现代优化算法简介31页PPT
现代优化计算方法课件
20
图的蚁群系统(GBAS) 6/12
可以验证,下式满足:
ij (k) 1,k 0
(i, j)A
即 (k) 是一个随机矩阵。 四个城市的非对称TSP问题,距离矩阵和城市图示如下:
0 1 0.5 1
D
(dij
)
1
1.5
0 5
1 0
1
1
1 1 1 0
蚁群算法
起源 应用领域 研究背景 基本原理
1
蚁群优化算法起源
蚁群算法最开始的提出是在90年代有人受了蚂蚁觅食时的 通讯机制的启发用来解决计算机算法学中经典的“旅行商 问题(Traveling Salesman Problem, TSP)”。 TSP问题属于易于描述但难于解决的著名难题之一,至今 世界上还有不少人在研究它。该问题的基本描述是:某售 货员要到若干个村庄售货,各村庄之间的路程是已知的, 为了提高效率,售货员决定从所在商店出发,到每个村庄 都售货一次后再返回商店,问他应选择一条什么路线才能 使所走的总路程最短? 其实有很多实际问题可归结为TSP问 题。
城市间的距离矩阵为 (d ij ) nn ,给TSP图中的每
一条弧 (i, j)
赋信息素初值 ij (0)
1 | A|
,假设m
只蚂蚁在工作,所有蚂蚁都从同一城市i0 出发。当前最 好解是 w (1,2,, n) 。
16
初始的蚁群优化算法—基于图的蚁群系 统(GBAS) 2/12
STEP 1 (外循环)如果满足算法的停止规则,则停止计算并输
若按以上规则继续,蚁群在ABD路线上再增派一只蚂蚁(共3只),而 ACD路线上仍然为一只蚂蚁。再经过36个时间单位后,两条线路上的信息素 单位积累为24和6,比值为4:1。
现代优化方法
2021/7/1
7
人工神经网络:概念的提出
智能的概念的八个方面
2021/7/1
8
人工神经网络:概念的提出
人工智能:研究如何使类似计算机这样的设备去模 拟人类的这些能力。
研究人工智能的目的
◦ 增加人类探索世界,推动社会前进的能力 ◦ 进一步认识自己
牵涉到的学科广泛
◦ 生物进化、人工智能、数学和物理、神经系统和统计力学 等。
◦ 这些算法和人工智能、计算机科学和运筹学相融合。
202与传统算法的局限 旅行商问题: 一个商人欲到n个城市推销商品,每两个城市i和j之
间的距离为dij,如何选择一条道路使得商人每个城 市走一遍后回到起点且所走路径最短。
◦ 对称距离 ◦ 非对称距离
2021/7/1
4
概述
采用枚举法来解决非对称旅行商问题
假定有n个城市,共需要(n-1)!次枚举,假定完成25 个城市的总距离的计算及比较需要1秒,则当城市 增加时,需要的时间如下表所示:
城市数 24 25 26 27 28 29
30
31
时间 1s 24s 10m 4.3h 4.9d 136.5d 10.8y 325y
物理符号系统和人工神经网络系统的差别
物理符号系统
处理方式 逻辑运算
执行方式 串行
动作
离散
存储
局部集中
人工神经网络 模拟运算 并行 连续 全局分布
2021/7/1
11
人工神经网络:概念的提出
两种人工智能技术的比较
传统的AI技术
基本实现 串行处理;由程序实
方式
现代优化方法
动态规划问题的求解方法
逆向求解
从最后阶段开始,依次求出每 个阶段的最优解,最终得到初
始阶段的最优解。
正向求解
从初始阶段开始,逐步向前推导 出每个阶段的最优解。
分支定界法
将问题分解为若干个子问题,通过 设定参数和约束条件,将问题的求 解范围缩小到最优解所在的子问题 集合中。
动态规划的应用
最短路径问题
03
由确定型优化向不确 定型优化发展
考虑随机因素和不确定性因素的影响 ,进行概率优化或鲁棒优化。
THANK态规划算法求解最短路径问题,例如 Floyd-Warshall算法、Dijkstra算法等。
通过动态规划算法求解网络流中的最大流和 最小费用流问题。
背包问题
排程问题
通过动态规划算法求解多阶段决策过程中的 最优解,例如0/1背包问题、完全背包问题 等。
通过动态规划算法求解资源分配和任务调度 问题,例如作业排程、飞机调度等。
05
遗传算法优化方法
遗传算法的基本原理
遗传算法是一种基于生物进化理论的优化算法,通过模拟自 然选择、遗传和突变过程来寻求最优解。
遗传算法的基本原理是:在群体中选择出优秀的个体,通过 交叉、变异等操作产生更优秀的后代,迭代进化,最终得到 最优解。
遗传算法的求解过程
初始化种群
随机生成一定数量的个体作为初始种群。
2023
现代优化方法
contents
目录
• 优化方法概述 • 线性规划优化方法 • 非线性规划优化方法 • 动态规划优化方法 • 遗传算法优化方法 • 模拟退火算法优化方法 • 粒子群优化方法 • 现代优化方法比较分析
01
优化方法概述
定义与特点
定义
现代优化算法
正交试验法
正交表的形式为( … ),简记为(),其中为试验数,为因素数, 为水平数。正交设计法能够确保决策变量具有最佳的散布性和代表性, 因此获得的最佳水平应该具有相当高的满意度。
实际上,正交试验法获得的最佳结果优于总体试验结果的(),劣于总 体试验结果的(),具有良好的全局最优性。该算法的另外一个最大优 势在于简单易学,一般文化水平的人(比如初中以上)经过几天时间 就可以掌握,因此该算法具有极其广泛的使用范围。其难点在于特定 正交表的构造,人们正深入研究各种特殊正交表的构造方法。
4
优化算法简介——局部优化、全局 优化
有文献将神经网络也列入现代优化算法的范畴,从全局优化的角度看, 这并不适宜,因为神经网络的优化算法本质上是局部优化算法和全局 优化算法的综合应用。
局部优化算法主要用于解决凸问题或单峰问题,通常使用确定性搜索 策略,比如单纯形法、梯度下降法、爬山法、贪心法等,其基本思想 是在状态转移过程中,只接受更好的状态,拒绝恶化的状态。
5
优化算法简介——二者需要结合
局部优化算法由于易于陷入局部极优解而无法用于解决多峰问题;同 时,全局性优化算法采用适当的状态转移规则和概率性状态接受规则, 能够避免过早地陷入局部极优解从而搜索到全局性最优解。
通常,局部优化算法能够快速地收敛到局部极优解,而全局性优化算 法通过概率搜索可以获得在概率意义上尽可能好的全局性最优解区域, 但是其局部极优点搜索能力较低。这是全局搜索算法和局部搜索算法 之间的固有矛盾。对此人们进行了多种研究。基本解决方法在于二者 的结合,即利用全局性优化算法在整个可行域中搜索最优区域,利用 局部搜索算法搜索最优区域中的最优解。
习惯上,将优化算法分为两类:局部优化算法和全局性优化算法。前 者可以称为经典优化算法,已经得到了人们广泛深入的研究。目前, 运筹学(确定论方法)主要包括这些方面的内容,线性规划、整数规 划、–规划、非线性规划、排队论、决策论。后者习惯上称为现代优 化算法,是世纪年代兴起的新型全局性优化算法,主要包括禁忌搜索、 模拟退火、遗传算法等,其主要应用对象是优化问题中的难解问题, 即–问题
现代优化计算方法
决策变量
t = 1,",T
(1.12)
xit=1表示第t时段加工产品i 、T:时段数
组合优化问题的表示形式
• 组合优化问题通常可以用整数规划模型 的形式表示,如例1.1.1和1.1.2
• 有些组合优化问题用IP模型表示则比较 复杂且不易被理解,不如对问题采用直 接叙述更易理解,如例1.1.2,1.1.4和1.1.5
例1.1.2的非对称距离TSP问题耗时
• 可以用另一个方法来表示它的可行解: 用n个城市的—个排列表示商人按这个排 列序推销并返回起点
• 若固定一个城市为起终点,则需要 (n—1)!个枚举
• 设计算机1秒可以完成24个城市所有路径 枚举为单位
枚举时城市数与计算时间的关系
城市数 24 25 26 27 28 29 30 31 计算时间 1s 24 s 10m 4.3h 4.9d 136d 10a 325a
max cT x
s.t.Ax = b
x ≥ 0, x ∈ Z n
c为n维列向量,A为m×n矩阵、b为m 维列向量,x 为n维决策变量,Zn表示n 维整数向量的集合 系数A、b和c的元素都是整数
• 例1.1.2和1.1.3的数学模型都具有(IP) 的形式 •一些组合优化问题可以写成整数线 性规划问题 •IP与LP形式非常相似,不同之处是 前者的决策变量部分或全部取整数
(1.5) (1.6)
(1.7) (1.8)
共n×(n-1)个决策变量 D={0,1}n× (n-1)
一条回路是由k(1≤k ≤ n)个城市和k条弧 组成,因此,(1.7)约束旅行者在任何一 个城市真子集中不形成回路,其中|S|表 示集合S中元素个数
例1.1.3 整数线性规划 (integer linear programming)
现代优化算法--课件
数学建模竞赛常用算法(2) 数学建模竞赛常用算法(2)
2. 数据拟合、参数估计、插值等数据处理算法
比赛中通常会遇到大量的数据需要处理,而处理数 据的关键就在于这些算法,通常使用MATLAB 作为工 具。与图形处理有关的问题很多与拟合有关系。 98 年美国赛 题 生物组织切片的三维插值处理 年美国赛A 94 年A 题逢山开路 山体海拔高度的插值计算 此类问题在MATLAB中有很多函数可以调用,只有熟 悉MATLAB,这些方法才能用好。
现代优化算法
许志军 xuzhijun1998@ 2010-8-1
目录
Part 1 概论 Part 2 模拟退火算法 Part 3 遗传算法
2
Part 1
概论
主要是说明现代优化算 法的重要性。 法的重要性模拟退火算法 遗传算法 人工神经网络 蚁群算法 粒子群算法 混合算法
15
数学建模竞赛常用算法(5) 数学建模竞赛常用算法(5)
5. 计算机算法设计中的问题
计算机算法设计包括很多内容:动态规划、回溯搜 动态规划、 动态规划 分治算法、分枝定界等计算机算法. 索、分治算法、分枝定界 92 年B 题用分枝定界法 97 年B 题是典型的动态规划问题 98 年B 题体现了分治算法 这方面问题和ACM 程序设计竞赛中的问题类似, 可看一下与计算机算法有关的书。
19
数学建模竞赛常用算法(9) 数学建模竞赛常用算法(9)
9. 数值分析方法
数值分析研究各种求解数学问题的数值计算方法 求解数学问题的数值计算方法, 求解数学问题的数值计算方法 特别是适合于计算机实现方法与算法。 它的主要内容包括函数的数值逼近、数值微分与数 函数的数值逼近、 函数的数值逼近 值积分、非线性方程的数值解法、数值代数、 值积分、非线性方程的数值解法、数值代数、常微分方 程数值解等。数值分析是计算数学的一个重要分支,把 程数值解 理论与计算紧密结合,是现代科学计算的基础 。 MATLAB等数学软件中已经有很多数值分析的函 数可以直接调用。
现代优化方法综述(SA,GA,AC)_PPT课件
复制后交
初始群体
实际计数
交叉位置
பைடு நூலகம்
串编号
(随机生 成 n=4)
X 值(无符 适应度函 选择概率 号整数) 数 f(x)=x2 Ps=fi/∑f
适应度期 望值 fi/f
(来自赌 轮)
配率(竖 线表示交
叉处)
配对(随 机选择)
(随机选 择)
新一代群 体
X值
1 01101 13
169 0.14 0.58
1 0110|1 2
平均适应度(f=∑fi/n) 最大适应度
293 0.25 1.00 1.0 576 0.49 1.97 2.0
f(x)=x2
144 625 729 256 1754 439 729
SGA的特点
采用赌轮选择方法 随机配对 采用一点交叉并生成两个子个体 群体内允许相同的个体存在
问题
5个关键环节及参数设定 TSP问题的遗传算法求解
一是透过问题背景告诉了我们什么已知信息; 二是要求我们做什么,解决什么问题。
然后紧密联系上面两个问题,实现两个量化:
一是对已知条件的符号化和量化; 二是对需解决问题的转化和量化。
最后,再联系自己对数学知识的把握、对数学建模方法 的领悟,借助一系列数学工具(方程、函数、矩阵、向 量等)把量化后的符号(变量)沟通起来建立数学模型。
4 01100 12
2 11000 24
576 0.49 1.97
2 1100|0 1
4 11001 25
3 01000 8
64 0.06 0.22
0 11|000 4
2 11011 27
4 10011 19
361 0.31 1.23
现代优化计算方法ppt课件-PPT精品文档
D { 0 , 1 }
n ( n 1 )
1.1 组合优化问题
例4 装箱问题(bin packing) 尺寸为1的箱子有若干个,怎样用最少的 箱子装下n个尺寸不超过1 的物品,物品 {a 集合为: 1, a 2,...a n} 。
1.1 组合优化问题
数 学 模 型 : m in B s .t . x i b 1 , i 1 , 2 ,
b 1 n B
,n,
每个物品都被装箱
装在每个箱子的物品 a i x i b 1 , b 1 , 2 , , B , 总尺寸不能超过箱子 i1 的容量 x ib 0 , 1 , i 1 , 2 , , n ; b 1 , 2 , , B ,
其 中 x ib B :装 下 全 部 物 品 需 要 的 箱 子 , 1, 第 i物 品 装 在 第 b 个 箱 子 , 0 ,第 i 物 品 不 装 在 第 b 个 箱 子 .
1.1 组合优化问题
数学模型: m in
d
i j nij源自x ij , n, , n,
(1 .4 ) 总 路 长 (1 .5 ) 只 从 城 市 i 出 来 一 次 (1 .6 ) 只 走 入 城 市 j 一 次 , n , (1 .7 ) 在 任 意 城 市 子 集 中 不 形 成 回 路 (1 .8 ) 决 策 变 量
1.1 组合优化问题
组合优化(combinatorial optimization):解决 离散问题的优化问题——运筹学分支。通过数学方 法的研究去寻找离散事件的最优编排、分组、次序 或筛选等,可以涉及信息技术、经济管理、工业工 程、交通运输和通信网络等许多方面。
数学模型: minf (x)
目标函数 约束函数 有限点集 ,决策变量
现代优化算法简介课件
线性规划的应用案例
01
02
03
04
$item1_c线性规划的应用案例 包括生产计划、运输问题、资 源分配等。
$item1_c线性规划的应用案例 包括生产计划、运输问题、资 源分配等。
$item1_c线性规划的应用案例 包括生产计划、运输问题、资 源分配等。
线性规划的应用案例包括生产 计划、运输问题、资源分配等 。
3. 判断是否接受候选解:根据目标函数值的改善情况, 判断是否接受候选解作为新的当前解。
4. 更新温度:降低当前温度,以保证算法能够跳出局部 最优解。
5. 终止条件:当满足终止条件(如达到最大迭代次数或 目标函数值满足精度要求)时,输出当前解作为最终结果 。
模拟退火算法的应用案例
95% 85% 75% 50% 45%
优化算法的重要性
优化算法在许多领域都有广泛的应用 ,如生产计划、物流运输、金融投资 等。
VS
在这些领域中,优化算法可以帮助我 们找到最优的解决方案,提高效率和 收益。
课程目标
02
01
03
掌握现代优化算法的基本概念和原理。 了解不同类型优化算法的应用场景和优劣。 能够根据实际问题选择合适的优化算法并实现。
100%
递归法
将问题分解为若干个子问题,然 后分别求解每个子问题,最终得 到整个问题的最优解。
80%
迭代法
从初始解开始,逐步迭代,逐步 逼近最优解。
动态规划的应用案例
最短路径问题
动态规划可以用于求解图中两 个节点之间的最短路径问题, 如Dijkstra算法和Floyd算法等 。
背包问题
动态规划可以用于求解0/1背 包问题、完全背包问题和多约 束背包问题等,如Knapsack 算法等。
现代优化方法
系统在受到局部损伤时还可以正常工作。 并不是说可以任意地对完成学习的网络进行修改。 也正是由于信息的分布存放,对一类网来说,当它 完成学习后,如果再让它学习新的东西,这时就会 破坏原来已学会的东西。
擅长两个方面:
◦ 对大量的数据进行分类,并且只有较少的几种情况; ◦ 必须学习一个复杂的非线性映射。
人 (或其它生物)的神经网络示意图
一个神经元通过晶枝(dendrite)接收到信息后,它 对这些信息进行处理 ,并通过它所控制的触突 (synapse)传给其它神经元。来自 神经元的六个基本特征:
◦ ◦ ◦ ◦ ◦ ◦ 神经元及其联接; 神经元之间的联接强度决定信号传递的强弱; 神经元之间的联接强度是可以随训练改变的; 信号可以是起刺激作用的,也可以是起抑制作用的; 一个神经元接受的信号的累积效果决定该神经元的状态; 每个神经元可以有一个“阈值”。
目前应用:
◦ 人们主要将其用于语音、视觉、知识处理、辅助决策等方 面。 ◦ 在数据压缩、模式匹配、系统建模、模糊控制、求组合优 化问题的最佳解的近似解(不是最佳近似解)等方面也有 较好的应用。。
萌芽期(20世纪40年代) 人工神经网络的研究最早可以追溯到人类开始研究 自己的智能的时期,到1949年止。 1943年,心理学家McCulloch和数学家Pitts建立 起了著名的阈值加权和模型,简称为M-P模型。发 表于数学生物物理学会刊《Bulletin of Mathematical Biophysics》 1949年,心理学家D. O.Hebb提出神经元之间突 触联系是可变的假说——Hebb学习律。
x2 (11 001) y1 (11111) x3 (01111) y2 (01 001) x2 (11 001) y3 (11 000) x4 (01 000) y4 (01 001)
现代优化算法简介PPT课件
混合优化算法
将传统优化算法与启发式 优化算法相结合,以提高 效率和精度。
02
常见优化算法介绍
梯度下降法
总结词
基本、直观、易实现
详细描述
梯度下降法是最基础的优化算法之一,它通过不断沿着函数梯度的反方向进行 搜索,以寻找最小值点。由于其简单直观且易于实现,梯度下降法在许多领域 都有广泛应用。
牛顿法
优化算法的重要性
优化算法是解决复杂问题的关键,能 够提高效率和精度,降低成本和风险 。
随着大数据和人工智能的快速发展, 优化算法在解决实际问题中扮演着越 来越重要的角色。
现代优化算法的发展历程
01
02
03
传统的优化算法
如梯度下降法、牛顿法等, 适用于简单问题。
启发式优化算法
如遗传算法、模拟退火算 法等,适用于复杂问题。
多目标优化问题
总结词
多目标优化问题是指同时追求多个目标函数 的优化问题,如多目标决策、多目标规划等 。
详细描述
多目标优化问题需要同时考虑多个相互冲突 的目标函数,找到一个平衡的解。现代优化 算法如遗传算法、粒子群算法等在多目标优 化问题中广泛应用,能够找到一组非支配解
,满足不同目标的权衡和折衷。
04
指算法在处理大规模数据集时的性能表现。
详细描述
随着数据规模的增大,算法的可扩展性变得越来越重 要。现代优化算法需要能够高效地处理大规模数据集 ,同时保持较高的计算效率和精度。这需要算法设计 时充分考虑计算资源的利用和优化。
算法的理论支撑
总结词
指算法的理论基础和数学证明。
详细描述
现代优化算法需要有坚实的理论基础 和数学证明,以确保其有效性和正确 性。这需要算法设计者具备深厚的数 学功底和理论素养,以确保算法的可 靠性和稳定性。
第二十三章 现代优化算法简介
第二十三章 现代优化算法简介§1 现代优化算法简介现代优化算法是80年代初兴起的启发式算法。
这些算法包括禁忌搜索(tabu search ),模拟退火(simulated annealing ),遗传算法(genetic algorithms ),人工神经网络(neural networks )。
它们主要用于解决大量的实际应用问题。
目前,这些算法在理论和实际应用方面得到了较大的发展。
无论这些算法是怎样产生的,它们有一个共同的目标-求NP-hard 组合优化问题的全局最优解。
虽然有这些目标,但NP-hard 理论限制它们只能以启发式的算法去求解实际问题。
启发式算法包含的算法很多,例如解决复杂优化问题的蚁群算法(Ant Colony Algorithms )。
有些启发式算法是根据实际问题而产生的,如解空间分解、解空间的限制等;另一类算法是集成算法,这些算法是诸多启发式算法的合成。
现代优化算法解决组合优化问题,如TSP (Traveling Salesman Problem )问题,QAP (Quadratic Assignment Problem )问题,JSP (Job-shop Scheduling Problem )问题等效果很好。
本章我们只介绍模拟退火算法,初步介绍一下蚁群算法,其它优化算法可以参看相关的参考资料。
§2 模拟退火算法2.1 算法简介模拟退火算法得益于材料的统计力学的研究成果。
统计力学表明材料中粒子的不同结构对应于粒子的不同能量水平。
在高温条件下,粒子的能量较高,可以自由运动和重新排列。
在低温条件下,粒子能量较低。
如果从高温开始,非常缓慢地降温(这个过程被称为退火),粒子就可以在每个温度下达到热平衡。
当系统完全被冷却时,最终形成处于低能状态的晶体。
如果用粒子的能量定义材料的状态,Metropolis 算法用一个简单的数学模型描述了退火过程。
假设材料在状态i 之下的能量为)(i E ,那么材料在温度T 时从状态i 进入状态j 就遵循如下规律:(1)如果)()(i E j E ≤,接受该状态被转换。
第6章 现代优化算法简介
第6章现代优化算法简介第1节关于算法的基本认识在现代物流的诸多环节,常常涉及到构造模型并需对这些模型进行求解。
构造的模型合适、采用的算法恰当,可以取得事半功倍的效果。
因此,有必要对算法有一个初步的了解。
现代优化算法包括禁忌搜索、模拟退火、遗传算法、神经网络和拉格朗日松弛算法,这些算法涉及生物进化、人工智能、数学和物理科学神经系统和统计力学等概念,都是以一定的直观基础而构造的算法,我们称之为启发式算法。
启发式算法的兴起与计算复杂性理论的形成有密切都关系。
当人们不满足于用常规算法求解复杂问题时,现代优化算法开始体现其作用。
现代优化算法自20世纪80年代兴起以来,至今发展迅速。
6.1.1 组合最优化问题组合最优化是通过对数学方法的研究去寻找离散事件的最优编排、分组、次序或筛选等,是运筹学中一个经典且重要的分支,所研究的问题涉及信息技术、经济管理、工业工程、交通运输、通信网络、选址、配送等诸多领域。
该问题可用数学模型描述为:minf(x)s.t. g(x)≥0,x∈D,其中,f(x)为目标函数,g(x)为约束函数,x为决策变量,D表示有限个点组成的集合。
一个组合最优化问题可用三参数(D,F,f)表示,其中,D表示决策变量的定义域,F表示可行解区域F={x∣x∈D , g(x)≥0},F中的任何一个元素称为该问题的可行解,f表示目标函数。
满足f(x*)=min{f(x) ∣x∈F}的可行解x*称为该问题的最优解。
组合最优化的特点是可行解集合为有限点集。
由直观可知,只要将D中有限个点逐一判别是否满足g(x)的约束和比较目标值得大小,该问题的最优解一定存在和可以得到,因为现实生活中的大量优化问题是从有限个状态中选取最好的,所以大量的实际优化问题是组合最优化问题。
6.1.2 计算复杂性的概念由组合最优化问题的定义可知,每一个组合最优化问题都可以通过枚举的方法求得最优解。
枚举是以时间为代价的。
有的枚举时间可以接受,有的则不可能接受。
现代优化算法
s.t. g(x) 0,xD 其中x1, x2, …, xnΩ(即问题的可行域,代表问题参 数的选择范围),即minf (X),其中XΩ(矢量形 式)。f(x)是决策问题的数学模型,也是决策问题的 目标函数,g(x) 0是决策问题的约束条件,D是决 策问题的定义域(可行域)。问题归结为求极值。 极值点非常多,需要找到全局最小点。 注:求问题的最大和最小是同一个问题,算法完全 一样。
(三)变异:变异首先在群体中随机选择一个个体,对于 选中的个体以一定的概率随机地改变串结构数据中某个串 的值。同生物界一样,GA中变异发生的概率很低,通常取 值在0.001~0.01之间。遗传算法导入变异的目的有两个: 一是使遗传算法具有局部的随机搜索能力。二是使遗传算 法可维持群体的多样性,以预防出现群体未成熟收敛现象。 变异算子的基本内容是对群体中的个体串的某些基因座上 的基因值作变动。就基因字符{0,1}的二进制码串而言,变 异操作就是把某些基因座上的基因值取反,一般来说具有 以下两个步骤:在群体中所有个体的码串范围内随机的确 定基因座;以事先设定的变异概率来对这些基因座的基因 值进行变异。
设群体的大小为n,其中个体i的适应度值为 f i ,则i
Hale Waihona Puke 被选择的概率为pi f i
f
j 1
n
j
显然,概率 pi 反映个体i的适应度在总和中所占的 比例,个体的适应度越大,其被选择的概率就越 高,反之亦然,计算出群体中各个个体的选择概 率后,就可以决定那些个体可以被选出。
(2)最佳个体保存方法(elitise model) 该方法的思想是把群体中适应度最高的个体不进行配对而 直接复制到下一代中,此种选择操作又称复制(copy)。 其定义如下: a* (t ) 为最佳个体。又设 设到时刻t(第t代),群体A(t)中 * * A(t+1)为新一代群体,若A(t+1)中不存在 a (t ) ,则把 a (t ) 作 为A(t+1)中的第n+1个个体(其中,n为群体大小)。 此方法的优点是,进化过程中某一代的最优解可不被交叉 和变异操作所破坏。这也隐含了一种危机,即局部最优个 体的基因会急速增加而使进化有可能限于局部解,也就是 说该方法全局搜索能力差,它更适合单峰性质的搜索空间 搜索,而不是多峰性质的空间搜索。所以此方法都与其他 选择方法结合使用。
现代优化算法
参数〔即初始温度、降温策略、温度终值准那么、Markov链长〕,怎样实现模拟退火算法的并行运
算,怎样进一步改进模拟退火算法等。
这些改进主要包括:选取适宜的初始温度、最优保存策略、与部分搜索相结合、回火退火法等。需 要说明,文献中的部分搜索法本质上仍然是随机搜索,只是仅承受优化解,不承受恶化解。
近些年来,不少学者对于模拟退火算法进展了深化的研究和改进。
包括:讨论模拟退火与传统部分优化算法如单纯形法、Powell方法等的结合[7],研究邻域构
造与选取状态转移随机步长方法以及相应的降温方案,如何采取适宜的退火终止条件等。
16
模拟退火算法 Markov链长
计算 冷却进度表
根本算法〔PASCAL伪码〕:
Procedure SIMULATED ANNEALING;
禁忌,就是制止重复前面的工作。为了回避部分邻域搜索陷入部分最优的主要缺乏,采用一个禁忌 表记录已经到达过的部分最优点,在下一次搜索中,利用禁忌表中的信息不再或者有选择地搜索这 些点,以此来跳出部分最优点。
Tabu算法由几个根本要素的组合:邻域,Tabu表及评价函数。邻域与一般优化技术中的定义一致; Tabu表是一个或数个数据序列,是对先前的数步搜索所作的记录,记录的方式有很多,记录的长度 也是可变的,选取的好坏直接影响算法的效率;评价函数通常就是问题的目的函数或它的某种变换 形式,用于对一个挪动作出评价。由Tabu表和评价函数可以构造一种Tabu条件,假设新点满足 Tabu条件那么承受,否那么回绝,直至迭代终止。
模拟退火算法〔simulated annealing algorithm, SAA〕是一种重要的全局性启发式概率搜索算法,其 物理背景是固体的退火过程。
历史上,两个人物对于SAA的开展起了关键性的作用,他们分别是N. Metropolis和S. Kirkpatrick。
现代优化算法基本思想简介
现代优化算法基本思想简介遗传算法、模拟退火算法、禁忌算法、人工神经网络统称20世纪80年代初产生的现代优化算法.它主要解决优化问题中的难解的问题,下面分别介绍遗传算法、模拟退火算法、禁忌算法。
模拟退火算法1、模拟退火算法基本原理模拟退火算法(Simalated Annealing ,简称SA )属于一种通用的随机探索算法,1953年N. Metropolis 等人提出了模拟退火算法,其基本思想是把某类优化问题的求解过程与统计热力学中的热平衡问题进行对比试图通过模拟高温物体退火过程,来找到优化问题的全局最优解或近似全局最优解。
一个物体(如金属)的退火过程大体如下:首先对该物体高温加热(熔化),显然物体内原子处于高速运行的高能状态。
然而作为一个实际的物理系统,原子的运动又总是趋于最低的能量状态,在退火的初始状态,由于温度较高,物体处于高能状态,随着温度的逐渐降低,物体内部原子运动化学能趋于低能状态,这种由高能向低能逐渐降温的过程称为退火。
当温度降至结晶温度后,物体由原子运动变为围绕晶体格点的微小振动,液体凝固成固体,退火过程结束。
对于一个优化问题m in ()()0,1,2,,..()0,1,2,,i j f X g x i l s t h x j m ≥=⋅⋅⋅⎧⎨≥=⋅⋅⋅⎩,当我们把目标函数()f X 看成定义在可行集(解空间)上的能量曲面,而整个曲面()f X 凹凸不平,如果让一个光滑圆球在曲面上自由滚动,这个圆球十有八九会滚到最近的凹处停止运动,但该低谷并不一定是最深的一个凹谷,模拟退火方法就类似于沿水平方向给圆球一个水平方向作用力,若作用于小球的作用力足够大且小球所处的低谷并不很深。
小球受水平力作用会从该低谷流出,落入另一低谷,然后受水平力作用又滚出,如此不断滚动,如果作用小球的水平力掌握得适当,小球很有可能停留在最深的低谷之中,这个最深低谷就是优化问题的全局最优解或接近于全局最优解。
作用于小球上的水平力相应于模拟退火中的温度T ,水平作用力减小相应于温度降低,如图所示。