SCR脱硝催化剂介绍
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SCR脱硝催化剂介绍
1.催化剂的化学组成
商业SCR催化剂活性组分为VO,载体为锐钛矿型的TiO,WO3252或MoO作助催剂。SCR催化剂成分及比例,根据烟气中成分含量以及3脱硝性能保证值的不同而不同。表2-2列出了典型催化剂的成分及比例。
表2-2 典型催化剂的成分及比例
)1 活性组分是多元催化剂的主体,是必备的组分,没有它就缺乏所需的催化作用。助催化剂本身没有活性或活性很小,但却能显著地改善催化剂性能。研究发现WO与MoO均可提高催化剂的热稳定性,并
33能改善VO与TiO之间的电子作用,提高催化剂的活性、选择性和机225械强度。除此以外,MoO还可以增强催化剂的抗AsO 中毒能力。323.
载体主要起到支撑、分散、稳定催化活性物质的作用,同时TiO2本
身也有微弱的催化能力。选用锐钛矿型的TiO作为SCR催化剂的载
2体,与其他氧化物(如AlO、ZrO)载体相比,TiO抑制SO氧化的能22322力强,能很好的分散表面的钒物种和TiO的半导体本质。22.对SCR催化剂的要求
理想的燃煤烟气脱硝催化剂需要满足以下条件:
(1) 活性高为满足国家严格的排放标准,需要达到80%~90%的脱硝率,即要求催化剂有很高的SCR活性;
(2) 选择性强还原剂NH主要是被NO氧化成N和HO,而不是2x23被O氧化。催化剂的高选择性有助于提高还原剂的利用率,降低运行
2成本;
(3) 机械性能好燃煤电厂大多采用高灰布置方式,SCR催化剂需
长期受大气流和粉尘的冲刷磨损,并且安装过程对催化剂的机械强度
也有一定的要求;
(4) 抗毒性强烟气和飞灰中含有较多的毒物,催化剂需要耐毒物
的长期侵蚀,长久保持理想的活性;
(5) 其他 SCR催化剂对SO的氧化率低,良好的化学、机械和热2
稳定性,较大的比表面积和良好的孔结构,压降低、价格低、寿命长。
此外,还要求SCR催化剂结构简单、占地省、易于拆卸或装填。
3.催化剂类型
电厂烟气脱硝催化剂的主要类型有蜂窝式、板式和波纹式,结构所示。
蜂窝式催化剂表面积大、活性高、体积小,目前占2-23如图
80%的市场份额,平板式催化剂比例其次,波纹板最少。据了
波纹式板式蜂窝式催化剂结
构图2-23
列出了蜂窝式与板式、波纹式催化剂主要性能对比。表2-3催化剂
的性能比较不同类型SCR表2-3 波纹式催化波纹状纤维作成分表面积介
于蜂窝催化剂表面积小、活性比表面积大、式与平板式之间,质体积大;生产简便,高、所需催化剂体积量轻;生产自动化程自动化程度高;烟气小;催化活性
物质比度高;活性物质比蜂通过性好,但上下模特点~50其他类型多烟气流窝式少70%;块间易堵塞;实际活催化剂再生后仍;70%动性很敏感;上下模性物质比蜂窝式少保持选择性 50%
块之间易堵塞不锈钢金属板玻璃纤维板整体挤压基材高低中催化剂活
性
SO氧化率高高低2低中压力损失高抗中毒性高低低(As)
堵塞可能中中低性轻重中模块质量中中耐热性中
也高尘及低尘均适高尘及低尘均适主要用于低尘,适用范围用用用于高尘4.催化剂的失活
催化剂的失活可分为物理失活和化学失活。典型的SCR催化剂化学失活主要是碱金属、碱土金属和As等引起的催化剂中毒,物理失活主要是指高温烧结、磨损和堵塞而引起的催化剂活性破坏。
(1) 催化剂的烧结以钛基催化剂为例,长时间暴露在450℃以上的高温环境中,可引起催化剂活性表面的烧结,微晶聚集,导致催化剂颗粒增大、表面积减小,使催化剂活性降低,如图2-24所示。
图2-24 催化剂的烧结
在钛基钒类商用催化剂配方中加入钨会最大限度地减少催化剂的烧结,不同钨含量所允许的最高运行温度是不同的,SCR反应器在正常运行温度工作时,烧结现象可以忽略。因此,SCR反应器的运行温度必须严格遵守厂家的指导要求。
(2) 烟气中飞灰(烟尘) 在所有导致SCR催化剂失活的因素当中,积灰是最复杂、影响最大的一个。如果催化剂的微孔被烟尘颗粒堵塞,
则催化剂表面活性位逐渐丧失,导致催化剂失活。有分析得出:催化剂表面沉积的飞灰主要是一些粒径小于5μm的颗粒,与烟气中的飞灰相比,硫酸盐化的颗粒数目明显增加,As和Na等元素更容易在小颗粒上富集,进而对催化剂造成严重毒害。
为减少飞灰对催化剂的影响,可采取以下措施:①在SCR工艺中,设置预除尘装置以及在省煤器出口设置大截面灰斗和除灰格栅;②合理吹灰,降低飞灰在催化剂表面的沉积;③合适的烟气均布措施;④选择合适的催化剂类型及性能参数。如防止蜂窝状催化剂堵塞应选用合适的催化剂节距和蜂窝尺寸;⑤选择合适的催化剂量,增加催化剂的体积和表面积;⑥通过适当的制备工艺,增加催化剂表面的光滑度,减缓飞灰在催化剂表面的沉积。
(3) 烟尘中碱金属、碱土金属、As 飞灰中含有一定的碱金属(一般指K、Na),其含量一般比Ca、Mg少得多。碱金属可以直接与催化剂的活性位反应导致活性位丧失,主要是造成催化剂中V—OH的氢键被替换,催化剂的酸性下降,从而使催化剂失活。碱金属与活性位的.
结合程度相对不是很大,但如果在有冷凝水存在的情况下,催化剂的失活性可能会成倍增加,因为这时它们更易于流动并渗入到催化剂材料的内部。对于蜂窝式催化剂来说,由于碱金属离子的移动性可以被整体式载体材料所稀释,能够将失活速率降低,使用寿命也就更长。SCR脱硝反应主要发生在催化剂的外表面,因此,催化剂失活的程度取决于可以到达催化剂活性位的飞灰上所含有的碱金属的浓度。为了
避免催化剂的碱金属中毒,催化剂应该尽量避免潮湿环境,并且应使用蜂窝状催化剂以减少碱金属的影响。
对于SCR脱硝系统,如果燃煤中CaO过高,催化剂活性将被削弱。我国煤中CaO含量相对较高,如电厂广泛使用的神华煤灰分为9%~24%,而灰中CaO含量质量分数为13%~30%。一般认为,CaO的碱性使催化剂酸性下降,但并不会造成催化剂活性的大幅下降。催化剂性能下降的主要原因是飞灰中的CaO与SO反应,在催化剂表面形成一3层CaSO,并覆盖住催化剂的活性位,阻止反应物扩散进入催化剂进4行脱硝反应。相对于板式催化剂来讲,蜂窝式催化剂受CaO的影响较小,抗CaO中毒能力更强。
砷是大多数煤种中都存在的成分,SCR催化剂的砷中毒是由气态砷的化合物不断积聚,堵塞进入催化剂活性位的通道造成的。烟气中气态砷的主要形态为AsO,主要沉积并堵塞催化剂的中孔,即孔径32在0.1μm到1μm之间的孔。无论是应用哪一种炉型,催化剂都会出现明显的砷中毒现象。当烟气中存在大量的CaO时,AsO会和CaO32及烟气中的O发生反应,生成Ca(AsO),Ca(AsO)是一种热稳定性2432432.
非常高的化合物,并且不会导致催化剂失活,所以当CaO和AsO同
32时存在时,两种物质对于催化剂的影响会被大大削弱,但通常情况下,燃煤锅炉排放的AsO浓度会远远高于CaO。通过改变催化剂的微孔结32构和微孔分布可以有效地预防砷中毒,这一措施已经被许多催化剂生产商采用。
(4) 烟气中SO 燃烧过程中将产生SO。在催化剂中增加氧化33钒