高中数学抽象函数专题含答案-教师版
高考中的抽象函数专题练习(含答案)
定义域为 [
3, 3
3 3
]
故②不成立,因为函数
y
log2
(
x2
2x
3)
的定义域为
x2
2x
3
0,
x
3
或 x 1所以递增区间为 (1, ) 不正确,所以③不成立.因为函数 y f (2x 1) 与函数 y f (1 2x) 的
图像关于 y 轴对称,所以④不正确.故选 A
2.答案:C
分析:由 f (0) 0, f (x) f (1 x) 1,得 f (1) 1 , f (1) 1,又 f ( x) 1 f x , f (1) 1 ,
其中正确的个数为 (
)
A. 0 个
B. 1个 C. 2 个 D. 3 个
2.定义在 R
上的函数
f
(x) 满足
f
(0)
0,
f
(x)
f
(1
x)
1,
f
(x) 5
1 2
f
(x) ,且当 0
x1
x2
1
时,
f
(x1)
f
(x2 ) ,则
f
( 1 ) 等于( 2021
)
A. 1 2
B. 1 16
C. 1 32
D. 1 64
3.已知 f (x) 是定义在 R 上的函数,且 f (x 3)[1 f (x)] 1 f (x) , f (2) 3 2 ,则 f 2021
2
值为(
)
A. 2 3 B. 2 3 C. 3 2 D. 2 3
4.已知 f (x 1) f (x 1), f (x) f (x 2) ,方程 f (x) 0 在[0,1] 内有且只有一个根 x 1 ,则 2
抽象函数及其应用-高中数学知识点讲解(含答案)
抽象函数及其应用(北京习题集)(教师版)一.选择题(共5小题)1.(2018秋•海淀区校级月考)已知定义在R 上函数()f x 是奇函数,且()f x 在(,0)-∞上是减函数,f (3)0=,()(3)g x f x =+,则不等式()0xg x 的解集是( )A .(-∞,3][3-,)+∞B .[6-,3][0-,)+∞C .(6][3,)-∞--+∞D .(-∞,6][0-,)+∞2.(2017秋•通州区期末)下列函数中,对于任意x R ∈,同时满足条件()()f x f x =--和()()f x f x π+=的函数是()A .f ( )x f π+= ( )xB .f ( )cos x = xC .f ( )sin x = cos x xD .f ( 22)cos sin x x x =-3.(2017秋•海淀区校级期末)定义在R 上的偶函数()f x 满足(2)()f x f x +=,且在[1,2]上是减函数,若α,β是锐角三角形的两个内角,则( ) A .f (sin )f α> (cos )β B .f (sin )f α< (cos )β C .f (sin )f α> (sin )βD .f (cos )f α< (cos )β4.(2017•海淀区模拟)已知函数()f x 满足如下条件:①任意x R ∈,有()()0f x f x +-=成立;②当0x 时,2221()(|||2|3)2f x x m x m m =-+--;③任意x R ∈,有()(1)f x f x -成立.则实数m 的取值范围( )A .[B .11[,]66-C .[D .11[,]33-5.(2017秋•西城区校级月考)已知()f x 是定义在R 上的奇函数,当0x >时,2()4f x x x =-,则不等式()0xf x >的解集为( )A .(-∞,4)(4⋃,)+∞B .(4-,0)(4⋃,)+∞C .(-∞,4)(0⋃,4)D .(4,4)-二.填空题(共4小题)6.(2018•北京模拟)已知函数()g x 对任意的x R ∈,有2()()g x g x x -+=.设函数2()()2x f x g x =-,且()f x 在区间[0,)+∞上单调递增.若f (a )(2)0f a +-,则实数a 的取值范围为 .7.(2017秋•大兴区期末)如果函数()f x 对任意的正实数a ,b ,都有()f ab f =(a )f +(b ),则这样的函数()f x 可以是 (写出一个即可)8.(2017秋•崇文区校级期中)已知函数()f x 是定义在R 上的偶函数,且()f x 在区间[0,)+∞单调递增,则满足不等式(21)f x f -<(3)的x 的取值范围是 .9.(2015秋•海淀区期末)已知函数()y f x =,若对于任意x R ∈,(2)2()f x f x =恒成立,则称函数()y f x =具有性质P ,(1)若函数()f x 具有性质P ,且f (4)8=,则f (1)= ;(2)若函数()f x 具有性质P ,且在(1,2]上的解析式为cos y x =,那么()y f x =在(1,8]上有且仅有 个零点. 三.解答题(共4小题)10.(2018秋•海淀区校级期中)已知函数()f x 对一切实数x ,y 都有()()(21)f x y f y x x y +-=++成立,且f (1)0=.(1)求(0)f 的值. (2)求()f x 的解析式. (3)当102x <<时,不等式()32f x x a +<+恒成立,求a 的取值范围. 11.(2017秋•通州区期末)已知定义在R 上的奇函数()f x ,对x R ∈满足f (2)x f ++ (2)0x -=. ()I 试判断()f x 是否为周期函数,若是,证明你的结论;若不是,请说明理由; ()II 当[2x ∈-,0]时,2()2f x x x =+. ()i 当[4x ∈,6]时,求函数()f x 的解析式; ()ii 求:f (0)f + (1)f ++ (2018)的值.12.(2017秋•西城区期末)若函数()f x 满足:对于s ,[0t ∈,)+∞,都有()0f s ,()0f t ,且()()()f s f t f s t ++,则称函数()f x 为“T 函数”.(Ⅰ)试判断函数21()f x x =与2()(1)f x lg x =+是否是“T 函数”,并说明理由;(Ⅱ)设()f x 为“T 函数”,且存在0[0x ∈,)+∞,使00(())f f x x =,求证:00()f x x =;(Ⅲ)试写出一个“T 函数” ()f x ,满足f (1)1=,且使集合{|()y y f x =,01}x 中元素的个数最少.(只需写出结论)13.(2018春•海淀区校级期中)已知定义在(-∞,0)(0⋃,)+∞上的函数()f x 满足: ①对于任意的x ,(y ∈-∞,0)(0⋃,)+∞,都有()()()f xy f x f y =+; ②当1x >时,()0f x >,且f (2)1=.(1)求f (1),(1)f -的值,并判断函数()f x 的奇偶性; (2)判断函数()f x 在(0,)+∞上的单调性;(3)求函数()f x 在区间[4-,0)(0⋃,4]上的最大值.抽象函数及其应用(北京习题集)(教师版)参考答案与试题解析一.选择题(共5小题)1.(2018秋•海淀区校级月考)已知定义在R 上函数()f x 是奇函数,且()f x 在(,0)-∞上是减函数,f (3)0=,()(3)g x f x =+,则不等式()0xg x 的解集是( )A .(-∞,3][3-,)+∞B .[6-,3][0-,)+∞C .(6][3,)-∞--+∞D .(-∞,6][0-,)+∞【分析】根据题意,由函数的奇偶性与单调性分析可得在(,3)-∞-和(0,3)上,()0f x >;在(3,0)-和(3,)+∞上,()0f x <,进而可得0()0(3)0(3)0x xg x xf x f x ⎧⇒+⇒⎨+⎩或0(3)0x f x ⎧⎨+⎩,解可得x 的取值范围,即可得答案. 【解答】解:根据题意,()f x 是奇函数且在(,0)-∞上是减函数,则(3)f f -=-(3)0=,且在(,3)-∞-上,()0f x >,在(3,0)-上,()0f x <; 又由函数为奇函数,则在(0,3)上,()0f x >,在(3,)+∞上,()0f x <; 即在(,3)-∞-和(0,3)上,()0f x >;在(3,0)-和(3,)+∞上,()0f x <; 0()0(3)0(3)0x xg x xf x f x ⎧⇒+⇒⎨+⎩或0(3)0x f x ⎧⎨+⎩,解可得:6x -或3x -;即不等式的解集为(-∞,6][3--,)+∞; 故选:C .【点评】本题考查函数的奇偶性与单调性的综合应用,注意转化不等式的形式,属于基础题.2.(2017秋•通州区期末)下列函数中,对于任意x R ∈,同时满足条件()()f x f x =--和()()f x f x π+=的函数是()A .f ( )x f π+= ( )xB .f ( )cos x = xC .f ( )sin x = cos x xD .f ( 22)cos sin x x x =-【分析】由题意可得()f x 为奇函数,且周期为π,运用二倍角公式和正弦函数、余弦函数的奇偶性和周期性,即可得到所求结论.【解答】解:由()()f x f x =--和()()f x f x π+=,可得()f x 为奇函数,且周期为π, 显然()cos f x x =为偶函数;1()sin cos sin 22f x x x x ==为奇函数,周期为π;22()cos sin cos 2f x x x x =-=为偶函数, 综上可得选项C 符合题意. 故选:C .【点评】本题考查函数的奇偶性和周期性的判断和运用,考查三角函数的恒等变换,以及三角函数的性质,属于基础题.3.(2017秋•海淀区校级期末)定义在R 上的偶函数()f x 满足(2)()f x f x +=,且在[1,2]上是减函数,若α,β是锐角三角形的两个内角,则( ) A .f (sin )f α> (cos )β B .f (sin )f α< (cos )β C .f (sin )f α> (sin )βD .f (cos )f α< (cos )β【分析】根据题意,分析可得()(2)f x f x -=+,即函数()f x 的图象关于直线1x =对称,据此分析可得()f x 在区间[0,1]上是增函数,由α,β是锐角三角形的两个内角便可得出sin cos αβ>,从而根据()f x 在(0,1)上是增函数即可得出(sin )(cos )f f αβ>,即可得答案.【解答】解:根据题意,定义在R 上的偶函数()f x 满足(2)()f x f x +=, 则有()(2)f x f x -=+,即函数()f x 的图象关于直线1x =对称, 又由函数()f x 在[1,2]上是减函数,则其在[0,1]上是增函数, 若α,β是锐角三角形的两个内角, 则2παβ+>,则有2παβ>-,则有sin sin()cos 2παββ>-=,又由函数()f x 在[0,1]上是增函数, 则(sin )(cos )f f αβ>; 故选:A .【点评】本题考查函数的奇偶性、周期性与周期性的综合应用,注意分析函数在(0,1)上的单调性.4.(2017•海淀区模拟)已知函数()f x 满足如下条件:①任意x R ∈,有()()0f x f x +-=成立;②当0x 时,2221()(|||2|3)2f x x m x m m =-+--;③任意x R ∈,有()(1)f x f x -成立.则实数m 的取值范围( )A.[ B .11[,]66-C.[ D .11[,]33-【分析】化简()f x 在[0,)+∞上的解析式,根据()f x 的奇偶性做出函数图象,根据条件③得出不等式解出. 【解答】解:()()0f x f x +-=,()f x ∴是奇函数.当0m =时,()f x x =,显然符合题意.当0m ≠时,()f x 在[0,)+∞上的解析式为:222222,0(),23,2x x m f x m m x m x m x m ⎧-⎪=-<<⎨⎪-⎩,做出()f x 的函数图象如图所示:任意x R ∈,有()(1)f x f x -成立, 261m ∴,解得666m . 故选:A .【点评】本题考查了奇函数的判断与性质,函数图象的应用,属于中档题.5.(2017秋•西城区校级月考)已知()f x 是定义在R 上的奇函数,当0x >时,2()4f x x x =-,则不等式()0xf x >的解集为( )A .(-∞,4)(4⋃,)+∞B .(4-,0)(4⋃,)+∞C .(-∞,4)(0⋃,4)D .(4,4)-【分析】根据题意,由函数的解析式以及奇偶性分析可得函数()f x 的解析式,按x 的符号分2种情况讨论,求出不等式的解集,综合即可得答案.【解答】解:根据题意,设0x <,则0x ->,则22()()4()4f x x x x x -=---=+, 又由()f x 是定义在R 上的奇函数,则2()()4f x f x x x =--=-, 则224,0()4,0x x x f x x x x ⎧-=⎨--<⎩,且当0x >时,22()(4)(4)xf x x x x x x =-=-,()0xf x >即2(4)0x x ->,解可得4x >, 故当0x <时,22()(4)(4)xf x x x x x x =--=-+,()0xf x >即2(4)0x x -->,解可得4x <-, 故不等式的解集为(-∞,4)(4-⋃,)+∞, 故选:A .【点评】本题考查函数奇偶性的性质以及应用,涉及不等式的解法,关键是求出函数的解析式. 二.填空题(共4小题)6.(2018•北京模拟)已知函数()g x 对任意的x R ∈,有2()()g x g x x -+=.设函数2()()2x f x g x =-,且()f x 在区间[0,)+∞上单调递增.若f (a )(2)0f a +-,则实数a 的取值范围为 (-∞,1] .【分析】判断()f x 的奇偶性和单调性,根据单调性求出a 的范围.【解答】解:由2()()2x f x g x =-得:2()()2x f x g x -=--,2()()()()0f x f x g x g x x ∴+-=+--=,()f x ∴在R 上是奇函数,又()f x 在区间[0,)+∞上单调递增, ()f x ∴在R 上单调递增, f (a )(2)0f a +-,f ∴(a )(2)(2)f a f a --=-,2a a ∴-,即1a .故答案为:(-∞,1].【点评】本题考查了函数奇偶性、单调性的判断与应用,属于中档题.7.(2017秋•大兴区期末)如果函数()f x 对任意的正实数a ,b ,都有()f ab f =(a )f +(b ),则这样的函数()f x 可以是 ()f x lgx = (写出一个即可)【分析】由条件,即乘积的函数值为函数值的和,考虑对数函数,即可得到结论. 【解答】解:函数()f x 对任意的正实数a ,b ,都有()f ab f =(a )f +(b ), 考虑对数函数()f x lgx =,满足()()f ab lg ab lga lgb f ==+=(a )f +(b ), 故答案为:()f x lgx =.【点评】本题考查抽象函数的解析式和性质,注意条件的特点,即乘积的函数值为函数值的和,考查推理能力,属于基础题.8.(2017秋•崇文区校级期中)已知函数()f x 是定义在R 上的偶函数,且()f x 在区间[0,)+∞单调递增,则满足不等式(21)f x f -<(3)的x 的取值范围是 (1,2)- .【分析】根据题意,由函数的奇偶性与单调性分析:(21)f x f -<(3)可以转化为|21|3x -<,解可得x 的取值范围,即可得答案.【解答】解:根据题意,函数()f x 是定义在R 上的偶函数,且()f x 在区间[0,)+∞单调递增, 则(21)f x f -<(3)(|21|)f x f ⇒-<(3)|21|3x ⇒-<, 即3213x -<-<, 解可得:12x -<<, 即x 的取值范围为(1,2)-; 故答案为:(1,2)-.【点评】本题考查函数的奇偶性与单调性的综合应用,涉及抽象函数构造不等式的问题,属于基础题.9.(2015秋•海淀区期末)已知函数()y f x =,若对于任意x R ∈,(2)2()f x f x =恒成立,则称函数()y f x =具有性质P ,(1)若函数()f x 具有性质P ,且f (4)8=,则f (1)= 2 ;(2)若函数()f x 具有性质P ,且在(1,2]上的解析式为cos y x =,那么()y f x =在(1,8]上有且仅有 个零点. 【分析】(1)根据性质P 的条件,利用方程关系进行递推即可.(2)根据性质P 的条件,分别求出函数的解析式,利用函数零点的定义解方程即可. 【解答】解:(1)因为函数()y f x =,具有性质P , 所以对于任意x R ∈,(2)2()f x f x =恒成立,所以f (4)(22)2f f =⨯=(2)2(21)4f f =⨯=(1)8=, 所以f (1)2=.(2)若函数()y f x =具有性质P ,且在(1,2]上的解析式为cos y x =, 由cos 0y x ==,则2x π=,由(2)2()f x f x =得()2()2x f x f =,若24x <,则122x <,则()2()2cos 22x x f x f ==, 则函数()f x 在(2,4]上的解析式为2cos 2xy =,由2cos 02x=,得x π=,若48x <,则242x <,则()2()4cos 24x x f x f ==, 在(4,8]上的解析式为4cos 4xy =,由4cos 04xy ==得2x π=,所以()y f x =在(1,8]上有且仅有3个零点,分别是2π,π,2π. 故()y f x =在(1,8]上有且仅有3个零点, 故答案为:2,3【点评】本题主要考查抽象函数的应用,利用定义进行递推以及求出函数的解析式是解决本题的关键.考查学生的运算和推理能力. 三.解答题(共4小题)10.(2018秋•海淀区校级期中)已知函数()f x 对一切实数x ,y 都有()()(21)f x y f y x x y +-=++成立,且f (1)0=.(1)求(0)f 的值. (2)求()f x 的解析式. (3)当102x <<时,不等式()32f x x a +<+恒成立,求a 的取值范围.【分析】(1)令1x =,0y =可得(0)f ;(2)令y x =-得出()f x -解析式,从而得出()f x 的解析式; (3)分离参数,求出函数的最大值即可得出a 的范围. 【解答】解:(1)令1x =,0y =得f (1)(0)2f -=, (0)f f ∴=(1)22-=-.(2)令y x =-可得2(0)()(1)f f x x x x x --=-+=-+,2()2f x x x ∴-=--, 2()2f x x x ∴=+-.(2)由()32f x x a +<+得21a x x >-+, 令22131()1()(0)242g x x x x x =-+=-+<<,()(0)1g x g ∴<=, 21a x x ∴>-+恒成立,1a ∴.【点评】本题考查了抽象函数的性质,函数最值的计算,属于中档题.11.(2017秋•通州区期末)已知定义在R 上的奇函数()f x ,对x R ∈满足f (2)x f ++ (2)0x -=. ()I 试判断()f x 是否为周期函数,若是,证明你的结论;若不是,请说明理由; ()II 当[2x ∈-,0]时,2()2f x x x =+. ()i 当[4x ∈,6]时,求函数()f x 的解析式; ()ii 求:f (0)f + (1)f ++ (2018)的值.【分析】(Ⅰ)根据题意,由f (2)x f ++(2)0x -=可得(4)()f x f x +=-,进而可得(8)()f x f x +=,即可得结论; (Ⅱ)()i 根据题意,设[4x ∈,6],则4[0x -∈,2],则4[2x -∈-,0];结合函数的奇偶性与周期性分析可得结论;()ii 根据题意,由函数的解析式以及奇偶性可得(0)f 、f (1)、f (2)的值,进而结合(4)()f x f x +=-分析可得(0)f f +(4)0=,f (1)f +(5)0=,f (2)f +(6)0=,f (3)f +(7)0=,则有f (0)f + (1)f ++(7)0=,又由(8)()f x f x +=,则有f (0)f + (1)f ++(2018)252[f =⨯(0)f + (1)f ++(7)](2016)(2017)(2018)f f f +++,计算可得答案.【解答】解:(Ⅰ)根据题意,函数()f x 是周期为8的周期函数; 证明如下:()f x 满足f (2)x f ++(2)0x -=,则有(4)()f x f x +=-, 又由函数为奇函数,则()()f x f x -=-,则有(4)()f x f x +=-,变形可得(8)()f x f x +=,即函数()f x 是周期为8的周期函数;(Ⅱ)()i 根据题意,设[4x ∈,6],则4[0x -∈,2],则4[2x -∈-,0]; 又由[2x ∈-,0]时,2()2f x x x =+,则22(4)(4)2(4)1024f x x x x x -=-+-=-+, 又由函数()f x 为奇函数且(4)()f x f x +=-, 则2()(4)(4)1024f x f x f x x x =--=-=-+,()ii 根据题意,函数()f x 为定义在R 上的奇函数,则(0)0f =,f (1)(1)1f =--=,f (2)(2)0f =--=,又由(4)()f x f x +=-,则(0)f f +(4)0=,f (1)f +(5)0=,f (2)f +(6)0=,f (3)f +(7)0=, 则f (0)f + (1)f ++(7)0=, 又由(8)()f x f x +=,则f (0)f + (1)f ++(2018)252[f =⨯(0)f + (1)f ++(7)](2016)(2017)(2018)(0)f f f f f +++=+(1)f +(2)1=;故f (0)f + (1)f ++(2018)0=.【点评】本题考查函数的奇偶性与周期性的判断以及应用,涉及函数解析式的计算,关键是分析函数的周期,属于基础题.12.(2017秋•西城区期末)若函数()f x 满足:对于s ,[0t ∈,)+∞,都有()0f s ,()0f t ,且()()()f s f t f s t ++,则称函数()f x 为“T 函数”.(Ⅰ)试判断函数21()f x x =与2()(1)f x lg x =+是否是“T 函数”,并说明理由;(Ⅱ)设()f x 为“T 函数”,且存在0[0x ∈,)+∞,使00(())f f x x =,求证:00()f x x =;(Ⅲ)试写出一个“T 函数” ()f x ,满足f (1)1=,且使集合{|()y y f x =,01}x 中元素的个数最少.(只需写出结论)【分析】(Ⅰ)直接利用定义判断函数21()f x x =与2()(1)f x lg x =+即可(Ⅱ)设1x ,2[0x ∈,)+∞,21x x >,21x x =+△x ,△0x >.则211()()(f x f x f x -=+△11)()(x f x f x -+△1)(x x f -=△)0x ,所以,对于1x ,2[0x ∈,)+∞,12x x <,一定有12()()f x f x .即可证明(Ⅲ)根据f (1)1=,且使集合{|()y y f x =,01}x 中元素的个数最少,以及新定义即可确定. 【解答】解:(Ⅰ)对于函数21()f x x =,当s ,[0t ∈,)+∞时,都有1()0f s ,1()0f t , 又222111()()()()20f s f t f s t s t s t st +-+=+-+=-,所以111()()()f s f t f s t ++. 所以21()f x x =是“T 函数”.对于函数2()(1)f x lg x =+,当2s t ==时,22()()9f s f t lg +=,2()5f s t lg +=,因为95lg lg >,所以222()()()f s f t f s t +>+. 所以2()(1)f x lg x =+不是“T 函数”.(Ⅱ)设1x ,2[0x ∈,)+∞,21x x >,21x x =+△x ,△0x >. 则211()()(f x f x f x -=+△11)()(x f x f x -+△1)(x x f -=△)0x 所以,对于1x ,2[0x ∈,)+∞,12x x <,一定有12()()f x f x . 因为()f x 是“T 函数”, 0[0x ∈,)+∞,所以0()0f x . 若00()f x x >,则000(())()f f x f x x >,不符合题意. 若00()f x x <,则000(())()f f x f x x <,不符合题意. 所以00()f x x =.⋯(8分)(Ⅲ)20,[0,1)(),[1,).x f x x x ∈⎧=⎨∈+∞⎩(注:答案不唯一)【点评】本题考查了函数的性质的应用及不等式的求解,新定义的理解和应用,属于中档题. 13.(2018春•海淀区校级期中)已知定义在(-∞,0)(0⋃,)+∞上的函数()f x 满足: ①对于任意的x ,(y ∈-∞,0)(0⋃,)+∞,都有()()()f xy f x f y =+; ②当1x >时,()0f x >,且f (2)1=.(1)求f (1),(1)f -的值,并判断函数()f x 的奇偶性; (2)判断函数()f x 在(0,)+∞上的单调性;(3)求函数()f x 在区间[4-,0)(0⋃,4]上的最大值.【分析】(1)先求(1)f -的值,令1y =-,推出()()(1)f x f x f -=+-,()()f x f x -=.结合函数奇偶性的定义,判断函数()f x 的奇偶性;(2)利用函数单调性的定义,直接判断函数()f x 在(0,)+∞上的单调性;(3)通过(1),(2)奇偶性,单调性,直接求函数()f x 在区间[4-,0)(0⋃,4]上的最大值; 【解答】解:(1)令1x y ==,则(11)f f ⨯=(1)f +(1),得f (1)0=; 再令1x y ==-,则[(1)(1)](1)(1)f f f -⨯-=-+-,得(1)0f -=. 对于条件()()()f x y f x f y =+,令1y =-, 则()()(1)f x f x f -=+-,所以()()f x f x -=.又函数()f x 的定义域关于原点对称,所以函数()f x 为偶函数. (2)任取1x ,2(0,)x ∈+∞,且12x x <,则有211x x >.第11页(共11页)又当1x >时,()0f x >,21()0x f x ∴> 而22211111()()()()()x x f x f x f x f f x x x ==+>, 所以函数()f x 在(0,)+∞上是增函数.(3)f (4)(22)f f =⨯=(2)f +(2),又f (2)1=, f ∴(4)2=.又由(1)知函数()f x 在区间[4-,0)(0⋃,4]上是偶函数且在(0,4]上是增函数,∴函数()f x 在区间[4-,0)(0⋃,4]上的最大值为f (4)(4)2f =-=.【点评】本题考查函数奇偶性的判断,函数单调性的判断与证明,函数的最值及其几何意义,抽象函数及其应用,考查分析问题解决问题的能力,是中档题.。
抽象函数-题型大全(例题-含答案)
下考抽象函数本领归纳之阳早格格创做由于函数观念比较抽象,教死对付解有闭函数暗号()f x 的问题感触艰易,教佳那部分知识,能加深教死对付函数观念的明白,更佳天掌握函数的本量,培植机动性;普及解题本领,劣化教死数教思维素量.现将罕睹解法及意义归纳如下:一、供表白式:1.换元法:即用中间变量表示本自变量x 的代数式,从而供出()f x ,那也是证某些公式大概等式时常使用的要领,此法解培植教死的机动性及变形本领.例1:已知 ()211x f x x =++,供()f x . 解:设1x u x =+,则1u x u =-∴2()2111u uf u u u -=+=--∴2()1x f x x-=- 2.拼集法:正在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可供()f x .此解法简净,还能进一步复习代换法.例2:已知3311()f x x x x +=+,供()f x解:∵22211111()()(1)()(()3)f x x x x x x xx x x +=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先决定函数典型,设定函数闭系式,再由已知条件,定出闭系式中的已知系数.例3. 已知()f x 二次真函数,且2(1)(1)f x f x x ++-=+2x +4,供()f x . 解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a a b c b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数本量法:主要利用函数的奇奇性,供分段函数的剖析式.y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,供()f x解:∵()f x 为奇函数,∴()f x 的定义域闭于本面对付称,故先供x <0时的表白式.∵-x >0,∴()lg(1)lg(1)f x x x -=-+=-,∵()f x 为奇函数,∴lg(1)()()x f x f x -=-=-∴当x <0时()lg(1)f x x =--∴lg(1),0()lg(1),0x x f x x x +≥⎧=⎨--<⎩例5.一已知()f x 为奇函数,()g x 为奇函数,且有()f x +1()1g x x =-, 供()f x ,()g x . 解:∵()f x 为奇函数,()g x 为奇函数,∴()()f x f x -=,()()g x g x -=-,无妨用-x 代换()f x +()g x =11x -………①中的x , ∴1()()1f xg x x -+-=--即()f x -1()1g x x =-+……② 隐睹①+②即可消去()g x ,供出函数21()1f x x =-再代进①供出2()1xg x x =- 5.赋值法:给自变量与特殊值,从而创造顺序,供出()f x 的表白式例6:设()f x 的定义域为自然数集,且谦脚条件(1)()()f x f x f y xy +=++,及(1)f =1,供()f x解:∵()f x 的定义域为N ,与y =1,则有(1)()1f x f x x +=++∵(1)f =1,∴(2)f =(1)f +2,(3)(2)3f f =+……()(1)f n f n n =-+以上各式相加,有()f n =1+2+3+……+n =(1)2n n +∴1()(1),2f x x x x N =+∈ 二、利用函数本量,解()f x 的有闭问题1.推断函数的奇奇性:例7 已知()()2()()f x y f x y f x f y ++-=,对付一确真数x 、y 皆创造,且(0)0f ≠,供证()f x 为奇函数.道明:令x =0, 则已知等式形成()()2(0)()f y f y f f y +-=……①正在①中令y =0则2(0)f =2(0)f ∵(0)f ≠0∴(0)f =1∴()()2()f y f y f y +-=∴()()f y f y -=∴()f x 为奇函数.例8:奇函数()f x 正在定义域(-1,1)内递减,供谦脚2(1)(1)0f m f m -+-<的真数m 的与值范畴. 解:由2(1)(1)0f m f m -+-<得2(1)(1)f m f m -<--,∵()f x 为函数,∴2(1)(1)f m f m -<-又∵()f x 正在(-1,1)内递减,∴221111110111m m m m m -<-<⎧⎪-<-<⇒<<⎨⎪->-⎩3.解大概式的有闭题目例9:如果()f x =2ax bx c ++对付任性的t 有(2)2)f t f t +=-,比较(1)(2)(4)f f f 、、的大小 解:对付任性t 有(2)2)f t f t +=-∴x =2为扔物线y =2ax bx c ++的对付称轴 又∵其启心进与∴f (2)最小,f (1)=f (3)∵正在[2,+∞)上,()f x 为删函数∴f (3)<f (4),∴f (2)<f (1)<f (4)五类抽象函数解法1、线性函数型抽象函数线性函数型抽象函数,是由线性函数抽象而得的函数.例1、已知函数f(x)对付任性真数x,y,均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(-1)=-2,供f(x)正在区间[-2,1]上的值域.领会:由题设可知,函数f(x)是的抽象函数,果此供函数f(x)的值域,闭键正在于钻研它的单调性.解:设,∵当,∴,∵,∴,即,∴f(x)为删函数.正在条件中,令y=-x,则,再令x=y=0,则f(0)=2 f(0),∴f(0)=0,故f(-x)=f(x),f(x)为奇函数,∴f(1)=-f(-1)=2,又f(-2)=2 f(-1)=-4,∴f(x)的值域为[-4,2].例2、已知函数f(x)对付任性,谦脚条件f(x)+f(y)=2 + f(x+y),且当x>0时,f(x)>2,f(3)=5,供不等式的解.领会:由题设条件可预测:f(x)是y=x+2的抽象函数,且f(x)为单调删函数,如果那一预测精确,也便不妨脱去不等式中的函数标记,从而可供得不等式的解. 解:设,∵当,∴,则,即,∴f(x)为单调删函数.∵,又∵f(3)=5,∴f(1)=3.∴,∴,即,解得不等式的解为-1 < a < 3.2、指数函数型抽象函数例3、设函数f(x)的定义域是(-∞,+∞),谦脚条件:存留,使得,对付所有x战y,创造.供:(1)f(0);(2)对付任性值x,推断f(x)值的正背.领会:由题设可预测f(x)是指数函数的抽象函数,从而预测f (0)=1且f(x)>0.解:(1)令y=0代进,则,∴.若f(x)=0,则对付任性,有,那与题设冲突,∴f(x)≠0,∴f(0)=1.(2)令y=x≠0,则,又由(1)知f(x)≠0,∴f(2x)>0,即f(x)>0,故对付任性x,f(x)>0恒创造.例4、是可存留函数f(x),使下列三个条件:①f(x)>0,x∈N;②;③f(2)=4.共时创造?若存留,供出f (x)的剖析式,如不存留,道明缘由.领会:由题设可预测存留,又由f(2)=4可得a=2.故预测存留函数,用数教归纳法道明如下:(1)x=1时,∵,又∵x∈N时,f(x)>0,∴,论断精确.(2)假设时有,则x=k+1时,,∴x=k+1时,论断精确.综上所述,x为十足自然数时.3、对付数函数型抽象函数对付数函数型抽象函数,即由对付数函数抽象而得到的函数.例5、设f(x)是定义正在(0,+∞)上的单调删函数,谦脚,供:(1)f(1);(2)若f(x)+f(x-8)≤2,供x的与值范畴.领会:由题设可预测f(x)是对付数函数的抽象函数,f(1)=0,f(9)=2.解:(1)∵,∴f(1)=0.(2),从而有f(x)+f(x-8)≤f(9),即,∵f(x)是(0,+∞)上的删函数,故,解之得:8<x≤9.例6、设函数y=f(x)的反函数是y=g(x).如果f(ab)=f(a)+f(b),那么g(a+b)=g(a)·g(b)是可精确,试道明缘由.领会: 由题设条件可预测y=f(x)是对付数函数的抽象函数,又∵y =f(x)的反函数是y=g(x),∴y=g(x)必为指数函数的抽象函数,于是预测g(a+b)=g(a)·g(b)精确.解:设f(a)=m,f(b)=n,由于g(x)是f(x)的反函数,∴g (m)=a,g(n)=b,从而,∴g (m)·g(n)=g(m+n),以a、b分别代替上式中的m、n即得g (a+b)=g(a)·g(b).4、三角函数型抽象函数三角函数型抽象函数即由三角函数抽象而得到的函数.例7、己知函数f(x)的定义域闭于本面对付称,且谦脚以下三条件:①当是定义域中的数时,有;②f(a)=-1(a>0,a是定义域中的一个数);③当0<x<2a时,f(x)<0.试问:(1)f(x)的奇奇性怎么样?道明缘由.(2)正在(0,4a)上,f(x)的单调性怎么样?道明缘由.领会: 由题设知f(x)是的抽象函数,从而由及题设条件预测:f(x)是奇函数且正在(0,4a)上是删函数(那里把a瞅成举止预测).解:(1)∵f(x)的定义域闭于本面对付称,且是定义域中的数时有,∴正在定义域中.∵,∴f(x)是奇函数.(2)设0<x1<x2<2a,则0<x2-x1<2a,∵正在(0,2a)上f(x)<0,∴f(x1),f(x2),f(x2-x1)均小于整,从而知中的,于是f(x1)<f(x2),∴正在(0,2a)上f(x)是删函数.又,∵f(a)=-1,∴,∴f (2a)=0,设2a<x<4a,则0<x-2a<2a,,于是f(x)>0,即正在(2a,4a)上f(x)>0.设2a<x1<x2<4a,则0<x2-x1<2a,从而知f(x1),f (x2)均大于整.f(x2-x1)<0,∵,∴,即f(x1)<f(x2),即f(x)正在(2a,4a)上也是删函数.综上所述,f(x)正在(0,4a)上是删函数.5、幂函数型抽象函数幂函数型抽象函数,即由幂函数抽象而得到的函数.例8、已知函数f(x)对付任性真数x、y皆有f(xy)=f(x)·f(y),且f(-1)=1,f(27)=9,当时,.(1)推断f(x)的奇奇性;(2)推断f(x)正在[0,+∞)上的单调性,并给出道明;(3)若,供a的与值范畴.领会:由题设可知f(x)是幂函数的抽象函数,从而可预测f(x)是奇函数,且正在[0,+∞)上是删函数.解:(1)令y=-1,则f(-x)=f(x)·f(-1),∵f(-1)=1,∴f(-x)=f(x),f(x)为奇函数.(2)设,∴,,∵时,,∴,∴f(x1)<f(x2),故f(x)正在0,+∞)上是删函数.(3)∵f(27)=9,又,∴,∴,∵,∴,∵,∴,又,故.抽象函数罕睹题型解法综述抽象函数是指不给出函数的简曲剖析式,只给出了一些体现函数个性的式子的一类函数.由于抽象函数表示形式的抽象性,使得那类问题成为函数真量的易面之一.本文便抽象函数罕睹题型及解法评析如下:一、定义域问题例1. 已知函数的定义域是[1,2],供f(x)的定义域.解:的定义域是[1,2],是指,所以中的谦脚从而函数f(x)的定义域是[1,4]评析:普遍天,已知函数的定义域是A,供f(x)的定义域问题,相称于已知中x的与值范畴为A,据此供的值域问题.例2. 已知函数的定义域是,供函数的定义域.解:的定义域是,意义是凡是被f效率的对付象皆正在中,由此可得所以函数的定义域是评析:那类问题的普遍形式是:已知函数f(x)的定义域是A,供函数的定义域.精确明白函数标记及其定义域的含意是供解此类问题的闭键.那类问题真量上相称于已知的值域B,且,据此供x 的与值范畴.例2战例1形式上正好同.二、供值问题例3. 已知定义域为的函数f(x),共时谦脚下列条件:①;②,供f(3),f(9)的值.解:与,得果为,所以又与得评析:通过瞅察已知与已知的通联,巧妙天赋值,与,那样便把已知条件与欲供的f(3)相通了起去.赋值法是解此类问题的时常使用本领.三、值域问题例4. 设函数f(x)定义于真数集上,对付于任性真数x、y,总创造,且存留,使得,供函数的值域.解:令,得,即有大概.若,则,对付任性均创造,那与存留真数,使得创造冲突,故,必有.由于对付任性均创造,果此,对付任性,有底下去道明,对付任性设存留,使得,则那与上头已证的冲突,果此,对付任性所以评析:正在处理抽象函数的问题时,往往需要对付某些变量举止符合的赋值,那是普遍背特殊转移的需要脚法.四、剖析式问题例5. 设对付谦脚的所有真数x,函数谦脚,供f(x)的剖析式.解:正在中以代换其中x,得:再正在(1)中以代换x,得化简得:评析:如果把x战分别瞅做二个变量,何如真止由二个变量背一个变量的转移是解题闭键.常常情况下,给某些变量符合赋值,使之正在闭系中“消得”,从而死存一个变量,是真止那种转移的要害战术.五、单调性问题例6. 设f(x)定义于真数集上,当时,,且对付于任性真数x、y,有,供证:正在R上为删函数.道明:正在中与,得若,令,则,与冲突所以,即有当时,;当时,而所以又当时,所以对付任性,恒有设,则所以所以正在R上为删函数.评析:普遍天,抽象函数所谦脚的闭系式,应瞅做给定的运算规则,则变量的赋值大概变量及数值的领会与拉拢皆应尽管与已知式大概所给闭系式及所供的截止相闭联.六、奇奇性问题例7. 已知函数对付任性不等于整的真数皆有,试推断函数f(x)的奇奇性.解:博得:,所以又博得:,所以再与则,即果为为非整函数,所以为奇函数.七、对付称性问题例8. 已知函数谦脚,供的值.解:已知式即正在对付称闭系式中与,所以函数的图象闭于面(0,2002)对付称.根据本函数与其反函数的闭系,知函数的图象闭于面(2002,0)对付称.所以将上式中的x用代换,得评析:那是共一个函数图象闭于面成核心对付称问题,正在解题中使用了下述命题:设a、b均为常数,函数对付一确真数x皆谦脚,则函数的图象闭于面(a,b)成核心对付称图形.八、搜集概括问题例9. 定义正在R上的函数f(x)谦脚:对付任性真数m,n,总有,且当x>0时,0<f(x)<1.(1)推断f(x)的单调性;(2)设,,若,试决定a的与值范畴.解:(1)正在中,令,得,果为,所以.正在中,令果为当时,所以当时而所以又当x=0时,,所以,综上可知,对付于任性,均有.设,则所以所以正在R上为减函数.(2)由于函数y=f(x)正在R上为减函数,所以即有又,根据函数的单调性,有由,所以曲线与圆里无大众面.果此有,解得.评析:(1)要计划函数的单调性必定波及到二个问题:一是f(0)的与值问题,二是f(x)>0的论断.那是解题的闭键性步调,完毕那些要正在抽象函数式中举止.由特殊到普遍的解题思维,奇像类比思维皆有帮于问题的思索妥协决.定义正在R 上的函数f x ()谦脚:f x f x ()()=-4且f x f x ()()220-+-=,供f ()2000的值.解:由f x f x ()()220-+-=, 以t x =-2代进,有f t f t ()()-=,∴f x ()为奇函数且有f ()00=又由f x f x ()[()]+=--44故f x ()是周期为8的周期函数,例2 已知函数f x ()对付任性真数x y ,皆有f x y f x f y ()()()+=+,且当x >0时,f x f ()()>-=-012,,供f x ()正在[]-21,上的值域.解:设x x 12< 且x x R 12,∈, 则x x 210->,由条件当x >0时,f x ()>0 又f x f x x x ()[()]2211=-+∴f x ()为删函数,令y x =-,则f f x f x ()()()0=+-又令x y ==0得f ()00=∴-=-f x f x ()(),故f x ()为奇函数,∴=-=f f ()()112,f f ()()-=-=-2214∴-f x ()[]在,21上的值域为[]-42,二. 供参数范畴那类参数隐含正在抽象函数给出的运算式中,闭键是利用函数的奇奇性战它正在定义域内的删减性,去掉“f ”标记,转移为代数不等式组供解,但是要特天注意函数定义域的效率.例3 已知f x ()是定义正在(-11,)上的奇函数,且正在(0,1)上为删函数,谦脚f a f a ()()---<2402,试决定a 的与值范畴. 解: f x ()是奇函数,且正在(0,1)上是删函数,∴f x ()正在()-10,上是减函数,由-<-<-<-<⎧⎨⎩1211412a a 得35<<a . (1)当a =2时,f a f a f ()()()-=-=2402,不等式不可坐.(2)当32<<a 时,(3)当25<<a 时,综上所述,所供a 的与值范畴是()()3225,, . 例 4 已知f x ()是定义正在(]-∞,1上的减函数,若f m x f m x (sin )(cos )221-≤++对付x R ∈恒创造,供真数m 的与值范畴.解: m x m x m x m x 22223131-≤++≤-≥++⎧⎨⎪⎩⎪sin cos sin cos对付x R ∈恒创造⇔-≤-≥++⎧⎨⎪⎩⎪m x m x m x22231sin sin cos 对付x R ∈恒创造⇔ 对付x R ∈恒创造, 三. 解不等式那类不等式普遍需要将常数表示为函数正在某面处的函数值,再通过函数的单调性去掉函数标记“f ”,转移为代数不等式供解.例5 已知函数f x ()对付任性x y R ,∈有f x f y f x y ()()()+=++2,当x >0时,f x ()>2,f ()35=,供不等式f a a ()2223--<的解集. 解:设x x R 12、∈且x x 12< 则x x 210-> ∴->f x x ()212, 即f x x ()2120-->, 故f x ()为删函数, 又f f f f f ()()()()()3212123145=+=+-=-=果此不等式f a a ()2223--<的解集为{}a a |-<<13. 四. 道明某些问题例6 设f x ()定义正在R 上且对付任性的x 有f x f x f x ()()()=+-+12,供证:f x ()是周期函数,并找出它的一个周期.领会:那共样是不给出函数表白式的抽象函数,其普遍解法是根据所给闭系式举止递推,若能得出f x T f x ()()+=(T 为非整常数)则f x ()为周期函数,且周期为T. 道明: f x f x f x ()()()()=+-+121()()12+得f x f x ()()()=-+33由(3)得f x f x ()()()+=-+364 由(3)战(4)得f x f x ()()=+6.上式对付任性x R ∈皆创造,果此f x ()是周期函数,且周期为6. 例7 已知f x ()对付十足x y ,,谦脚f f x y f x f y ()()()()00≠+=⋅,,且当x <0时,f x ()>1,供证:(1)x >0时,01<<f x ();(2)f x ()正在R 上为减函数.道明: 对付十足x y R ,∈有f x y f x f y ()()()+=⋅.且f ()00≠,令x y ==0,得f ()01=, 现设x >0,则-<x 0,f x ()->1, 而f f x f x ()()()01=⋅-=∴<<01f x (),设x x R 12,∈且x x 12<, 则0121<-<f x x (),∴>f x f x ()()12,即f x ()为减函数. 五. 概括问题供解抽象函数的概括问题普遍易度较大,常波及到多个知识面,抽象思维程度央供较下,解题时需掌控佳如下三面:一是注意函数定义域的应用,二是利用函数的奇奇性去掉函数标记“f ”前的“背号”,三是利用函数单调性去掉函数标记“f ”.例8 设函数y f x =()定义正在R 上,当x >0时,f x ()>1,且对付任性m n ,,有f m n f m f n ()()()+=⋅,当m n ≠时f m f n ()()≠.(1)道明f ()01=;(2)道明:f x ()正在R 上是删函数; (3)设{}A x y f x f y f =⋅<()|()()(),221,B x y f ax by c a b c R a =++=∈≠{()|()},,,,,10,若A B =∅,供a b c ,,谦脚的条件.解:(1)令m n ==0得f f f ()()()000=⋅, ∴=f ()00大概f ()01=.若f ()00=,当m ≠0时,有fm fm f ()()()+=⋅00,那与当m n ≠时,f m f n ()()≠冲突, ∴=f ()01. (2)设x x 12<,则x x 210->,由已知得f x x ()211->,果为x 10≥,f x ()11>,若x 10<时,->->x f x 1101,(),由f fx f x ()()()011=⋅- (3)由f x f y f ()()()221⋅<得x y 2211+<()由f a x b y c ()++=1得a x b y c ++=0(2) 从(1)、(2)中消去y 得()a b x a c x c b 2222220+++-<,果为AB =∅ ∴=-+-<∆()()()24022222a c ab cb , 即a bc 222+<例9 定义正在(-11,)上的函数f x ()谦脚(1),对付任性x y ,,∈-()11皆有f x f y f x yx y()()()+=++1,(2)当x ∈-()10,时,有f x ()>0,(1)试推断f x ()的奇奇性;(2)推断f x ()的单调性;(3)供证f f f n nf ()()()()15111131122+++++>…. 领会:那是一讲以抽象函数为载体,钻研函数的单调性与奇奇性,再以那些本量为前提去钻研数列供战的概括题.解:(1)对付条件中的x y ,,令x y ==0,再令y x =-可得f f f f x f x f f x f x ()()()()()()()()000000+=+-=⎧⎨⎩⇒=-=-⎧⎨⎩,所以f x ()是奇函数. (2)设-<<<1012x x ,则fx fx fx f x f x x x x ()()()()()121212121-=+-=-- x x x x 1212001-<<<,, ∴--<x x x x 121210,由条件(2)知f x xx x ()121210-->,从而有f x f x ()()120->,即f x f x ()()12>,故f x ()()在,-10上单调递减,由奇函数本量可知,f x ()正在(0,1)上仍是单调减函数. (3) f n n ()1312++ 抽象函数问题分类剖析咱们将不精确给出剖析式的函数称为抽象函数.连年去抽象函数问题频频出现于百般考查题中,由于那类问题抽象性强,机动性大,普遍共教感触狐疑,供解无从下脚.本文试图通过真例做分类剖析,供教习参照. 1. 供定义域那类问题只消紧紧抓住:将函数f g x [()]中的g x ()瞅做一个完全,相称于f x ()中的x 那一个性,问题便会迎刃而解.例1. 函数y f x =()的定义域为(]-∞,1,则函数y f x =-[l o g ()]222的定义域是___.领会:果为l o g()22x 2-相称于f x ()中的x ,所以l o g()2221x -≤,解得 22<≤x 大概-≤<-22x . 例2. 已知f x ()的定义域为(0),1,则y f x a f x a a =++-≤()()(||)12的定义域是______.领会:果为x a +及x a -均相称于f x ()中的x ,所以 (1)当-≤≤120a 时,则x a a ∈-+(),1 (2)当012<≤a 时,则x a a ∈-(),12. 推断奇奇性根据已知条件,通过妥当的赋值代换,觅供f x ()与f x ()-的闭系. 例 3. 已知f x ()的定义域为R ,且对付任性真数x ,y 谦脚fx y fx f y()()()=+,供证:f x ()是奇函数. 领会:正在fx y fx f y ()()()=+中,令x y ==1, 得f f f f ()()()()11110=+⇒= 令x y ==-1,得f f f f ()()()()11110=-+-⇒-= 于是fx f x f f x f x ()()()()()-=-⋅=-+=11 故f x ()是奇函数.例4. 若函数y f xf x =≠()(())0与y f x =-()的图象闭于本面对付称,供证:函数y f x =()是奇函数.道明:设y f x =()图象上任性一面为P (x y 00,)y f x =()与y f x=-()的图象闭于本面对付称, ∴P x y ()00,闭于本面的对付称面()--x y 00,正在y f x =-()的图象上,又y f x 00=() 即对付于函数定义域上的任性x 皆有f x f x ()()-=,所以y f x =()是奇函数.3. 推断单调性根据函数的奇奇性、单调性等有闭本量,绘出函数的示企图,以形帮数,问题赶快获解.例5. 如果奇函数f x ()正在区间[]37,上是删函数且有最小值为5,那么f x ()正在区间[]--73,上是A. 删函数且最小值为-5B. 删函数且最大值为-5C. 减函数且最小值为-5D. 减函数且最大值为-5 领会:绘出谦脚题意的示企图1,易知选B.图1例6. 已知奇函数f x ()正在(0),+∞上是减函数,问f x ()正在()-∞,0上是删函数仍旧减函数,并道明您的论断.领会:如图2所示,易知f x ()正在()-∞,0上是删函数,道明如下: 任与xx x x 121200<<⇒->-> 果为f x ()正在(0),+∞上是减函数,所以f x f x ()()-<-12. 又f x ()是奇函数,所以f x f xf x f x ()()()()-=-=1122,, 从而f x f x ()()12<,故f x ()正在()-∞,0上是删函数. 图24. 探供周期性那类问题较抽象,普遍解法是小心领会题设条件,通过类似,奇像出函数本型,通过对付函数本型的领会大概赋值迭代,赢得问题的解.例7. 设函数f x()的定义域为R,且对付任性的x,y有f x y f x y f x f y()()()()++-=⋅2,并存留正真数c,使f c()2=.试问f x()是可为周期函数?假如,供出它的一个周期;若不是,请道明缘由.领会:小心瞅察领会条件,奇像三角公式,便会创造:y x=c o s谦脚题设条件,且cosπ2=,预测f x()是以2c为周期的周期函数.故f x()是周期函数,2c是它的一个周期.5. 供函数值紧扣已知条件举止迭代变更,经有限次迭代可曲交供出截止,大概者正在迭代历程中创造函数具备周期性,利用周期性使问题巧妙获解.例8. 已知f x()的定义域为R+,且fxy fx fy()()()+=+对付十足正真数x,y皆创造,若f()84=,则f(2)=_______.领会:正在条件fxy fx fy()()()+=+中,令x y==4,得f f f f()()()()844244=+==,又令x y==2,得f f f(4)(2)(2)=+=2,例9. 已知f x()是定义正在R上的函数,且谦脚:f x f x f x()[()]()+-=+211,f()11997=,供f(2001)的值.领会:紧扣已知条件,并多次使用,创造f x()是周期函数,隐然f x()≠1,于是f x f x f x()() ()+=+ -211,所以f x f x f x ()()()+=-+=814 故f x ()是以8为周期的周期函数,从而 6. 比较函数值大小利用函数的奇奇性、对付称性等本量将自变量转移到函数的单调区间内,而后利用其单调性使问题获解.例10. 已知函数f x ()是定义域为R 的奇函数,x <0时,f x ()是删函数,若x 10<,x 20>,且||||x x 12<,则f x f x ()()--12,的大小闭系是_______. 领会: x x 1200<>,且||||x x 12<, 又x <0时,f x ()是删函数,f x ()是奇函数,故f x f x ()()->-12 7. 计划圆程根的问题例11. 已知函数f x ()对付一确真数x 皆谦脚f x f x ()()11+=-,而且f x ()=0有三个真根,则那三个真根之战是_______.领会:由f x f x ()()11+=-知曲线x =1是函数f x ()图象的对付称轴. 又f x ()=0有三个真根,由对付称性知x 11=必是圆程的一个根,其余二根x x 23,闭于曲线x =1对付称,所以x x 23212+=⨯=,故x x x 1233++=. 8. 计划不等式的解供解那类问题利用函数的单调性举止转移,脱去函数标记.例12. 已知函数f x ()是定义正在(]-∞,1上的减函数,且对付一确真数x ,不等式fk x fk x(s i n )(s i n)-≥-22恒创造,供k 的值. 领会:由单调性,脱去函数暗号,得由题意知(1)(2)二式对付十足x R ∈恒创造,则有 9. 钻研函数的图象那类问题只消利用函数图象变更的有闭论断,便可获解.例13. 若函数y f x =+()2是奇函数,则y f x =()的图象闭于曲线_______对付称.领会:y f x =()的图象右移个单位左移个单位22y f x =+()2的图象,而y f x =+()2是奇函数,对付称轴是x =0,故y f x =()的对付称轴是x =2.例14. 若函数f x ()的图象过面(0,1),则f x ()+4的反函数的图象必过定面______.领会:f x ()的图象过面(0,1),从而f x ()+4的图象过面()-41,,由本函数与其反函数图象间的闭系易知,f x ()+4的反函数的图象必过定面()14,-. 10. 供剖析式例15. 设函数f x ()存留反函数,g x f x h x ()()()=-1,与g x ()的图象闭于曲线x y +=0对付称,则函数h x ()=A. -f x ()B. --f x ()C. --f x 1()D. ---f x 1()领会:央供y h x =()的剖析式,真量上便是供y h x =()图象上任一面Px y ()00,的横、纵坐标之间的闭系.面Px y ()00,闭于曲线y x =-的对付称面()--y x 00,符合y f x =-1(),即-=-x g y 00(). 又gxf x ()()=-1, 即h x f x ()()=--,选B.抽象函数的周期问题2001年下考数教(文科)第22题:设f x ()是定义正在R 上的奇函数,其图象闭于曲线x =1对付称.对付任性x x 12012,,∈[]皆有f xx f xf x ()()()1212+=⋅. (I )设f ()12=,供f f ()()1214,; (II )道明f x ()是周期函数. 剖析:(I )解略.(II )道明:依题设y f x =()闭于曲线x =1对付称 故f x f x x R ()()=-∈2, 又由f x ()是奇函数知 将上式中-x 以x 代换,得那标明f x ()是R 上的周期函数,且2是它的一个周期 f x ()是奇函数的真量是f x ()的图象闭于曲线x =0对付称 又f x ()的图象闭于x =1对付称,可得f x ()是周期函数 且2是它的一个周期由此举止普遍化推广,咱们得到思索一:设f x ()是定义正在R 上的奇函数,其图象闭于曲线x aa =≠()0对付称,道明f x ()是周期函数,且2a 是它的一个周期. 道明: f x ()闭于曲线xa =对付称 又由f x ()是奇函数知f x f x x R ()()-=∈,将上式中-x 以x 代换,得 ∴f x ()是R 上的周期函数且2a 是它的一个周期思索二:设f x ()是定义正在R 上的函数,其图象闭于曲线x a=战x ba b =≠()对付称.道明f x ()是周期函数,且2()b a -是它的一个周期. 道明: f x ()闭于曲线x a x b ==和对付称 将上式的-x 以x 代换得∴f x ()是R 上的周期函数且2()b a -是它的一个周期若把那讲下考题中的“奇函数”换成“奇函数”,f x ()仍旧不是周期函数?通过探索,咱们得到思索三:设f x ()是定义正在R 上的奇函数,其图象闭于曲线x =1对付称.道明f x ()是周期函数,且4是它的一个周期., 道明: f x ()闭于x =1对付称∴=-∈fx f x xR ()()2, 又由f x ()是奇函数知f x f x x R f x f x x R()()()()-=-∈∴-=--∈,,2将上式的-x 以x 代换,得∴f x ()是R 上的周期函数 且4是它的一个周期f x ()是奇函数的真量是f x ()的图象闭于本面(0,0)核心对付称,又f x ()的图象闭于曲线x =1对付称,可得f x ()是周期函数,且4是它的一个周期.由此举止普遍化推广,咱们得到思索四:设f x ()是定义正在R 上的函数,其图象闭于面M a (),0核心对付称,且其图象闭于曲线x bb a =≠()对付称.道明f x ()是周期函数,且4()b a -是它的一个周期.道明: f x ()闭于面M a (),0对付称 ∴-=-∈f a x f x x R ()()2, f x ()闭于曲线x b =对付称∴=-∈∴-=--∈f x f b x x R f b x f a x x R()()()()222,,将上式中的-x 以x 代换,得f b x f a x x R f x b a f b x b a f a x b a f b x a f a x a f x x R()()[()][()][()][()][()]()2242242242222+=-+∈∴+-=++-=-++-=-+-=+-=∈,,∴f x ()是R 上的周期函数 且4()b a -是它的一个周期由上咱们创造,定义正在R 上的函数f x (),其图象若有二条对付称轴大概一个对付称核心战一条对付称轴,则f x ()是R 上的周期函数.进一步咱们料到,定义正在R 上的函数f x (),其图象如果有二个对付称核心,那么f x ()是可为周期函数呢?通过探索,咱们得到思索五:设f x ()是定义正在R 上的函数,其图象闭于面M a (),0战N b a b ()(),0≠对付称.道明f x ()是周期函数,且2()b a -是它的一个周期.道明: f x ()闭于Ma Nb ()(),,,00对付称 ∴-=-∈-=-∈∴-=-∈f a x f x x R f b x f x x Rf a x f b x x R()()()()()()2222,,,将上式中的-x以x 代换,得 f a x f b x x Rf x b a f b x a f a x a f x x R()()[()][()][()]()2222222+=+∈∴+-=+-=+-=∈,,∴f x ()是周期函数且2()b a -是它的一个周期抽象函数解规则道抽象函数是指不给出简曲的函数剖析式大概图像,只给出一些函数标记及其谦脚的条件的函数,如函数的定义域,剖析递推式,特定面的函数值,特定的运算本量等,它是下中函数部分的易面,也是大教下等数教函数部分的一个贯串面,由于抽象函数不简曲的剖析表白式动做载体,果此明白钻研起去比较艰易.但是由于此类试题即能考查函数的观念战本量,又能考查教死的思维本领,所以备受命题者的青睐,那么,何如供解抽象函数问题呢,咱们不妨利用特殊模型法,函数本量法,特殊化要领,奇像类比转移法,等多种要领从多角度,多层里去领会钻研抽象函数问题, 一:函数本量法函数的个性是通过其本量(如奇奇性,单调性周期性,特殊面等)反应出去的,抽象函数也是如许,惟有充分掘掘战利用题设条件战隐含的本量,机动举止等价转移,抽象函数问题才搞转移,化易为易,时常使用的解题要领有:1,利用奇奇性完全思索;2,利用单调性等价转移;3,利用周期性返回已知4;利用对付称性数形分离;5,借帮特殊面,布列圆程等. 二:特殊化要领1正在供解函数剖析式大概钻研函数本量时,普遍用代换的要领,将x 换成-x 大概将x 换成等 2正在供函数值时,可用特殊值代进3钻研抽象函数的简曲模型,用简曲模型解采用题,挖空题,大概由简曲模型函数对付概括题,的解问提供思路战要领.总之,抽象函数问题供解,用惯例要领普遍很易凑效,但是咱们如果能通过对付题脚法疑息领会与钻研,采与特殊的要领战脚法供解,往往会支到事半功倍之成果,真有些山贫火复疑无路,柳暗花明又一村的快感. 1. 已知函数f(x)对付任性x 、y ∈R 皆有f(x+y)=f(x)+ f(y)+3xy(x+y+2)+3,且f(1)=1 ①若t 为自然数,(t>0)试供f(t)的表白式②谦脚f(t)=t 的所有整数t 是可形成等好数列?若能供出此数列,若不克不迭道明缘由 ③若t 为自然数且t≥4时, f(t) ≥mt2+(4m+1)t+3m,恒创造,供m 的最大值. 2. 已知函数f(x)=1)(1)(+-x g x g ,且f(x),g(x)定义域皆是R,且g(x)>0, g(1) =2,g(x) 是删函数. g(m) · g(n)=g(m+n)(m 、n ∈R) 供证:①f(x)是R 上的删函数②当n ∈N,n≥3时,f(n)>1+n n 解: ①设x1>x2g(x)是R 上的删函数, 且g(x)>0 ∴ g(x1) > g(x2) >0 ∴g(x1)+1 > g(x2)+1 >0∴1)(22+x g >1)(21+x g >0∴1)(22+x g -1)(21+x g >0∴f(x1)- f(x2)=1)(1)(11+-x g x g - 1)(1)(22+-x g x g =1-1)(21+x g -(1-1)(22+x g )=1)(22+x g -1)(21+x g >0∴ f(x1) >f(x2)∴ f(x)是R 上的删函数②g(x) 谦脚g(m) · g(n)= g(m+n)(m 、n ∈R) 且g(x)>0 ∴ g(n)=[ g(1)]n=2n 当n ∈N,n≥3时, 2n>n ∴f(n)=1212+-n n=1-122+n ,1+n n =1-11+n2n =(1+1)n =1+n+…+i nC +…+n+1>2n+1∴ 2n+1>2n+2∴122+n<11+n ,即1-122+n>1-11+n∴当n ∈N,n≥3时,f(n)>1+n n3. 设f1(x) f2(x)是(0,+∞)上的函数,且f1(x)单删,设f(x)= f1(x) +f2(x) ,且对付于(0,+∞)上的任性二相同真数x1, x2 恒有| f1(x1)- f1(x2)| >| f2(x1)- f2(x2)|①供证:f (x)正在(0,+∞)上单删. ②设F(x)=x f (x), a>0、b>0. 供证:F(a+b)> F(a)+F(b) . ①道明:设 x1>x2>0f1(x) 正在(0,+∞)上单删f1(x1)- f1(x2)>0∴| f1(x1)- f1(x2)|= f1(x1)- f1(x2)>0| f1(x1)- f1(x2)| >| f2(x1)- f2(x2)|∴f1(x2)- f1(x1)<f2(x1)- f2(x2)< f1(x1)- f1(x2) ∴f1(x1)+f2(x1)> f1(x2)+ f2(x2) ∴f(x1)> f(x2)f (x)正在(0,+∞)上单删 ②F(x)=x f (x), a>0、b>0a+b>a>0,a+b>b>0F(a+b)=(a+b)f(a+b)=af(a+b)+bf(a+b)f (x)正在(0,+∞)上单删∴F(a+b)>af(a)+bf(b)= F(a)+F(b)4. 函数y =f(x)谦脚 ①f(a+b)=f (a)·f (b),②f(4)=16, m 、n 为互量整数,n≠0 供f(nm)的值 f(0) =f(0+0)=f(0) ·f(0)=f2(0)∴f(0) =0大概1.若f(0)=0则f(4)=16=f(0+4)=f(0) ·f(4)=0.(冲突)∴f(1)=1f(4)=f(2) ·f(2)=f(1) ·f(1) ·f(1) ·f(1)=16f(1)=f2(21)≥0 ∴f(1)=2.仿此可证得f(a)≥0.即y=f(x)利害背函数.f(0)=f(a+(-a))=f(a) ·f(-a)∴f(-a)=)(1a f n ∈N*时f(n)=fn(1)=2n,f(-n)=2-nf(1)=f(n 1+n 1+…+n 1)=fn(n1)=2 ∴f(n 1)= n12∴f(nm )=[f(n1)]m= nm 25. 定义正在(-1,1)上的函数f (x)谦脚 ① 任性x 、y ∈(-1,1)皆有f(x)+ f(y)=f (xyyx ++1),②x ∈(-1,0)时, 有f(x) >01) 判决f(x)正在(-1,1)上的奇奇性,并道明缘由 2) 判决f(x)正在(-1,0)上的单调性,并给出道明3) 供证:f (1312++n n )=f (11+n )-f (21+n ) 大概f (51)+f (111)+…+f (1312++n n )> f (21) (n ∈N*)解:1)定义正在(-1,1)上的函数f (x)谦脚任性x 、y ∈(-1,1)皆有f(x)+ f(y)=f (xyyx ++1),则当y=0时, f(x)+ f(0)=f(x) ∴f(0)=0当-x=y 时, f(x)+ f(-x)=f(0)∴f(x)是(-1,1)上的奇函数2) 设0>x1>x2>-1f(x1)-f(x2)= f(x1)+ f(-x2)=)1(2121x x xx f --0>x1>x2>-1 ,x ∈(-1,0)时,有f(x) >0,1-x1 x2>0, x1-x2>0∴)1(2121x x xx f -->0即f(x)正在(-1,0)上单调递加.3)f (1312++n n )=f(12312-++n n ) =f()2)(1(11)2)(1(1++-++n n n n )=f(211112111+•+-+-+n n n n )=f(11+n )-f(21+n ) ∴f (51)+f (111)+…+f (1312++n n ) =f(21)-f(31)+f(31)-f(41)+f(41)+…+f(11+n )-f(21+n )= f(21) -f(21+n )=f(21)+f(-21+n )x ∈(-1,0)时,有f(x) >0∴f(-21+n )>0, f(21)+f(-21+n )>f(21)即f (51)+f (111)+…+f (1312++n n )> f (21)6. 设 f (x)是定义正在R 上的奇函数,其图像闭于曲线x=1对付称, 对付任性x1、x2∈[0,12]皆有f (x1+ x2)=f(x1) ·f(x2), 且f(1)=a>0. ①供f (12)及 f (14);②道明f(x)是周期函数③记an=f(2n+12n ), 供lim ∞→n (lnan)解: ①由f (x)= f (x 2 + x2)=[f(x)]2≥0,f(x)a= f(1)=f(2n·12n )=f(12n +12n +…+12n )=[f (12n )]2解得f (12n)=n a 21∴ f (12)=21a,f (14)=41a . ②f(x)是奇函数,其图像闭于曲线x=1对付称, ∴f(x)=f(-x),f(1+x)=f(1-x).∴f(x+2)=f[1+(1+x)]= f[1-(1+x)]= f(x)=f(-x).∴f(x)是以2为周期的周期函数.③ an=f(2n+12n )= f (12n )=na 21 ∴lim ∞→n (lnan)= lim ∞→n aa 2ln =0 7. 设)(x f y =是定义正在R 上的恒不为整的函数,且对付任性x 、y ∈R 皆有 f(x+y)=f(x)f(y)①供f(0),②设当x<0时,皆有f(x)>f(0)道明当x>0时0<f(x)<1,③设a1=21,an=f(n)(n ∈N* ),sn 为数列{an }前n 项战,供lim ∞→n sn.解:①②仿前几例,略.③ an =f(n), ∴ a1=f(1)=21an+1=f(n+1)=f(n)f(1)=21an ∴数列{an }是尾项为21公比为21的等比数列 ∴sn =1-n ⎪⎭⎫ ⎝⎛21 ∴lim ∞→n sn =18. 设)(x f y =是定义正在区间]1,1[-上的函数,且谦脚条件:(i );0)1()1(==-f f(ii )对付任性的.|||)()(|],1,1[,v u v f u f v u -≤--∈都有(Ⅰ)道明:对付任性的;1)(1],1,1[x x f x x -≤≤--∈都有 (Ⅱ)道明:对付任性的;1|)()(|],1,1[,≤--∈v f u f v u 都有(Ⅲ)正在区间[-1,1]上是可存留谦脚题设条件的奇函数)(x f y =,且使得⎪⎪⎩⎪⎪⎨⎧∈-=-∈-<-].1,21[,|,||)()(|].21,0[,.|||)()(|v u v u v f u f v u v u v f u f 当当。
抽象函数的图像和性质-含答案
【知识要点】一、抽象函数的考查常常表现在求函数的定义域、值域、单调性、奇偶性和周期性等方面.二、抽象函数虽然不是具体函数,但是它的图像和性质的研究方法和具体函数仍然是一样的,只不过是函数没有解析式,比较抽象. 【方法点评】【例1】已知函数)(x f 的定义域是]21[,-,求函数)]3([log 21x f -的定义域.【点评】这类问题的一般形式是:已知原函数()f x 的定义域为(,)a b ,求复合函数[()]f g x 的定义域:只需解不等式()a g x b <<,不等式的解集即为所求函数的定义域.【反馈检测1】若函数)1(+=x f y 的定义域为)3,2[-,求函数)21(+=xf y 的定义域.【例2】 设函数()f x 定义于实数集上,对于任意实数x y 、,)()()(y f x f y x f =+总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数)(x f 的值域.【点评】在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段.【反馈检测2】已知函数()f x 的定义域为[]0,1,且同时满足:(1)对任意[]0,1x ∈,总有()2f x ≥;(2)(1)3f =(3)若120,0x x ≥≥且121x x +≤,则有1212()()()2f x x f x f x +≥+-.(I)求(0)f 的值;(II)求()f x 的最大值.【例3】已知函数)0)((≠∈x R x x f ,对任意不等于零的实数21x x 、都有)()()(2121x f x f x x f +=⋅,试判断函数()f x 的奇偶性.【点评】(1)抽象函数奇偶性的判断证明和具体函数是一致的,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数;如果函数的定义域关于原点对称,则继续求()f x -;最后比较()f x -和()f x 的关系,如果有()f x -=()f x ,则函数是偶函数,如果有()f x -=-()f x ,则函数是奇函数,否则是非奇非偶函数. (2)要判断抽象函数的奇偶性,多用赋值法,给已知的等式中的变量取恰当的值,如,,0,1,1x x --等,有时需要多次赋值,才能达到解题目标. 学科.网【反馈检测3】定义域为R 的函数)(x f 满足:对于任意的实数,x y 都有()()()f x y f x f y +=+成立,且当0x >时)0f x <(恒成立.(1)判断函数)(x f 的奇偶性,并证明你的结论;(2)证明)(x f 为减函数;若函数)(x f 在[3,3)-上总有)6f x ≤(成立,试确定(1)f 应满足的条件.【例4】 设)(x f 定义于实数集上,当0>x 时,1)(>x f ,且对于任意实数,x y ,有)()()(y f x f y x f ⋅=+,求证:)(x f 在R 上为增函数.设+∞<<<∞-21x x ,则1)(01212>->-x x f x x ,所以1211211121()f(x )()[()]()()()f x f x f x x x f x f x f x x -=-+-=--121()(1())f x f x x =--因为121()01()0f x f x x >--< 所以12()()f x f x < 所以)(x f y =在R 上为增函数.【点评】(1)抽象函数虽然没有解析式,但是在判断证明函数的单调性的方法上是一致的,同样利用函数的单调性的定义.(2)利用单调性的定义时,关键在于分解化简,1211211121121()f(x )()[()]()()()()(1())f x f x f x x x f x f x f x x f x f x x -=-+-=--=--这是解答的关键,想方设法把变量1x 或2x ,按照已知条件拆开,并严格说明它的符号.【反馈检测4】已知函数()f x 的定义域为R,对任意实数,m n 都有()()()f m n f m f n +=∙,且当0x >时,0()1f x <<.(1)证明:(0)1,0f x =<且时,f(x)>1; (2)证明: ()f x 在R 上单调递减.【反馈检测5】函数()f x 对于0x >有意义,且满足条件(2)1,f =()()(),()f xy f x f y f x =+是减函数.(1)证明:(1)0f =;(2)若()(3)2f x f x +-≥成立,求x 的取值范围.【例5】设()f x 是定义在(0,)+∞上的增函数,且()()()xf x f f y y=+,若(2)1f =,则(8)f = .【点评】(1)抽象函数的性质往往是从常见的正比例函数、指数函数、对数函数和幂函数中抽象出来的,所以在解答抽象函数的客观题时,可以根据抽象函数的性质寻找对应的函数模型,再利用具体函数来解答.(2)常见的模型有:()()()()(0)f x y f x f y f x kx k ±=±⇒=≠正比例函数,()()()f x y f x f y +=⇒()(0,1)x f x a a a =>≠指数函数且,(xy)fa f =⇒(x)f(y)幂函数f(x)=x ,(xy)f f =(x)+f(y)()log (0,1)a f x x a a ⇒=>≠对数函数且.【反馈检测6】已知函数()f x 满足(1)2f =,且对任意,x y R ∈都有()()()f x f x y f y -=,记 101211,(6)nin i i aa a a f i ===⋅⋅-=∏∏则 .【例6】已知函数()f x 是定义域为R 的奇函数,且它的图象关于直线1x =对称. (1)求(0)f 的值; (2)证明: 函数()f x 是周期函数;(3)若()(01),f x x x =<≤求当x R ∈时,函数()f x 的解析式,并画出满足条件的函数()f x 至少一个周期的图象.(3)当[)1,3x ∈-时,(11)()2(13)x x f x x x -≤≤⎧=⎨-+<<⎩当4141k x k -≤≤+时,()4f x x k =-,k Z ∈ 当4143k x k +<<+时,()24f x x k =-+-,k Z ∈∴4(4141)(),24(4143)x k k x k f x z R x k k x k --≤≤+⎧=∈⎨-+-+<<+⎩图象如下:【点评】对于抽象函数的周期性,一般如果1不是它的周期,就猜想2是它的周期,如果2不是它的周期,就猜4是它的周期(偶数倍),再证明. 学科.网【反馈检测7】已知函数()f x 满足1()(1)1()f x f x f x ++=-,若(0)2004f =,试求(2005)f .高中数学常见题型解法归纳及反馈检测第14讲: 抽象函数的图像和性质问题的处理方法参考答案【反馈检测1答案】),21(]31,(+∞--∞【反馈检测1详细解析】由)1(+=x f y 的定义域为)3,2[-,知1+x 中的)3,2[-∈x ,从而411<+≤-x ,对函数)21(+=xf y 而言,有1124x-≤+<,解之得:),21(]31,(+∞--∞∈ x .所以函数)21(+=x f y 的定义域为),21(]31,(+∞--∞【反馈检测2答案】(1)(0)=2f ;(2)max ()(1)3f x f ==【反馈检测2详细解析】(I )令120x x ==,由(3),则(0)2(0)2,(0)2f f f ≥-∴≤ 由对任意[]0,1x ∈,总有()2,(0)2f x f ≥∴= (II )任意[]12,0,1x x ∈且12x x <,则212101,()2x x f x x <-≤∴-≥22112111()()()()2()f x f x x x f x x f x f x ∴=-+≥-+-≥ max ()(1)3f x f ∴==【反馈检测3答案】(1)奇函数;(2)(1)2f ≥-.【反馈检测4答案】(1)见解析;(2)见解析.【反馈检测5答案】(1)见解析;(2)13x -≤≤.【反馈检测5详细解析】(1)证明:令1x y ==,则(11)(1)(1)f f f ⨯=+,故(1)0f = (2)∵(2)1f =,令2x y ==,则(22)(2)(2)2f f f ⨯=+=, ∴(4)2f =()(3)2f x f x +-≥⇒22[(3)](4)(3)(4)3414f x x f f x x f x x x -≥⇒-≥⇒-≤⇒-≤≤∴()(3)2f x f x +-≥成立的x 的取值范围是13x -≤≤. 【反馈检测6答案】32【反馈检测6详细解析】设1()(0,1)(1)22()2xx f x a a a f a a f x =>≠=∴==∴=且所以1054454341(6)222232i f i -++++-=-=⋅⋅==∏,故填32.【反馈检测7答案】(2005)f =-20052003【反馈检测7详细解析】()f x 为周期函数且周期为4×1=4∵1(1)(2)[(1)1]1(1)f x f x f x f x +++=++=-+=)(1)(11)(1)(11x f x f x f x f -+--++=-)(1x f∴1(4)[(2)2]()(2)f x f x f x f x +=++==+⇒f (x +4)=()f x∴()f x 是以4为周期的周期函数 又∵(2)2004f =∴1(2004)(2005)(20041)1(2004)f f f f +=+=-=1(0)1(0)f f +-=1200412004+-=-20052003 ∴(2005)f =-20052003。
高考数学函数专题训练《抽象函数》含答案解析
A. B. C. D.
【答案】B
【解析】根据题意,因为f(x)是定义在 上的偶函数,且在区间(一∞,0]为增函数,
所以函数f(x)在[0,+∞)上为减函数,
由f(3)=0,则不等式f(1﹣2x)>0⇒f(1﹣2x)>f(3)⇒|1﹣2x|<3,
【解析】设 则
∵ ,∴ .所以函数 是R上的减函数,
∵函数 是偶函数,∴函数 ,∴函数关于 对称,
∴ ,原不等式等价为 ,
∴不等式 等价 ,
.∵ 在R上单调递减,∴ .故选B.
12.定义在 上的函数 满足,对任意 ,都有 ,非零实数 , 满足 ,则下列关系式中正确的是()
A. B. C. D.
【答案】D
因为 ,
所以 .故选A.
7.已知 是定义在 上的奇函数,且 ,则函数 的零点个数至少为()
A.3B.4C.5D.6
【答案】C
【解析】 是定义在 上的奇函数, ,且零点关于原点对称,
零点个数为奇数,排除选项 ,又 ,
, ,
, 的零点至少有 个,故选C.
8.定义在 上的函数 满足 , ,则关于 的不等式 的解集为()
A. B.
C. D.
【答案】C
【解析】因为 是定义在 上的函数,对任意两个不相等的正数 ,都有 ,
故 ,∴函数 是 上的减函数,
∵ ,∴ ,∴ .故选C.
5.已知定义在 上的函数 满足 为偶函数,若 在 内单调递减,则下面结论正确的是
A. B.
C. D.
【答案】A
【解析】 , 的周期为6,又 为偶函数,
15.已知定义在 上的偶函数 ,满足 ,且在区间 上是增函数,
抽象函数_题型大全(例题_含答案)
高考抽象函数技巧总结由于函数概念比较抽象.学生对解有关函数记号()f x 的问题感到困难.学好这部分知识.能加深学生对函数概念的理解.更好地掌握函数的性质.培养灵活性;提高解题能力.优化学生数学思维素质。
现将常见解法及意义总结如下: 一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式.从而求出()f x .这也是证某些公式或等式常用的方法.此法解培养学生的灵活性及变形能力。
例1:已知 ()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u-=+=--∴2()1xf x x -=- 2.凑合法:在已知(())()fg xh x =的条件下.把()h x 并凑成以()g u 表示的代数式.再利用代换即可求()f x .此解法简洁.还能进一步复习代换法。
例2:已知3311()f x x xx+=+.求()f x 解:∵22211111()()(1)()(()3)f x x x x x xx x x x+=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-.(|x |≥1)3.待定系数法:先确定函数类型.设定函数关系式.再由已知条件.定出关系式中的未知系数。
例3. 已知()f x 二次实函数.且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++.则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数.∴()f x 的定义域关于原点对称.故先求x <0时的表达式。
第4节 抽象函数问题(有答案)
第4节抽象函数问题内容提要1.轴对称:如果函数()y f x =满足若122x x a +=,就有12()()f x f x =,则()f x 的图象关于直线x a =对称.记法:自变量关于a 对称,函数值相等,如图1.2.中心对称:若函数()y f x =满足若122x x a +=,就有12()()2f x f x b +=,则()f x 关于点(,)a b 对称.记法:自变量关于a 对称,函数值关于b 对称,如图2.3.函数图象的对称轴和对称中心距离(规律:x 系数相反是对称,x 系数相同是周期)()()f x a f a x +=-或(2)()f a x f x +=-()f x 关于直线x a =对称(当0a =时,()f x 即为偶函数,关于y 轴对称)()()f a x f b x +=-()f x 关于直线2a bx +=对称()()0f a x f a x ++-=()f x 关于(,0)a 对称(当0a =时,()f x 即为奇函数,关于原点对称)()()f a x b x c++-=()f x 关于点(,)22a b c+对称4.双对称的周期结论(可借助三角函数辅助理解):(1)如果函数()f x 有两条对称轴,则()f x 一定是周期函数,周期为对称轴距离的2倍.(2)如果函数()f x 有一条对称轴,一个对称中心,则()f x 一定是周期函数,周期为对称中心与对称轴之间距离的4倍.(3)如果函数()f x 有在同一水平线上的两个对称中心,则()f x 一定是周期函数,周期为对称中心之间距离的2倍.5.原函数与导函数的对称结论:(无需死记结论,想象图象,能理解就行)(1)若()f x 存在导函数()f x ',且()f x 有对称中心(,)a b ,则()f x '必有对称轴x a =.特别地,若()f x 为奇函数,则()f x '为偶函数.(2)若()f x 存在导函数()f x ',且()f x 有对称轴x a =,则()f x '必有对称中心(,0)a .特别地,若()f x 为偶函数,则()f x '为奇函数.(3)若()f x '有对称中心(,)a b ,则()f x 不一定有对称轴x a =;但若0b =,则()f x 一定有对称轴x a =.特别地,若()f x '为奇函数,则()f x 必为偶函数.(4)若()f x '有对称轴x a =,则()f x 必有对称中心(,)a b .特别地,若()f x '是偶函数,则()f x 不一定是奇函数,只能()f x 关于(0,)b 对称,但b 不一定是0.典型例题【例1】已知函数()y f x =满足()(2)0()f x f x x --=∈R ,且在[1,)+∞上为增函数,则()(A )(1)(1)(2)f f f ->>(B )(1)(2)(1)f f f >>-(C )(1)(2)(1)f f f ->>(D )(2)(1)(1)f f f >->答案:C解析:()(2)0()(2)()f x f x f x f x f x --=⇒=-⇒的图象关于直线1x =对称,所以(1)(3)f f -=,因为321>>,且()f x 在[1,)+∞上为增函数,所以(3)(2)(1)f f f >>,从而(1)(2)(1)f f f ->>.【反思】本题的关键是由()(2)0f x f x --=识别出()f x 的对称性.【变式1】已知函数()y f x =满足()(2)0()f x f x x +-=∈R ,且在[1,)+∞上为增函数,则()(A )(1)(1)(2)f f f ->>(B )(1)(2)(1)f f f >>-(C )(1)(2)(1)f f f ->>(D )(2)(1)(1)f f f >>-答案:D解析:()(2)0()f x f x f x +-=⇒关于点(1,0)对称,又()f x 在[1,)+∞上 ,所以()f x 的草图如图,由图可知()f x 在R 上 ,所以(2)(1)(1)f f f >>-.【反思】本题只需由()(2)0f x f x +-=识别出()f x 的对称性,结合单调性想象图形就可以解题.【变式2】已知函数()f x 满足()(2)()f x f x x =-∈R ,若函数1()y x f x =--有3个不同的零点1x 、2x 、3x ,则123x x x ++=.答案:3解析:看到()(2)f x f x =-,马上想到()f x 的图象关于1x =对称,而要研究1()y x f x =--的零点,可以分离一下,再作图看交点,1()01()x f x x f x --=⇔-=,函数()f x 没给解析式,只能从对称的角度来看,由于()y f x =和1y x =-的图象也都于1x =对称,故它们的交点关于直线1x =对称,如图,设123x x x <<,则必有1312x x +=且21x =,故1233x x x ++=.【变式3】已知函数()f x 满足(2)2()()f x f x x -=-∈R ,若(1)(0)4f f -+=,则(2)(3)f f +=.答案:0解析:(2)2()(2)()2f x f x f x f x -=-⇒-+=,所以()f x 的图象关于点(1,1)对称,而(1)f -,(0)f ,(2)f ,(3)f 这几个函数值中,1-和3关于1对称,0和2关于1对称,所以(1)f -和(3)f 有关系,(0)f 和(2)f 有关系,抓住这点就可以求(2)(3)f f +了,在(2)()2f x f x -+=中取3x =可得(1)(3)2f f -+=,所以(3)2(1)f f =--,取2x =可得(0)(2)2f f +=,所以(2)2(0)f f =-,故(2)(3)4(1)(0)f f f f +=---,又(1)(0)4f f -+=,所以(2)(3)0f f +=.【例2】偶函数()y f x =的图象关于直线2x =对称,(3)3f =,则(1)f -=.答案:3解析:由题意,()f x 有对称轴0x =和2x =,所以()f x 的周期为4,故(1)(3)3f f -==.【反思】对称轴+对称轴=周期,周期为对称轴之间距离的2倍.【变式1】偶函数()f x 满足(2)()2f x f x -+=,且(4)1f =-,则(0)(1)f f +=.答案:0解析:由题意,(2)()2()f x f x f x -+=⇒关于点(1,1)对称,又()f x 为偶函数,所以()f x 关于y 轴对称,从而()f x 的周期为4,故(0)(4)1f f ==-,在(2)()2f x f x -+=取1x =可求得(1)1f =,所以(0)(1)0f f +=.【反思】对称轴+对称中心=周期,周期为二者之间距离的4倍.【变式2】(2018·新课标Ⅱ卷)若()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+,若(1)2f =,则(1)(2)(50)f f f ++⋅⋅⋅+=()(A )50-(B )0(C )2(D )50答案:C解法1:首先由双对称,推出周期,下面给出结论的推导方法,因为()f x 是奇函数,且(1)(1)f x f x -=+,所以(1)(1)f x f x +=--,故(2)()f x f x +=-,所以(4)(2)()f x f x f x +=-+=,即()f x 是以4为周期的周期函数,故(3)(1)(1)2f f f =-=-=-,接下来还需计算(2)f 和(4)f ,不能只由周期来求,要结合奇函数满足(0)0f =这个隐含条件,在(1)(1)f x f x -=+中取1x =-知(2)(0)0f f ==,又(4)(0)0f f ==,所以(1)(2)(3)(4)20(2)00f f f f +++=++-+=,故(1)(2)(50)[(1)(4)][(5)(8)][(45)(48)](49)(50)f f f f f f f f f f f ++⋅⋅⋅+=+⋅⋅⋅+++⋅⋅⋅++⋅⋅⋅++⋅⋅⋅+++(49)(50)(1)(2)2f f f f =+=+=.解法2:也可以分析已知条件,举一个具体的函数来求解答案,()f x 为奇函数()f x ⇒有对称中心坐标原点,(1)(1)f x f x -=+⇒有对称轴1x =,既有对称轴又有对称中心,在三角函数中比较好找,结合(1)2f =,可取()2sin 2f x x π=,此时不难发现()f x 周期为4,(2)0f =,(3)2f =-,(4)0f =,所以(1)(2)(50)[(1)(4)][(5)(8)][(45)(48)](49)(50)f f f f f f f f f f f ++⋅⋅⋅+=+⋅⋅⋅+++⋅⋅⋅++⋅⋅⋅++⋅⋅⋅+++(49)(50)(1)(2)2f f f f =+=+=.【变式3】(2021·新高考Ⅱ卷)已知函数()f x 的定义域为R ,且(2)f x +是偶函数,(21)f x +是奇函数,则下列选项中值一定为0的是()(A )1()2f -(B )(1)f -(C )(2)f (D )(4)f 答案:B解法1:先由题干的条件推导()f x 的对称性情况,(2)f x +是偶函数()f x ⇒关于直线2x =对称,题干给出(21)f x +是奇函数,这个条件怎么翻译?实际上,它和(1)f x +为奇函数效果一样,都能得出()f x 关于点(1,0)对称,理由如下,设()(21)v x f x =+,则()v x 是奇函数,所以()()v x v x -=-,即(2()1)(21)f x f x -+=-+,从而(21)(21)f x f x -+=-+,令2t x =,则(1)(1)f t f t -+=-+,故(1)(1)0f t f t -+++=,所以()f x 关于点(1,0)对称,从而()f x 周期为4,且(1)0f =,又()f x 的图象关于2x =对称,所以(3)0f =,故(1)(3)0f f -==,选B.解法2:也可以直接翻译已知条件,通过赋值来求解答案,但这种解法更抽象,由题意,(2)f x +是偶函数,所以(2)(2)f x f x -+=+①,又(21)f x +是奇函数,所以(21)(21)f x f x -+=-+②,在②中取0x =得(1)(1)f f =-,所以(1)0f =,已经得到一个等于0的函数值了,但没有这个选项,所以结合式①继续推理,为了在式①中构造出(1)f ,取1x =得(1)(3)f f =,故(3)0f =,选项中还是没有(3)f ,所以又结合式②继续推理,为了构造出(3)f ,在②中取1x =得(1)(3)0f f -=-=,所以选B.【反思】若()f x 的图象关于点(,)a b 对称,且()f x 在x a =处有定义,则必有()f a b =.【变式4】定义在R 上的奇函数()f x 满足(2)()0f x f x ++-=,当[1,0]x ∈-时,()f x x =,则9()2f =.答案:12解析:由题意,()f x 有对称中心(0,0)和(1,0),故其周期为2,所以9111(()()2222f f f ==--=.【反思】若()f x 有位于同一水平线上的两个对称中心,则()f x 为周期函数,周期为二者之间距离的2倍.【例3】已知()f x '是函数()f x 的导函数,若(1)f x +为偶函数,且()f x 在点(0,(0))f 处的切线方程为2y x =+,则(2)(2)f f '+=.答案:1解析:(1)f x +为偶函数()f x ⇒的图象关于直线1x =对称,又()f x 在(0,(0))f 处的切线方程为2y x =+,所以(0)2f =,(0)1f '=,因为()f x 的图象关于直线1x =对称,所以(2)2f =,(关于2x =对称的位置函数值相等)且(2)1f '=-(关于2x =对称的位置的切线也关于2x =对称,斜率相反,如图),故(2)(2)1f f '+=.【变式1】已知()f x '是函数()f x 的导函数,(1)f x +为奇函数,设()()g x f x '=,(4)()0()g x g x x -+=∈R ,且(2)2f =,则(1)(2)(10)f f f ++⋅⋅⋅+=.答案:2解析:先利用已知条件推出()f x 的对称性、周期性,再画草图看函数值,(1)f x +为奇函数()f x ⇒关于点(1,0)对称,所以(1)0f =,又(2)2f =,所以(0)2f =-,如图,(4)()0()g x g x g x -+=⇒关于(2,0)对称()f x ⇒关于直线2x =对称,所以()f x 周期为4,且(3)(1)0f f ==,(4)(0)2f f ==-,从而(1)(2)(3)(4)0f f f f +++=,故(1)(2)(10)[(1)(2)(3)(4)][(5)(6)(7)(8)](9)(10)f f f f f f f f f f f f f ++⋅⋅⋅+=+++++++++(9)(10)(1)(2)2f f f f =+=+=.【变式2】(2022·新高考Ⅰ卷)(多选)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若3(2)2f x -,(2)g x +均为偶函数,则()(A )(0)0f =(B )1()02g -=(C )(1)(4)f f -=(D )(1)(2)g g -=答案:BC解析:先把已知的3(2)2f x -,(2)g x +均为偶函数翻译一下,可以翻译成()f x 和()g x 的对称性,3(2)2f x -为偶函数33(2)(2)()22f x f x f x ⇒+=-⇒的图象关于直线32x =对称,(2)g x +为偶函数()g x ⇒的图象关于直线2x =对称()f x ⇒的图象关于点(2,(2))f 对称,(此处必须通过直观想象图形的样子,用()g x 的对称性反推()f x 的对称性,否则无法求解此题)所以()f x 是以2为周期的周期函数(双对称周期结论),故()g x 也是以2为周期的周期函数,A 项,(0)(2)f f =,而(2)f 的值无法确定,故A 项错误;B 项,()g x 周期为213()()22g g ⇒-=,因为()f x 的图象关于直线32x =对称,所以3()2f 必是()f x 的极值,从而3()02f '=,故3(02g =,所以1()02g -=,故B 项正确;C 项,()f x 的图象关于直线32x =对称(1)(4)f f ⇒-=,故C 项正确;D 项,()g x 周期为2(1)(1)g g ⇒-=,又()f x 的图象关于直线32x =对称,所以()f x 的图象在1x =和2x =处的切线斜率互为相反数,从而(1)(2)g g =-,所以(1)(2)g g -=-,故D 项错误.强化训练1.(2022·成都模拟·★★★)已知函数()y f x =满足(4)()0()f x f x x +--=∈R ,且()f x 在[2,)+∞上为减函数,则()(A )22(log 3)(log 5.1)(3)f f f >>(B )22(log 5.1)(log 3)(3)f f f >>(C )22(log 5.1)(3)(log 3)f f f >>(D )22(log 3)(3)(log 5.1)f f f >>答案:B解析:(4)()0()f x f x f x +--=⇒的图象关于直线2x =对称,结合()f x 在[2,)+∞上为减函数可得当自变量与2的距离越大时,函数值越小,如图,而22234log 32log log 43-==,225.1log 5.12log 4-=,321-=,所以225.14log log 143<<,故22(3)(log 3)(log 5.1)f f f <<.2.(2022·甘肃模拟·★★★)定义在R 上的奇函数()f x 满足(8)(4)f x f x +=--,且当[0,2]x ∈时,()13x f x =-,则(2022)f =()(A )8-(B )2-(C )2(D )8答案:D解析:(8)(4)()f x f x f x +=--⇒关于2x =对称,()f x 为奇函数()f x ⇒关于原点对称,所以周期为8,故2(2022)(25286)(6)(2)(2)(13)8f f f f f =⨯+==-=-=--=.3.(2021·湖北模拟·★★★)(多选)设()f x 是定义在R 上的偶函数,且对任意的x ∈R ,都有(2)(2)f x f x +=-,当[0,2]x ∈时,21()()2x f x -=,则()(A )()f x 是周期函数,且周期为2(B )()f x 的最大值是1,最小值是14(C )()f x 在[2,4]上单调递减,在[4,6]上单调递增(D )当[2,4]x ∈时,21()()2x f x -=答案:BC解析:A 项,()f x 是偶函数()f x ⇒关于0x =对称,(2)(2)()f x f x f x +=-⇒关于2x =对称,所以()f x 是以4为周期的周期函数,故A 项错误;B 项,当[0,2]x ∈时,21()()2x f x -=,结合()f x 是周期为4的偶函数可作出()f x 的大致图象如图,由图可知min 1()(0)4f x f ==,max ()(2)1f x f ==,故B 项正确;C 项,由图可知C 项正确;D 项,由图可知()f x 在[2,4]上 ,而21()2x y -=在[2,4]上 ,故D 项错误.4.(★★★)若()f x 是定义域为R 的奇函数,(2)()f x f x +=-,若(1)1f =,则(1)(2)(2022)f f f ++⋅⋅⋅+=.答案:1解析:()f x 有对称中心(0,0)和对称轴1()x f x =⇒周期为4,在(2)()f x f x +=-中取0x =知(2)(0)0f f ==,又(3)(1)(1)1f f f =-=-=-,(4)(0)0f f ==,所以(1)(2)(3)(4)0f f f f +++=,故(1)(2)(2022)(2021)(2022)(1)(2)1f f f f f f f ++⋅⋅⋅+=+=+=.5.(★★★)已知函数())1f x x =+,定义域为R 的函数()g x 满足()()2g x g x -+=,若函数()y f x =与()y g x =的图象的交点为11(,)x y ,22(,)x y ,…,55(,)x y ,则51()i i i x y =+=∑()(A )0(B )5(C )10(D )15答案:B解析:()g x 没给解析式,给的是()()2g x g x -+=,只能得出对称性,所以也要研究()f x 的对称性,注意到)y x =为奇函数,其图象关于原点对称,所以()f x 的图象关于点(0,1)对称,又()()2g x g x -+=,所以()g x 的图象也关于点(0,1)对称,故()f x 与()g x 的交点关于点(0,1)对称,如图,由图可知,1250x x x ++⋅⋅⋅+=,1255y y y ++⋅⋅⋅+=,所以51()5i i i x y =+=∑.6.(2022·四川模拟·★★★)奇函数()f x 满足(2)()0()f x f x x ++-=∈R ,若当01x ≤≤时,2()44f x x x =-,则函数()lg y f x x =-的零点个数为.答案:9解析:(2)()0()f x f x f x ++-=⇒的图象关于点(1,0)对称,又()f x 为奇函数,所以()f x 的图象关于原点对称,所以()f x 的周期为2,如图,lg y x =与()y f x =的图象共有9个交点,所以函数()lg y f x x =-有9个零点.7.(2022·江苏模拟·★★★)偶函数()f x 满足()(2)()f x f x x =-∈R ,当[0,1]x ∈时,2()22f x x =-,则函数4()()2log 1g x f x x =--的所有零点之和为()(A )4(B )6(C )8(D )10答案:B解析:()(2)()f x f x f x =-⇒的图象关于1x =对称,()f x 为偶函数()f x ⇒的图象关于y 轴对称,所以()f x 的周期为2,4()0()2log 1g x f x x =⇔=-,作出图象如图,由图可知两图象有6个交点,且它们两两关于直线1x =对称,故()g x 的零点之和为6.8.(★★★)已知()f x '是函数()f x 的导函数,若(1)f x -为奇函数,且()f x 在点(0,(0))f 处的切线方程为20x y ++=,则(2)(2)f f '-+-=.答案:1解析:(1)f x -为奇函数()f x ⇒的图象关于点(1,0)-对称,又()f x 在(0,(0))f 处的切线方程为20x y ++=,所以(0)2f =-,(0)1f '=-,因为()f x 的图象关于点(1,0)-对称,所以(2)2f -=,(点(2,(2))f --和(0,(0))f 关于(1,0)-对称)且(2)1f '-=-(关于(1,0)-对称的位置的切线斜率相等,如图),故(2)(2)1f f '-+-=.9.(★★★★)已知()f x '是函数()f x 的导函数,若(2)f x +和()f x '均为奇函数,且(0)2f =,则(2)(4)(2022)f f f ++⋅⋅⋅+=.答案:2-解析:先把已知条件翻译成()f x 的对称性,再利用对称性求函数值,最好画个图比较容易理解,(2)f x +为奇函数()f x ⇒的图象关于点(2,0)对称,所以(2)0f =,()f x '为奇函数()f x ⇒为偶函数()f x ⇒的图象关于y 轴对称,所以()f x 的周期为8,因为(0)2f =,且()f x 关于(2,0)对称,所以(4)2f =-,又()f x 为偶函数,且周期为8,所以(6)(2)(2)0f f f =-==,(8)(0)2f f ==,从而(2)(4)(6)(8)0(2)020f f f f +++=+-++=,故(2)(4)(2022)[(2)(4)(6)(8)][(10)(12)(14)(16)]f f f f f f f f f f f ++⋅⋅⋅+=++++++++⋅⋅⋅[(2010)(2012)(2014)(2016)](2018)(2020)(2022)f f f f f f f +++++++(2018)(2020)(2022)(2)(4)(6)2f f f f f f =++=++=-.10.(2021·新课标Ⅱ卷·★★★★)设函数()f x 的定义域为R ,(1)f x +为奇函数,(2)f x +为偶函数,当[1,2]x ∈时,2()f x ax b =+.若(0)(3)6f f +=,则9()2f =()(A )94-(B )32-(C )74(D )52答案:D解析:(1)f x +为奇函数()f x ⇒的图象关于点(1,0)对称,所以(1)(1)f x f x +=--,(2)f x +为偶函数()f x ⇒的图象关于直线2x =对称,所以(2)(2)f x f x +=-,从而()f x 是以4为周期的周期函数,所以91()(22f f =,在(1)(1)f x f x +=--中取12x =可得13()(22f f =-,所以939(()224f f a b =-=--,还得把a 和b 求出来才能得出答案,在(1)(1)f x f x +=--中取1x =可得(0)(2)4f f a b =-=--,在(2)(2)f x f x +=-中取1x =得(3)(1)f f a b ==+,所以(0)(3)36f f a +=-=,故2a =-,在(1)(1)f x f x +=--中取0x =得(1)0f =,而(1)f a b =+,所以0a b +=,故2b =,所以995()242f a b =--=.11.(2022·全国乙卷·理·12·★★★★)已知函数()f x ,()g x 的定义域均为R ,且()(2)5f x g x +-=,()(4)7g x f x --=.若()y g x =的图象关于直线2x =对称,(2)4g =,则221()k f k ==∑()(A )21-(B )22-(C )23-(D )24-答案:D解析:要求221()k f k =∑,得研究()f x 的性质,先用已知的()(2)5()(4)7f xg x g x f x +-=⎧⎨--=⎩把()g x 有关的消掉,在()(4)7g x f x --=中将x 换成2x -可得(2)(2)7g x f x ----=,所以(2)(2)7g x f x -=--+,代入()(2)5f x g x +-=可得()(2)75f x f x +--+=,所以()(2)2f x f x +--=-,故()f x 关于(1,1)--对称,题干给出了()g x 关于2x =对称,而()g x 和()f x 显然是有关系的,可以由此条件再推导()f x 的对称性,由()(4)7g x f x --=可得(4)()7f x g x -=-,将x 换成4x +可得()(4)7f x g x =+-,从而()f x 可由()g x 左移4个单位,下移7个单位得到,故()f x 关于直线2x =-对称,所以()f x 是以4为周期的周期函数,接下来求一个周期的整点函数值,就可以算出221()k f k =∑,首先,()f x 关于(1,1)--对称,所以(1)1f -=-,故(3)1f =-,又()f x 关于2x =-对称,所以(3)(1)1f f -=-=-,结合周期为4可得(1)(3)1f f =-=-,只要求出(2)f 和(4)f ,就大功告成,条件中(2)4g =还没用,先在题干给的等式中将(2)g 构造出来,因为(2)4g =,在()(2)5f x g x +-=中取0x =可得(0)(2)5f g +=,所以(0)5(2)1f g =-=,故(4)1f =,由(0)1f =以及()f x 关于(1,1)--对称可得(2)3f -=-,结合周期为4可得(2)3f =-,所以221()5[(1)(2)(3)(4)](1)(2)5(1311)1324k f k f f f f f f ==⨯+++++=⨯---+--=-∑.12.(2022·新高考Ⅱ卷·★★★★)若函数()f x 的定义域为R ,且()()()()f x y f x y f x f y ++-=,(1)1f =,则221()k f k ==∑()(A )3-(B )2-(C )0(D )1答案:A 解法1:本题要221()k f k =∑,应该要先求()f x 的周期,可以在()()()()f x y f x y f x f y ++-=中对y 赋值,在()()()()f x y f x y f x f y ++-=中令1y =可得(1)(1)()f x f x f x ++-=①,在①中将x 换成1x +可得(2)()(1)f x f x f x ++=+,结合式①可得(2)()()(1)f x f x f x f x ++=--,所以(2)(1)f x f x +=--,从而(3)()f x f x +=-,故(6)(3)()f x f x f x +=-+=,所以()f x 的周期为6;求出了周期,接下来需要计算一个周期内的整点函数值,问题就解决了,因为已知(1)f ,所以可以在()()()()f x y f x y f x f y ++-=通过赋值构造出(1)f 和其它的函数值,在()()()()f x y f x y f x f y ++-=中令1x =,0y =可得2(1)(1)(0)f f f =,又(1)1f =,所以(0)2f =,结合周期为6可得(6)2f =,令1x y ==可得2(2)(0)(1)f f f +=,所以2(2)(1)(0)1f f f =-=-,令2x =,1y =可得(3)(1)(2)(1)f f f f +=,所以(3)(2)(1)(1)2f f f f =-=-,在(3)()f x f x +=-中令1x =可得(4)(1)1f f =-=-,令2x =可得(5)(2)1f f =-=,所以(1)(2)(6)1121120f f f ++⋅⋅⋅+=---++=,故221()(1)(2)(3)(4)11213k f k f f f f ==+++=---=-∑.解法2:设()2cos 3f x x π=,不难验证满足题干所有条件,进一步可求得221()3k f k ==-∑.。
高三数学(带答案)抽象函数
2014届高三数学函数专题——抽象函数一、选择题:1、已知()f x 是R 上的增函数,若令()(1)(1)F x f x f x =--+,则()F x 是R 上的( ) A .减函数B .增函数C .先减后增的函数D .先增后减的函数2、定义在R 上的函数()f x 满足()()()2f x y f x f y xy +=++(x y R ∈,),(1)2f =,则(3)f -等于 ( )A .2B .3C .6D .9 3、已知函数()21y f x =+是定义在R 上的奇函数,函数()y g x =的图象与函数()y f x = 的图象关于直线y x =对称,则()()g x g x +-的值为 ( ) A .2 B .1 C .0 D .不能确定4、定义在R 上的函数()f x 满足()(4)f x f x -=-+,当2x >时,()f x 单调递增,如果124x x +<,且12(2)(2)0x x --<,则12()()f x f x +的值为 ( )A .恒大于零B .恒小于零C .可能为零D .可正可负5、已知函数()f x 对于任意x ∈R ,有()1(2)()1f x f x f x -+=+,且(1)2f =-,则(2005)f 的值为A .2B .12C .2-D .12-二、填空题:6、若函数()f x 满足(0)1f =,且对任意x y R ∈、都有(1)()()()2f xy f x f y f y x +=⋅--+,则()f x = 。
7、定义在R 上的函数()f x 的图象关于点3(,0)4-中心对称,对任意的实数都有3()()2f x f x =-+,且(1)1,(0)2f f -==-,则(1)(2)(2010)f f f ++⋅⋅⋅+的值为 。
8、函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =__________。
必修一数学抽象函数习题精选含答案
1.抽象函数的图像判断单调性
例1.如果奇函数 在区间 上是增函数且有最小值为5,那么 在区间 上是( )
A.增函数且最小值为 B.增函数且最大值为
C.减函数且最小值为 D.减函数且最大值为
分析:画出满足题意的示意图,易知选B。
2、抽象函数的图像求不等式的解集
例2、已知定义在 上的偶函数 满足 ,并且 在 上为增函数。若 ,则实数 的取值范围.
(2)证明解:(1)令 得 , 或 。
若 ,当 时,有 ,这与当 时, 矛盾, 。
(2)设 ,则 ,由已知得 ,因为 , ,若 时, ,由
,
(3)由 得
得 (2)
从(1)、(2)中消去 得 ,因为
即 。
例9. 已知 是定义在 上的奇函数,且 ,若 时,有 .(1)判断函数 在 上是增函数,还是减函数,并证明你的结论;(2)解不等式:f(x+ )<f( ).
例7.已知函数 对任意 有 ,当 时, , ,求不等式 的解集。
解:设 且 ,则 , ,则
,
,故 为增函数,
又
因此不等式 的解集为 。
五、综合问题求解
解题时需把握好如下三点:一是注意函数定义域的应用,二是利用函数的奇偶性去掉函数符号“ ”前的“负号”,三是利用函数单调性去掉函数符号“ ”。
例8.设函数 定义在R上,当 时, ,且对任意 ,有 ,当 时 。(1)证明 ;
解:(1)设任意x1,x2∈[-1,1],且x1<x2.由于f(x)是定义在 上的奇函数,
∴f(x2)-f(x1)=f(x2)+f(-x1).因为x1<x2,所以x2+(-x1)≠0,
由已知有 >0,∵x2+(-x1)=x2-x1>0
抽象函数题型全归纳及答案
抽象函数题型全归纳及答案抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数.由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一.本文就抽象函数常见题型及解法评析如下:一、定义域问题(一)已知的定义域,求的定义域,解法:若的定义域为,则中,从中解得的取值范围即为的定义域.例题1:设函数的定义域为,则(1)函数的定义域为______;(2)函数的定义域为_______解析:(1)由已知有,解得,故的定义域为(2)由已知,得,解得,故的定义域为(二)已知的定义域,求的定义域.解法:若的定义域为,则由确定的范围即为的定义域.例题2:函数的定义域为,则的定义域为_____. 解析:由,得,所以,故填(三)已知的定义域,求的定义域.解法:先由定义域求定义域,再由定义域求得定义域. 例题3:函数定义域是,则的定义域是_______ 解析:先求的定义域,的定义域是,,即的定义域是再求的定义域,,的定义域是(四)运算型的抽象函数求由有限个抽象函数经四则运算得到的函数的定义域,解法是:先求出各个函数的定义域,再求交集.例题4: 函数的定义域是,求的定义域.解析:由已知,有,即函数的定义域由确定函数的定义域是【巩固1】 已知函数的定义域是[1,2],求f (x )的定义域.解析:的定义域是[1,2],是指,所以中的满足从而函数f (x )的定义域是[1,4] 【巩固2】 已知函数的定义域是,求函数的定义域. 解析:的定义域是,意思是凡被f 作用的对象都在中,由此可得所以函数的定义域是【巩固3】f x ()定义域为(0),1,则y f x a f x a a =++-≤()()(||)12定义域是__.解析:因为x a +及x a -均相当于f x ()中的x ,所以010111<+<<-<⎧⎨⎩⇒-<<-<<+⎧⎨⎩x a x a a x aa x a (1)当-≤≤120a 时,则x a a ∈-+(),1; (2)当012<≤a 时,则x a a ∈-(),1 二、解析式问题1. 换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力.例题5: 已知 ()211xf x x =++,求()f x . 解析:设1x u x =+,则1u x u =-∴2()2111u u f u u u-=+=--∴2()1xf x x -=-2. 凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法.例题6: 已知3311()f x x xx +=+,求()f x 解析:∵22211111()()(1)()(()3)f x x x x x x x x x x+=+-+=++-又∵11||||1||x x x x +=+≥,∴23()(3)3f x x x x x =-=-,(|x |≥1) 3. 待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数.例题7: 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解析:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++4. 利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例题8: 已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解析:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式.∵-x >0,∴()lg(1)lg(1)f x x x -=-+=-, ∵()f x 为奇函数,∴lg(1)()()x f x f x -=-=-∴当x <0时()lg(1)f x x =--∴lg(1),0()lg(1),0x x f x x x +≥⎧=⎨--<⎩例题9: ()f x 为偶函数,()g x 为奇函数,且有()f x +1()1g x x =-, 求()f x ,()g x . 解析:∵()f x 为偶函数,()g x 为奇函数,∴()()f x f x -=,()()g x g x -=-,不妨用-x 代换()f x +()g x =11x - ………①中的x , ∴1()()1f xg x x -+-=--即()f x -1()1g x x =-+……②显见①+②即可消去()g x ,求出函数21()1f x x =-再代入①求出2()1xg x x =-5. 赋值法:给自变量取特殊值,从而发现规律,求出()f x 的表达式 例题10:设()f x 的定义域为自然数集,且满足条件(1)()()f x f x f y xy +=++,及(1)f =1,求()f x解析:∵()f x 的定义域为N ,取y =1,则有(1)()1f x f x x +=++ ∵(1)f =1,∴(2)f =(1)f +2,(3)(2)3f f =+……()(1)f n f n n =-+ 以上各式相加,有()f n =1+2+3+……+n =(1)2n n +∴1()(1),2f x x x x N =+∈【巩固4】 设函数f x ()存在反函数,g x fx h x ()()()=-1,与g x ()的图象关于直线x y +=0对称,则函数h x ()=A. -f x ()B. --f x ()C. --fx 1() D. ---fx 1()解析:要求y h x =()的解析式,实质上就是求y h x =()图象上任一点P x y ()00,的横、纵坐标之间的关系. 点P x y ()00,关于直线y x =-的对称点()--y x 00,适合y f x =-1(),即-=-x g y 00().又g x fx ()()=-1,∴-=-⇒-=-⇒=---x fy y f x y f x 0100000()()(),即h x f x ()()=--,选B.【巩固5】 设对满足的所有实数x ,函数满足,求f(x)的解析式.解析:在中以代换其中x ,得:再在(1)中以代换x ,得化简得:评析:如果把x 和分别看作两个变量,怎样实现由两个变量向一个变量的转化是解题关键.通常情况下,给某些变量适当赋值,使之在关系中“消失”,进而保留一个变量,是实现这种转化的重要策略.三、求值问题这类抽象函数一般给出定义域,某些性质及运算式而求特殊值.其解法常用“特殊值法”,即在其定义域内令变量取某特殊值而获解,关键是抽象问题具体化.或紧扣已知条件进行迭代变换,经有限次迭代可直接求出结果,或者在迭代过程中发现函数具有周期性,利用周期性使问题巧妙获解.例题11: 已知定义域为的函数f(x),同时满足下列条件:①;②,求f (3),f (9)的值. 解析:取,得因为,所以又取,得例题12:定义在R 上的函数f x ()满足:f x f x ()()=-4且f x f x ()()220-+-=,求f ()2000的值.解析:由f x f x ()()220-+-=,以t x =-2代入,有f t f t ()()-=,∴f x ()为奇函数且有f ()00=,又由f x f x ()[()]+=--44()()(8)(4)()f x f x f x f x f x =-=-∴+=-+=,f x ()是周期为8的周期函数, ∴==f f ()()200000【巩固6】 已知f x ()的定义域为R +,且f x y f x f y ()()()+=+对一切正实数x ,y 都成立,若f ()84=,则f (2)=_______.解析:在条件f x y f x f y ()()()+=+中,令x y ==4,得f f f f ()()()()844244=+==,∴=f ()42又令x y ==2,得f f f (4)(2)(2)=+=2,∴=f (2)1【巩固7】 已知f x ()是定义在R 上的函数,且满足:f x f x f x ()[()]()+-=+211,f ()11997=,求f (2001)的值.解析:紧扣已知条件,并多次使用,发现f x ()是周期函数,显然f x ()≠1,于是f x f x f x ()()()+=+-211,f x f x f x f x f x f x f x f x ()()()()()()()()+=++-+=++--+-=-412121111111所以f x f x f x ()()()+=-+=814,故f x ()是以8为周期的周期函数,从而f f f (2001)()()=⨯+==8250111997 四、值域问题例题13: 设函数f(x)定义于实数集上,对于任意实数x 、y ,总成立,且存在,使得,求函数的值域.解析:令,得,即有或.若,则,对任意均成立,这与存在实数,使得成立矛盾,故,必有.由于对任意均成立,因此,对任意,有下面来证明,对任意设存在,使得,则这与上面已证的矛盾,因此,对任意所以评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段.【巩固8】 已知函数f x ()对任意实数x y ,有f x y f x f y ()()()+=+,且当x >0时f x f ()()>-=-012,,求f x ()在[]-21,上的值域.解析:设x x 12<,且x x R 12,∈,则x x 210->,由条件当x >0时,f x ()>0 ,∴->f x x ()210又f x f x x x ()[()]2211=-+=-+>f x x f x f x ()()()2111,∴f x ()为增函数, 令y x =-,则f f x f x ()()()0=+-又令x y ==0 ,得f ()00= ,∴-=-f x f x ()(),故f x ()为奇函数,∴=-=f f ()()112,f f ()()-=-=-2214∴-f x ()[]在,21上的值域为[]-42,五、求参数范围或解不等式这类参数隐含在抽象函数给出的运算式中,关键是利用函数的奇偶性和它在定义域内的增减性,去掉“f ”符号,转化为代数不等式组求解,但要特别注意函数定义域的作用.例题14:已知f x ()是定义在(-11,)上的偶函数,且在(0,1)上为增函数,满足f a f a ()()---<2402,试确定a 的取值范围.解析: f x ()是偶函数,且在(0,1)上是增函数,∴f x ()在()-10,上是减函数,由-<-<-<-<⎧⎨⎩1211412a a 得35<<a .(1)当a =2时,f a f a f ()()()-=-=2402,不等式不成立. (2)当32<<a 时,2222120(2)(4)(4)140224a f a f a f a a a a a -<-<⎧⎪-<-=-⇔-<-<⇒<<⎨⎪->-⎩(3)当25<<a 时,2(2)(4)f a f a -<-222021(4)041224a f a a a a a <-<⎧⎪=-⇔<-<⇒<<⎨⎪-<-⎩综上所述,所求a 的取值范围是()()3225,, . 例题15:f x ()是定义在(]-∞,1上的减函数,若f m x f m x (sin )(cos )221-≤++对x R ∈恒成立,求实数m 的取值范围.解析:: m x m x m x m x 22223131-≤++≤-≥++⎧⎨⎪⎩⎪sin cos sin cos对x R ∈恒成立⇔-≤-≥++⎧⎨⎪⎩⎪m x m x m x22231sin sin cos对x R ∈恒成立⇔m x m m x x x 2222311254-≤--≥+=--+⎧⎨⎪⎩⎪sin sin cos (sin ) 对x R ∈恒成立,223115214m m m m ⎧-≤-⎪∴≤≤⎨--≥⎪⎩, 【巩固9】 已知函数f x ()是定义在(]-∞,1上的减函数,且对一切实数x ,不等式f k x f k x (sin )(sin )-≥-22恒成立,求k 的值.解析:由单调性,脱去函数记号,得k x k x k xk x k k x 222222221111412-≤-≤-⎧⎨⎪⎩⎪⇔≤+-+≥-⎧⎨⎪⎩⎪sin sin sin sin ()(sin )(2)由题意知(1)(2)两式对一切x R ∈恒成立,则有k x k k x k 2222111412941≤+=-+≥-=⎧⎨⎪⎩⎪⎫⎬⎪⎭⎪⇒=-(sin )(sin )min max【巩固10】 已知函数f x ()对任意x y R ,∈有f x f y f x y ()()()+=++2,当x >0时,f x ()>2,f ()35=,求不等式f a a ()2223--<的解集.解析:设x x R 12、∈且x x 12<,则x x 210->,∴->f x x ()212,即f x x ()2120-->2211211121()[()]()()2()()()f x f x x x f x x f x f x f x f x ∴=-+=-+->∴>,故f x ()为增函数,又f f f f f ()()()()()3212123145=+=+-=-=,22(1)3(22)3(1)22113f f a a f a a a ∴=∴--<=--<∴-<<,,,即因此不等式f a a ()2223--<的解集为{}a a |-<<13.六、单调性问题例题16: 设f(x)定义于实数集上,当时,,且对于任意实数x 、y ,有,求证:在R 上为增函数.证明:在中取,得若,令,则,与矛盾所以,即有当时,;当时,而,所以又当时,,所以对任意,恒有设,则∴,∴在R 上为增函数例题17:已知偶函数f x ()在(0),+∞上是减函数,问f x ()在()-∞,0上是增函是减函数,并证明你的结论.证明:如图所示,易知f x ()在()-∞,0上是增函数,证明如下:任取x x x x 121200<<⇒->->因为f x ()在(0),+∞上是减函数,所以f x f x ()()-<-12. 又f x ()是偶函数,所以f x f x f x f x ()()()()-=-=1122,, 从而f x f x ()()12<,故f x ()在()-∞,0上是增函数.【巩固11】 如果奇函数f x ()在区间[]37,上是增函数且有最小值为5,那么f x ()在区间[]--73,上是A. 增函数且最小值为-5B. 增函数且最大值为-5C. 减函数且最小值为-5D. 减函数且最大值为-5解析:画出满足题意的示意图1,易知选B.七、 奇偶性问题例题18: 已知函数对任意不等于零的实数都有,试判断函数f(x)的奇偶性. 解析:取得:,所以 又取得:,所以 再取则,即 因为为非零函数,所以为偶函数. 【巩固12】 若函数y f x f x =≠()(())0与y f x =-()的图象关于原点对称,求证:函数y f x =()是偶函数.证明:设y f x =()图象上任意一点为P (x y 00,)y f x =()与y f x =-()的图象关于原点对称,∴P x y ()00,关于原点的对称点()--x y 00,在y f x =-()的图象上,0000()()y f x y f x ∴-=--∴=-,又y f x 00=(),∴-=f x f x ()()00即对于函数定义域上的任意x 都有f x f x ()()-=,所以y f x =()是偶函数.八、 周期性问题几种特殊的抽象函数:具有周期性的抽象函数:函数满足对定义域内任一实数(其中为常数),1. ,则是以为周期的周期函数;2. ,则是以为周期的周期函数;()y f x =x a ()()f x f x a =+()y f x =T a =()()f x a f x +=-()x f 2T a =3. ,则是以为周期的周期函数;4. ,则是以为周期的周期函数;5. ,则是以为周期的周期函数.6. ,则是以为周期的周期函数.7. ,则是以为周期的周期函数.8. 函数满足(),若为奇函数,则其周期为,若为偶函数,则其周期为.9.函数的图象关于直线和都对称,则函数是以为周期的周期函数;10.函数的图象关于两点、都对称,则函数是以为周期的周期函数;11.函数的图象关于和直线都对称,则函数是以为周期的周期函数;例题19: 设f x ()定义在R 上且对任意的x 有f x f x f x ()()()=+-+12,求证:f x ()是周期函数,并找出它的一个周期.解析:这同样是没有给出函数表达式的抽象函数,其一般解法是根据所给关系式进行递推,若能得出f x T f x ()()+=(T 为非零常数)则f x ()为周期函数,且周期为T.证明: f x f x f x ()()()()=+-+121∴+=+-+f x f x f x ()()()()1232()()12+得f x f x ()()()=-+33()()1f x a f x +=±()x f 2T a =()()f x a f x a +=-()x f 2T a =1()()1()f x f x a f x -+=+()x f 2T a =1()()1()f x f x a f x -+=-+()x f 4T a =1()()1()f x f x a f x ++=-()x f 4T a =()y f x =()()f a x f a x +=-0a >()f x 4T a =()f x 2T a =()y f x =()x R ∈x a =x b =()a b <()f x ()2b a -()y f x =()x R ∈()0,A a y ()0,B b y ()a b <()f x ()2b a -()y f x =()x R ∈()0,A a y x b =()a b <()f x ()4b a -由(3)得f x f x ()()()+=-+364由(3)和(4)得f x f x ()()=+6.上式对任意x R ∈都成立,因此f x ()是周期函数,且周期为6.例题20: 设函数f x ()的定义域为R ,且对任意的x ,y 有f x y f x y f x f y ()()()()++-=⋅2,并存在正实数c ,使f c ()20=.试问f x ()是否为周期函数?若是,求出它的一个周期;若不是,请说明理由.解析:仔细观察分析条件,联想三角公式,就会发现:y x =cos 满足题设条件,且cosπ20=,猜测f x ()是以2c 为周期的周期函数. f x c c f x c c f x c f c f x c f x f x c f x c f x [()][()]()()()()()()()++++-=+=∴+=-∴+=-+=222222202故f x ()是周期函数,2c 是它的一个周期.【巩固13】 设f x ()是定义在R 上的偶函数,其图象关于直线x =1对称.对任意x x 12012,,∈[]都有f x x f x f x ()()()1212+=⋅.证明f (x )是周期函数. 证明:依题设y f x =()关于直线x =1对称,故f x f x x R ()()=-∈2,又由f x ()是偶函数知f x f x x R ()()-=∈,∴-=-∈f x f x x R ()()2,,将上式中-x 以x 代换,得f x f x x R ()()=+∈2,这表明f x ()是R 上的周期函数,且2是它的一个周期f x ()是偶函数的实质是f x ()的图象关于直线x =0对称又f x ()的图象关于x =1对称,可得f x ()是周期函数,且2是它的一个周期由此进行一般化推广,我们得到思考一:设f x ()是定义在R 上的偶函数,其图象关于直线x a a =≠()0对称,证明f x ()是周期函数,且2a 是它的一个周期.证明: f x ()关于直线x a =对称.∴=-∈f x f a x x R ()()2,又由f x ()是偶函数知f x f x x R ()()-=∈,,∴-=-∈f x f a x x R ()()2,将上式中-x 以x 代换,得f x f a x x R ()()=+∈2,∴f x ()是R 上的周期函数,且2a 是它的一个周期思考二:设f x ()是定义在R 上的函数,其图象关于直线x a =和x b a b =≠()对称.证明f x ()是周期函数,且2()b a -是它的一个周期.证明: f x ()关于直线x a x b ==和对称()(2)()(2)(2)(2)f x f a x x R f x f b x x R f a x f b x x R ∴=-∈=-∈∴-=-∈,,,,,将上式的-x 以x 代换得f a x f b x x R ()()22+=+∈,∴+-=-+=-+=∈f x b a f x a b f x a a f x x R [()][()][()]()22222,∴f x ()是R 上的周期函数,且2()b a -是它的一个周期若把这道高考题中的“偶函数”换成“奇函数”,f x ()还是不是周期函数?我们得到思考三:设f x ()是定义在R 上的奇函数,其图象关于直线x =1对称.证明f x ()是周期函数,且4是它的一个周期.,证明: f x ()关于x =1对称,∴=-∈f x f x x R ()()2,又由f x ()是奇函数知()()(2)()f x f x x R f x f x x R -=-∈∴-=--∈,,,将上式的-x 以x 代换,得(2)()f x f x x R +=-∈,(4)[2(2)](2)[()]()f x f x f x f x f x x R ∴+=++=-+=--=∈,∴f x ()是R 上的周期函数,且4是它的一个周期f x ()是奇函数的实质是f x ()的图象关于原点(0,0)中心对称,又f x ()的图象关于直线x =1对称,可得f x ()是周期函数,且4是它的一个周期.由此进行一般化推广,我们得到思考四:设f x ()是定义在R 上的函数,其图象关于点M a (),0中心对称,且其图象关于直线x b b a =≠()对称.证明f x ()是周期函数,且4()b a -是它的一个周期.证明: f x ()关于点M a (),0对称,∴-=-∈f a x f x x R ()()2,f x ()关于直线x b =对称,()(2)(2)(2)f x f b x x R f b x f a x x R ∴=-∈∴-=--∈,,,将上式中的-x 以x 代换,得(2)(2)[4()][2(24)][2(24)][2(2)][2(2)]()f b x f a x x Rf x b a f b x b a f a x b a f b x a f a x a f x x R+=-+∈∴+-=++-=-++-=-+-=+-=∈,,∴f x ()是R 上的周期函数,且4()b a -是它的一个周期由上我们发现,定义在R 上的函数f x (),其图象若有两条对称轴或一个对称中心和一条对称轴,则f x ()是R 上的周期函数.进一步我们想到,定义在R 上的函数f x (),其图象如果有两个对称中心,那么f x ()是否为周期函数呢?经过探索,我们得到思考五:设f x ()是定义在R 上的函数,其图象关于点M a (),0和N b a b ()(),0≠对称.证明f x ()是周期函数,且2()b a -是它的一个周期.证明: f x ()关于M a N b ()(),,,00对称(2)()(2)()(2)(2)f a x f x x R f b x f x x R f a x f b x x R∴-=-∈-=-∈∴-=-∈,,,, 将上式中的-x 以x 代换,得(2)(2)[2()][2(2)][2(2)]()f a x f b x x R f x b a f b x a f a x a f x x R+=+∈∴+-=+-=+-=∈,, ∴f x ()是周期函数,且2()b a -是它的一个周期九、 对称性问题(1)对称性的概念及常见函数的对称性1、对称性的概念①轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴.②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心.2、常见函数的对称性(所有函数自变量可取有意义的所有值)①常函数;②一次函数;③二次函数;④反比例函数;⑤指数函数;⑥对数函数;⑦幂函数;⑧正弦函数;⑨正弦型函数既是轴对称又是中心对称;⑩余弦函数;⑾正切函数;⑿耐克函数;⒀三次函数:显然三次函数中的奇函数是中心对称,对称中心是原点,而其他的三次函数是否具备对称性得因题而异.⒁绝对值函数:这里主要说的是和两类.前者显然是偶函数,它会关于轴对称;后者是把轴下方的图像对称到轴的上方,是否仍然具备对称性,这也没有一定的结论,例如就没有对称性,而却仍然是轴对称. ⒂形如的图像是双曲线,其两渐近线分别直线 (由分母为零确定)和直线(由分子、分母中的系数确定),对称中心是点.(2)抽像函数的对称性1、函数图像本身的对称性(自对称问题)(1)轴对称①的图像关于直线对称② 的图像关于直线对称. 特别地,函数的图像关于轴对称的充要条件是.sin()y A x ωϕ=+(||)y f x =|()|y f x =y x x |ln |y x =|sin |y x =(0,)ax b y c ad bc cx d+=≠≠+d x c =-a y c =x (,)d a c c-)(x f y =)(x f y =a x =⇔)()(x a f x a f -=+⇔)2()(x a f x f -=⇔)2()(x a f x f +=-)()(x b f x a f -=+⇔)(x f y =22)()(b a x b x a x +=-++=)(x f y =y ()()f x f x =-(2)中心对称①的图像关于点对称.② 的图像关于点对称. 特别地,函数的图像关于原点对称的充要条件是.(3)对称性与周期性之间的联系①若函数既关于直线对称,又关于直线对称,则函数关于无数条直线对称,相邻对称轴的距离为;且函数为周期函数,周期;特别地:若是偶函数,图像又关于直线对称,则是周期为的周期函数;②若函数既关于点对称,又关于点对称,则函数关于无数个点对称,相邻对称中心的距离为;且函数为周期函数,周期; ③若函数既关于直线对称,又关于点对称,则函数关于无数个点和直线对称,相邻对称轴和中心的距离为,相邻对称轴或中心的距离为;且函数为周期函数,周期.特别地:若是奇函数,图像又关于直线对称,则是周期为的周期函数.2、两个函数图像的对称性(互对称问题)(1)函数与图像关于直线对称.(2)函数与图像关于直线对称)(x f y =),(b a ⇔b x a f x a f 2)()(=-++⇔b x a f x f 2)2()(=-+⇔b x a f x f 2)2()(=++-c x b f x a f 2)()(=-++⇔)(x f y =),2(c b a +)(x f y =(0,0)()()0f x f x +-=()f x x a =x b =()a b ≠()f x b a -()f x 2T b a =-)(x f y =x a =()f x 2a ()f x (,0)a (,0)b ()a b ≠()f x b a -()f x 2T b a =-()f x x a =(,0)b ()a b ≠()f x b a -2b a -()f x 4T b a =-)(x f y =x a =()f x a 4)(x a f y +=)(x a f y -=0=x )(x f y =)2(x a f y -=a x =(3)函数与图像关于直线对称(4)函数与图像关于直线对称即直线对称(5)函数与图像关于轴对称. (6)函数与图像关于轴对称.(7)函数与图像关于直线成轴对称.(8)函数与图像关于直线成轴对称.(9)函数与的图像关于直线对称.(10)函数与的图像关于直线对称.(11)函数有反函数,则和的图像关于直线对称.(12)函数与的图像关于点成中心对称.特别地,函数与图像关于原点对称.例题21: 函数满足,求值. 解析:已知式即在对称关系式中取,所以函数的图象关于点(0,2002)对称.根据原函数与其反函数的关系,知函数的图象关于点(2002,0)对称.所以将上式中的x 用代换,得评析:这是同一个函数图象关于点成中心对称问题,在解题中使用了下述命题:设a 、b 均为常数,函数对一切实数x 都满足,则函数的图象关于点(a ,b )成中心对称图形.十、 综合问题1) 比较函数值大小利用函数的奇偶性、对称性等性质将自变量转化到函数的单调区间内,然后利用其单调性使问题获解.)(x f y -=)2(x a f y +=a x -=)(x a f y +=)(x b f y -=0)()(=--+x b x a 2a b x -=)(x f y =)(x f y -=x )(x f y =)(x f y -=y )(x f y =()a x f a y -=-x y a +=)(x f y =()x a f y a -=+x y a -=()y f x =()1y f x -=y x =()y f x =()1y f x -=--y x =-()y f x =()y f a x =+()1y f a x -=+y x a =+)(x f y =)2(2x a f b y --=),(b a )(x f y =)(x f y --=例题22: 已知函数f x ()是定义域为R 的偶函数,x <0时,f x ()是增函数,若x 10<,x 20>,且||||x x 12<,则f x f x ()()--12,的大小关系是_______.解析: x x 1200<>,且||||x x 12<,∴<-<⇒-<<001221x x x x又x <0时,f x ()是增函数,∴-<f x f x ()()21f x ()是偶函数,∴-=f x f x ()()11,故f x f x ()()->-122) 讨论方程根的问题例题23: 已知函数f x ()对一切实数x 都满足f x f x ()()11+=-,并且f x ()=0有三个实根,则这三个实根之和是_______.分析:由f x f x ()()11+=-知直线x =1是函数f x ()图象的对称轴.又f x ()=0有三个实根,由对称性知x 11=必是方程的一个根,其余两根x x 23,关于直线x =1对称,所以x x 23212+=⨯=,故x x x 1233++=.3) 研究函数的图象这类问题只要利用函数图象变换的有关结论,就可获解.例题24: 若函数y f x =+()2是偶函数,则y f x =()的图象关于直线_______对称解析:y f x =()的图象右移个单位左移个单位22y f x =+()2的图象,而y f x =+()2是偶函数,对称轴是x =0,故y f x =()的对称轴是x =2.例题25: 若函数f x ()的图象过点(0,1),则f x ()+4的反函数图象必过定点__ 解析:f x ()的图象过点(0,1),从而f x ()+4的图象过点()-41,,由原函数与其反函数图象间的关系易知,f x ()+4的反函数的图象必过定点()14,-.【巩固14】 定义在R 上的函数f(x)满足:对任意实数m ,n ,总有,且当x >0时,0<f (x )<1.(1)判断f (x )的单调性;(2)设, ,若,试确定a 的取值范围. 解析:(1)在中,令,得,因为,所以.在中,令因为当时,,所以当时 而,所以又当x =0时,,所以,综上可知,对于任意,均有. 设,则 所以,∴在R 上为减函数.(2)由于函数y =f (x )在R 上为减函数,所以即有,又,由单调性,有由,所以直线与圆面无公共点. 因此有,解得. 【巩固15】 设函数y f x =()定义在R 上,当x >0时,f x ()>1,且对任意m n ,,有f m n f m f n ()()()+=⋅,当m n ≠时f m f n ()()≠.(1)证明f ()01=;(2)证明:f x ()在R 上是增函数;(3)设{}A x y f x f y f =⋅<()|()()(),221,B x y f ax by c a b c R a =++=∈≠{()|()},,,,,10,若A B =∅,求a b c ,,满足的条件.解析:(1)令m n ==0得f f f ()()()000=⋅,∴=f ()00或f ()01=.若f ()00=,当m ≠0时,有f m f m f ()()()+=⋅00,与当m n ≠时,f m f n ()()≠矛盾,∴=f ()01.(2)设x x 12<,则x x 210->,由已知得f x x ()211->,因为x 10≥,f x ()11>,若x 10<时,->->x f x 1101,(),由f f x f x ()()()011=⋅-12211111()0()()()()()()f x f x f x x f x f x f x R f x ∴=>=-⋅>∴-,,在上为增函数。
抽象函数经典综合题33例(含详细解答)
抽象函数经典综合题33例(含详细解答)抽象函数,是指没有具体地给出解析式,只给出它的一些特征或性质的函数,抽象函数型综合问题,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,考查学生对于一般和特殊关系的认识,是考查学生能力的较好途径。
抽象函数问题既是教学中的难点,又是近几年来高考的热点。
本资料精选抽象函数经典综合问题33例(含详细解答)1.定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1)求证:f(0)=1;(2)求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数;(4)若f(x)·f(2x-x 2)>1,求x 的取值范围。
解 (1)令a=b=0,则f(0)=[f(0)]2∵f(0)≠0 ∴f(0)=1 (2)令a=x ,b=-x 则 f(0)=f(x)f(-x) ∴)(1)(x f x f =- 由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0 ∴0)(1)(>-=x f x f 又x=0时,f(0)=1>0 ∴对任意x ∈R ,f(x)>0(3)任取x 2>x 1,则f(x 2)>0,f(x 1)>0,x 2-x 1>0 ∴1)()()()()(121212>-=-⋅=x x f x f x f x f x f ∴f(x 2)>f(x 1) ∴f(x)在R 上是增函数(4)f(x)·f(2x-x 2)=f[x+(2x-x 2)]=f(-x 2+3x)又1=f(0), f(x)在R 上递增∴由f(3x-x 2)>f(0)得:3x-x 2>0 ∴ 0<x<3 2.已知函数()f x ,()g x 在R 上有定义,对任意的,x y R ∈有()()()()()f x y f x g y g x f y -=- 且(1)0f ≠(1)求证:()f x 为奇函数(2)若(1)(2)f f =, 求(1)(1)g g +-的值解(1)对x R ∈,令x=u-v 则有f(-x)=f(v-u)=f(v)g(u)-g(v)f(u)=f(u-v)=-[f(u)g(v)- g(u)f(v)]=-f(x)(2)f(2)=f{1-(-1)}=f(1)g(-1)-g(1)f(-1)=f(1)g(-1)+g(1)f(1)=f(1){g(-1)+g(1)} ∵f(2)=f(1)≠0∴g(-1)+g(1)=13.已知函数)(x f 对任意实数y x ,恒有)()()(y f x f y x f +=+且当x >0,.2)1(.0)(-=<f x f 又(1)判断)(x f 的奇偶性;(2)求)(x f 在区间[-3,3]上的最大值; (3)解关于x 的不等式.4)()(2)(2+<-ax f x f ax f解(1)取,0==y x 则0)0()0(2)00(=∴=+f f f取)()()(,x f x f x x f x y -+=--=则)()(x f x f -=-∴对任意R x ∈恒成立 ∴)(x f 为奇函数. (2)任取2121),(,x x x x <+∞-∞∈且, 则012>-x x0)()()(1212<-=-+∴x x f x f x f),()(12x f x f --<∴ 又)(x f 为奇函数 )()(21x f x f >∴ ∴)(x f 在(-∞,+∞)上是减函数. ∴对任意]3,3[-∈x ,恒有)3()(-≤f x f而632)1(3)1()2()12()3(-=⨯-==+=+=f f f f f 6)3()3(=-=-∴f f ∴)(x f 在[-3,3]上的最大值为6(3)∵)(x f 为奇函数,∴整理原式得 )2()()2()(2-+<-+f ax f x f ax f进一步可得)2()2(2-<-ax f x ax f而)(x f 在(-∞,+∞)上是减函数,222->-∴ax x ax.0)1)(2(>--∴x ax∴当0=a 时,)1,(-∞∈x当2=a 时,}1|{R x x x x ∈≠∈且当0<a 时,}12|{<<∈x ax x当20<<a 时, }12|{<>∈x a x x x 或 当a>2时,}12|{><∈x ax x x 或4.已知f (x )在(-1,1)上有定义,f (21)=-1,且满足x ,y ∈(-1,1)有f (x )+f (y )=f (xyy x ++1) ⑴证明:f (x )在(-1,1)⑵对数列x 1=21,x n +1=212nn x x +,求f (x n ); ⑶求证252)(1)(1)(121++->+++n n x f x f x f n(Ⅰ)证明:令x =y =0,∴2f (0)=f (0),∴f (0)=0令y =-x ,则f (x )+f (-x )=f (0)=0 ∴f (x )+f (-x )=0 ∴f (-x )=-f (x )∴f (x )为奇函数 (Ⅱ)解:f (x 1)=f (21)=-1,f (x n +1)=f (212n n x x +)=f (nn n n x x x x ⋅++1)=f (x n )+f (x n )=2f (x n ) ∴)()(1n n x f x f +=2即{f (x n )}是以-1为首项,2为公比的等比数列∴f (x n )=-2n -1 (Ⅲ)解:)2121211()(1)(1)(11221-++++=+++n nx f x f x f 2212)212(21121111->+-=--=---=--n n n而2212)212(252-<+--=++-=++-n n n n ∴252)(1)(1)(121++->+++n n x f x f x f n5.已知函数N x f N x x f y ∈∈=)(,),(,满足:对任意,,,2121x x N x x ≠∈都有)()()()(12212211x f x x f x x f x x f x +>+;(1)试证明:)(x f 为N 上的单调增函数; (2)n N ∀∈,且(0)1f =,求证:()1f n n ≥+;(3)若(0)1f =,对任意,m n N ∈,有1)())((+=+n f m f n f ,证明:∑=<-ni if 141)13(12. 证明:(1)由①知,对任意*,,a b a b ∈<N ,都有0))()()((>--b f a f b a ,由于0<-b a ,从而)()(b f a f <,所以函数)(x f 为*N 上的单调增函数. (2)由(1)可知n N ∀∈都有f(n+1)>f(n),则有f(n+1)≥f(n)+1 ∴f(n+1)-f(n)1≥, ∴f(n)-f(n-1)1≥ ∙∙∙ ∴ f(2)-f(1)1≥∴f(1)-f(0)1≥由此可得f(n)-f(0)≥n ∴f(n)≥n+1命题得证(3)由任意,m n N ∈,有1)())((+=+n f m f n f 得()1f m = 由f(0)=1得m=0 则f(n+1)=f(n)+1,则f(n)=n+121)311(21311)311(31313131)13(121<-=--=+∙∙∙++=-∑=n n n ni if6.已知函数()f x 的定义域为[]0,1,且同时满足:(1)对任意[]0,1x ∈,总有()2f x ≥; (2)(1)3f =(3)若120,0x x ≥≥且121x x +≤,则有1212()()()2f x x f x f x +≥+-. (I)求(0)f 的值; (II)求()f x 的最大值;(III)设数列{}n a 的前n 项和为n S ,且满足*12(3),n n S a n N =--∈.求证:123112332()()()()2n n f a f a f a f a n -⨯++++≤+-.解:(I )令120x x ==,由(3),则(0)2(0)2,(0)2f f f ≥-∴≤由对任意[]0,1x ∈,总有()2,(0)2f x f ≥∴= (II )任意[]12,0,1x x ∈且12x x <,则212101,()2x x f x x <-≤∴-≥22112111()()()()2()f x f x x x f x x f x f x ∴=-+≥-+-≥max ()(1)3f x f ∴==(III)*12(3)()n n S a n N =--∈1112(3)(2)n n S a n --∴=--≥1111133(2),10n n n n a a n a a --∴=≥=≠∴= 111112113333333()()()()()23()4n n n n n n nn f a f f f f f -∴==+≥+-≥-+ 111143333()()n n f f -∴≤+,即11433())(n n f a f a +≤+。
抽象函数解题-题型大全(例题-含答案)
高考抽象函数技巧总结由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。
现将常见解法及意义总结如下: 一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
例1:已知 ()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴2()1xf x x-=- 2.凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。
例2:已知3311()f x x x x+=+,求()f x解:∵22211111()()(1)()(()3)f x x x x x x x x x x+=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。
高考数学函数专题训练《抽象函数》含答案解析
因为当 时, ,
所以 在 上单调递减
又因为 ,所以 为偶函数
因为
所以 ,即 ,故选D.
二、填空题
13.已知定义在 上的偶函数 的导函数为 ,对定义域内的任意 ,都有 成立,则使得 成立的 的取值范围为_____.
【答案】
【解析】由 是偶函数,所以当 时,由 得 ,
设 ,则 ,
即当 时,函数 为减函数,
则 且 ,则有 ,可得 ,
,故答案为0.
A. B.
C. D.
【答案】C
【解析】因为 是定义在 上的函数,对任意两个不相等的正数 ,都有 ,
故 ,∴函数 是 上的减函数,
∵ ,∴ ,∴ .故选C.
5.已知定义在 上的函数 满足 为偶函数,若 在 内单调递减,则下面结论正确的是
A. B.
C. D.
【答案】A
【解析】 , 的周期为6,又 为偶函数,
【答案】A
【解析】由 ,令 , ,则
时,
当 时,令 ,则 ,即
又 当 时,
令 ,则
,即
在 上单调递减
又
令 , ;令 , ;令 ,
数列 是以 为周期的周期数列
, , , ,
在 上单调递减
, , ,
故选 .
10.已知奇函数 是定义在 上的可导函数,其导函数为 ,当 时,有 ,则不等式 的解集为()
A. B. C. D.
,
,
, ,
又 在 内单调递减,
, ,故选A.
6.已知定义在实数集 上的函数 的图象经过点 ,且满足 ,当 时不等式 恒成立,则不等式 的解集为()
A. B. C. D.
【答案】A
【解析】 ,所以函数f(x)是偶函数,
必修一数学抽象函数习题精选含答案
抽象函数单调性和奇偶性1.抽象函数的图像判断单调性例1.如果奇函数f(x)在区间[3, 7]上是增函数且有最小值为5,那么f (x)在区间[7,3]上是()A.增函数且最小值为5B.增函数且最大值为5C.减函数且最小值为 5D.减函数且最大值为5分析:画出满足题意的示意图,易知选Bo2、抽象函数的图像求不等式的解集例2、已知定义在R上的偶函数f (x)满足f(2) 0,并且f (x)在(,0)上为增函数。
若(a 1)f(a) 0 ,则实数a的取值范围二、抽象函数的单调性和奇偶性1.证明单调性例3.已知函数f(x)= ,且f(x),g(x)定义域都是R,且g(x)>0,g(x) 1g(1) =2,g(x) 是增函数.g(m)g(n) g(m n)(m,n R)求证:f(x)是R上的增函数.解:设X1>X2因为,g(x)是R上的增函数,且g(x)>0。
故g(x 1) > g(x 2) >0 o g(X1)+1 > g(x 2)+1 >0 ,2 22> 2>0g(X2)1 g(xj 1g(x2) 1 g(xj 1>0 o增函数。
2.证明奇偶性例5.已知f(x)的定义域为R,且对任意实数x,y 满足f(xy) f(x) 求证:f(x)是偶函数。
分析:在 f(xy) f (x) f(y)中,令 x y 1,得 f(1) f (1) f (1) f (1) 0 令 x y 1,得 f (1) f( 1) f( 1) f( 1) 0于是 f( x) f( 1 x) f( 1) f (x) f (x),故 f (x)是偶函数。
三、求参数范围这类参数隐含在抽象函数给出的运算式中, 关键是利用函数的奇 偶性和它在定义域内的增减性,去掉“ f ”符号,转化为代数不等式 组求解,但要特别注意函数定义域的作用。
f(x 1)- f(x 2)=皿Jg(xj 1gg) 1 g%) 122=1——2——(1-2)g(xj 1 gg) 1>0 g(xj 1可以推出: f(x 1)>f(x 2),所以 f(x)是 R 上的上为减函数。
抽象函数的性质试题及答案
抽象函数的性质专题训练1,写出一个最小正周期为2的奇函数。
2,(多选)已知f(x)是定义域为R的奇函数,满足f(1−x)=f(1+x),f(1)=2,正确结论是()A,f(x)的周期是4B,B,f(x−1)是偶函数C,f(x)在【2016,2020】有2个零点D,f(1)+f(2)+f(3)+⋯+f(50)=23,(多选)已知函数f(x)是定义在R上的偶函数,满足f(x−1)=f(x+1),当x∈[0,1]时,f(x)=x,设函数g(x)=f(x)−kx−k,下列结论成立的是()A,函数f(x)的一个周期为2B,f(43)=−23C,当实数k>−1时,函数g(x)在区间[1,2]上为单调递减函数D,在区间[−1,3]内,若函数g(x)有4个零点,则实数k的取值范围是(0,14]4,对于正整数k,记g(k)表示k的最大奇数因数,例如g(1)=1,g(2)=1,g(10)=5。
设S n=g(1)+g(2)+g(3)+⋯+g(2n)。
则S2020= .5,(多选)设函数f(x)的定义域为R,满足3f(x)=f(x+1),且当x∈(0,1]时,f(x)=x2−x,若对任意x∈(−∞,a],都有f(x)≥−5425,则实数a的可能取值为()A,3 B,125C,2 D,16,(多选)定义在(0,+∞)上的函数f(x)的导函数为f′(x),且f′(x)<f(x)x,则对任意x1,x2∈(0,+∞),其中x1≠x2,则下列不等式中一定成立的有()A , f (x 1+x 2)<f (x 1)+f(x 2)B , f (x 1)+f (x 2)<x 2x 1f (x 1)+x 1x 2f (x 2)C , f (2x 1)<2x 1f(1)D ,f (x 1x 2)<f (x 1)f(x 2)7, 定义在R 上的函数f(x)满足f (x )+f ′(x )<2,则下列不等式一定成立的是( )A , ef (3)+2<f (2)+2eB , ef (3)+2>f (2)+2eC , f (3)+2e <ef (2)+2D , f (3)+2e >ef (2)+28,请你举出与曲线f (x )=sin2x 在原点(0,0)处具有相同切线的一个函数 。
高考数学重难点第6讲 抽象函数及其性质8大题型(解析版)(全国通用)(老师专用)(新高考专用)
重难点第6讲抽象函数及其性质8大题型——每天30分钟7天掌握抽象函数及其性质8大题型问题【命题趋势】抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一个函数,由抽象函数构成的数学问题叫做抽象函数问题。
抽象函数问题能综合考查学生对函数概念和各种性质的理解,但由于其表现形式的抽象性和多变性,学生往往无从下手,这类问题是高考的一个难点,也是近几年高考的热点之一。
第1天认真研究满分技巧及思考热点题型【满分技巧】一、抽象函数的赋值法赋值法是求解抽象函数问题最基本的方法,复制规律一般有以下几种:1、……-2,-1,0,1,2……等特殊值代入求解;2、通过()()12-f x f x 的变换判定单调性;3、令式子中出现()f x 及()-f x 判定抽象函数的奇偶性;4、换x 为+x T 确定周期性.二、判断抽象函数单调性的方法:(1)凑:凑定义或凑已知,利用定义或已知条件得出结论;(2)赋值:给变量赋值要根据条件与结论的关系.有时可能要进行多次尝试.①若给出的是“和型”抽象函数() =+y x f ,判断符号时要变形为:()()()()111212)(x f x x x f x f x f -+-=-或()()()()221212)(x x x f x f x f x f +--=-;②若给出的是“积型”抽象函数() =xy f ,判断符号时要变形为:()()()112112x f x x x f x f x f -⎪⎪⎭⎫ ⎝⎛⋅=-或()()()⎪⎪⎭⎫ ⎝⎛⋅-=-212212x x x f x f x f x f .三、常见的抽象函数模型1、()()()+=+f x y f x f y 可看做()=f x kx 的抽象表达式;2、()()()+=f x y f x f y 可看做()=x f x a 的抽象表达式(0>a 且1≠a );3、()()()=+f xy f x f y 可看做()log =a f x x 的抽象表达式(0>a 且1≠a );4、()()()=f xy f x f y 可看做()=a f x x 的抽象表达式.四、抽象函数中的小技巧1、很多抽象函数问题都是以抽象出某一类函数的共同特征而设计出来的,在解决问题时,可以通过类比这类函数中一些具体函数的性质去解决抽象函数的性质;2、解答抽象函数问题要注意特殊赋值法的应用,通过特殊赋值法可以找到函数的不变性质,这个不变性质往往是解决问题的突破口;3、抽象函数性质的证明是一种代数推理,和几何推理一样,要注意推理的严谨性,每一步推理都要有充分的条件,不可漏掉一些条件,更不要臆造条件,推理过程要层次分明,书写规范。
抽象函数+练习(含答案)教师版
抽象函数是指没有明确给出具体的函数表达式,只是给出一些特殊关系式的函数,它是中学数学中的一个难点,因为抽象,学生解题时思维常常受阻,思路难以展开.研究抽象函数首先要注意函数的定义域,尤其是在解答抽象函数对应的不等式时,通过抽象函数的单调性转变为自变量的大小关系式,不能忽视自变量的取值范围;其次抽象函数都是依据一类具体函数的性质抽象出来的,如()()()f x y f x f y +=+就是从正比例函数抽象出来的; ()()()f xy f x f y =+根据对数函数的性质抽象出来的; ()()()f x y f x f y +=根据指数函数的性质抽象出来的.因此在解决此类问题可以先类比具体函数的性质研究我们要解答的抽象函数的性质,解答抽象函数问题要注意赋值法的应用,通过赋值可以找到函数的不变性质,这个不变性质往往是解决问题的突破口.抽象函数性质的证明是一种代数推理,要注意推理的严谨性,每一步推理都要有充分的条件,不可以漏掉条件,更不要臆造条件,推理过程层次分明.一、抽象函数的概念抽象函数就是没有给出具体函数解析式的函数。
常见的解题方法有赋值法、换元法、具体化法等。
若()x f 的定义域是[]b a ,,则对()[]x g f 来说,必有()[]b a x g ,∈,从而可以得到函数()[]x g f 的定义域。
若()[]x g f 的定义域是[]b a ,,则[]b a ,应作为函数()x g 的定义域,进而求出()x g 的值域,从而得到函数()x f 的定义域。
总而言之,外层函数的定义域就是内层函数在复合函数的定义域上的值域。
抽象函数的值域和最值问题,一般先根据条件确定函数的单调性,然后再求其值域或最值。
对于选择、填空题也可以利用奇函数在对称区间上具有相同的单调性、偶函数在对称区间上具有相反的单调性等结论来求解。
【例1】函数()x f 对任意实数x 、y ,均满足()()()[]222y f x f y x f +=+,且()01≠f ,则()=2016f【难度】★★【答案】1008【解析】令1=y ,则()()()[]2121f x f x f +=+,即()()()[]2121f x f x f =-+,再令0=x ,1=y ,得()()()[]21201f f f +=,令0==y x ,得()00=f ,故()211=f ,则()()211=-+x f x f ,累加可得()10082016=f【例2】函数y f x =()的定义域为(]-∞,1,则函数y f x =-[log ()]222的定义域是___.【难度】★★【答案】2][2,⋃-【解析】因为log ()22x 2-相当于f x ()中的x ,所以log ()2221x -≤,解得 22<≤x 或-≤<-22x .【例3】已知()211x f x x =++,求()f x . 【难度】★ 【答案】1()1x f x x +=- 【解析】设1x u x =+,则1u x u =-∴1()2111u u f u u u +=+=--∴1()1x f x x+=- 【例4】如果奇函数()x f 在[]7,3上是增函数且有最小值为5,那么()x f 在[]3,7--上是( )A .增函数且有最小值为5-B .增函数且有最大值为5-C .减函数且有最小值为5-D .减函数且有最大值为5-【难度】★★【答案】B【例5】设)(x f 是R 上的奇函数,)(x g 是R 上的偶函数,若函数)()(x g x f +的值域为)3,1[,则)()(x g x f -的值域为 .【难度】★★【答案】]1,3(--【解析】在()()f x g x -代入x -,因为)(x f 是R 上的奇函数,)(x g 是R 上的偶函数,()()[()()]f x g x f x g x ---=-+,所以值域为]1,3(--,因为定义域为关于原点对称,所以值域是一样的,)()(x g x f -值域为]1,3(--【巩固训练】1.定义在R 上的函数()x f 满足()()()xy y f x f y x f 2++=+,()21=f ,则()=-3f【难度】★★【答案】62.已知函数)1(-x f 的定义域为[2,4],求函数)2(x f 的定义域.【难度】★ 【答案】⎥⎦⎤⎢⎣⎡23,213.若函数)1(+=x f y 的值域为]1,1[-,求函数)23(+=x f y 的值域.【难度】★【答案】]1,1[-.【解析】函数)23(+=x f y 中定义域与对应法则与函数)1(+=x f y 的定义域与对应法则完全相同,故函数)23(+=x f y 的值域也为]1,1[-.4.已知()f x 为偶函数,()g x 为奇函数,且有()f x +1()1g x x =-, 求()f x ,()g x . 【难度】★★ 【答案】21()1f x x =-.2()1x g x x =- 【解析】∵()f x 为偶函数,()g x 为奇函数,∴()()f x f x -=,()()g x g x -=-,不妨用-x 代换()f x +()g x =11x - ………①中的x , ∴1()()1f x g x x -+-=--即()f x -1()1g x x =-+……② 显见①+②即可消去()g x ,求出函数21()1f x x =-再代入①求出2()1x g x x =-5.已知函数f x ()对任意实数x y ,都有f x y f x f y ()()()+=+,且当x >0时,f x f ()()>-=-012,,求f x ()在[]-21,上的值域.【难度】★★【答案】[]-42,【解析】设x x 12<且x x R 12,∈,则x x 210->, 由条件当x >0时,f x ()>0∴->f x x ()210又f x f x x x ()[()]2211=-+=-+>f x x f x f x ()()()2111∴f x ()为增函数,令y x =-,则f f x f x ()()()0=+-又令x y ==0得f ()00= ∴-=-f x f x ()(),故f x ()为奇函数,∴=-=f f ()()112,f f ()()-=-=-2214∴-f x ()[]在,21上的值域为[]-42,二、抽象函数的性质1、抽象函数的单调性抽象函数单调性的求解与证明一般按照单调性的定义来解决,但由于解析式的缺乏,往往只能对题设条件中的等量关系进行适当的拼与凑,来处理()()21x f x f -与0的大小比较,如将1x 变形成()221x x x +-、221x x x ⋅等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抽象函数周期性的探究(教师版)抽象函数是指没有给出具体的函数解析式,只给出它的一些特征、性质或一些特殊关系式的函数,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力.而在教学中我发现同学们对于抽象函数周期性的判定和运用比较困难,所以特探究一下抽象函数的周期性问题.利用周期函数的周期求解函数问题是基本的方法.此类问题的解决应注意到周期函数定义、紧扣函数图象特征,寻找函数的周期,从而解决问题.以下给出几个命题:命题1:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数.(1)函数y=f(x)满足f(x+a)=-f(x),则f(x)是周期函数,且2a是它的一个周期.(2)函数y=f(x)满足f(x+a)=1()f x,则f(x)是周期函数,且2a是它的一个周期.(3)函数y=f(x)满足f(x+a)+f(x)=1,则f(x)是周期函数,且2a是它的一个周期.:命题2:若a、b(a b)是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数.(1) 函数y=f(x)满足f(x+a)=f(x+b),则f(x)是周期函数,且|a-b|是它的一个周期.(2)函数图象关于两条直线x=a,x=b对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期.(3) 函数图象关于点M(a,0)和点N(b,0)对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期.(4)函数图象关于直线x=a,及点M(b,0)对称,则函数y=f(x)是周期函数,且4|a-b|是它的一个周期.命题3:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数.(1)若f(x)是定义在R上的偶函数,其图象关于直线x=a对称,则f(x)是周期函数,且2a是它的一个周期.(2)若f(x)是定义在R上的奇函数,其图象关于直线x=a对称,则f(x)是周期函数,且4a是它的一个周期.【我们也可以把命题3看成命题2的特例,命题3中函数奇偶性、对称性与周期性中已知其中的任两个条件可推出剩余一个.下面证明命题3(1),其他命题的证明基本类似.设条件A: 定义在R上的函数f(x)是一个偶函数.条件B: f(x)关于x=a对称条件C: f(x)是周期函数,且2a是其一个周期.结论: 已知其中的任两个条件可推出剩余一个.证明: ①已知A、B→ C (2001年全国高考第22题第二问)∵f(x)是R上的偶函数∴f(-x)=f(x)又∵f(x)关于x=a对称∴f(-x)=f(x+2a))∴f(x)=f(x+2a)∴f(x)是周期函数,且2a是它的一个周期②已知A 、C →B∵定义在R 上的函数f(x)是一个偶函数∴f(-x)=f(x)又∵2a 是f(x)一个周期∴f(x)=f(x+2a)∴f(-x)=f(x+2a) ∴ f(x)关于x=a 对称③已知C 、B →A∵f(x)关于x=a 对称∴f(-x)=f(x+2a)又∵2a 是f(x)一个周期∴f(x)=f(x+2a))∴f(-x)=f(x) ∴f(x)是R 上的偶函数由命题3(2),我们还可以得到结论:f(x)是周期为T 的奇函数,则f(2T )=0 基于上述命题阐述,可以发现,抽象函数具有某些关系.根据上述命题,我们易得函数周期,从而解决问题,以下探究上述命题在解决抽象函数问题中的运用.1.求函数值例1:f(x) 是R 上的奇函数f(x)=- f(x+4) ,x ∈[0,2]时f(x)=x ,求f(2007) 的值解:方法一 ∵f(x)=-f(x+4) ∴f(x+8) =-f(x+4) =f(x)∴8是f(x)的一个周期∴f(2007)= f(251×8-1)=f(-1)=-f(1)=-1`方法二∵f(x)=-f(x+4),f(x)是奇函数∴f(-x)=f(x+4) ∴f(x)关于x=2对称 又∵f(x)是奇函数∴8是f(x)的一个周期,以下与方法一相同.例2:已知f(x)是定义在R 上的函数,且满足f(x+2)[1-f(x)]=1+f(x),f(1)=2,求f(2009) 的值 解:由条件知f(x)≠1,故1()(2)1()f x f x f x ++=- 1(2)1(4)1(2)()f x f x f x f x ++∴+==--+ 类比命题1可知,函数f(x)的周期为8,故f(2009)= f(251×8+1)=f(1)=22. 求函数解析式}例3:已知f(x)是定义在R 上的偶函数,f(x)= f(4-x),且当[]2,0x ∈-时,f(x)=-2x+1,则当[]4,6x ∈时求f(x)的解析式解:当[]0,2x ∈时[2,0]x -∈-∴f(-x)=2x+1∵f(x)是偶函数∴f(-x)=f(x) ∴f(x)=2x+1当[]4,6x ∈时4[0,2]x -+∈∴f(-4+x)=2(-4+x)+1=2x -7又函数f(x)是定义在R 上的偶函数,f(x)= f(4-x),类比命题3(1)知函数f(x)的周期为4 故f(-4+x)=f(x)∴当[]4,6x ∈时求f(x)=2x -73.判断函数的奇偶性"例4:已知f(x)是定义在R 上的函数,且满足f(x+999)=1()f x -,f(999+x)=f(999-x), 试判断函数f(x)的奇偶性.解:由f(x+999)=1()f x -,类比命题1可知,函数f(x)的周期为1998即f(x+1998)=f(x);由f(999+x)=f(999-x)知f(x)关于x=999对称,即f(-x)=f(1998+x)故f(x)=f(-x) ∴f(x)是偶函数4.判断函数的单调性例5:已知f(x)是定义在R 上的偶函数,f(x)= f(4-x),且当[]2,0x ∈-时,f(x)是减函数,求证当[]4,6x ∈时f(x)为增函数解:设1246x x ≤<≤则212440x x -≤-+<-+≤∵ f(x)在[-2,0]上是减函数∴ 21(4)(4)f x f x -+>-+又函数f(x)是定义在R 上的偶函数,f(x)= f(4-x),类比命题3(1)知函数f(x)的周期为4 \故f(x+4)=f(x) ∴21()()f x f x ->- ∵ f(-x)=f(x) ∴ 21()()f x f x >故当[]4,6x ∈时f(x)为增函数例6:f(x)满足f(x) =-f(6-x),f(x)= f(2-x),若f(a) =-f(2000),a ∈[5,9]且f(x)在[5,9]上单调.求a 的值.解:∵ f(x)=-f(6-x) ∴f(x)关于(3,0)对称∵ f(x)= f(2-x) ∴ f(x)关于x=1对称∴根据命题2(4)得8是f(x)的一个周期 ∴f(2000)= f(0)又∵f(a) =-f(2000) ∴f(a)=-f(0)又∵f(x) =-f(6-x) ∴f(0)=-f(6) ∴f(a)=f(6)∵a ∈[5,9]且f(x)在[5,9]上单调∴a =65.—6.确定方程根的个数例7:已知f(x)是定义在R 上的函数,f(x)= f(4-x),f(7+x)= f(7-x),f(0)=0,求在区间[-1000,1000]上f(x)=0至少有几个根?解:依题意f(x)关于x=2,x=7对称,类比命题2(2)可知f(x)的一个周期是10故f(x+10)=f(x) ∴f(10)=f(0)=0 又f(4)=f(0)=0即在区间(0,10]上,方程f(x)=0至少两个根又f(x)是周期为10的函数,每个周期上至少有两个根,因此方程f(x)=0在区间[-1000,1000]上至少有1+2200010⨯=401个根.…两类易混淆的函数问题:对称性与周期性刘云汉例1. 已知函数y = f (x )(x ∈R )满足f (5+x )= f (5-x ),问:y = f (x )是周期函数吗它的图像是不是轴对称图形例2. 已知函数y = f (x )(x ∈R )满足f (5+x )= f (5-x ),问:y = f (x )是周期函数吗它的图像是不是轴对称图形这两个问题的已知条件形似而质异。
有的同学往往把它们混为一谈,从而得出错误的结论。
为了准确地回答上述问题,必须掌握以下基本定理。
定理1:如果函数y = f (x )(x ∈R )满足f (5+x )= f (5-x ),那么y = f (x )的图像关于直线x a =对称。
证明:设点()P x y 00,是y = f (x )的图像上任一点,点P 关于直线x =a 的对称点为Q ,易知,点Q 的坐标为()200a x y -,。
@因为点()P x y 00,在y = f (x )的图像上,所以f x y ()00=于是()()[]()[]()f a x f a a x f a a x f x y 200000-=+-=--==所以点()Q a x y 200-,也在y = f (x )的图像上。
由P 点的任意性知,y = f (x )的图像关于直线x =a 对称。
定理2:如果函数y = f (x )(x ∈R )满足f (a +x )= f (b -x ),那么y = f (x )的图像关于直线x a b =+2的对称。
证明:(略)(证明同定理1);定理3:如果函数y = f (x )(x ∈R )满足f (x +a )= f (x -a ),那么y = f (x )是以2a 为周期的周期函数。
证明:令x a x -=',则x x a x a x a =++=+'',2代入已知条件()()f x a f x a +=-得:()()f x a f x ''++2根据周期函数的定义知,y = f (x )是以2a 为周期的周期函数。
定理4:如果函数y = f (x )(x ∈R )满足()()f x a f x b +=-,那么y = f (x )是以a b +为周期的周期函数。
证明:(略)(证法同定理3):由以上的定理可知,在已知条件()()f a x f b x +=-或()()f x a f x b +=-中,等式两端的两自变量部分相加得常数,如()()a x b x a b ++-=+,说明f x ()的图像具有对称性,其对称轴为x a b =+2。
等式两端的两自变量部分相减得常数,如()()x a x b a b +--=+,说明 f (x )是周期函数,其周期T=a +b 。