求抽象函数表达式常见五种方法

合集下载

高考抽象函数技巧全总结[1]

高考抽象函数技巧全总结[1]

高考抽象函数技巧全总结由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。

现将常见解法及意义总结如下:一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。

例1:已知 ()211x f x x =++,求()f x .解:设1x u x =+,则1u x u=-∴2()2111u u f u uu-=+=--∴2()1x f x x-=-2.凑合法:在已知(())()f g x h x =即可求()f x .此解法简洁,还能进一步复习代换法。

例2:已知3311()f x x xx+=+,求()f x解:∵22111()()(1)(f x x x x xxx+=+-+=11|||1||x xx =+≥∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。

例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x . 解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。

抽象函数问题求解的常用方法

抽象函数问题求解的常用方法

抽象函数问题求解的常用方法抽象函数型综合问题,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,考查学生对于一般和特殊关系的认识.可以说,这一类问题,是考查学生能力的较好途径,因此,在近年的高考中,这一类题目有增多和分量加重的趋势.【方法荟萃】1.函数原型法【例1】给出四个函数,分别满足①()()()f x y f x f y+=+;②()()()g x y g x g y+=;③()()()h x y h x h y=+;④()()()t xy t x t y=,又给出四个函数图象正确的匹配方案是()(A)①—丁②—乙③—丙④—甲(B)①—乙②—丙③—甲④—丁)①—丙②—甲③—乙④—丁(D)①—丁②—甲③—乙④—丙的函数抽象而成的。

如正比例函数()(0)f x kx k=≠可抽象为()()()f x y f x f y+=+。

因此,我们可得知如下结论:(1)抽象函数()()()f x y f x f y+=+可由一个特殊函数正比例函数()(0)f x kx k=≠抽象而成的;(2)抽象函数()()()t xy t x t y=可由一个特殊函数幂函数()t x xα=抽象而成的;(3)抽象函数()()()g x y g x g y+=可由一个特殊函数指数函数()(0,1)xg x a a a=>≠抽象而成的;(4)抽象函数()()()h xy h x h y=+可由一个特殊函数对数函数()log(0,1)ah x x a a=>≠抽象而成的;(5)抽象函数()f x y+=()()1()()f x f yf x f y+-可由一个特殊函数正切函数()tanf x x=抽象而成的;根据上述分析,可知应选D。

2.代数演绎法【例2】设定义在R上的函数()f x对于任意,x y都有()()()f x y f x f y+=+成立,且(1)2f=-,当x>时,()0f x<。

抽象函数问题求解的常用方法

抽象函数问题求解的常用方法

抽象函数问题求解的常用方法
高中数学中,抽象函数的解题方法主要包括以下几个方面:
1.确定定义域和值域:抽象函数的定义域和值域是解题的基础,需要根据题目中给出的条件进行确定。

2.运用函数性质:抽象函数和一般的函数一样,具有诸如奇偶性、周期性、单调性等函数性质。

在解题过程中,可以根据这些性质进行分析和推导,从而得出结论。

3.运用复合函数的性质:抽象函数可能会出现复合函数的形式,运用复合函数的性质可以将抽象函数化简,从而更加方便进行分析和计算。

4.利用函数的图像特征:抽象函数的图像特征包括零点、极值、拐点等,在解题过程中可以结合图像特征进行分析,进一步确定函数的性质和变化趋势。

需要注意的是,抽象函数作为高中数学中的一个较为高级的知识点,需要学生掌握一定的数学基础和思维方法,例如函数图像的绘制、导数和微积分等知识。

因此,在学习抽象函数时,需要逐步扩充自己的数学知识面,并不断提高自己的数学思维能力和分析能力。

函数的对应法则 抽象函数的表达式

函数的对应法则 抽象函数的表达式

函数的对应法则1、待定系数法:在已知函数解析式的构造时,可用待定系数法。

例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f二、配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。

但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。

例2 已知221)1(xx x x f +=+ )0(>x ,求 ()f x 的解析式三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。

与配凑法一样,要注意所换元的定义域的变化。

例3 已知x x x f 2)1(+=+,求)1(+x f四、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。

例5 设,)1(2)()(x xf x f x f =-满足求)(x f五、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。

例7 已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f二,练习题1、已知函数f(x)是一次函数,且满足关系式3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式。

2、求一个一次函数f(x),使得f{f[f(x)]}=8x+73、设二次函数f(x)满足f(x-2)=f(-x-2),且在y 轴上的截距为1,在x 轴截得的线段长为22,求f(x )的解析式4、211f (1)1x x +=-5、2211f ()x x x x-=+6、已知f (x )为二次函数, f(x-1)= 2x -4x ,解方程f(x+1)=08、若)()()(y f x f y x f ⋅=+,且2)1(=f , 求值)2004()2005()3()4()2()3()1()2(f f f f f f f f ++++ ..10、已知f (x +x 1)=x 3+x31,求f (x )的解析式。

抽象函数问题求解的常用方法

抽象函数问题求解的常用方法

抽象函数问题求解的常用方法抽象函数型综合问题,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,考查学生对于一般和特殊关系的认识.可以说,这一类问题,是考查学生能力的较好途径,因此,在近年的高考中,这一类题目有增多和分量加重的趋势.【方法荟萃】1.函数原型法【例1】给出四个函数,分别满足①()()()f x y f x f y+=+;②()()()g x y g x g y+=;③()()()h x y h x h y=+;④()()()t xy t x t y=,又给出四个函数图象正确的匹配方案是()(A)①—丁②—乙③—丙④—甲(B)①—乙②—丙③—甲④—丁)①—丙②—甲③—乙④—丁(D)①—丁②—甲③—乙④—丙的函数抽象而成的。

如正比例函数()(0)f x kx k=≠可抽象为()()()f x y f x f y+=+。

因此,我们可得知如下结论:(1)抽象函数()()()f x y f x f y+=+可由一个特殊函数正比例函数()(0)f x kx k=≠抽象而成的;(2)抽象函数()()()t xy t x t y=可由一个特殊函数幂函数()t x xα=抽象而成的;(3)抽象函数()()()g x y g x g y+=可由一个特殊函数指数函数()(0,1)xg x a a a=>≠抽象而成的;(4)抽象函数()()()h xy h x h y=+可由一个特殊函数对数函数()log(0,1)ah x x a a=>≠抽象而成的;(5)抽象函数()f x y+=()()1()()f x f yf x f y+-可由一个特殊函数正切函数()tanf x x=抽象而成的;根据上述分析,可知应选D。

2.代数演绎法【例2】设定义在R上的函数()f x对于任意,x y都有()()()f x y f x f y+=+成立,且(1)2f=-,当x>时,()0f x<。

抽象函数-题型大全(例题-含答案)

抽象函数-题型大全(例题-含答案)

高考抽象函数技能总结因为函数概念比较抽象,学生对解有关函数记号()f x 的问题觉得艰苦,学好这部分常识,能加深学生对函数概念的懂得,更好地控制函数的性质,造就灵巧性;进步解题才能,优化学生数学思维本质.现将罕有解法及意义总结如下:一.求表达式:1.换元法:即用中央变量暗示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式经常运用的办法,此法解造就学生的灵巧性及变形才能.例1:已知 ()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u-=+=--∴2()1xf x x-=- 2.凑正当:在已知(())()f g x h x =的前提下,把()h x 并凑成以()g u 暗示的代数式,再运用代换即可求()f x .此解法简练,还能进一步温习代换法.例2:已知3311()f x x xx +=+,求()f x解:∵22211111()()(1)()(()3)f x x x x x xx x x x +=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先肯定函数类型,设定函数关系式,再由已知前提,定出关系式中的未知系数.例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x . 解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.运用函数性质法:重要运用函数的奇偶性,求分段函数的解析式.y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的界说域关于原点对称,故先求x <0时的表达式.∵-x >0,∴()lg(1)lg(1)f x x x -=-+=-,∵()f x 为奇函数,∴lg(1)()()x f x f x -=-=-∴当x <0时()lg(1)f x x =--∴lg(1),0()lg(1),0x x f x x x +≥⎧=⎨--<⎩例5.一已知()f x 为偶函数,()g x 为奇函数,且有()f x +1()1g x x =-, 求()f x ,()g x . 解:∵()f x 为偶函数,()g x 为奇函数,∴()()f x f x -=,()()g x g x -=-,无妨用-x 代换()f x +()g x =11x -………①中的x , ∴1()()1f xg x x -+-=--即()f x -1()1g x x =-+……②显见①+②即可消去()g x ,求出函数21()1f x x =-再代入①求出2()1xg x x =-5.赋值法:给自变量取特别值,从而发明纪律,求出()f x 的表达式例6:设()f x 的界说域为天然数集,且知足前提(1)()()f x f x f y xy +=++,及(1)f =1,求()f x解:∵()f x 的界说域为N,取y =1,则有(1)()1f x f x x +=++∵(1)f =1,∴(2)f =(1)f +2,(3)(2)3f f =+……()(1)f n f n n =-+ 以上各式相加,有()f n =1+2+3+……+n =(1)2n n +∴1()(1),2f x x x x N =+∈ 二.运用函数性质,解()f x 的有关问题 1.断定函数的奇偶性:例7 已知()()2()()f x y f x y f x f y ++-=,对一切实数x .y 都成立,且(0)0f ≠,求证()f x 为偶函数.证实:令x =0, 则已知等式变成()()2(0)()f y f y f f y +-=……① 在①中令y =0则2(0)f =2(0)f ∵(0)f ≠0∴(0)f =1∴()()2()f y f y f y +-=∴()()f y f y -=∴()f x 为偶函数.例8:奇函数()f x 在界说域(-1,1)内递减,求知足2(1)(1)0f m f m -+-<的实数m 的取值规模.解:由2(1)(1)0f m f m -+-<得2(1)(1)f m f m -<--,∵()f x 为函数,∴2(1)(1)f m f m -<-又∵()f x 在(-1,1)内递减,∴221111110111m m m m m -<-<⎧⎪-<-<⇒<<⎨⎪->-⎩3.解不定式的有关标题例9:假如()f x =2ax bx c ++对随意率性的t 有(2)2)f t f t +=-,比较(1)(2)(4)f f f 、、的大小解:对随意率性t 有(2)2)f t f t +=-∴x =2为抛物线y =2ax bx c ++的对称轴 又∵其启齿向上∴f (2)最小,f (1)=f (3)∵在[2,+∞)上,()f x 为增函数∴f (3)<f (4),∴f (2)<f (1)<f (4) 五类抽象函数解法 1.线性函数型抽象函数线性函数型抽象函数,是由线性函数抽象而得的函数.例1.已知函数f(x)对随意率性实数x,y,均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(-1)=-2,求f(x)在区间[-2,1]上的值域.剖析:由题设可知,函数f(x)是的抽象函数,是以求函数f(x)的值域,症结在于研讨它的单调性.解:设,∵当,∴,∵,∴,即,∴f(x)为增函数.在前提中,令y=-x,则,再令x=y=0,则f(0)=2 f(0),∴f (0)=0,故f(-x)=f(x),f(x)为奇函数,∴f(1)=-f(-1)=2,又f(-2)=2 f(-1)=-4,∴f(x)的值域为[-4,2].例2.已知函数f(x)对随意率性,知足前提f(x)+f(y)=2 + f (x+y),且当x>0时,f(x)>2,f(3)=5,求不等式的解. 剖析:由题设前提可猜测:f(x)是y=x+2的抽象函数,且f(x)为单调增函数,假如这一猜测准确,也就可以脱去不等式中的函数符号,从而可求得不等式的解. 解:设,∵当,∴,则, 即,∴f(x)为单调增函数.∵,又∵f(3)=5,∴f(1)=3.∴,∴,即,解得不等式的解为-1 < a < 3.2.指数函数型抽象函数例3.设函数f(x)的界说域是(-∞,+∞),知足前提:消失,使得,对任何x和y,成立.求:(1)f(0); (2)对随意率性值x,断定f(x)值的正负.剖析:由题设可猜测f(x)是指数函数的抽象函数,从而猜测f(0)=1且f(x)>0.解:(1)令y=0代入,则,∴.若f(x)=0,则对随意率性,有,这与题设抵触,∴f(x)≠0,∴f(0)=1.(2)令y=x≠0,则,又由(1)知f(x)≠0,∴f (2x)>0,即f(x)>0,故对随意率性x,f(x)>0恒成立.例4.是否消失函数f(x),使下列三个前提:①f(x)>0,x∈N;②;③f(2)=4.同时成立?若消失,求出f(x)的解析式,如不消失,解释来由.剖析:由题设可猜测消失,又由f(2)=4可得a=2.故猜测消失函数,用数学归纳法证实如下:(1)x=1时,∵,又∵x∈N时,f(x)>0,∴,结论准确.(2)假设时有,则x=k+1时,,∴x=k+1时,结论准确.综上所述,x为一切天然数时.3.对数函数型抽象函数对数函数型抽象函数,即由对数函数抽象而得到的函数.例5.设f(x)是界说在(0,+∞)上的单调增函数,知足,求:(1)f(1);(2)若f(x)+f(x-8)≤2,求x的取值规模.剖析:由题设可猜测f(x)是对数函数的抽象函数,f(1)=0,f(9)=2.解:(1)∵,∴f(1)=0.(2),从而有f(x)+f(x-8)≤f(9),即,∵f(x)是(0,+∞)上的增函数,故,解之得:8<x≤9.例6.设函数y=f(x)的反函数是y=g(x).假如f(ab)=f(a)+f(b),那么g(a+b)=g(a)·g(b)是否准确,试解释来由.剖析: 由题设前提可猜测y=f(x)是对数函数的抽象函数,又∵y=f(x)的反函数是y=g(x),∴y=g(x)必为指数函数的抽象函数,于是猜测g(a +b)=g(a)·g(b)准确.解:设f(a)=m,f(b)=n,因为g(x)是f(x)的反函数,∴g(m)=a,g (n)=b,从而,∴g(m)·g(n)=g(m +n),以a.b分离代替上式中的m.n即得g(a+b)=g(a)·g(b).4.三角函数型抽象函数三角函数型抽象函数即由三角函数抽象而得到的函数.例7.己知函数f(x)的界说域关于原点对称,且知足以下三前提:①当是界说域中的数时,有;②f(a)=-1(a>0,a是界说域中的一个数);③当0<x<2a时,f(x)<0.试问:(1)f(x)的奇偶性若何?解释来由.(2)在(0,4a)上,f(x)的单调性若何?解释来由.剖析: 由题设知f(x)是的抽象函数,从而由及题设前提猜测:f(x)是奇函数且在(0,4a)上是增函数(这里把a算作进行猜测).解:(1)∵f(x)的界说域关于原点对称,且是界说域中的数时有,∴在界说域中.∵,∴f(x)是奇函数.(2)设0<x1<x2<2a,则0<x2-x1<2a,∵在(0,2a)上f(x)<0,∴f(x1),f(x2),f(x2-x1)均小于零,进而知中的,于是f(x1)< f(x2),∴在(0,2a)上f(x)是增函数.又,∵f(a)=-1,∴,∴f(2a)=0,设2a<x<4a,则0<x-2a<2a,,于是f(x)>0,即在(2a,4a)上f(x)>0.设2a<x1<x2<4a,则0<x2-x1<2a,从而知f(x1),f(x2)均大于零.f(x2-x1)<0,∵,∴,即f(x1)<f(x2),即f(x)在(2a,4a)上也是增函数.综上所述,f(x)在(0,4a)上是增函数.5.幂函数型抽象函数幂函数型抽象函数,即由幂函数抽象而得到的函数.例8.已知函数f(x)对随意率性实数x.y都有f(xy)=f(x)·f(y),且f(-1)=1,f(27)=9,当时,.(1)断定f(x)的奇偶性;(2)断定f(x)在[0,+∞)上的单调性,并给出证实;(3)若,求a的取值规模.剖析:由题设可知f(x)是幂函数的抽象函数,从而可猜测f(x)是偶函数,且在[0,+∞)上是增函数.解:(1)令y=-1,则f(-x)=f(x)·f(-1),∵f(-1)=1,∴f(-x)=f(x),f(x)为偶函数.(2)设,∴,,∵时,,∴,∴f(x1)<f(x2),故f(x)在0,+∞)上是增函数.(3)∵f(27)=9,又,∴,∴,∵,∴,∵,∴,又,故.抽象函数罕有题型解法综述抽象函数是指没有给出函数的具体解析式,只给出了一些表现函数特点的式子的一类函数.因为抽象函数表示情势的抽象性,使得这类问题成为函数内容的难点之一.本文就抽象函数罕有题型及解法评析如下:一.界说域问题例1. 已知函数的界说域是[1,2],求f(x)的界说域.解:的界说域是[1,2],是指,所以中的知足从而函数f(x)的界说域是[1,4]评析:一般地,已知函数的界说域是A,求f(x)的界说域问题,相当于已知中x的取值规模为A,据此求的值域问题.例2. 已知函数的界说域是,求函数的界说域.解:的界说域是,意思是凡被f感化的对象都在中,由此可得所以函数的界说域是评析:这类问题的一般情势是:已知函数f(x)的界说域是A,求函数的界说域.准确懂得函数符号及其界说域的寄义是求解此类问题的症结.这类问题本质上相当于已知的值域B,且,据此求x的取值规模.例2和例1情势上正相反.二.求值问题例3. 已知界说域为的函数f(x),同时知足下列前提:①;②,求f(3),f(9)的值.解:取,得因为,所以又取得评析:经由过程不雅察已知与未知的接洽,奇妙地赋值,取,如许便把已知前提与欲求的f(3)沟通了起来.赋值法是解此类问题的经常运用技能.三.值域问题例4. 设函数f(x)界说于实数集上,对于随意率性实数x.y,总成立,且消失,使得,求函数的值域.解:令,得,即有或.若,则,对随意率性均成立,这与消失实数,使得成立抵触,故,必有.因为对随意率性均成立,是以,对随意率性,有下面来证实,对随意率性设消失,使得,则这与上面已证的抵触,是以,对随意率性所以评析:在处理抽象函数的问题时,往往须要对某些变量进行恰当的赋值,这是一般向特别转化的须要手腕.四.解析式问题例5. 设对知足的所有实数x,函数知足,求f(x)的解析式.解:在中以代换个中x,得:再在(1)中以代换x,得化简得:评析:假如把x和分离看作两个变量,如何实现由两个变量向一个变量的转化是解题症结.平日情形下,给某些变量恰当赋值,使之在关系中“消掉”,进而保存一个变量,是实现这种转化的重要计谋.五.单调性问题例6. 设f(x)界说于实数集上,当时,,且对于随意率性实数x.y,有,求证:在R上为增函数.证实:在中取,得若,令,则,与抵触所以,即有当时,;当时,而所以又当时,所以对随意率性,恒有设,则所以所以在R上为增函数.评析:一般地,抽象函数所知足的关系式,应看作给定的运算轨则,则变量的赋值或变量及数值的分化与组合都应尽量与已知式或所给关系式及所求的成果相接洽关系.六.奇偶性问题例7. 已知函数对随意率性不等于零的实数都有,试断定函数f(x)的奇偶性.解:取得:,所以又取得:,所以再取则,即因为为非零函数,所认为偶函数.七.对称性问题例8. 已知函数知足,求的值.解:已知式即在对称关系式中取,所以函数的图象关于点(0,2002)对称.依据原函数与其反函数的关系,知函数的图象关于点(2002,0)对称.所以将上式中的x用代换,得评析:这是统一个函数图象关于点成中间对称问题,在解题中运用了下述命题:设a.b均为常数,函数对一切实数x都知足,则函数的图象关于点(a,b)成中间对称图形.八.收集分解问题例9. 界说在R上的函数f(x)知足:对随意率性实数m,n,总有,且当x>0时,0<f(x)<1.(1)断定f(x)的单调性;(2)设,,若,试肯定a的取值规模.解:(1)在中,令,得,因为,所以.在中,令因为当时,所以当时而所以又当x=0时,,所以,综上可知,对于随意率性,均有.设,则所以所以在R上为减函数.(2)因为函数y=f(x)在R上为减函数,所以即有又,依据函数的单调性,有由,所以直线与圆面无公共点.是以有,解得. 评析:(1)要评论辩论函数的单调性必定涉及到两个问题:一是f(0)的取值问题,二是f(x)>0的结论.这是解题的症结性步调,完成这些要在抽象函数式中进行.由特别到一般的解题思惟,联想类比思维都有助于问题的思虑息争决.界说在R 上的函数f x ()知足:f x f x ()()=-4且f x f x ()()220-+-=,求f ()2000的值.解:由f x f x ()()220-+-=, 以t x =-2代入,有f t f t ()()-=, ∴f x ()为奇函数且有f ()00=又由f x f x ()[()]+=--44故f x ()是周期为8的周期函数,例2 已知函数f x ()对随意率性实数x y ,都有f x y f x f y ()()()+=+,且当x >0时,f x f ()()>-=-012,,求f x ()在[]-21,上的值域.解:设x x 12< 且x x R 12,∈, 则x x 210->,由前提当x >0时,f x ()>0 又f x f x x x ()[()]2211=-+∴f x ()为增函数,令y x =-,则f f x f x ()()()0=+- 又令x y ==0 得f ()00=∴-=-f x f x ()(),故f x ()为奇函数,∴=-=f f ()()112,f f ()()-=-=-2214∴-f x ()[]在,21上的值域为[]-42,二. 求参数规模这类参数隐含在抽象函数给出的运算式中,症结是运用函数的奇偶性和它在界说域内的增减性,去掉落“f ”符号,转化为代数不等式组求解,但要特别留意函数界说域的感化.例3 已知f x ()是界说在(-11,)上的偶函数,且在(0,1)上为增函数,知足f a f a ()()---<2402,试肯定a 的取值规模.解: f x ()是偶函数,且在(0,1)上是增函数,∴f x ()在()-10,上是减函数,由-<-<-<-<⎧⎨⎩1211412a a 得35<<a . (1)当a =2时,f a f a f ()()()-=-=2402,不等式不成立.(2)当32<<a 时, (3)当25<<a 时,综上所述,所求a 的取值规模是()()3225,, .例 4 已知f x ()是界说在(]-∞,1上的减函数,若f m x f m x (sin )(cos )221-≤++对x R ∈恒成立,求实数m 的取值规模. 解: m x m x m x m x 22223131-≤++≤-≥++⎧⎨⎪⎩⎪sin cos sin cos对x R ∈恒成立⇔-≤-≥++⎧⎨⎪⎩⎪m x m x m x22231sin sin cos 对x R ∈恒成立⇔ 对x R ∈恒成立, 三. 解不等式这类不等式一般须要将常数暗示为函数在某点处的函数值,再经由过程函数的单调性去掉落函数符号“f ”,转化为代数不等式求解.例 5 已知函数f x ()对随意率性x y R ,∈有f x f y f x y ()()()+=++2,当x >0时,f x ()>2,f ()35=,求不等式f a a ()2223--<的解集. 解:设x x R 12、∈且x x 12< 则x x 210-> ∴->f x x ()212, 即f x x ()2120-->, 故f x ()为增函数,又f f f f f ()()()()()3212123145=+=+-=-=是以不等式f a a ()2223--<的解集为{}a a |-<<13. 四. 证实某些问题例6 设f x ()界说在R 上且对随意率性的x 有f x f x f x ()()()=+-+12,求证:f x ()是周期函数,并找出它的一个周期.剖析:这同样是没有给出函数表达式的抽象函数,其一般解法是依据所给关系式进行递推,若能得出f x T f x ()()+=(T 为非零常数)则f x ()为周期函数,且周期为T.证实: f x f x f x ()()()()=+-+121()()12+得f x f x ()()()=-+33由(3)得f x f x ()()()+=-+364由(3)和(4)得f x f x ()()=+6.上式对随意率性x R ∈都成立,是以f x ()是周期函数,且周期为6.例7 已知f x ()对一切x y ,,知足f f x y f x f y ()()()()00≠+=⋅,,且当x <0时,f x ()>1,求证:(1)x >0时,01<<f x ();(2)f x ()在R 上为减函数. 证实: 对一切x y R ,∈有f x y f x f y ()()()+=⋅. 且f ()00≠,令x y ==0,得f ()01=, 现设x >0,则-<x 0,f x ()->1, 而f f x f x ()()()01=⋅-=∴<<01f x (),设x x R 12,∈且x x 12<, 则0121<-<f x x (),∴>f x f x ()()12,即f x ()为减函数. 五. 分解问题求解抽象函数的分解问题一般难度较大,常涉及到多个常识点,抽象思维程度请求较高,解题时需掌控好如下三点:一是留意函数界说域的运用,二是运用函数的奇偶性去掉落函数符号“f ”前的“负号”,三是运用函数单调性去掉落函数符号“f ”.例8 设函数y f x =()界说在R 上,当x >0时,f x ()>1,且对随意率性m n ,,有f m n f m f n ()()()+=⋅,当m n ≠时f m f n ()()≠.(1)证实f ()01=;(2)证实:f x ()在R 上是增函数;(3)设{}A x y f x f y f =⋅<()|()()(),221,B x y f ax by c a b c R a =++=∈≠{()|()},,,,,10,若A B =∅,求a b c ,,知足的前提.解:(1)令m n ==0得f f f ()()()000=⋅, ∴=f ()00或f ()01=.若f ()00=,当m ≠0时,有fm fm f ()()()+=⋅00,这与当m n ≠时,f m f n ()()≠抵触, ∴=f ()01. (2)设x x 12<,则x x 210->,由已知得f x x ()211->,因为x 10≥,f x ()11>,若x 10<时,->->x f x 1101,(),由f fx f x ()()()011=⋅- (3)由f x f y f ()()()221⋅<得x y 2211+<()由f a x b y c ()++=1得a x b y c ++=0(2) 从(1).(2)中消去y 得()a b x a c x c b 2222220+++-<,因为AB =∅ ∴=-+-<∆()()()24022222a c ab cb , 即a b c222+< 例9 界说在(-11,)上的函数f x ()知足(1),对随意率性x y ,,∈-()11都有f x f y f x yx y()()()+=++1, (2)当x ∈-()10,时,有f x ()>0,(1)试断定f x ()的奇偶性;(2)断定f x ()的单调性;(3)求证ff f n nf ()()()()15111131122+++++>….剖析:这是一道以抽象函数为载体,研讨函数的单调性与奇偶性,再以这些性质为基本去研讨数列乞降的分解题.解:(1)对前提中的x y ,,令x y ==0,再令y x =-可得f f f f x f x f f x f x ()()()()()()()()000000+=+-=⎧⎨⎩⇒=-=-⎧⎨⎩,所所以f x ()奇函数. (2)设-<<<1012x x ,则fx fx fx f x f x x x x ()()()()()121212121-=+-=-- x x x x 1212001-<<<,, ∴--<x x x x 121210,由前提(2)知f x xx x ()121210-->,从而有f x f x ()()120->,即f x f x ()()12>,故f x ()()在,-10上单调递减,由奇函数性质可知,f x ()在(0,1)上仍是单调减函数.(3) f n n ()1312++抽象函数问题分类解析我们将没有明白给出解析式的函数称为抽象函数.近年来抽象函数问题一再消失于各类测验题中,因为这类问题抽象性强,灵巧性大,多半同窗觉得迷惑,求解无从下手.本文试图经由过程实例作分类解析,供进修参考. 1. 求界说域这类问题只要紧紧抓住:将函数f g x [()]中的g x ()看作一个整体,相当于f x ()中的x这一特点,问题就会水到渠成.例 1. 函数y f x =()的界说域为(]-∞,1,则函数y f x =-[l o g ()]222的界说域是___.剖析:因为l o g()22x 2-相当于f x ()中的x,所以l o g()2221x -≤,解得 22<≤x 或-≤<-22x .例 2. 已知f x ()的界说域为(0),1,则y f x a f x a a =++-≤()()(||)12的界说域是______.剖析:因为x a +及x a-均相当于f x ()中的x,所以(1)当-≤≤120a 时,则x a a ∈-+(),1 (2)当012<≤a 时,则x a a ∈-(),1 2. 断定奇偶性依据已知前提,经由过程恰当的赋值代换,追求f x ()与f x ()-的关系. 例3. 已知f x ()的界说域为R,且对随意率性实数x,y 知足fx y fx f y ()()()=+,求证:f x ()是偶函数.剖析:在fx y fx f y ()()()=+中,令x y ==1, 得f f f f ()()()()11110=+⇒= 令x y ==-1,得f f f f ()()()()11110=-+-⇒-= 于是fx f x f f x f x ()()()()()-=-⋅=-+=11 故f x ()是偶函数.例4. 若函数y f xf x =≠()(())0与y f x =-()的图象关于原点对称,求证:函数 y f x =()是偶函数.证实:设y f x =()图象上随意率性一点为P (x y 00,)y f x =()与y f x=-()的图象关于原点对称, ∴P x y ()00,关于原点的对称点()--x y 00,在y f x =-()的图象上, 又y f x 00=() 即对于函数界说域上的随意率性x 都有f x f x ()()-=,所所以y f x =()偶函数.3. 断定单调性依据函数的奇偶性.单调性等有关性质,画出函数的示意图,以形助数,问题敏捷获解.例5. 假如奇函数f x ()在区间[]37,上是增函数且有最小值为5,那么f x ()在区间[]--73,上是A. 增函数且最小值为-5B. 增函数且最大值为-5C. 减函数且最小值为-5D. 减函数且最大值为-5 剖析:画出知足题意的示意图1,易知选B.图1例6. 已知偶函数f x ()在(0),+∞上是减函数,问f x ()在()-∞,0上是增函数照样减函数,并证实你的结论.剖析:如图2所示,易知f x ()在()-∞,0上是增函数,证实如下: 任取xx x x 121200<<⇒->-> 因为f x ()在(0),+∞上是减函数,所以f x f x ()()-<-12. 又f x ()是偶函数,所以 f x f xf x f x ()()()()-=-=1122,, 从而f x f x ()()12<,故f x ()在()-∞,0上是增函数. 图24. 寻找周期性这类问题较抽象,一般解法是细心剖析题设前提,经由过程相似,联想出函数原型,经由过程对函数原型的剖析或赋值迭代,获得问题的解. 例7. 设函数f x ()的界说域为R,且对随意率性的x,y 有f x y f x y f x f y ()()()()++-=⋅2,并消失正实数c,使f c ()20=.试问f x ()是否为周期函数?若是,求出它的一个周期;若不是,请解释来由.剖析:细心不雅察剖析前提,联想三角公式,就会发明:y x =c o s 知足题设前提,且cos π20=,猜测f x ()是以2c 为周期的周期函数.故f x()是周期函数,2c是它的一个周期.5. 求函数值紧扣已知前提进行迭代变换,经有限次迭代可直接求出成果,或者在迭代进程中发明函数具有周期性,运用周期性使问题奇妙获解.例8. 已知f x()的界说域为R+,且fxy fx fy()()()+=+对一切正实数x,y都成立,若f()84=,则f(2)=_______.剖析:在前提fxy fx fy()()()+=+中,令x y==4,得f f f f()()()()844244=+==,又令x y==2,得f f f(4)(2)(2)=+=2,例9. 已知f x()是界说在R上的函数,且知足:f x f x f x()[()]()+-=+211,f()11997=,求f(2001)的值.剖析:紧扣已知前提,并多次运用,发明f x()是周期函数,显然f x()≠1,于是f x f x f x()() ()+=+ -211,所以f xf x f x()()()+=-+=81 4故f x()是以8为周期的周期函数,从而6. 比较函数值大小运用函数的奇偶性.对称性等性质将自变量转化到函数的单调区间内,然后运用其单调性使问题获解.例10. 已知函数f x()是界说域为R的偶函数,x<0时,f x()是增函数,若x 1<,x20>,且||||x x12<,则f x f x()()--12,的大小关系是_______.剖析: x x 1200<>,且||||x x 12<, 又x <0时,f x ()是增函数,f x ()是偶函数,故f x f x ()()->-127. 评论辩论方程根的问题例11. 已知函数f x ()对一切实数x 都知足f x f x ()()11+=-,并且f x ()=0有三个实根,则这三个实根之和是_______.剖析:由f x f x ()()11+=-知直线x =1是函数f x ()图象的对称轴. 又f x ()=0有三个实根,由对称性知x 11=必是方程的一个根,其余两根x x 23,关于直线x =1对称,所以x x 23212+=⨯=,故x x x 1233++=. 8. 评论辩论不等式的解求解这类问题运用函数的单调性进行转化,脱去函数符号.例12. 已知函数f x ()是界说在(]-∞,1上的减函数,且对一切实数x,不等式fk x fk x(s i n )(s i n)-≥-22恒成立,求k 的值. 剖析:由单调性,脱去函数记号,得由题意知(1)(2)两式对一切x R ∈恒成立,则有 9. 研讨函数的图象这类问题只要运用函数图象变换的有关结论,就可获解.例13. 若函数y f x =+()2是偶函数,则y f x =()的图象关于直线_______对称.剖析:y f x =()的图象右移个单位左移个单位22y f x =+()2的图象,而y f x =+()2是偶函数,对称轴是x =0,故y f x =()的对称轴是x =2.例14. 若函数f x ()的图象过点(0,1),则f x ()+4的反函数的图象必过定点______.剖析:f x ()的图象过点(0,1),从而f x ()+4的图象过点()-41,,由原函数与其反函数图象间的关系易知,f x ()+4的反函数的图象必过定点()14,-. 10. 求解析式例15. 设函数f x ()消失反函数,g x f x h x ()()()=-1,与g x ()的图象关于直线x y +=0对称,则函数h x ()=A. -f x ()B. --f x ()C. --f x 1()D. ---f x 1()剖析:请求y h x =()的解析式,本质上就是求y h x =()图象上任一点Px y ()00,的横.纵坐标之间的关系.点Px y ()00,关于直线y x =-的对称点()--y x 00,合适y f x =-1(),即-=-x g y 00(). 又gx f x ()()=-1,即h x f x ()()=--,选B. 抽象函数的周期问题2001年高考数学(文科)第22题:设f x ()是界说在R 上的偶函数,其图象关于直线x =1对称.对随意率性x x 12012,,∈[]都有f xx f xf x ()()()1212+=⋅. (I )设f ()12=,求f f ()()1214,; (II )证实f x ()是周期函数. 解析:(I )解略.(II )证实:依题设y f x =()关于直线x =1对称 故f x f x x R ()()=-∈2, 又由f x ()是偶函数知 将上式中-x以x 代换,得 这标明f x ()是R 上的周期函数,且2是它的一个周期f x ()是偶函数的本质是f x ()的图象关于直线x =0对称 又f x ()的图象关于x =1对称,可得f x ()是周期函数 且2是它的一个周期由此进行一般化推广,我们得到思虑一:设f x ()是界说在R 上的偶函数,其图象关于直线x aa =≠()0对称,证实f x ()是周期函数,且2a 是它的一个周期.证实: f x ()关于直线x a=对称 又由f x ()是偶函数知f x f x x R ()()-=∈, 将上式中-x以x 代换,得 ∴f x ()是R 上的周期函数且2a 是它的一个周期思虑二:设f x ()是界说在R 上的函数,其图象关于直线x a =和x ba b =≠()对称.证实f x ()是周期函数,且2()b a -是它的一个周期. 证实: f x ()关于直线x a x b ==和对称 将上式的-x以x 代换得 ∴f x ()是R 上的周期函数且2()b a -是它的一个周期若把这道高考题中的“偶函数”换成“奇函数”,f x ()照样不是周期函数?经由摸索,我们得到思虑三:设f x ()是界说在R 上的奇函数,其图象关于直线x =1对称.证实f x ()是周期函数,且4是它的一个周期.,证实: f x ()关于x =1对称∴=-∈fx f x xR ()()2, 又由f x ()是奇函数知f x f x x R f x f x x R()()()()-=-∈∴-=--∈,,2将上式的-x以x 代换,得 ∴f x ()是R 上的周期函数 且4是它的一个周期f x ()是奇函数的本质是f x ()的图象关于原点(0,0)中间对称,又f x ()的图象关于直线x =1对称,可得f x ()是周期函数,且4是它的一个周期.由此进行一般化推广,我们得到思虑四:设f x ()是界说在R 上的函数,其图象关于点M a (),0中间对称,且其图象关于直线x bb a =≠()对称.证实f x ()是周期函数,且4()b a -是它的一个周期.证实: f x ()关于点M a (),0对称 ∴-=-∈f a x f x x R ()()2, f x ()关于直线x b =对称∴=-∈∴-=--∈f x f b x x Rf b x f a x x R()()()()222,,将上式中的-x以x 代换,得 f b x f a x x Rf x b a f b x b a f a x b a f b x a f a x a f x x R()()[()][()][()][()][()]()2242242242222+=-+∈∴+-=++-=-++-=-+-=+-=∈,,∴f x ()是R 上的周期函数 且4()b a -是它的一个周期由上我们发明,界说在R 上的函数f x (),其图象如有两条对称轴或一个对称中间和一条对称轴,则f x ()是R 上的周期函数.进一步我们想到,界说在R 上的函数f x (),其图象假如有两个对称中间,那么f x ()是否为周期函数呢?经由摸索,我们得到思虑五:设f x ()是界说在R 上的函数,其图象关于点M a (),0和N b a b ()(),0≠对称.证实f x ()是周期函数,且2()b a -是它的一个周期.证实: f x ()关于Ma Nb ()(),,,00对称 ∴-=-∈-=-∈∴-=-∈f a x f x x R f b x f x x R f a x f b x x R()()()()()()2222,,,将上式中的-x 以x 代换,得f a x f b x x Rf x b a f b x a f a x a f x x R()()[()][()][()]()2222222+=+∈∴+-=+-=+-=∈,,∴f x ()是周期函数且2()b a -是它的一个周期抽象函数解法规谈抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其知足的前提的函数,如函数的界说域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高级数学函数部分的一个连接点,因为抽象函数没有具体的解析表达式作为载体,是以懂得研讨起来比较艰苦.但因为此类试题即能考核函数的概念和性质,又能考核学生的思维才能,所以备受命题者的青睐,那么,如何求解抽象函数问题呢,我们可以运用特别模子法,函数性质法,特别化办法,联想类比转化法,等多种办法从多角度,多层面去剖析研讨抽象函数问题, 一:函数性质法函数的特点是经由过程其性质(如奇偶性,单调性周期性,特别点等)反响出来的,抽象函数也是如斯,只有充分发掘和运用题设前提和隐含的性质,灵巧进行等价转化,抽象函数问题才干转化,化难为易,经常运用的解题办法有:1,运用奇偶性整体思虑;2,运用单调性等价转化;3,运用周期性回归已知4;运用对称性数形联合;5,借助特别点,布列方程等. 二:特别化办法1在求解函数解析式或研讨函数性质时,一般用代换的办法,将x 换成-x 或将x 换成等 2在求函数值时,可用特别值代入3研讨抽象函数的具体模子,器具体模子解选择题,填空题,或由具体模子函数对分解题,的解答供给思绪和办法.总之,抽象函数问题求解,用通例办法一般很难凑效,但我们假如能经由过程对标题标信息剖析与研讨,采取特别的办法和手腕求解,往往会收到事半功倍之功能,真有些山穷水复疑无路,柳暗花明又一村的快感. 1. 已知函数f(x)对随意率性x.y ∈R 都有f(x+y)=f(x)+ f(y)+3xy(x+y+2)+3,且f(1)=1 ①若t 为天然数,(t>0)试求f(t)的表达式②知足f(t)=t 的所有整数t 可否组成等差数列?若能求出此数列,若不克不及解释来由 ③若t 为天然数且t≥4时, f(t) ≥mt2+(4m+1)t+3m,恒成立,求m 的最大值. 2. 已知函数f(x)=1)(1)(+-x g x g ,且f(x),g(x)界说域都是R,且g(x)>0, g(1) =2,g(x) 是增函数. g(m) · g(n)=g(m+n)(m.n ∈R)求证:①f(x)是R 上的增函数②当n ∈N,n≥3时,f(n)>1+n n 解: ①设x1>x2g(x)是R 上的增函数, 且g(x)>0 ∴ g(x1) > g(x2) >0 ∴g(x1)+1 > g(x2)+1 >0∴1)(22+x g >1)(21+x g >0∴1)(22+x g -1)(21+x g >0∴f(x1)- f(x2)=1)(1)(11+-x g x g - 1)(1)(22+-x g x g =1-1)(21+x g -(1-1)(22+x g )=1)(22+x g -1)(21+x g >0∴ f(x1) >f(x2)∴ f(x)是R 上的增函数②g(x) 知足g(m) · g(n)= g(m+n)(m.n ∈R) 且g(x)>0 ∴ g(n)=[ g(1)]n=2n 当n ∈N,n≥3时, 2n>n ∴f(n)=1212+-n n=1-122+n ,1+n n =1-11+n2n =(1+1)n =1+n+…+i nC +…+n+1>2n+1 ∴ 2n+1>2n+2∴122+n<11+n ,即1-122+n>1-11+n∴当n ∈N,n≥3时,f(n)>1+n n3. 设f1(x) f2(x)是(0,+∞)上的函数,且f1(x)单增,设f(x)= f1(x) +f2(x) ,且对于(0,+∞)上的随意率性两相异实数x1, x2 恒有| f1(x1)- f1(x2)| >| f2(x1)- f2(x2)|①求证:f (x)在(0,+∞)上单增. ②设F(x)=x f (x), a>0.b>0. 求证:F(a+b)> F(a)+F(b) . ①证实:设 x1>x2>0f1(x) 在(0,+∞)上单增f1(x1)- f1(x2)>0∴| f1(x1)- f1(x2)|= f1(x1)- f1(x2)>0| f1(x1)- f1(x2)| >| f2(x1)- f2(x2)|∴f1(x2)- f1(x1)<f2(x1)- f2(x2)< f1(x1)- f1(x2) ∴f1(x1)+f2(x1)> f1(x2)+ f2(x2) ∴f(x1)> f(x2)f (x)在(0,+∞)上单增 ②F(x)=x f (x), a>0.b>0a+b>a>0,a+b>b>0F(a+b)=(a+b)f(a+b)=af(a+b)+bf(a+b)f (x)在(0,+∞)上单增∴F(a+b)>af(a)+bf(b)= F(a)+F(b)4. 函数y =f(x)知足 ①f(a+b)=f (a)·f (b),②f(4)=16, m.n 为互质整数,n≠0 求f(nm)的值 f(0) =f(0+0)=f(0) ·f(0)=f2(0)∴f(0) =0或1.若f(0)=0则f(4)=16=f(0+4)=f(0) ·f(4)=0.(抵触)∴f(1)=1f(4)=f(2) ·f(2)=f(1) ·f(1) ·f(1) ·f(1)=16f(1)=f2(21)≥0 ∴f(1)=2.仿此可证得f(a)≥0.即y=f(x)长短负函数.f(0)=f(a+(-a))=f(a) ·f(-a)∴f(-a)=)(1a f n ∈N*时f(n)=fn(1)=2n,f(-n)=2-nf(1)=f(n 1+n 1+…+n 1)=fn(n1)=2 ∴f(n 1)= n12∴f(nm )=[f(n1)]m= nm 25. 界说在(-1,1)上的函数f (x)知足 ① 随意率性x.y ∈(-1,1)都有f(x)+ f(y)=f (xyyx ++1),②x ∈(-1,0)时, 有f(x) >01) 剖断f(x)在(-1,1)上的奇偶性,并解释来由 2) 剖断f(x)在(-1,0)上的单调性,并给出证实3) 求证:f (1312++n n )=f (11+n )-f (21+n )或f (51)+f (111)+…+f (1312++n n )> f (21) (n ∈N*) 解:1)界说在(-1,1)上的函数f (x)知足随意率性x.y ∈(-1,1)都有f(x)+ f(y)=f (xyyx ++1),则当y=0时, f(x)+ f(0)=f(x) ∴f(0)=0当-x=y 时, f(x)+ f(-x)=f(0)∴f(x)是(-1,1)上的奇函数2) 设0>x1>x2>-1f(x1)-f(x2)= f(x1)+ f(-x2)=)1(2121x x xx f --0>x1>x2>-1 ,x ∈(-1,0)时,有f(x) >0,1-x1 x2>0, x1-x2>0∴)1(2121x x xx f -->0即f(x)在(-1,0)上单调递增.3)f (1312++n n )=f(12312-++n n ) =f()2)(1(11)2)(1(1++-++n n n n )=f(211112111+•+-+-+n n n n )=f(11+n )-f(21+n ) ∴f (51)+f (111)+…+f (1312++n n ) =f(21)-f(31)+f(31)-f(41)+f(41)+…+f(11+n )-f(21+n )= f(21) -f(21+n )=f(21)+f(-21+n )x ∈(-1,0)时,有f(x) >0∴f(-21+n )>0, f(21)+f(-21+n )>f(21)即f (51)+f (111)+…+f (1312++n n )> f (21)6. 设 f (x)是界说在R 上的偶函数,其图像关于直线x=1对称, 对随意率性x1.x2∈[0,12]都有f (x1+ x2)=f(x1) ·f(x2), 且f(1)=a>0. ①求f (12)及 f (14);②证实f(x)是周期函数③记an=f(2n+12n ), 求lim ∞→n (lnan)解: ①由f (x)= f (x 2 + x2)=[f(x)]2≥0,f(x)a= f(1)=f(2n·12n )=f(12n +12n +…+12n )=[f (12n )]2解得f (12n)=n a 21∴ f (12)=21a,f (14)=41a . ②f(x)是偶函数,其图像关于直线x=1对称, ∴f(x)=f(-x),f(1+x)=f(1-x).∴f(x+2)=f[1+(1+x)]= f[1-(1+x)]= f(x)=f(-x). ∴f(x)是以2为周期的周期函数.③an=f(2n+12n )= f (12n)=n a 21∴lim ∞→n (lnan)= lim ∞→n aa 2ln =07. 设)(x f y =是界说在R 上的恒不为零的函数,且对随意率性x.y ∈R 都有f(x+y)=f(x)f(y)①求f(0),②设当x<0时,都有f(x)>f(0)证实当x>0时0<f(x)<1, ③设a1=21,an=f(n)(n ∈N* ),sn 为数列{an }前n 项和,求lim ∞→n sn.解:①②仿前几例,略. ③an =f(n),∴ a1=f(1)=21an+1=f(n+1)=f(n)f(1)=21an∴数列{an }是首项为21公比为21的等比数列∴sn =1-n⎪⎭⎫ ⎝⎛21∴lim ∞→n sn =18. 设)(x f y =是界说在区间]1,1[-上的函数,且知足前提: (i );0)1()1(==-f f(ii )对随意率性的.|||)()(|],1,1[,v u v f u f v u -≤--∈都有 (Ⅰ)证实:对随意率性的;1)(1],1,1[x x f x x -≤≤--∈都有 (Ⅱ)证实:对随意率性的;1|)()(|],1,1[,≤--∈v f u f v u 都有 (Ⅲ)在区间[-1,1]上是否消失知足题设前提的奇函数)(x f y =,且使得⎪⎪⎩⎪⎪⎨⎧∈-=-∈-<-].1,21[,|,||)()(|].21,0[,.|||)()(|v u v u v f u f v u v u v f u f 当当 若消失,请举一例:若不消失,请解释来由.(Ⅰ)证实:由题设前提可知,当]1,1[-∈x 时,有,1|1|)1()(|)(|x x f x f x f -=-≤-=即.1)(1x x f x -≤≤-(Ⅱ)证法一:对随意率性的 1.|v -u ||f(v)-f(u)|,1||],1,1[,≤≤≤--∈有时当v u v u当0,u ,1|v -u |<⋅>v 时无妨设,0<u 则1,u -0>>v v 且 所以,|1||1||)1()(||)1()(||)()(|-++≤-+--≤-v u f v f f u f v f u f.1)(211<--=-++=u v v u 综上可知,对随意率性的],1,1[,-∈v u 都有.1|)()(|≤-v f u f证法二:由(Ⅰ)可得,当.||11)1()(||)(|,]0,1[x,-1f(x),]1,0[x x f x f x f x x -=+≤--=-∈≤∈时时 所以,当.||1)(|,]1,1[x x f x -≤-∈时是以,对随意率性的],1,1[,-∈v u当1||≤-v u 时,.1|||)()(|≤-≤-v u v f u f 当1||>-v u 时,有0<⋅v u 且.2||||||1≤+=-<v u v u所以.1)||(|2||1||1|)(||)(||)()(|≤+-=-+-≤+≤-v u v u v f u f v f u f 综上可知,对随意率性的],1,1[,-∈v u 都有.1|)()(|≤-v f u f(Ⅲ)答:知足所述前提的函数不消失.来由如下,假设消失函数)(x f 知足前提,则由],1,21[,|,||)()(|∈-=-v u v u v f u f得.21|121||)1()21(|=-=-f f 又,0)1(=f 所以.21|)21(|=f ①。

抽象函数常见题型和解法

抽象函数常见题型和解法

抽象函数的常见题型及解法一、 抽象函数的定义域1. 已知f(x)的定义域,求f[g(x)]的定义域若已知f(x)的定义域x (a,b),求f[g(x)]的定义域,其方法是: 由a<g(x)<b,求得x 的范围,即为f[g(x)]的定义域。

即由内层函数的值域,求内层函数的定义域,即为f[g(x)]的定义域。

例1.已知f(x)的定义域为[1,4],求f()的定义域. 解: 由1≤≤4,得 -1≤≤2 即 -1≤<0 或 0<≤2 解得 X ≤-1 或x ≥∴函数的定义域为:2. 已知f[g(x)]的定义域,求f(x)的定义域若已知f[g(x)]的定义域x (a,b),求f(x)的定义域,其方法是: 由a<x<b,求得g(x)的范围,即为f(x)的定义域。

即由内层函数的定义域,求内层函数的值域,即为f(x)的定义域。

例2. 若已知f(x+2)的定义域为[-2,2],求函数f(x)的定义域. 解:∵f(x+2)的定义域为[-2,2], ∴-2≤x ≤2, ∴ 0≤x+2≤4 故f(x)的定义域为[0,4]3. 已知f[ (x)]的定义域,求f[g(x)]的定义域先由f[ (x)]的定义域,求f(x)的定义域,再由f(x)的定义域,求f[g(x)]的定义域。

即由第一个函数中内层函数的定义域,求得第一个函数内层函数的值域,第一个函数内层函数的值域就是第二个函数内层函数的值域,由第∈21+x21+x x1x 1x121()⎪⎭⎫⎢⎣⎡+∞⋃-∞-,211,∈ϕϕ二个函数内层函数的值域,再求出第二个函数内层函数的定义域。

例3.若已知f(x+1)的定义域为,求函数f ()的定义域. 解:∵f(x+1)的定义域为, ∴-2≤x 3, ∴ -1≤x+1 4 即f(x)的定义域为.∴ -1≤<4,∴ -3≤<2 即 -3≤<0 或 0<<2 解得 X ≤-或 x> ∴函数的定义域为:3. 已知f(x)的定义域,求f[ (x)] + f[g(x)]的定义域若已知f(x)的定义域x (a,b),求f[g(x)]+f[g(x)]的定义域,其方法是:由,求得x 的范围,即为f[ (x)] + f[g(x)]的定义域。

抽象函数几类问题的解题方法与技巧

抽象函数几类问题的解题方法与技巧

一、求解析式的一般方法 1、换元法例1:已知f(x+1)=x 2-2x 求f(x)解:令t=x+1则x=t-1 f(t)=(t-1)2-2(t-1)=t 2-4t-3∴f(x)=x 2-4x-3换元法是解决抽象函数问题的基本方法,换元法包括显性换元法和隐性换元法。

2、方程组法例2:若函数f(x)满足f(x)+2f(x1)=3x ,求f(x) 解:令x=x 1则f(x 1)+2f(x)= x 3 f(x)+2f(x 1)=3x =>f(x)= x 2-x2f(x)+f(x 1)=x 3∴f(x)= x2-x例3 .例43、待定系数法例5:如果f[f(x)]=2x-1则一次函数f(x)=______ 解:f(x)是一次函数∴不妨设f(x)=ax+b(a ≠0)则f[f(x)]=af(x)+b=a(ax+b)+b=a^2x+ab+b 又已知f[f(x)]=2x-1例6:已知f(x)是多项式函数,解:由已知得f(x)是二次多项式,设f(x)=ax2+bx+c (a≠0)代入比较系数得过且过:a=1,b= -2,c= -1,f(x)=x2-2x-1.如果抽象函数的类型是确定的,则可用待定系数法来解答有关抽象函数的问题。

二、判断奇偶性的一般方法在奇偶性的求解中,常用方法是赋值法,赋值法中常见的赋值有-1、0、1。

例7 定义在(-1、1)上的函数f(x)满足。

(1)对任意x、y∈ (-1、1) 都有f(x)+f(y)=f()(2)当x∈ (-1、0) 时,有f(x)>0求证(I)f(x)是奇函数,(II)f(证明:(1)令x=y=0,则2f(0)=f(0) ∴f(0)=0令y=-x,则f(x)+f(y)=f(x)+f(-x)=f(=f(0)=0∴f(-x)=-f(x) ∴f(x)是奇函数例8定义在R上的函数f(x),对任意 x,y属于R,有f(x+y)+f(x-y)=2f(x)f(y),且f(0)≠0(1)求证f(0)=1 (2)求证y=f(x)是偶函数证明:(1)令x=y=0∴f(0)+f(0)=2×f(0)2∵f(0)≠0∴f(0)=1(2)令x=0则f(0+y)+ f(0-y)=2 f(0)f(y)f(y)+f(-y)=2f(y) =>f(-y)=f(y) =>y=f(x)是偶函数例9.对任意实数x,y ,均满足f(x+y2)=f(x)+2[f(y)]2且f(1)≠0,则f(2001)=_______.解:令x=y=0,得:f(0)=0,令x=0,y=1,得f(0+1)=f(0)+2f[(1)]2,三、单调性的求解方法例6:定义域为R 的函数f(x)满足:对于任意的实数x 、y 都有f(x+y)=f(x)+f(y)成立,且当x >0时,f(x)<0恒成立。

抽象函数-题型大全(例题-含答案)

抽象函数-题型大全(例题-含答案)

高考抽象函数技巧总结由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。

现将常见解法及意义总结如下: 一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。

例1:已知 ()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u-=+=--∴2()1xf x x -=- 2.凑合法:在已知(())()fg xh x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。

例2:已知3311()f x x xx+=+,求()f x 解:∵22211111()()(1)()(()3)f x x x x x xx x x x+=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。

例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。

抽象函数解析式的几种常用求法

抽象函数解析式的几种常用求法

f(x) =? 解: 用消元法
af ( x ) + f 1 = ax
( 1)
x

x 换成
x1,

1 x
换成
x,

af
1 x
+ f(x) =
a x
( 2)
由 ( 1) ( 2) 消去 f 1 , 即 ( 1) @ a - ( 2) 得 x
( a2 -
1)f (x)
=
a2 x -
a x
a X ? 1,
f(x) =
五、特殊值法
一般地, 若已知条 件是 一个 含有 n 个变 量 的等 式, 且该等 式对变量 允许范围 内的任 何值 都成立, 则可考虑适当选取一些特殊的数值, 使 等式 变成简易 或能够用 上其他已 知条件, 并结 合换元法, 从而求出函数解析式, 这种方法即为 特殊 值法, 使用 该方法的 关键是能 够有针 对性 地, 巧妙地选取若干特殊值, 从而达到解题的目 的。
20082淮阴师范学院教育科学论坛抽象函数解析式的几种常用求法李海华函数的解析式是函数的表示方法中最常用的一种它是用一个等式表示定义域与值域之间的一种对应关系与所取的字母无关课本中出现的函数大部分都有具体的解析式学生尚能理解但也有一些函数题仅仅给出函数的某些特征要求写出函数的解析式
抽象函数解析式的几种常用求法
式的求法进行 初步的 探讨和 归纳, 并给 出常 用 的几种求法。
一、配凑法
如果已知 复合函数 f [g ( x ) ] 的表达式, 要 求 f ( x ) 的解析式时, 若 f [ g (x ) ] 表达式右边易 配成 g ( x ) 的运算形式, 则可用配凑法。
例 1: 已知 f
1+

抽象函数求解的常用求法

抽象函数求解的常用求法

抽象函数求解的几种求法抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数。

如函数的定义域、解析递推式、特定点的函数值、特定的运算性质等。

它是高中数学函数部分的难点,由于抽象函数没有具体的解析式作为载体,因此理解起来比较困难,那么怎样求解抽象函数问题呢?以下介绍几种解抽象函数问题的方法。

一. 特殊化方法1. 在求函数解析式或研究函数性质时,一般用“代换”的方法,如将x 换成x -或将x 换成1x等。

2. 在求函数值时,可用特殊值(如0或1或-1)“代入” 例1.已知()f x 满足()123363f x f x x ⎛⎫+=⎪⎝⎭,求()f x 的解析式。

解:先令3u x =,解出3ux =,于是有:()1232f u f u u ⎛⎫+= ⎪⎝⎭-----------①再以1u代替u 得:()1223f f u u u ⎛⎫+= ⎪⎝⎭------------②联立①、②式解方程组,并消去1f u ⎛⎫ ⎪⎝⎭,解得()6455uf u u =-即所求解析式为:()6455x f x x =-例2. 若对一切自然数a 、b 都有()()()f a b f a f b ab +=++且()11f =,求()f x 的解析式。

解:利用特殊值法 令1a =,等式变为:()()()()111f b f f b b f b b +=++=++,即:()()11f b f b b +-=+,注意到上式是一个关于自然数b 的递推关系式,令1b =,有()()2111f f -=+2b =,有()()3221f f -=+1b n =-,有()()()111f n f n n --=-+将以上1n -条等式左右两边分别相加,得:()()()()1123111f n f n n -=++++-+⨯-即:()()()1123111f n n n =+++++-+⨯-()11232n n n -=++++=即所求解析式为:()()12x x f x -=二. 函数性质法函数的特征是通过其性质(如奇偶性、单调性、周期性、对称性、特殊点等)反应出来的,抽象函数也是如此。

抽象函数常见题型和解法

抽象函数常见题型和解法

抽象函数的常见题型及解法一、 抽象函数的定义域1. 已知f(x)的定义域,求f[g(x)]的定义域若已知f(x)的定义域x (a,b),求f[g(x)]的定义域,其方法是: 由a<g(x)<b,求得x 的范围,即为f[g(x)]的定义域。

即由内层函数的值域,求内层函数的定义域,即为f[g(x)]的定义域。

例1.已知f(x)的定义域为[1,4],求f()的定义域. 解: 由1≤≤4,得 -1≤≤2 即 -1≤<0 或 0<≤2 解得 X ≤-1 或x ≥∴函数的定义域为:2. 已知f[g(x)]的定义域,求f(x)的定义域若已知f[g(x)]的定义域x (a,b),求f(x)的定义域,其方法是: 由a<x<b,求得g(x)的范围,即为f(x)的定义域。

即由内层函数的定义域,求内层函数的值域,即为f(x)的定义域。

例2. 若已知f(x+2)的定义域为[-2,2],求函数f(x)的定义域. 解:∵f(x+2)的定义域为[-2,2], ∴-2≤x ≤2, ∴ 0≤x+2≤4 故f(x)的定义域为[0,4]3. 已知f[ (x)]的定义域,求f[g(x)]的定义域先由f[ (x)]的定义域,求f(x)的定义域,再由f(x)的定义域,求f[g(x)]的定义域。

即由第一个函数中内层函数的定义域,求得第一个函数内层函数的值域,第一个函数内层函数的值域就是第二个函数内层函数的值域,由第∈21+x21+x x1x 1x121()⎪⎭⎫⎢⎣⎡+∞⋃-∞-,211,∈ϕϕ二个函数内层函数的值域,再求出第二个函数内层函数的定义域。

例3.若已知f(x+1)的定义域为,求函数f ()的定义域. 解:∵f(x+1)的定义域为, ∴-2≤x 3, ∴ -1≤x+1 4 即f(x)的定义域为.∴ -1≤<4,∴ -3≤<2 即 -3≤<0 或 0<<2 解得 X ≤-或 x> ∴函数的定义域为:3. 已知f(x)的定义域,求f[ (x)] + f[g(x)]的定义域若已知f(x)的定义域x (a,b),求f[g(x)]+f[g(x)]的定义域,其方法是:由,求得x 的范围,即为f[ (x)] + f[g(x)]的定义域。

函数的对应法则 抽象函数的 表达式

函数的对应法则 抽象函数的    表达式

函数的对应法则
1、待定系数法:在已知函数解析式的构造时,可用待定系数法。

例1设是一次函数,且,求
二、配凑法:已知复合函数的表达式,求的解析式,的表达式容易配成的运算形式时,常用配凑法。

但要注意所求函数的定义域不是原复合函数的定义域,而是的值域。

例2已知,求的解析式
三、换元法:已知复合函数的表达式时,还可以用换元法求的解析式。

与配凑法一样,要注意所换元的定义域的变化。

例3已知,求
四、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。

例5设求
五、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。

已知:,对于任意实数x、y,等式恒成立,求
二,练习题
1、已知函数f(x)是一次函数,且满足关系式3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式。

2、求一个一次函数f(x),使得f{f[f(x)]}=8x+7
3、设二次函数f(x)满足f(x-2)=f(-x-2),且在y轴上的截距为1,在x轴截得的线段长为
,求f(x)的解析式
4、
5、
6、已知f(x)为二次函数, f(x-1)= -4x,解方程f(x+1)=0 8、若,且,
求值.
.
10、已知f(x+)=x3+,求f(x)的解析式。

11、已知
,求;
14、已知满足,求.。

例析求解抽象函数问题的几种途径

例析求解抽象函数问题的几种途径

解题宝典抽象函数问题对同学们的抽象思维能力和分析能力有较高的要求.抽象函数问题中往往不会给出具体的函数解析式,要求我们根据已知条件求函数的单调区间、最值、定义域,解函数不等式.下面结合实例,谈一谈解答抽象函数问题的几种途径.一、利用函数的单调性对于一些有关抽象函数的值域、单调区间、函数不等式、单调性问题,通常需根据函数单调性的定义判断出函数的单调性,进一步利用函数的单调性解题.在利用函数的单调性解题时,往往要先根据题意确定函数的定义域,判断抽象函数的单调性和单调区间,再根据函数的单调性建立关系式.例1.函数f()x是定义在R上的奇函数,且满足以下两个条件:①对任意x、y∈R,都有f()x+y=f()x+f()y;②当x>0时,f()x<0,且f()1=-2.则函数f()x在区间[]-3,3上的值域为_____.解:设x1,x2∈[]-3,3,且x1>x2,则f()x1-f()x2=f()x1+f()-x2=f()x1-x2<0,所以f()x1<f()x2,则函数f()x在区间[]-3,3上是减函数,所以f()x max=f()-3=-f()3=-f()1+2=-f()1-f()1+1=-3f()1=6,f()x min=f()3=-f()-3=-6,即函数f()x在区间[]-3,3上的值域为[]-6,6.我们根据函数单调性的定义,先令x1,x2∈[]-3,3,x1>x2;然后将f()x1-f()x2,判断出差式的符号,即可判断出函数的单调性;再根据函数在[]-3,3上的单调性确定函数的最值点,即可解题.对于闭区间上的函数最值问题,通常要重点关注区间端点值,由函数的单调性可知函数的最值往往在区间端点处取得.例2.已知函数f()x对于任意正数a,b都有f()ab=f()a⋅f()b,且f()0=1,当x>1时,f()x>1,若f()x⋅f()5-x>1,求x的取值范围.解:令x1,x2∈()0,+∞,x1<x2,则f()x2f()x1=f()x2x1⋅x1f()x1=f()x2x1f()x1f()x1=f()x2x1,因为x2x1>1,所以f()x2f()x1=f()x2x1>1,f()x2>f()x1,可知函数f()x在()0,+∞上单调递增,因为f()ab=f()a f()b,所以不等式f()x f()5-x>1等价于f()x()5-x>f()0,可得x()5-x>0,解得0<x<5,故x的取值范围为()0,5.首先将f()x1、f()x2作商,即可根据函数单调性的定义判断出抽象函数在()0,+∞上的单调性;然后利用函数的单调性去掉f()x()5-x>f()0中函数符号“f”,将不等式转化为常规不等式,即可通过解不等式求得问题的答案.解函数不等式,通常要将不等式中的自变量转化到同一单调区间内,才能根据函数的单调性将问题转化为常规不等式问题.二、换元对于含有复杂式子、复合函数的抽象函数问题,往39往要采用换元法求解.即将复杂的式子、复合函数中的某一部分式子用一个新元替换,即可将函数简化,根据函数的性质、定义域求得问题的答案.例3.已知函数y =f ()2x 的定义域为[]-1,1,求函数y =f ()x +3的定义域.解:由函数y =f ()2x 的定义域为[]-1,1,可知-1≤x ≤1,∴-2≤2x ≤2,设t =2x ,∴y =f ()t 的定义域为[]-2,2,令t =x +3,可得-2≤x +3≤2,解得-5≤x ≤-1,∴函数y =f ()x +3的定义域为[]-5,-1.函数y =f ()2x 、y =f ()x +3均为复合函数,而y =f ()2x 中的2x ,y =f ()x +3中的x +3均与y =f ()x 中的x 的意义相同,于是令t =x +3,并将t 替换2x ,通过等量代换,求得函数y =f ()x +3的定义域.三、数形结合数形结合法是解答函数问题的重要思想方法.在解答抽象函数问题时,我们可以先根据已知条件确定抽象函数的周期性、单调性、奇偶性、对称性;然后画出相应的函数图象,以明确函数图象的变化趋势,尤其要关注函数的最高点、最低点、单调区间、对称轴、对称中心、周期;再建立新的关系式,即可求得问题的答案.例4.已知f ()x 在R 上是奇函数,在区间[]0,2上单调递增,且f ()x -4=-f ()x .若方程f ()x =m ()m >0在区间[]-8,8上有四个不相等的根x 1、x 2、x 3、x 4,求x 1+x 2+x 3+x 4的值.图1解:∵f ()x 在R 上是奇函数且满足f ()x -4=-f ()x ,∴f ()x -4=f ()-x ,f ()4-x =f ()x ,∴函数的对称轴为直线x =±2,且f ()0=0,∵f ()x -4=-f ()x ,∴f ()x -8=f ()x ,∴函数的周期为8,∵函数f ()x 在区间[]0,2上单调递增,∴函数f ()x 在区间[]-2,2上单调递增,令x 1<x 2<x 3<x 4,根据图象的对称性可知x 1+x 2=-12,x 3+x 4=4,∴x 1+x 2+x 3+x 4=-12+4=-8.解答本题,需先根据已知条件确定函数的对称轴、周期以及单调性;然后画出f ()x 的大致图象,即可通过研究图象的变化情况,确定f ()x 与函数y =m 在区间[]-8,8上的4个交点的位置;再结合图象的对称性,求出x 1+x 2+x 3+x 4的值.例5.设函数f ()x 满足f ()2+x =f ()2-x ,f ()x 在[)2,+∞上是减函数,若f ()3x -1>f ()x +3,则x 的取值范围是_________.解:由题意知f ()x 的图象关于直线x =2对称,∵f ()x 在[)2,+∞上是减函数,∴f ()x 在()-∞,2上是增函数,其图象如图2所示.图2∵f ()3x -1>f ()x +3,可知点()3x -1,0到点()2,0的距离比点()x +3,0到点()2,0的距离小,∴||()3x -1-2<||()x +3-2,将不等式两边的式子平方并化简得:2x 2-5x -2<0,解得:12<x <2,∴x 的取值范围为()12,2.首先根据已知关系式确定函数的对称轴x =2和函数的单调性,即可画出函数的图象;然后结合图象,比较出点()3x -1,0和点()x +3,0到点()2,0的距离的大小关系,进而得到新不等式,通过解不等式得到x 的取值范围.解答抽象函数的问题方法很多,同学们只需根据已知条件和解题需求,进行赋值、换元、画图,灵活运用函数的性质,选择合适的方法,即可快速获得问题的答案.(作者单位:安徽省临泉第一中学)解题宝典40。

高中数学中抽象函数地解法及练习

高中数学中抽象函数地解法及练习

抽象函数问题有关解法由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高+解题能力,优化学生数学思维素质。

现将常见解法及意义总结如下:一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。

例1:已知()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u uf u u u-=+=--∴2()1xf x x-=- 2.凑配法:在已知(())()f g x h x =的条件下,把()h x 拼凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。

例2:已知3311()f x x x x+=+,求()f x解:∵22211111()()(1)()(()3)f x x x x x x x x x x+=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。

例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。

抽象函数问题求解的几种常用求法

抽象函数问题求解的几种常用求法

抽象函数问题求解的几种常用求法抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数。

如函数的定义域、解析递推式、特定点的函数值、特定的运算性质等。

它是高中数学函数部分的难点,由于抽象函数没有具体的解析式作为载体,因此理解起来比较困难,那么怎样求解抽象函数问题呢?以下介绍几种解抽象函数问题的方法。

一. 特殊化方法1. 在求函数解析式或研究函数性质时,一般用“代换”的方法,如将x 换成x -或将x 换成1x 等。

2. 在求函数值时,可用特殊值(如0或1或-1)“代入” 例1.已知()f x 满足()123363f x f x x ⎛⎫+=⎪⎝⎭,求()f x 的解析式。

解:先令3u x =,解出3u x =,于是有:()1232f u f u u ⎛⎫+= ⎪⎝⎭-----------①再以1u代替u 得:()1223f f u u u ⎛⎫+=⎪⎝⎭------------②联立①、②式解方程组,并消去1f u ⎛⎫⎪⎝⎭,解得()6455u f u u=-即所求解析式为:()6455x f x x=-例2. 若对一切自然数a 、b 都有()()()f a b f a f b ab +=++且()11f =,求()f x 的解析式。

解:利用特殊值法 令1a =,等式变为:()()()()111f b f f b b f b b+=++=++,即:()()11f b f b b +-=+,注意到上式是一个关于自然数b 的递推关系式,令1b =, 有()()2111f f -=+2b =,有()()3221f f -=+1b n =-,有()()()111f n f n n --=-+将以上1n -条等式左右两边分别相加,得:()()()()1123111f n f n n -=++++-+⨯-即:()()()1123111f n n n =+++++-+⨯-()11232n n n -=++++=即所求解析式为:()()12x x f x -=二. 函数性质法函数的特征是通过其性质(如奇偶性、单调性、周期性、对称性、特殊点等)反应出来的,抽象函数也是如此。

抽象函数解析式的几种常用求法

抽象函数解析式的几种常用求法

f ( x + 1) + f ( x - 1) = 2ax 2 + 2bx + 2( a +
c) = 2x2 - 4x
2a = 2 2b = - 4 , 解为 2( a + c) = 0
a= 1 b=- 2 c=- 1
故 f ( x ) = x2 - 2x - 1
评注: 先设出函数解析式, 然后根据题设 条
这种方法即为换元法。
例 3: 若 f
x+ 1 = x
x2 + x2
1+
1, 求 f ( x )。 x
解: 利用换元法
设x
+ x
1
=
u, 则 x =
1 u-
1,
u
X
1
则 f(u)
=f
x+ x
1
=
x2 + x2
1+
1 x
=
1+
1 x2
+
1 x
=
1+
(u -
1)2 +
(u -
1)
=
u2 - u + 1
f( x ) = x 2 - x + 1( x X 1)
77
时, 要注意自变量的取值范围的变化情况, 否 则 就得不到正确的表达式。
三、待定系数法
一般地, 若已 知 f ( x ) 的 解析 式类 型, 则 可
根据所掌握函数知识, 先写出 f ( x ) 一般表达 式
(式中含有未确定的若干系 数 ), 然 后利用题 目
中的已知 条件确定出相 关系数, 从而求得 f ( x )
-

求抽象函数表达式常见五种方法

求抽象函数表达式常见五种方法

求抽象函数表达式常见五种方法1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。

例1:已知()211x f x x =++,求()f x .2.凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。

例2:已知3311()f x x x x +=+,求()f x3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。

例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x例5.一已知()f x 为偶函数,()g x 为奇函数,且有()f x +1()1g x x =-, 求()f x ,()g x .5.赋值法:给自变量取特殊值,从而发现规律,求出()f x 的表达式例6:设()f x 的定义域为自然数集,且满足条件(1)()()f x f x f y xy +=++,及(1)f =1,求()f x参考答案:例1:解:设1x u x =+,则1u x u =-∴2()2111u u f u u u-=+=--∴2()1x f x x -=- 例2:解:∵22211111()()(1)()(()3)f x x x x x x x x x x+=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)例3.解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a a b c b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 例4.解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求抽象函数表达式常见五种方法
1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法
解培养学生的灵活性及变形能力。

例1:已知 ()211
x f x x =++,求()f x .
2.凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。

例2:已知3311()f x x x x +=+,求()f x
3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。

例3. 已知
()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x
4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.
例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x
例5.一已知()f x 为偶函数,()g x 为奇函数,且有()f x +1()1
g x x =-, 求()f x ,()g x .
5.赋值法:给自变量取特殊值,从而发现规律,求出()f x 的表达式
例6:设()f x 的定义域为自然数集,且满足条件(1)()()f x f x f y xy +=++,及(1)f =1,求()f x
参考答案:
例1:解:设1x u x =+,则1u x u =-∴2()2111u u
f u u u -=+=--∴2()1x
f x x -=-
例2:解:∵2221
1111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11
||||1||x x x x +=+≥
∴23()(3)3f x x x x x =-=-,(|x |≥1)
例3.解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c
++-=+++++-+-+ =22222()24ax bx a c x x +++=++比较系数得2()4
1321,1,22
22a c a a b c b +=⎧⎪=⇒===⎨⎪=⎩∴
21
3
()22f x x x =++
例4.解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。

∵-x >0,∴()lg(1)lg(1)f x x x -=-+=-,
∵()f x 为奇函数,∴lg(1)()()x f x f x -=-=-∴当x <0时()lg(1)f x x =--∴lg(1),0()lg(1),0
x x f x x x +≥⎧=⎨--<⎩
例5.解:∵()f x 为偶函数,()g x 为奇函数,∴()()f x f x -=,()()g x g x -=-,
不妨用-x 代换()f x +()g x =11x - ………①中的x , ∴1
()()1f x g x x -+-=--即()f x -1
()1g x x =-+……②
显见①+②即可消去()g x ,求出函数21()1f x x =-再代入①求出2()1x
g x x =-
例6:解:∵()f x 的定义域为N ,取y =1,则有(1)()1f x f x x +=++
∵(1)f =1,∴(2)f =(1)f +2,(3)(2)3f f =+……()(1)f n f n n =-+
以上各式相加,有()f n =1+2+3+……+n =(1)2n n +∴1()(1),2f x x x x N =+∈。

相关文档
最新文档