11汽车系统动力学-行驶动力学模型
汽车系统动力学第二章 车辆动力学建模方法及基础理论
第二章车辆动力学建模方法及基础理论§2-1 动力学方程的建立方法在车辆动力学研究中,建立系统运动微分方程的传统方法主要有两种:一是利用牛顿矢量力学体系的动量定理及动量矩定理,二是利用拉格朗日的分析力学体系。
本节将对这两种体系作一简单回顾,并介绍几个新的原理。
一牛顿矢量力学体系(1)质点系动量定理质点系动量矢p对时间的导数等于作用于质点系的所有外力F i的矢量和(即主矢),其表达式为:二、分析力学体系分析力学是用分析的方法来讨论力学问题,较适合处理受约束的质点系。
(1)动力学普遍方程动力学普遍方程由拉格朗日(Lagrange)于1760年给出的,方程建立的基本依据是虚位移原理,表示如下:(2-6)(2)拉格朗日方程拉格朗日法的基本思想是将系统的总动能和总势能均以系统变量的形式表示,然后将其代入拉格朗日方程,再对其求偏导数,即可得到系统的运动方程。
拉格朗日方程形式如下:利用此方程推导车辆动力学方程时,因采用广义坐标,从而使描述系统位移的坐标数量大大减少,并可以自动消去无功内力。
但也存在下述问题:①应用拉格朗日方程时,有赖于广义坐标选取得是否得当,而适当地选择广义坐标有时要靠经验;②拉格朗日能量函数对于刚体系统的表达式可能非常复杂,代人拉格朗日方程后要作大量运算。
而对于复杂的车辆系统,写出能量函数的表达式就更加困难。
三、虚功率原理若丹(Jourdain)于1908年推导出另一种形式的动力学普遍方程,其所依据的原理称之为虚功率原理。
虚功率形式的动力学普遍方程为:四、高斯原理1829年,高斯(Gauss)提出动力学普遍方程的又一形式,称为高斯原理,其表达式为:§2-2 非完整系统动力学一、非完整系统动力学简介1894年,德国学者Henz第一次将约束系统分成“完整”和“非完整”两大类,从此开辟了非完整系统动力学(Nonholonomie System)的新领域,如今它已成为分析力学的一个重要分支。
车辆的运动学模型和动力学模型
车辆的运动学模型和动⼒学模型系统建模是系统控制的前提和基础,对于⽆⼈车的横向控制(控制车辆转向,使其沿期望路径⾏驶),通过对车辆模型进⾏合理的简化和解耦,建⽴合适的车辆模型,对实现⽆⼈车的路径跟踪⾄关重要。
所谓车辆模型,即描述车辆运动状态的模型,⼀般可分为两类:运动学车辆模型;动⼒学车辆模型。
研究表明,在低速时,车辆的运动学特性较为突出;⽽在⾼速时,车辆的动⼒学特性对⾃⾝的运动状态影响较⼤。
1、运动学车辆模型车辆运动学模型如下图所⽰。
车辆运动学模型这⾥假定车辆是⼀个刚体,根据上图所⽰的⼏何关系,可以得到下⾯的车辆运动学数学模型。
运动学模型的数学公式其中,x0 和 y0 表⽰车辆质⼼的位置,v 为质⼼的纵向速度,r 为车辆的横摆⾓速度,Ψ为车辆的航向⾓,β为车辆的质⼼侧偏⾓。
在低速情况下,车辆在垂直⽅向的运动通常可以忽略,也即车辆的质⼼侧偏⾓为零,车辆的结构就像⾃⾏车⼀样,因此上述模型可以简化⼀个⾃⾏车模型,如下图所⽰:⾃⾏车模型整个模型的控制量可以简化为 v 和δ,即纵向车速和前轮偏⾓。
通常车辆的转向控制量为⽅向盘⾓度,因此需要根据转向传动⽐,将前轮偏⾓转化为⽅向盘⾓度。
上述的⾃⾏车车辆模型适⽤范围⾮常⼴,可以解决⼤部分问题。
但当车辆⾼速⾏驶时,使⽤简单的⼆⾃由度车辆模型通常⽆法满⾜横向控制的精确性和稳定性,这时就需要⽤到车辆的动⼒学模型。
2、动⼒学车辆模型汽车实际的动⼒学特性⾮常复杂,为精确描述车辆的运⾏状态,相关研究学者提出了多种多⾃由度的动⼒学模型。
不过,复杂的车辆动⼒学模型虽然较好的反映车辆的实际运动状态,但并不适⽤于⽆⼈车的横向控制。
其中,单轨模型是⼀个应⽤⽐较多的动⼒学车辆模型。
单轨模型是在忽略了空⽓动⼒学、车辆悬架系统、转向系统等的基础上,将前后轮分别⽤⼀个等效的前轮和后轮来代替,从⽽得到的车辆模型。
单轨模型的具体受⼒分析如下图所⽰。
单轨模型上图中的车⾝坐标系oxy,是以车辆质⼼为坐标原点,以沿车⾝向前的⽅向为x的正⽅向,以垂直于横轴的向左的⽅向为y的正⽅向。
carsim的动力学模型基础方程
汽车动力学模型基础方程在汽车工程中,动力学模型是一个重要的概念,它描述了汽车在运动过程中的力学特性和行为。
其中,汽车动力学模型的基础方程起着至关重要的作用,它们是描述汽车动力学特性的数学表达式,是汽车工程中的核心理论基础。
一、运动方程汽车在运动中受到多种力的作用,这些力包括牵引力、阻力、重力等。
通过牛顿第二定律,可以得到描述汽车运动的基本方程:F = ma其中,F是受到的合外力,m是汽车的质量,a是汽车的加速度。
根据牵引力、阻力和重力的关系,可以得到更加细致的运动方程:F_traction - F_drag - F_roll - F_grade = ma其中,F_traction是牵引力,F_drag是阻力,F_roll是滚动阻力,F_grade是上坡或下坡时产生的力。
这些力可以通过具体的公式计算得到,从而得到汽车的加速度。
二、转向方程在汽车运动中,转向是一个重要的问题。
汽车的转向能力与转向系的设计和轮胎的特性有关。
描述汽车转向行为的基础方程可以通过转向角速度、侧向力和横摆刚度等参数建立,具体方程如下:Mz = Iz * ωz + Fy * a其中,Mz是横摆力矩,Iz是车辆绕垂直轴的惯性矩,ωz是车辆的横摆角速度,Fy是轮胎的侧向力,a是车辆的横向加速度。
这个方程描述了汽车在转向过程中受到的各种力的平衡关系。
三、刹车方程刹车是汽车行驶中不可或缺的部分,汽车刹车性能与刹车系统、轮胎和路面特性等有关。
汽车刹车性能的基础方程可以描述如下:Fbrake = μ * Fz其中,Fbrake是刹车力,μ是刹车系数,Fz是轮胎受力。
刹车系数与刹车系统和轮胎的摩擦特性有关,它是刹车性能的一个重要参数。
总结通过以上的分析可以看出,汽车动力学模型的基础方程是汽车工程中的核心内容,它涉及到多个力学和运动学的概念,并且需要深入的数学和物理知识。
汽车动力学模型的基础方程不仅对汽车设计和优化具有重要意义,对于理解汽车行驶过程中的各种力学特性也有着重要意义。
汽车车辆动力学的建模与仿真
汽车车辆动力学的建模与仿真汽车车辆动力学是指研究汽车在行驶过程中受到的各种力的作用及其对车辆运动的影响的学科。
在现代汽车工业中,为了更好地设计汽车、提高汽车性能和安全性,建模与仿真技术成为了不可或缺的工具。
本文将重点讨论汽车车辆动力学的建模与仿真,以及其在汽车工程领域的应用。
汽车车辆动力学建模是指通过数学、物理等方法描述汽车在运动中受到的各种力和力矩的作用,将汽车系统简化为一系列数学模型。
这些模型可以用来研究汽车在不同路况、驾驶方式下的运动特性,如加速度、速度、转向和悬挂系统的响应等。
建模通常包括车辆动力学、车辆悬挂、车辆转向、车辆稳定性等方面的内容。
通过建模,工程师可以更好地了解汽车在不同情况下的运动规律,为汽车设计和优化提供依据。
在建模的基础上,仿真技术则是将建立的数学模型转化为计算机模型,并进行仿真计算。
通过仿真,工程师可以模拟汽车在不同条件下的运动状态,如加速、制动、转向等,评估汽车性能、安全性和稳定性。
仿真技术还可以用来研究汽车系统的优化设计,提高汽车的性能和安全性。
通过不断调整模型参数和条件,工程师可以找到最佳的解决方案,为汽车设计和制造提供参考。
汽车车辆动力学的建模与仿真在汽车工程领域有着广泛的应用。
首先,它可以帮助工程师更好地了解汽车在不同工况下的运动特性,评估汽车的性能和安全性。
其次,建模与仿真可以帮助设计师优化汽车结构和系统,提高汽车的动力性、操控性和燃油效率。
最后,建模与仿真还可以用来研究汽车的碰撞安全、行驶稳定性、轮胎抓地力等关键问题,为汽车的主动安全和 passagive安全提供支持。
总的来说,汽车车辆动力学的建模与仿真是汽车工程领域的重要技术手段,可以帮助工程师更好地理解汽车的运动规律,优化汽车的设计和性能。
随着计算机技术的不断发展,建模与仿真技术将在未来得到更广泛的应用,为汽车工程师提供更强大的工具来设计、研发和测试新型汽车。
汽车系统动力学
汽车系统动力学
1 什么是汽车系统动力学
汽车系统动力学是一个新兴的技术领域,它是汽车技术的分支,
专注于研究和设计汽车系统的总体行为。
该领域主要关注汽车的运动
规律、动力学和控制特性。
汽车系统动力学的研究旨在发展改善汽车
性能并适应日新月异的技术变化和社会需求。
2 动态特性
汽车系统动力学考虑多个机械系统的动态行为,以全面评估和调
整车辆的性能。
它是建立汽车的核心内容,涉及汽车的悬架系统、动
力系统、发动机、传动系统和控制系统的研究与设计。
动力学技术可
以通过实验和数值分析的方法,精确计算车辆的动力和运动特性,提
高车辆的整车性能,提高可靠性和安全性。
3 模拟与控制
把汽车系统抽象化,建立一个车辆动力学模型,可以使研究者以
虚拟的方式实现无限的试验。
运行模拟,发现汽车的动力和控制问题,这也是汽车技术发展中不可替代的方法。
同时,采用模拟技术可以大
大减少汽车系统开发周期。
4 汽车系统动力学的未来发展
汽车系统动力学是一个容易引起现代技术的新领域,随着技术的
不断更新,汽车系统动力学也在发生变化,多层次有趣的课题正在研
究,比如自动驾驶系统的研究,发动机的新能源研究等。
由于其独特
的特性,汽车系统动力学还可以发展到其他领域,如人体工程学,机
器人及空间科学等,将更多新奇的机器人及汽车系统动力学应用于日
常生活中。
汽车系统动力学融合了物理学、数学、机械工程,以及一系列的
有关技术,是一个全新的领域,它将与日俱增,未来有很大发展潜力。
系统动力学模型
系统动力学模型系统动力学模型是指它是一种分析和模拟物理系统及其动力学过程的数学技术。
它可以用来研究运动学,控制系统,流体动力学,形式力学,电学,冲击学和弹性动力学等领域的数学模型,并可用于实际的工程问题的解决。
系统动力学模型基于物理系统的动力学处理和控制问题,用来研究物体的运动行为。
例如,系统动力学模型可以用来探讨汽车的运动性,即汽车在不同条件下的行驶特性,以确定汽车行驶性能的最佳状态。
此外,系统动力学模型还可以模拟任意静力学,力学,流体力学或热力学系统的运动模式。
系统动力学模型的建立要求具备完备的物理基础知识,形成一个系统模型的首要任务是了解物理系统的特性和行为,因此必须确定物理系统的运动方程和力学特征,物理量的表达式在构建模型时必须明确。
模式构建完成后,需要求解模型,并将模型运用到实际问题中,用以求解物理过程及其动力学运行状态。
为此,我们可以使用计算机模拟技术来求解模型,用以检验结果的正确性和准确性。
系统动力学模型在很多领域中都发挥着重要的作用,例如机械系统的设计,控制系统的调整,电子电气系统的设计,机器人的控制,航空航天技术,建筑工程设计等。
例如,在机器人技术中,系统动力学模型可以模拟机器人的运动特性,帮助机器人决定如何完成任务。
此外,系统动力学模型在工程设计中也有广泛应用,可用于分析和解决工程设计问题,以便改善工程性能。
例如,系统动力学模型可以帮助分析和解决结构物振动问题,提高结构物的稳定性和耐久性,以及改善系统的可靠性。
此外,系统动力学模型也可以帮助优化控制系统的性能,以提高系统的功率和可靠性。
综上所述,系统动力学模型是一个强大的工具,可以帮助我们研究和分析物理系统及其动力学过程,从而有效地改善工程性能。
它在机械,控制,电子,航空航天等各个领域都有广泛的应用,并被广泛用来分析和解决工程设计问题。
车辆系统动力学
2. 系统具有整体性
系统虽是由多种元素组成,但系统的性能不 是各元素性能的简单组合,而是相互影响的,所 以这种组合使系统的整体功能获得新的内容,具 有更高的价值。例如一辆汽车是由发动机、传动 系、车轮、车身、操纵系统组成。单有发动机只 能发出动力,不会自己行走,但当发动机装在具 有车轮的汽车底盘上,就成为可以行走的汽车, 成为一种交通工具,其功能就与一台发动机大不 相同。由此可见,研究系统特性应从整体的观点 来看。系统的性能是由其整体性能为代表,而不 是由某一个元素所能代替的。
4. 系统具有功能共性
系统中存在着物质、能量和信息的流动, 并与外界(环境)进行物质、能量和信息的交 流,既可以从外界环境向系统输入或从系统向 外界环境输出物质、能量和信息。这是任何系 统都具有的功能,称为系统的功能共性。如汽 车系统中把燃料的燃烧热能转换为汽车的行驶 动能,在这一过程中,发动机吸收氧气,而排 除废气。这一过程有能量的交流,也有物质的 交流。
第一章 绪论
• 1.1 系统与系统动力学的概念 • 1.2 汽车系统动力学的研究内容和特点 • 1.3 汽车系统动力学的研究方法
1.1 系统与系统动力学的概念
在我们真实的大千世界中,存在着许多由一组物 件构成,以一定规律相互联系起来的实体,这就是系 统,自然界就有太阳系、银河系这样的大系统,这种 系统是脱离人的影响而自然存在,称为自然系统,还 有如生物、原子内部也构成了自然系统,还有一种系 统是通过人的设计而形成的系统,称为人工系统,如 生产系统、交通运输系统、通信系统;人工组合和自 然合成的组合系统,如导航系统。 本文主要是研究人工的物理系统及其特性。 如果把汽车的构成看成是一大系统,那么这一系 统应表示为(如图1-1):
一个系统可能由若干个环节组成,画出各环节的 方框图,然后将这些方框图联系起来,就构成了系 统的方框图。因此,方框图是数学模型-传递函数 的图解化 。
汽车系统动力学
汽车系统动力学汽车系统动力学是一门极其重要的学科,可帮助人们更好地了解如何通过汽车的机械系统来获得最佳的性能。
汽车系统动力学研究的内容包括了汽车的动力输出(发动机)、动力传输(变速箱)、动力器件(发电机、涡轮增压器等)以及动力控制。
由于汽车技术的不断进步,现代汽车系统动力学涉及了复杂的科学和技术,其中包括电子可编程应用、计算机模型和系统分析、发动机传动设计和热力学、燃料处理、音频技术和电子控制等技术。
首先,汽车的动力输出是汽车运行的基础,它是由发动机直接产生的动力,发动机的工作原理分为涡轮增压发动机和涡轮增压发动机。
涡轮增压发动机类似普通的内燃机,但它使用涡轮来提升发动机的性能。
这种技术在高性能汽车中得到了广泛的应用。
它的优势在于能够以更高的效率产生更大的动力,而无需增加发动机的重量。
其次,汽车系统动力学还研究动力传输,其中包括变速箱和传动轴系统的设计。
传动轴的设计是传动系统的关键部分,它的作用是将来自发动机的动力传递给轮胎,从而推动汽车前进。
随着日益复杂的动力系统,传动轴的设计也越来越复杂。
例如,有些传动轴可以采用恒定转矩技术,使得发动机能够在不同速度和负载下保持稳定的转矩输出,即使在极端环境也能保持良好的性能。
此外,汽车动力学还涉及电子系统的设计,包括电子控制、燃料系统和发动机监控等。
电子控制的使用可以帮助汽车在不同的环境下保持理想的性能,例如发动机和驱动系统的管理、油耗优化、变速箱调节等功能。
另外,燃料系统技术则主要负责汽车涡轮增压器的升压控制,以及燃料管理系统的开发,这种技术可以使发动机在较低能量消耗的情况下获得更高的动力输出。
最后,汽车系统动力学还涉及热力学、发动机传动设计、计算机应用模型和系统分析、音频技术等多方面的研究。
热力学的研究将帮助汽车的设计者更好地理解发动机的工作状态,并建立模型来优化发动机的结构。
而发动机传动设计则是研究如何有效地将发动机动力转移给车轮,这也是汽车动力学研究的重要方面。
车辆行驶动力学及控制技术研究
车辆行驶动力学及控制技术研究车辆行驶动力学及控制技术研究是该领域的研究重点,涵盖了车辆在行驶过程中所涉及的力学原理和控制方法。
通过深入研究和分析车辆行驶过程中所涉及的各种力学原理和控制技术,可以为汽车设计和工程领域的发展提供重要的理论基础和技术支撑。
一、车辆行驶动力学研究车辆行驶动力学研究主要关注车辆在道路上行驶过程中所涉及的力学原理。
这包括车辆的运动学和动力学的研究。
在车辆的运动学研究中,我们关注车辆的速度、加速度、转动半径等参数,以及这些参数之间的相互关系。
通过分析车辆的运动学参数,可以更好地了解车辆在不同行驶状态下的性能。
车辆的动力学研究是指研究车辆在行驶过程中所受到的各种内外力对其运动状态的影响。
在这一研究中,我们需要考虑到车辆的质量、弯曲刚度、悬挂系统、轮胎摩擦力等因素。
通过分析这些因素对车辆运动状态的影响,可以更好地理解车辆的操控性能和安全性能。
在车辆行驶动力学研究中,还需要对车辆的制动、转向和加速等行驶过程中涉及的实际操作进行模拟和分析。
通过建立行驶动力学模型,可以更准确地预测车辆在不同操作条件下的动力学行为,并为车辆设计和控制提供科学依据。
二、车辆控制技术研究车辆控制技术研究是基于车辆行驶动力学原理,结合先进的控制算法和传感器技术,对车辆行驶过程进行主动调节和控制。
这一研究领域的发展与智能交通系统和自动驾驶技术的兴起紧密相关。
在车辆控制技术研究中,一个重要的课题是车辆稳定性控制。
通过在车辆上增加传感器和执行器,可以实时监测车辆的各种动态参数,并通过控制算法实现主动稳定性控制。
这可以大大提高车辆的行驶稳定性和安全性。
此外,车辆控制技术研究还包括智能驾驶辅助系统和自动驾驶系统的研究。
智能驾驶辅助系统通过采用先进的感知技术和控制算法,对车辆驾驶过程进行辅助和提醒,提高驾驶人的驾驶安全性和舒适性。
自动驾驶系统则更进一步,可以实现无人驾驶和智能交通的目标。
最后,车辆控制技术研究还需要注意电力驱动车辆和混合动力车辆的特殊性。
汽车系统动力学基础
汽车系统动力学的研究对于提 高汽车性能、降低能耗、减少 排放以及提高道路交通安全具
有重要意义。
课程目标
01 掌握汽车系统动力学的基本概念、原理和方法。 02 了解汽车系统动力学在汽车设计、制造和性能优
化中的应用。
03 掌握汽车系统动力学在道路交通安全领域的应用, 提高解决实际问题的能力。
稳定性控制技术的效 果评估
某品牌汽车的稳定性控制技术在实际 应用中取得了显著的效果,通过对比 实验发现,搭载该技术的汽车在湿滑 路面上的操控稳定性明显优于未搭载 该技术的汽车,有效降低了侧滑和失 控的风险。
案例三
轮胎对汽车动力学性能的影响
轮胎是汽车与路面的唯一接触点,它对汽车的操控稳定性、行驶安全性、乘坐舒适性和油耗等都有重要影响。
02
汽车系统动力学概述
定义与概念
定义
汽车系统动力学是一门研究汽车在不 同工况下动态特性的学科,主要涉及 汽车行驶时的平顺性、操纵稳定性和 安全性等方面。
概念
汽车系统动力学关注汽车在行驶过程 中所受到的各种力和力矩,以及这些 力和力矩对汽车运动状态的影响。
汽车系统动力学的重要性
提高汽车性能
提升乘客舒适度
通过优化汽车系统动力学特性,可以 提高汽车的行驶平顺性、操纵稳定性 和安全性,从而提高整体性能。
良好的平顺性和稳定性能够提高乘客 的舒适度,增强乘客的乘车体验。
降低能耗
良好的汽车系统动力学特性有助于降 低能耗,提高汽车的燃油经济性,减 少排放。
汽车系统动力学的发展历程
初期阶段
早期的汽车系统动力学研究主要集中在轮胎和悬挂系统的 研究上,以改善汽车的平顺性和操纵稳定性。
06
总结与展望
车辆系统动力学
车辆系统动力学概述车辆系统动力学是研究车辆运动和控制的重要分支,主要关注车辆在不同条件下的运动特性和动力学行为。
它涉及到车辆控制、悬挂系统、轮胎力学、车辆稳定性等多个方面的知识,并在实际应用中对车辆的设计、开发和安全性能有着重要作用。
车辆运动模型在车辆系统动力学中,常用的车辆运动模型有点模型、刚体模型和多体模型。
点模型点模型是简化的车辆运动模型,将车辆简化为质点,只考虑车辆的整体运动特性,忽略车辆的细节结构和内部力学行为。
虽然点模型失去了对车辆细节的描述,但其简单性使得其在一些特定的场景中得到广泛应用,如路径规划、运动控制等。
刚体模型刚体模型是将车辆看作一个刚性物体,不考虑车辆内部部件的变形和变动。
其关注车辆整体的旋转和平移运动状态,通过刚体模型可以研究车辆的稳定性、操控性和安全性能,对车辆动力学的分析具有重要意义。
多体模型多体模型是将车辆分解为多个连接的刚体,考虑车辆内部各个部件之间的相互作用和相互影响。
多体模型可以更准确地描述车辆的运动特性,并考虑轮胎和地面之间的接触力、悬挂系统的影响等因素,对于研究车辆的运动控制和动力学行为更具有实用性。
轮胎力学轮胎是车辆系统动力学中一个重要的组成部分,其力学特性对车辆的运动和稳定性有着直接影响。
轮胎在车辆运动过程中扮演着传递动力、提供支撑力和提供制动力的重要角色。
轮胎的力学特性主要包括纵向力学、横向力学和侧向力学。
纵向力学纵向力学研究轮胎在车辆加速和制动过程中的力学行为。
在车辆加速时,轮胎需要传递动力到地面,提供足够的附着力,以确保车辆的稳定性。
在制动过程中,轮胎需要提供足够的制动力,使得车辆能够迅速停下来。
了解轮胎的纵向力学特性对于车辆的动力学行为分析和控制具有重要意义。
横向力学横向力学研究轮胎在车辆转向过程中的力学行为。
在车辆转向时,轮胎需要提供足够的侧向力,以保持车辆的稳定性。
横向力学的研究对于车辆的操控性能分析和提升具有重要意义。
侧向力学侧向力学研究轮胎在侧向偏移和滑移过程中的力学行为。
行驶动力学1
¾1997年公布了ISO2631-1:《人体承受全身振动评价— 第一部分:一般要求》 ¾我国对相应国际标准进行了修订,公布了GB/T4970 — 1996《汽车平顺性随机输入行驶试验方法》
人体坐姿受振模型
¾标准规定了图所示的人
体坐姿受振模型。
¾在进行舒适性评价时,
它除了考虑座椅支承面 处输入点3个方向的线振 动,还考虑该点3个方向 的角振动,以及座椅靠 背和脚支承面两个输入 点各3个方向的线振动, 共3个输入点12个轴向的 振动。
¾ xs、ys 最敏感的频率范 围是0.5~2Hz。大约在3Hz 以下,人体对水平振动比对 垂直振动更敏感,且汽车车 身部分系统在此频率范围内 产生共振,故应对水平振动 给予充分重视。
各轴向的频率加权函数(渐近线) 频率加权函数
⎧ 0.5 ( 0.5Hz < f < 2Hz ) ⎪ f / 4 ( 2Hz < f < 4Hz ) ⎪ wk ( f ) = ⎨ ⎪ 1 ( 4Hz < f < 12.5Hz ) ⎪12.5 / f (12.5Hz < f < 80Hz ) ⎩
ys zs rx ry rz
靠背
脚
xb yb zb xf yf zf
wc
wd wd wk wk wk
由轴加权系数的不同取值可确定人体对 输入的振动最敏感状况。
xs、ys、zs
即人对座椅传给人体的振动最敏感
ISO2631-1:1997(E)标准还规定 当评价振动对健康的影响时
¾只考虑 xs、ys、z这三 s 个轴向振动,且xs、 ys 两 个水平轴向的轴加权系数 取 k=1.4。
¾靠背水平轴向 xb、yb 可以由椅面水平轴向 xs、ys 代替,此时轴加权系数取 k=1.4。
汽车系统动力学
《汽车系统动力学》教学大纲一、课程性质与任务1.课程性质:本课程是车辆工程专业的专业选修课。
2.课程任务:本课程要求学生学习和掌握车辆系统的主要行驶性能,如牵引性能、车辆的动态载荷、转向动力学等。
研究路面不平度激励的振动。
了解该领域世界发展及最新成果。
通过学习本课程,掌握汽车动力学分析的一般的理论和方法,为今后汽车系统动力学分析、从事该领域研究、开发奠定基础。
二、课程教学基本要求本课程是研究所有与汽车系统运动有关的学科,其内容可按车辆运动方向分为纵向、垂向和侧向动力学三大部分。
要求学生了解车辆动力学建模的基础理论、轮胎力学及汽车空气动力学基础之外,重点理解受汽车发动机、传动系统、制动系统影响的驱动动力学和制动动力学,以及行驶动力学(垂向)和操纵动力学(侧向)内容。
运用系统方法及现代控制理论,结合实例分析,介绍了车辆动力学模型的建立、计算机仿真、动态性能分析和控制器设计的方法,同时使学生对常用的车辆动力学分析软件有所了解。
成绩考核形式:末考成绩(闭卷考试)(70%)+平时成绩(平时测验、作业、课堂提问、课堂讨论等)(30%)。
成绩评定采用百分制,60分为及格。
三、课程教学内容绪篇概论和基础理论第一章车辆动力学概述1.教学基本要求让学生了解车辆动力学的历史发展、研究内容和范围、车辆特性和设计方法、术语、标准和法规、发展趋势。
2.要求学生掌握的基本概念、理论、技能通过本章教学使学生了解车辆动力学的历史发展、研究内容和范围、车辆特性和设计方法、发展趋势。
3.教学重点和难点教学重点是车辆动力学的研究内容和范围、车辆特性和设计方法。
教学难点是车辆特性和设计方法。
4.教学内容第一节历史回顾1.车辆动力学的历史发展第二节研究内容和范围1.纵向动力学2.行驶动力学3.操作动力学第三节车辆特性和设计方法1.期望的车辆特性2.设计方法3.汽油机与柴油机速度特性的比较第四节术语、标准和法规1.汽车术语、标准和法规第五节发展趋势1.车辆的主动控制2.多体系统动力学3.闭环系统和主观与客观评价第二章车辆动力学建模方法及基础理论1.教学基本要求让学生了解动力学方程的建立方法、非完整系统动力学、多体系统动力学方法。
系统动力学模型
第10章系统动力学模型系统动力学模型(System Dynamic)是社会、经济、规划、军事等许多领域进行战略研究的重要工具,如同物理实验室、化学实验室一样,也被称之为战略研究实验室,自从问世以来,可以说是硕果累累。
1 系统动力学概述2 系统动力学的基础知识3 系统动力学模型第1节系统动力学概述1.1 概念系统动力学是一门分析研究复杂反馈系统动态行为的系统科学方法,它是系统科学的一个分支,也是一门沟通自然科学和社会科学领域的横向学科,实质上就是分析研究复杂反馈大系统的计算仿真方法。
系统动力学模型是指以系统动力学的理论与方法为指导,建立用以研究复杂地理系统动态行为的计算机仿真模型体系,其主要含义如下:1 系统动力学模型的理论基础是系统动力学的理论和方法;2 系统动力学模型的研究对象是复杂反馈大系统;3 系统动力学模型的研究内容是社会经济系统发展的战略与决策问题,故称之为计算机仿真法的“战略与策略实验室”;4 系统动力学模型的研究方法是计算机仿真实验法,但要有计算机仿真语言DYNAMIC的支持,如:PD PLUS,VENSIM等的支持;5 系统动力学模型的关键任务是建立系统动力学模型体系;6 系统动力学模型的最终目的是社会经济系统中的战略与策略决策问题计算机仿真实验结果,即坐标图象和二维报表;系统动力学模型建立的一般步骤是:明确问题,绘制因果关系图,绘制系统动力学模型流图,建立系统动力学模型,仿真实验,检验或修改模型或参数,战略分析与决策。
地理系统也是一个复杂的动态系统,因此,许多地理学者认为应用系统动力学进行地理研究将有极大潜力,并积极开展了区域发展,城市发展,环境规划等方面的推广应用工作,因此,各类地理系统动力学模型即应运而生。
1.2 发展概况系统动力学是在20世纪50年代末由美国麻省理工学院史隆管理学院教授福雷斯特(JAY.W.FORRESTER)提出来的。
目前,风靡全世界,成为社会科学重要实验手段,它已广泛应用于社会经济管理科技和生态灯各个领域。
车辆系统动力学资料课件
• 车辆系统动力学概述 • 车辆动力学模型建立与仿真 • 车辆系统动力学性能分析与优化 • 车辆系统动力学控制策略与应用 • 总结与展望
01 车辆系统动力学概述
车辆系统动力学的发展历程
20世纪60年代
20世纪70年代
车辆系统动力学开始得到关注和研究,主 要涉及车辆的稳定性、操纵性和乘坐舒适 性等方面。
车辆系统动力学优化实例
实例1
某型汽车的稳定性优化,通过优化悬挂系统和车身结构,显著提高 了车辆在高速行驶和弯道行驶时的稳定性。
实例2
某型卡车的平顺性优化,通过优化驾驶室和货箱的结构,有效降低 了驾驶员在长途运输中的疲劳程度和货物的破损率。
实例3
某型跑车的操控性优化,通过优化车身结构、悬挂系统和制动系统 ,提高了车辆在高速行驶和紧急制动情况下的操控性能。
03
研究成果与应用
研究人员已经将车辆系统动力学控制 策略应用于实际车辆中,并取得了良 好的控制效果。
车辆系统动力学控制算法设计与实现
控制算法设计
算法实现方法
算法实现方法包括基于MATLAB/Simulink的仿真 实现、基于实际车辆的实验实现等。
车辆系统动力学控制算法的设计需要考虑多 种因素,如车辆动力学特性、道路条件、驾 驶员行为等。
随着计算机技术的发展,车辆系统动力学 开始进入仿真模拟阶段,通过计算机模拟 来研究车辆的动力学行为。
20世纪80年代
20世纪90年代至今
车辆系统动力学的研究范围不断扩大,开 始涉及到安全、控制、智能驾驶等领域。
车辆系统动力学得到了广泛应用,不仅在 汽车领域,还在航空、航天、军事等领域 得到应用。
车辆系统动力学的研究对象和研究方法
车辆系统动力学结构模型
26
客货车系统
27
V
c(t)
MC K tz Mt I ty C pz C tz
t2(t)
I cy C tz Mt Ity K pz K tz
t1(t)
Z c(t)
Z t2(t)
Z t1(t)
Z w4(t) Z 04(t) P 4(t) Z 03(t) P 3(t)
Z w3(t) Z 02(t) P 2(t)
2
模型化基本原则
忽略影响程度较小的因素 线性化与非线性化处理
集中质量化
部件与弹簧装置系统模型化
3
忽略影响程度较小的因素
模型化时,应该忽略一些对产生问题现象 不发生影响的因素和影响很小的因素。
出现很多无法判断的情况时(模型化初 期),应尽量多考虑一些因素,然后考察 各因素的影响度,最后选择一些必要因素 进行模型化。
4
线性化与非线性化处理
如果既可以进行适当的线性化,又不影响研究的 本质,则可使以后的处理变得非常简单,并进行 有效推测; 线性化既有对位移与动力特性和速度与动力特性 之间的平衡点出发,还有从能量角度出发,计算 出等效常数的方法来实现; 对某些部件是线性化还是非线性化,需要作全面 权衡。
gmffzmwipiwiww?????车辆部件振动方程33车辆部件作用力求解?????????????????????222111bcccsbcccssbcccsbcccsszlzczlzkfzlzczlzkf???????????????????????????????2121211111wbbbpwbbbppwbbbpwbbbppzlzczlzkfzlzczlzkf??????????34构件名称运动形式纵向横向垂向侧滚点头摇头车体cxcyczc?c?c?构架txtytzt?t?t?轮对wxwywzw?w?w?四轴客车模型运动自由度35客车模型俯视图xyyct?ctmwiwzmcicz?w2t?t1tyt1tmtitzmwiwz?w1tctxktxktyctycpykpycpxkpx36客车模型正视图mcicxyct?ctyktzcpvzrltmwmsmbzctctzywtzwt?wtyrlt?rltzrrtyrrt?rrtkphcphkpvyst?stzstcbhkbhkbvcbvmbkwcwcfvkfvkfvcfvdsdsddlshcbhbthtwiwxjskpzcpzkpycpyktyctyktyctyctzktzkpycpykpzcpzdwdwmtitxzttytt?tt3729313032343633351719212318202224252726289111315101214161357246818轮轨力916一系悬挂力1720二系弹簧阻尼力2124横向减振器阻尼力2528抗蛇行减振器阻尼力2932横向止挡力3336牵引拉杆力客车系统动力学模型拓扑图侧视38客车系统动力学模型拓扑图正视18轮轨力916一系悬挂力1720中央悬挂力2124横向减振器阻尼力2528抗蛇行减振器阻尼力2932横向止挡力3336牵引拉杆力19203527312336322428262230342129253317181314151611129107856341239力作用界面作用力备注名称坐标系中投影方向车体与摇枕界面心盘旁承力心盘回转力矩垂向适用于普通客车转向架或部分提速客车转向架旁承力垂向旁承回转力矩垂向中央悬挂界面空气弹簧力中央空气弹簧力纵向横向垂向空气弹簧节流孔垂向垂向减振器阻尼力垂向横向减振器阻尼力横向抗蛇行减振器阻尼力纵向抗侧滚纽杆力矩纵向横向止挡力横向牵引拉杆力纵向轴箱悬挂界面一系悬挂力轴箱弹簧力垂向轴箱定位
车辆系统动力学
车辆系统动力学车辆系统动力学是一门涉及汽车系统的动力性研究的学科,旨在分析和模拟汽车的动力性能。
它是由应用力学和流体力学原理来研究动态特性,从而为汽车开发工程人员提供关键性信息和支持,以实现车辆系统的有效运行。
车辆系统动力学的研究分为两个主要方面:静动力学和结构动力学。
静动力学是研究汽车静力学和动力学系统,以及它们之间的相互作用。
静动力学的研究内容包括汽车的刚性构件的静力学计算,汽车转矩和加速度的动态测定,车辆悬架系统的构造、测量和控制,动力性能的行驶特性测定,以及汽车的操纵和漂移特性的研究。
结构动力学包括研究汽车结构,如悬架、底盘和发动机,以及这些系统的动态特性测定。
车辆系统动力学的研究可以分为三个主要领域:实验动力学、分析动力学和仿真动力学。
实验动力学主要负责试验机械结构以及机械系统的动力特性测定。
它可以分析出机械系统的动力特性,以及机械系统和动力学分析模型之间的关系。
分析动力学是通过数学分析的方法,计算和分析汽车的动力特性。
仿真动力学则使用计算机模拟技术,模拟汽车在不同行驶条件下的性能,并进行动力学和控制分析。
车辆系统动力学是一个复杂的研究领域,需要广泛的原理、理论和技术来支持。
它为车辆开发工程人员提供关键的研究信息,以便更好地了解汽车的动力性能,从而更好地解决汽车发动机、悬架和底盘等系统的限制问题,实现更低排放、更安全的汽车运行。
车辆系统动力学的研究目标是提高汽车的动力性能:提高燃油经济性、排放控制效果,降低汽车维护成本,延长汽车使用寿命,减少汽车故障发生率,并提高汽车在不同地形环境下的行驶质量。
未来,随着新技术的发展,车辆系统动力学的研究将不断进步,为汽车的改进和开发提供可靠的技术支持。
从而,车辆系统动力学是一门跨学科领域的非常重要的研究领域,它不仅涉及传统的汽车工程学科,还涉及力学、控制、物理、流体、电子、计算机等学科,是一门复杂而又有应用前景的学科。
因此,车辆系统动力学是汽车研发、维护和诊断的重要基础,也是汽车系统安全、经济、高效运行的关键。
车辆动力学的建模与仿真研究
车辆动力学的建模与仿真研究一、前言车辆动力学是研究汽车运动时各种力的作用及其相互关系的一门学科,对于汽车的安全性、舒适性和可靠性都有着至关重要的作用。
现代汽车已经发展到了需要通过复杂的数学模型来研究其运动的阶段,建立车辆动力学的模型并进行仿真研究已成为汽车技术领域中的重要研究方向,本文将对车辆动力学的建模技术和仿真方法进行详细分析。
二、分析车辆运动的各种力车辆在运动时,受到许多力的作用,如空气阻力、滚动阻力、引擎动力、刹车力等,这些力的大小和方向对车辆的运行状态和性能都有着直接的影响。
(一)引擎和电动机动力模型车辆引擎和电动机都是车辆动力的重要来源,对其进行建模将有助于我们更准确地预测车辆的性能和燃油消耗量。
引擎动力模型是通过考虑发动机输出转矩、旋转惯量以及转速等参数来进行建模,有多种方法可供选择,如最基础的等效燃料消耗率方法、卡曼滤波法和现代控制理论中的状态空间法。
电动机动力模型的建立则更加复杂,需要考虑到电动机的电气属性,如电容、电阻、电感等,同时还需要考虑传动系统的摩擦、转子和定子的转动惯量等因素。
(二)转弯力的建模在车辆转向时,受到的转向力矩和向心力的作用使得车辆产生侧倾和向心加速度,需要建立一种模型来准确地描述这些效应。
侧倾角和向心加速度的建模可以通过考虑车辆的悬挂系统、轮胎的特性以及转向率等参数来实现。
(三)车辆管道系统的模型在汽车制动和油门的控制过程中,流体管道系统的动态响应对车辆的反应速度和响应能力都有着重要的影响。
对于管道系统的建模,可以使用一些常见的模型,如一阶模型或二阶模型,并通过实验数据进行参数拟合。
三、车辆动力学仿真的方法(一)基于 MATLAB/Simulink 的仿真MATLAB和Simulink是建立和测试车辆动力学模型的常用工具,其中MATLAB可以用于处理数学等离散模型,Simulink则可以用于建立和运行连续模型。
这种方法优点在于易于实现、可视化程度高、建模速度快、可靠性高。
动力学建模
动力学建模动力学建模是一种用于描述物体力学特性的科学方法,它可以帮助设计和分析物体行为,推断其在某些特定条件下的反应。
动力学建模主要用于机械工程,有力地推动了机械系统的进步和发展。
用动力学模型来描述任何物体,需要从物体结构、形状和运行状态出发,并考虑物体与其他物体或环境的物理连接和作用。
例如,机械系统的模型必须考虑转动惯量、摩擦力和外加力的影响,力学模型将有助于理解和控制物体的行为。
通过动力学建模,可以预测物体或机械系统在某些特定条件下的反应,例如物体或机械系统的外形几何结构、受力状态、受力状况和运动轨迹等。
一般而言,动力学建模方法可以分为两大类:离散模型和连续模型。
离散模型建模前,先把物体或系统简化成一系列物理元素,然后使用这些物理元素来表示物体或系统的力学性质。
例如,做机械设计时,可以使用一系列已知的活塞、轴、齿轮、轴承、摩擦阻力等物理元素,来建模机械系统。
连续模型,把物体或系统划分为许多个体,再用连续性方程,数值计算出它们之间的运动变化。
这种模型可以用来模拟复杂的机械系统,如汽车引擎、飞机引擎等,用以优化机械设计及分析运行性能。
动力学建模是机械设计中一个重要的部分,对于各种机械系统的运行状态、受力状况等,动力学建模可以提供准确的参数,指导设计人员和工程师更好地掌握机械系统运行规律,以便设计出更好性能的机械设备。
另外,在这个数字化时代,动力学建模也在改变着机械设计的方式。
相比传统的动力学建模,有了数字化的动力学建模技术,可以更快更有效地分析和优化机械系统,并为设计开发过程提供快速的反馈。
总之,动力学建模是一种重要的科学方法,在各种机械系统设计中,发挥着重要的作用。
通过动力学建模,可以对物体和机械系统进行准确测量和精确模拟,为机械设计提供重要的参考依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ff K sf ( z1 z2 ) Csf ( z1 z2 )
Fr K sr ( z3 z4 ) Csr ( z3 z4 )
10
11.3半车模型
1.运动方程 当俯仰角较小时,有
z2
a
zb
b
b
I hb
z4
mhb
z2 zb a b
运动方程变为
z4 zb b b
z0 Z0e
it
输出为:
z1 Z1e
i (t )
i (t )
Z1e z0
Z2e z0
5
i
z2 Z2e
i
11.2单轮车辆模型的推导
输出为:
z1 Z1e
i (t )
i (t )
Z1e z0 H1 () z0
i
z2 Z2e
H1 ( )
K sf
z1
Csf
mwf
K sr
mwr
K tr
Csr
z3
z1 [K tf (z 0 f z 1 ) F f ]/ m wf
z0 f
K tf
z0 r
1 1 a2 ab z2 Ff Fr mhb I hb mhb I hb
z3 [K tr (z 0r z 3 ) Fr ]/ m wr
>20Hz
轮胎共振频率
30~50Hz和80~100Hz
3
11.1模型推导的前提 总的原则:根据所研究问题的实际需要选择适当复杂程度的模型。
假设左右车轮对称,
忽略车身两边的相 对运动
若
I hp mab 则 mc 0
m f mc mr m
前、后轴垂直方向的 运动相对独立
4
11.2单轮车辆模型的推导
0~15Hz
刚体运动
15~150Hz 结构振动,板件共振 150Hz以上 噪声及啸鸣 典型的共振频率范围通常为: 车身 共振频率 一阶扭转振动 一阶弯曲振动 车轮跳动 座椅上的乘客 悬置的动力总成 1~1.5Hz 15~30Hz 20~30Hz 10~12Hz 4~6Hz 10~20Hz
结构共振频率
z1 2 z2 z0 z0
平顺性
8
11.2单轮车辆模型的推导
2.系统的性能分析
低固有频率和低阻尼比情况下可获得高 的舒适性,但牺牲了悬架的工作空间。 在选择悬架系统方案中,必须同时兼顾 平顺性和操稳性的要求,确定一个尽量 满足各方面要求的最佳方案。
9
11.3半车模型
1.运动方程
z2
a
zb
z1 i z1 z2 i z2
Z2e z0 H2 () z0
i
H 2 ( )
2
为频率响应函数
车轮、车身的速度和加速度为:
z1 z1
z2 2 z2
6
11.2单轮车辆模型的推导
以上各式代入两自由度模型的运动方程,得:
K t [Cs i ( K s m2 2 )] z1 H1 ( ) z0 Cs i ( K t K s m1 2 ) Cs i K s Cs i K s Cs i ( K s m2 2 )
Kt (Csi K s ) z2 H 2 ( ) z0 Csi ( Kt K s m1 2 ) Csi K s Csi K s Csi ( K s m2 2 )
7
11.2单轮车辆模型的推导
2.系统的性能分析 1)车身加速度与激励路径之比
z2 z1 悬架动行程 2)车身与车架的相对位移加速度与激励路径之比 z0 z1 z0 2) 车架与路面的相对运动与激励路径之比 轮胎动载荷 z0
1.运动方程 两自由度模型的运动方程:
m1 z1 Cs z1 Cs z2 ( K s Kt ) z1 K s z2 Kt Z 0 m1 z2 Cs z1 Cs z2 K s z1 K s z2 0
对于一个常系数的线性系统,当输入量是一个简谐函数 时,输出量也是与输入量同频率的简谐函数,但两者的 幅值不同,相位也不同。 输入为:
1 1 ab a2 z4 Ff Fr mhb I hb mhb I hb
11
11.4整车模型
1.运动方程
a
zb
b z' 4
c
d
C4
z
' 2
x
Ks2
mb
Ks4
z4 zt 4
F4
m4
Kt 4
K s3C3Leabharlann ' z3F3
z2
zt 2
m2
Kt 2
汽车系统动力学
主讲:胡爱军
1
第十一章
11.1模型推导的前提 11.2单轮车辆模型 11.3半车模型 11.4整车模型
行驶动力学模型
2
11.1模型推导的前提
通常以噪声(Noise)、振动(Vibration)和啸鸣(Harshness),即NVH来描述车辆 乘坐舒适性,一般情况下车辆的振动频率范围可大致划分如下:
C2 F2
z1'
m1
C1
m3
y
z3
zt 3
Kt 3
K s1
F1
z1
zt1
K t1
12
b
b
I hb
z4
mhb
mhb zb Ff Fr I hb b aFf bFr
mwf z1 Ktf ( z0 f z1 ) Ff mwr z3 Ktf ( z0r z3 ) Fr
其中
K sf
z1
Csf
mwf
K sr
mwr
K tr
Csr
z3
z0 f
K tf
z0 r