=2f(x)f(x^3)=f(x^2*x)=f(x^2)+f(x)=2f(x)+f(x)=3f(x)以下同,另结论时补上:对于n∈N+时,f(x^n)=nf(x) 恒成立,对于n∈N-的情况,有兴趣的可以讨论一下高一函数解题思路,首先把握定义和题目的叙述2,记住一次函数与坐标轴的交点坐标,必须很熟3,掌握问题的叙述,通法通则是连立方程(当然是有交点的情况)如果你是中学生的话,就参考一下我的回答吧。
数学常用解题方法技巧
数学常用解题方法技巧熟悉化方法所谓熟悉化方法,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。
一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。
从结构上来分析,任何一道解答题,都包含条件和结论或问题两个方面。
因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论或问题以及它们的联系方式上多下功夫。
常用的途径有:一、充分联想回忆基本知识和题型:按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。
二、全方位、多角度分析题意:对于同一道数学题,常常可以不同的侧面、不同的角度去认识。
因此,根据自己的知识和经验,适时调整分析问题的视角,有助于更好地把握题意,找到自己熟悉的解题方向。
三恰当构造辅助元素:数学中,同一素材的题目,常常可以有不同的表现形式;条件与结论或问题之间,也存在着多种联系方式。
因此,恰当构造辅助元素,有助于改变题目的形式,沟通条件与结论或条件与问题的内在联系,把陌生题转化为熟悉题。
数学解题中,构造的辅助元素是多种多样的,常见的有构造图形点、线、面、体,构造算法,构造多项式,构造方程组,构造坐标系,构造数列,构造行列式,构造等价性命题,构造反例,构造数学模型等等。
简单化方法所谓简单化方法,就是当我们面临的是一道结构复杂、难以入手的题目时,要设法把转化为一道或几道比较简单、易于解答的新题,以便通过对新题的考察,启迪解题思路,以简驭繁,解出原题。
简单化是熟悉化的补充和发挥。
一般说来,我们对于简单问题往往比较熟悉或容易熟悉。
因此,在实际解题时,这两种策略常常是结合在一起进行的,只是着眼点有所不同而已。
解题中,实施简单化策略的途径是多方面的,常用的有:寻求中间环节,分类考察讨论,简化已知条件,恰当分解结论等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解 抽 象 函 数 的 常 用 方 法
抽象函数是指没有给出具体解析式的函数。
此类函数试题既能全面地考查学生对函数概念的理解及性质的代数推理和论证能力,又能综合考查学生对数学符号语言的理解和转化能力,以及对一般和特殊关系的认识,因此备受命题者的青睐,成为高考热点。
然而,由于抽象函数本身的抽象性、隐蔽性,大多数学生在解决这类问题时,感到束手无策。
我在多年的教学中,积累了一些解题方法,供大家参考.
一、 利用线性函数模型
在中学数学教材中,大部分抽象函数是以具体函数为背景构造出来的,解题时最根本点是将抽象函数具体化,这种方法虽不能代替具体证明,但却能找到这些抽象函数的解题途径,特别是填空题、选择题,直接用满足条件的特殊函数求解,得出答案即可。
常见的抽象函数模型有:
例1、函数f (x )对任意实数x ,y ,均有f (x +y )=f (x )+f (y ),且f (1)=2,
f (x )在区间[-4,2]上的值域为 。
0a a ≠且
解析:由题设可知,函数f (x )是正比例()y kx k =为常数的抽象函数,由f (1)=2可求得
k=2,∴ f (x )的值域为[-8,4]。
例2、已知函数f (x )对任意,x y R ∈,满足条件()()()2f x y f x f y +=+-,且当x >0时,
f (x )>2,f (3)=5,求不等式2(22)3f a a --的解。
分析:由题设条件可猜测:f (x )是y =x +2的抽象函数,且f (x )为单调增函数,如果
这一猜想正确,也就可以脱去不等式中的函数符号,从而可求得不等式的解。
解:设1221,0x x x x -则,∵当x >0时,f (x )>2,∴21()2f x x -,则
, 即,∴f (x )为单调增函数。
∵,
又∵f (3)=5,∴f (1)=3。
∴2(22)
(1)f a a f --,∴2221a a --,
解得不等式的解为-1 < a < 3。
例3、定义在R上的函数()y f x =,对任意的12,x x 满足12x x ≠时都有12()()f x f x ≠,且有
()()()f x y f x f y +=成立。
求:
(1)f (0); (2)对任意值x ,判断f (x )值的正负。
分析:由题设可猜测f (x )是指数函数()(01)x f x a a
a =≠且的抽象函数,
从而猜想f (0)=1且f (x )>0。
解:(1)令y =0代入()()()f x y f x f y +=,则()()(0)f x f x f =,
∴[]()1(0)0f x f -=。
若f (x )=0,则对任意12x x ≠,有12()()0f x f x ==,
这与题设矛盾,∴f (x )≠0,∴f (0)=1。
(2)令y =x ≠0,则[]2(2)()()()0f x f x f x f x ==≥,又由(1)知f (x )≠0,
∴f (2x )>0,即f (x )>0,故对任意x ,f (x )>0恒成立。
例4、已知函数f (x )的定义域为(0,+∞),当1x 时()
0f x 且()()()f xy f x f y =+ (1)求(1)f ;(2)证明f (x )在定义域上是增函数。
分析:由题设可猜测f (x )是对数函数()log (01)x a f x a a =≠且的抽象函数,第(1)问采用
赋值法易求出结果;第(2)应用函数的单调性定义来证明,其中注意()()()f xy f x f y =+的应用。
解:(1)令1x y ==得(1)2(1)f f =,故(1)0f =.
(2)令1y x =得1(1)()()0f f x f x =+=,故1()()f f x x
=-, 任取12,(0,)x x ∈+∞,且12x x ,则221211
1()()()()()x f x f x f x f f x x -=+=, 由于21x x >1,故21
()x f x >0,从而2()f x >1()f x ∴()f x 在(0,+∞)上是增函数。
上面列举了几种特殊类型的抽象函数,解法上是借助特殊函数模型铺路,虽然不 可用特殊模型代替求解,但可借助特殊模型理解题意,类比探索出解题思路。
二、利用函数的相关性质
1.函数的单调性:在函数与不等式相结合的题目中,若把所给式子适当变换,转化为利用
函数的单调性,巧妙地脱去抽象符号“ f ”,从而化为一般不等式求解。
例5、已知奇函数)(x f 在其定义域(-1,1)上是减函数,且)1()1(2a f a f -+-<0,则实数a 的
取值范围是
分析:要得到关于a 的不等式,由)(x f 在其定义域(-1,1)上是减函数易去掉抽象符号“ f ”。
解:∵)(x f 是奇函数
∴)1()1(2a f a f -+-<0 ⇔2(1)
(1)f a f a ---⇔2(1)(1)f a f a -- 又)(x f 在其定义域(-1,1)上是减函数
∴111a --且2111a --且211a
a --
解得0<a <1 2.函数的周期性:利用函数的周期性对函数进行自变量的平移变换,使新的自变量在同一
个单调区间或与条件的取值相同,然后求解。
例6、已知函数()f x 满足(3)()()f x f x f x +=-=,(1)1f =-,求(2005)f +(2006)f 的值 解析:由(3)()f x f x +=可得函数()f x 的周期为3,则(2005)f =(1)f ,(2006)f =(2)f , 又(3)()f x f x +=- ∴(2)f =(13)(1)f f -+=-=(1)f ,故结果为2 。
3.运用函数的图象:根据题目条件作出函数略图,用图象的单调性、对称性与特殊点的函
数值等寻求解题方法。
例7、已知函数(1)f x +是偶函数,且()f x 在[)1,+∞上是增函数,又(0)0f =,则(1)()0
x f x -
的解集是 。
解析:由函数(1)f x +是偶函数得其图象对称轴为0x =,所以函数()y f x =的图象对称轴为
1x =,又(0)0f =且()f x 在[)1,+∞上是增函数,可作出函数()y f x =的简图
∴ (1)()0x f x -⇔(1)
0x -且()0f x 或(1)0x -且()0f x
⇒0x
或1
2x 三、 其他方法 1、赋值法:在定义域内成立的式子对于定义域内的特殊值总成立。
因此通过观察和分析,将一般量赋予特殊值,从而转化为要解决的问题。
例8、已知()f x 的定义或为R ,且对任意实数12,x x 有1212()()f x x f x x ++-=122()()f x f x +
总成立。
求证()f x 为偶函数(()f x ≠0)。
分析:取特殊值使等式产生()f x 与()f x -,以便解决问题。
解:令120,0x x ==,则22(0)(0)f f =, ∵(0)f ≠0, ∴(0)f =1,
令120,x x x ==-,则()()2(0)()f x f x f f x +-=,
∴()()f x f x =- 即 ()()f x f x -= 故()f x 是偶函数。
2、 换元法:引入一个或几个新的变量来替换原来的某些量,便可实现未知向已知的转换。
例9、已知函数()f x 满足条件1()2()f x f x x
+=,则()f x = 解析:由于难以判断()f x 是何种类型的函数,故不可能先设出()f x 的表达式,但把条件中
的x 换成1x ,即11()2()f f x x x +=,把它与原条件式联立消去1()f x
得 2
2()3x f x x
-=。
3、整体变换:从函数的局部不能找到解题方法,但将函数式作适当变形后把部分视为一个
整体来考虑,就可找到解题方法。
例10、设()f x 、()g x 都是定义在R 上的奇函数,()()()2F x af x bg x =++在区间(0,)+∞上
的最大值是5,求()F x 在(,0)-∞上的最小值。
分析:将式子()()()2F x af x bg x =++变形为()2()()F x af x bg x -=+是奇函数。
解:令()()2()()x F x af x bg x Φ=-=+,则()x Φ是奇函数且在(0,)+∞上有最大值是3,
∴()x Φ在(,0)-∞上有最小值3-,
故()F x 在(,0)-∞上有最小值1-。
总之,只要能透彻理解概念,在实际解题过程中不断转换思维角度,综合各种方法,灵活运用技巧,就会寻找到抽象函数解题的突破口。
参考文献:1、《奥林匹克竞赛解题方法》,山西教育出版社,周沛耕、王中峰主编;
2、《解决抽象函数的基本方法》,中学教研,2002.1,李加军;
3、《直击高考(数学)》,世界图书出版社,张斌主编。