最新考研数2大纲详细版汇总
(完整版)2020考研数学二大纲原文
2020考研数学二大纲原文来源:文都教育高等数学一、函数、极限、连续考试内容函数的概念及表示法、 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:0sin 1lim 1,lim 11xx x x e x →→∞⎛⎫=+= ⎪⎝⎭ 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系。
了解函数的有界性、单调性、周期性和奇偶性.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8。
理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
二、一元函数微分学考试内容导数和微分的概念、 导数的几何意义和物理意义、 函数的可导性与连续性之间的关系、 平面曲线的切线和法线、 导数和微分的四则运算、 基本初等函数的导数、 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法、 高阶导数、 一阶微分形式的不变性、 微分中值定理 洛必达(L'Hospital )法则、 函数单调性的判别、 函数的极值、 函数图形的凹凸性、拐点及渐近线、 函数图形的描绘、 函数的最大值与最小值、 弧微分、 曲率的概念 、曲率圆与曲率半径考试要求1。
考研数二考试范围及内容
考研数二考试范围及内容
考研数二考试范围主要包括以下几个方面:
1.数学分析:包括实数的性质与连续性、函数的极限与连续性、导数与微分、积分、级数、多元函数的极限、连续性和偏导数等内容。
2.高等代数与线性代数:包括矩阵代数、行列式、矩阵的特征
值和特征向量、线性方程组、向量空间、内积空间、正交性等内容。
3.概率论与数理统计:包括基本概率论、随机变量、概率分布、随机变量的数字特征、正态分布、大数定律、中心极限定理、参数估计、假设检验等内容。
4.离散数学:包括命题逻辑与谓词逻辑、集合论、关系与格、
图论、代数系统等内容。
5.计算方法:包括插值与函数逼近、数值积分与数值微分、非
线性方程求解、线性方程组的数值解法、矩阵特征值求解等内容。
6.偏微分方程:包括常见的偏微分方程的基本概念、分类、解
的性质及解的存在与唯一性等内容。
考研数二考试的内容相对来说比较广泛,考生需要掌握数学知
识的基础与核心概念,以及用数学方法解决实际问题的能力。
同时,考生还需要注重数学的逻辑思维和推理能力的培养。
2020年考研数学二考试大纲解析-考试范围
2020年考研数学二考试大纲解析|考试范围展开全文本书严格按照最新版“全国硕士研究生招生考试数学(二)考试大纲”进行编写,根据“数学(二)”的考试科目分为高等数学、线性代数两部分,对每一章节的知识点都进行详细地阐述,紧扣考试大纲,突出重点难点,指导考生快速掌握知识点,轻松应考。
第1部分高等数学第1章函数、极限、连续一、函数1.函数的概念设数集,则称映射为定义在D上的函数,简记为,其中x称为自变量,y称为因变量,D称为定义域.记作,即.函数值的全体所构成的集合称为函数的值域,记作或,即.2.函数的表示法表格法、图形法、解析法(公式法)二、函数的性质1.有界性(1)上界:若,对,有,则称函数在I上有上界,而称为函数在I上的一个上界.(2)下界:若,对有,则称函数在I上有下界,而称为函数在I上的一个下界.(3)有界:若对,,总有,则称在I上有界.2.单调性(1)单调递增:当时,.(2)单调递减:当时,.3.周期性(1)定义:(为正数).(2)最小正周期:函数所有周期中最小的周期称为最小正周期.4.奇偶性的定义域关于原点对称,则:(1)偶函数:,图形关于轴对称.(2)奇函数:,图形关于原点对称.三、特殊函数1.复合函数形如(其中)的函数称为复合函数.复合函数要注意其定义域.2.分段函数对于自变量的不同取值范围,对应法则用不同式子来表示的函数称为分段函数.3.反函数(1)定义设函数是单射,则它存在逆映射,映射称为函数的反函数.(2)性质①当在D上是单调递增函数,在上也是单调递增函数;②当在D上是单调递减函数,在上也是单调递减函数;③的图像和的图像关于直线对称.4.隐函数如果变量满足一个方程,在一定条件下,当取区间I任一值时,相应地总有满足该方程的唯一的存在,则称方程在区间I确定了一个隐函数.四、初等函数1.基本初等函数的性质和图像(1)幂函数①表达式:;②定义域:使有意义的全体实数构成的集合;③单调性:a.当n>0时,图象过点(0,0)和(1,1),在区间上是增函数;b.当n<0时,图象过点(1,1),在区间上是减函数.(2)指数函数①表达式:;②定义域:R;③值域:;④过定点:(0,1);⑤单调性:a.当时,在R单调递增;b.当时,在R上单调递减.⑥图像图1-1 指数函数图像(3)对数函数①表达式:;②定义域:;③值域:R;④过定点:(1,0);⑤当时,;⑥单调性:。
820机械原理最新版考研大纲
820机械原理最新版考研大纲机械原理是机械工程学科中的基础课程,是研究机械结构与机械运动规律的学科。
考研大纲中的机械原理主要包括力学基础、刚体力学、弹性力学、液体力学等内容。
以下是机械原理最新版考研大纲的详细介绍。
一、力学基础1.力学体系和力学基本概念:力学基本概念的引入,力学基本体系的分类和基本要求。
2.牛顿运动定律:牛顿运动定律的内容和基本应用。
3.力学量及其计算:力、质量、重力和压力的概念及其计算。
二、刚体力学1.刚体的平衡:平衡的条件,刚体的受力分析。
2.质心和重心:质心和重心的概念及其计算。
3.刚体的运动学:刚体的运动学描述,刚体的角速度和角加速度的计算。
4.刚体的动力学:动力学基本定理,刚体的动力学运动方程。
三、弹性力学1.弹性体的概念和分类:弹性体的基本概念,弹性体的分类和特点。
2.弹性体的应力与应变:应力和应变的概念及其计算。
3.弹性体的材料力学性能参数:弹性模量、剪切模量、泊松比等参数的计算。
4.应力—应变关系与弹性变形:应力—应变关系的表达式,弹性变形的计算。
四、液体力学1.理想流体的概念和性质:理想流体的基本概念,理想流体的性质及其计算。
2.流体静力学:流体静力学的基本方程和定理,流体静压的计算。
3.流体动力学:连续性方程、伯努利方程、流体动力学的应用。
以上是机械原理最新版考研大纲的主要内容。
在考试中,不仅需要掌握这些知识点的基本概念和理论,还要能够熟练运用这些知识进行问题的分析和解决。
此外,考生还需要多做相关习题和实例,以加深对知识的理解和应用。
在备考过程中,可以结合教材和参考书进行学习,同时多利用一些在线学习资源,如视频教程和模拟考试等,提高自己的学习效率和应试能力。
25考研数学二大纲
25考研数学二大纲
25考研数学二大纲主要包括以下几个方面:
1. 高等代数:考生需要掌握矩阵的基本运算、矩阵的秩、线性方程组的求解、特征值和特征向量等知识点。
对于向量空间、线性变换、线性方程组的解空间等概念和定理也要有清晰的理解。
2. 概率论与数理统计:考生需要掌握概率论的基本概念、随机变量的分布以及随机变量的数字特征等知识点。
同时,也需要掌握数理统计的基本概念和方法,如参数估计、假设检验等。
3. 线性规划与组合数学:考生需要掌握线性规划的基本概念、求解方法和应用场景等知识点。
同时,也需要掌握组合数学的基本概念和定理,如排列、组合、二项式定理等。
4. 离散数学:考生需要掌握离散数学的基本概念和定理,如集合论、图论、逻辑等。
同时,也需要掌握离散概率论的基本概念和方法,如概率分布、期望和方差等。
5. 计算方法:考生需要掌握基本的数值计算方法,如线性代数方程组的求解、数值积分和微分等。
同时,也需要了解计算机编程的基本知识和技能,如数据结构、算法和编程语言等。
6. 数学建模:考生需要了解数学建模的基本概念和方法,如建模过程、数学模型的分类和应用场景等。
同时,也需要掌握一些常见的数学建模工具和软件,如MATLAB、Python等。
总体来说,25考研数学二大纲要求考生具备扎实的数学基础和广泛的数学知识,同时还需要具备一定的计算能力和数学建模能力。
考生需要认真学习和掌握大纲要求的知识点,并积极参加模拟考试和练习,以提高自己的数学水平和应试能力。
2024年数学二考研考试大纲
2024年数学二考研考试大纲如下:一、高等数学1. 函数与极限2. 导数与微分3. 积分4. 常微分方程5. 多元函数微分学6. 多元函数积分学7. 级数8. 空间解析几何9. 向量代数与解析几何10. 多元函数的极值与最值11. 重积分12. 曲线积分与曲面积分13. 场论初步二、线性代数1. 行列式2. 矩阵3. 向量空间4. 线性变换5. 特征值与特征向量6. 二次型7. 正定二次型8. 线性方程组9. 矩阵的对角化10. 实对称矩阵的对角化11. 二次型的标准形与规范形12. 二次型的正定性判定13. 线性空间的基本概念14. 线性空间的同构与基变换15. 线性空间的维数与基16. 线性空间的子空间17. 线性空间的直和与交和18. 线性空间的同态与同构19. 线性空间的泛性质20. 线性空间的完备性与距离21. 线性空间的内积空间22. 内积空间的基与正交性23. 内积空间的正交分解与标准正交基24. 内积空间的谱定理25. 内积空间的算子与本征值问题26. 内积空间的特征值与特征向量问题27. 内积空间的正定性判定问题28. 内积空间的紧性与完备性问题29. 内积空间的Hilbert空间问题30. 内积空间的Banach空间问题31. 内积空间的弱拓扑问题32. 内积空间的弱*拓扑问题33. 内积空间的弱收敛问题34. 内积空间的弱*收敛问题35. 内积空间的弱*一致收敛问题36. 内积空间的弱*可积问题37. 内积空间的弱*可测问题38. 内积空间的弱*连续问题39. 内积空间的弱*有界问题40. 内积空间的弱*紧性问题41. 内积空间的弱*完备性问题42. 内积空间的弱*Hilbert空间问题43. 内积空间的弱*Banach空间问题。
24考研数学二大纲范围
24考研数学二大纲范围考研数学是研究生入学考试中的一门重要科目,对于很多考生来说是一大难点。
其中,数学二大纲涵盖了很多内容,需要考生有扎实的数学基础和解题能力。
本文将对24考研数学二大纲范围进行详细介绍,并提供学习建议,帮助考生更好地备考。
一、高等代数与数学分析高等代数与数学分析是数学的基础,也是考研数学的重要组成部分。
此部分主要包括以下几个方面的内容:1. 矩阵与行列式:矩阵的定义与运算、行列式的定义与性质、特征值与特征向量等。
2. 线性空间:线性空间的定义、子空间与基底、坐标与坐标变换等。
3. 线性变换与矩阵:线性变换的定义与性质、线性变换的矩阵表示、线性变换的相似与合同等。
4. 二次型与正定性:二次型的定义与矩阵表示、正定性的判定与应用等。
以上内容重点是对基本概念的理解和掌握,需要多做习题加深印象。
同时,还要注意理解概念之间的联系,掌握它们之间的转化关系。
二、概率论与数理统计概率论与数理统计是考研数学中的另一大板块,也是应用广泛且实用的数学分支。
下面是该部分的详细内容:1. 随机变量与概率分布:随机变量的定义与分类、离散型随机变量和连续型随机变量的概率分布、期望与方差等。
2. 多维随机变量:多维随机变量的联合概率分布、边缘概率分布、条件概率分布等。
3. 随机变量的数字特征:随机变量的矩、数学期望与方差、协方差与相关系数等。
4. 大数定律与中心极限定理:大数定律与中心极限定理的基本概念及应用。
在学习概率论与数理统计时,需要结合具体的例题进行训练,熟悉概率与统计的计算方法和应用场景。
三、常微分方程常微分方程是数学与工程中一个重要的研究领域,对于涉及到变化规律的问题具有很大的应用价值。
下面是常微分方程的考研大纲范围:1. 基础理论与技巧:常微分方程的基本概念与理论、一阶常微分方程的解法、可降解方程、可分离变量方程等。
2. 高阶线性常微分方程:高阶常微分方程的解法、常系数线性齐次方程与非齐次方程等。
考研数二内容范围有哪些
引言:考研数二是指考研数学二科目的内容范围,它是考生在数学方面的能力综合测试。
本文将详细介绍考研数二的内容范围,包括线性代数、概率论与数理统计、常微分方程、数值分析和离散数学五个大点的内容细节。
概述:考研数二是考研数学科目中的一部分,主要考察考生对于数学基础知识的理解、分析和解题能力。
涉及的内容相对较广,包括线性代数、概率论与数理统计、常微分方程、数值分析和离散数学等方面。
正文:一、线性代数1.1矩阵与向量的基本概念1.2线性方程组与矩阵的求解1.3行列式与特征值特征向量1.4线性空间与子空间1.5线性变换与矩阵的相似与对角化二、概率论与数理统计2.1概率论基本概念与性质2.2随机变量与随机向量2.3概率分布与密度函数2.4数理统计基本概念与方法2.5参数估计与假设检验三、常微分方程3.1常微分方程的基本概念与分类3.2一阶常微分方程的解法3.3高阶常微分方程的解法3.4变系数与常系数线性微分方程3.5常微分方程的数值解法四、数值分析4.1插值与逼近4.2数值微积分4.3数值代数方程的求解4.4数值常微分方程的求解4.5数值线性代数的基本算法五、离散数学5.1集合与命题逻辑5.2代数系统与关系5.3图论基础5.4布尔代数与逻辑门电路5.5离散随机变量与排列组合总结:考研数二的内容范围包括了线性代数、概率论与数理统计、常微分方程、数值分析以及离散数学。
通过对每个大点的详细阐述,我们可以看出,这些内容涉及的数学知识非常广泛,涵盖了数学的基础概念、方法和应用。
掌握了这些内容,考生就可以具备较为扎实的数学基础,为考研数学科目的学习打下坚实的基础。
因此,考生需要认真学习和理解这些内容,并通过练习题和题目的解析来提高自己的解题能力。
2024年全国硕士研究生招生考试大纲 数学二
2024年全国硕士研究生(数学二)招生考试大纲主要包括以下内容:
一、数学分析:
1. 数列的极限及其性质;
2. 函数的极限与连续性;
3. 导数与微分;
4. 高阶微分方程;
5. 定积分与定积分的应用;
6. 二重积分与三重积分;
7. 曲线的切线与法线;
8. 空间曲面的方程与投影;
9. 复数与复变函数。
二、线性代数:
1.向量与空间;
2.行列式;
3.矩阵;
4.线性方程组;
5.二次型与二次齐次式;
6.特征值与特征向量;
7.线性变换;
8.内积与正交补。
三、概率论与数理统计:
1.随机事件与概率;
2.随机变量及其分布;
3.多维随机变量及其分布函数;
4.数字特征;
5.大数定律与中心极限定理;
6.抽样分布;
7.参数估计;
8.假设检验。
请注意,这只是一个大致的框架,具体的内容可能会根据每年的考试大纲有所不同,建议您查阅最新的考研数学二考试指南以获取准确的考试信息。
数二考研范围大纲2024具体
数二考研范围大纲2024具体一、基础知识1.1高等代数1.1.1行列式的定义、性质及计算;1.1.2矩阵的概念、性质及运算;1.1.3矩阵的初等变换、秩以及矩阵的特征值、特征向量;1.1.4线性方程组的解的条件,以及线性方程组解的结构;1.1.5向量空间及其子空间的概念,向量组的线性相关性和线性无关性;1.1.6线性变换的定义、性质以及线性变换的矩阵表示。
1.2数学分析1.2.1极限的概念、性质与运算;1.2.2函数的连续性、可导性以及极值和最值;1.2.3函数的积分与导数的关系;1.2.4曲线的参数方程与极坐标方程;1.2.5一元函数和多元函数的微分学和积分学;1.2.6常微分方程的基本概念、解的存在唯一性、一阶线性常微分方程以及解的表达式;1.2.7多元函数的方向导数、梯度、散度和旋度;1.2.8多元函数的极值与条件极值。
1.3概率论与数理统计1.3.1随机事件的概念和性质;1.3.2概率的定义、性质和运算;1.3.3随机变量的概念、离散型随机变量的概率分布、连续型随机变量的概率密度及分布函数;1.3.4随机变量的数学期望、方差以及协方差;1.3.5大数定律和中心极限定理的基本概念和简单应用;1.3.6统计推断的基本思想和方法,参数估计和假设检验的基本概念和方法。
二、专业知识2.1高等代数2.1.1线性空间、线性子空间、基与维数、线性变换的基本概念;2.1.2特征值和特征向量、对角化与相似矩阵;2.1.3矩阵的标准型及其应用;2.1.4线性方程组推广;2.1.5双线性函数与二次型。
2.2实变函数2.2.1实数域与函数;2.2.2函数列的极限和连续函数;2.2.3导数与微分;2.2.4积分与不定积分;2.2.5无穷级数;2.2.6幂级数。
2.3复分析2.3.1复数系与复函数;2.3.2复变函数的极限与连续性;2.3.3复变函数的导数与积分;2.3.4复变函数的级数展开;2.3.5解析函数与调和函数;2.3.6留数定理和辐角原理。
考研《数学二》大纲
考研《数学二》大纲考研《数学二》大纲高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系。
2.了解函数的有界性、单调性、周期性和奇偶性。
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4.掌握基本初等函数的性质及其图形,了解初等函数的概念。
5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系。
6.掌握极限的性质及四则运算法则。
7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。
2021考研数学二新大纲变化
2021考研数学二新大纲变化2021年的考研数学二科目,相对于之前的考试大纲进行了一些调整和改进。
下面将针对新大纲的主要变化进行详细介绍。
一、知识体系的调整在新大纲中,数学二科目的知识体系相对于之前有了一些调整。
最明显的一个变化就是几何与代数部分调整了知识点的排列顺序。
在新的大纲中,几何部分按照“二维几何—三维几何—空间向量”的顺序进行了重新排列。
这使得考生能够更加系统地学习几何部分的知识,有助于加深对几何学的理解。
此外,新大纲还对一些知识点进行了增删。
原有的复数与解析几何部分新增了复函数的定义和性质、多项式插值和拉格朗日插值法等内容;而在常微分方程部分,去掉了一阶线性非齐次方程的解法这一知识点。
二、题目形式的变化除了知识体系的调整外,新大纲还对题目形式进行了一些变化。
首先,在选择题部分,新大纲加强了对应用题的考察,更加注重解决实际问题的能力。
其次,在填空题部分,新大纲增加了部分词语填空题,要求考生对数学术语的理解和掌握。
另外,值得注意的是,在解答题部分,新大纲对证明题和计算题的比例进行了调整。
新大纲要求考生解答题目时要注重推理和证明的能力,要求解答题更加注重思考和理解,而不是简单地进行计算。
三、命题特点的变化2021年新大纲下的数学二科目,也变化了一些命题的特点。
在选择题部分,新大纲中的选择题更加综合性和有难度,注重考查考生的知识运用和解决问题的能力。
相对于之前的考试,这些题目更加贴近实际,更能考察考生的分析和判断能力。
在解答题部分,新大纲要求考生在解答题目时不仅要掌握基本的计算技巧,还要注重运用数学方法进行问题的证明和推理。
这对于考生的思维能力和逻辑能力提出了更高的要求。
四、备考的建议根据2021年考研数学二科目的新大纲变化,考生在备考过程中可以采取以下的策略。
首先,要根据新大纲明确重点,有针对性地进行学习和复习;其次,要增强对数学基础知识的掌握,特别是基本的计算技能和公式的记忆;再次,要进行实际问题的练习和应用题的解题训练,提高解决实际问题的能力;最后,要注重提高推理和证明的能力,加强对解答题的训练。
数二考研范围大纲
数二考研范围大纲考研数学二是许多考研学子的重要科目之一,它的大纲范围是我们考生备考的重点和难点。
在备考的过程中,我们需要对数二的大纲进行深入了解和研究,才能够有针对性地进行备考,提高我们的复习效率和通过考试的几率。
数二考研的大纲主要包括以下几个方面的内容:第一部分是高等代数和数学分析。
在这个部分中,主要涉及到线性代数、矩阵理论、向量空间、内积空间、特征值和特征向量、一阶微分方程、高阶微分方程等内容。
这部分的内容是数学二考研中我们需要重点掌握和理解的。
第二部分是数理统计与概率论。
在这个部分中,我们需要学习和掌握数理统计和概率论的基本原理和方法,包括概率的基本概念、随机变量、概率分布、参数估计、假设检验等内容。
这个部分的内容对于我们理解概率和统计的基本原理和方法非常重要,需要我们重点关注和学习。
第三部分是数值分析。
在这个部分中,我们需要学习和掌握数值计算的基本方法和技巧,包括数值计算的误差分析、插值与逼近、数值积分与数值微分等内容。
这个部分的内容对于我们在实际问题中进行数值计算和模拟非常重要,需要我们深入理解和熟练掌握。
第四部分是常微分方程。
在这个部分中,我们需要学习和掌握常微分方程的基本理论和解法,包括一阶常微分方程的解法、高阶常微分方程的解法、常微分方程的初值问题、线性常微分方程和变系数常微分方程等内容。
这个部分的内容对于我们理解和解决实际问题中的微分方程非常重要,需要我们进行深入学习和实践。
总结来说,在数二的考研范围大纲中,我们需要学习和掌握高等代数和数学分析、数理统计与概率论、数值分析和常微分方程等几个方面的内容。
在备考的过程中,我们需要根据大纲的要求,有针对性地进行复习和练习,提高我们的数二考研水平和通过考试的几率。
以上是关于《数二考研范围大纲》的文档,希望对大家了解数二考研的大纲范围有所帮助。
在备考过程中,我们要注重理论的学习和实践的实践,不断提高自己的数学能力和解题能力,为顺利通过数二考研做好充分准备。
考研数学二大纲3篇
考研数学二大纲第一篇:线性代数一、向量空间1. 向量空间的定义与性质2. 子空间定义与例子3. 向量组的线性相关与线性无关4. 极大线性无关组与基5. 向量空间的维数6. 基变换公式7. 矩阵的秩8. 四个基本子空间9. 向量空间的同构10. 线性变换的定义和性质11. 矩阵的表示和转置12. 线性变换和矩阵的秩13. 相似矩阵和对角化二、矩阵论1. 矩阵的代数运算2. 矩阵的初等变换3. 行阶梯形和简化阶梯形矩阵4. 矩阵的逆和伴随矩阵5. 克拉默法则6. 矩阵的特征值和特征向量7. 对称矩阵的对角化8. 正交矩阵和单位ary矩阵9. 奇异值分解三、线性方程组1. 齐次线性方程组的解法2. 非齐次线性方程组的通解和特解3. 齐次线性方程组解的结构4. 非齐次线性方程组的高斯消元法5. 矩阵的秩和线性方程组的解的关系6. 非齐次线性方程组的解的个数7. 矩阵的行列式和线性方程组的解的关系8. 线性方程组的参数化解四、特殊矩阵1. 上三角矩阵、下三角矩阵和对角矩阵2. 实对称矩阵和正定矩阵3. 复共轭矩阵和Hermite矩阵4. Jordan标准形五、线性空间的几何应用1. 向量空间的内积和范数2. 正交向量组、正交投影和Gram-Schmidt正交化3. 向量的夹角和长度4. 平面及其方程和直线及其方程5. 空间中的直线和平面6. 球、圆和旋转的概念7. 二次曲线和二次曲面六、其他相关部分1. 行列式的定义、性质和计算2. 向量和矩阵的积3. 逆矩阵和线性方程组的通解4. 特征值和特征向量的计算5. 欧氏空间及其性质6. 线性空间和向量空间的差别7. 矩阵的迹和行列式的关系第二篇:概率统计一、随机事件及其概率1. 随机事件和样本空间2. 随机事件的概率和掷骰子问题3. 条件概率及乘法公式4. 全概率公式和贝叶斯公式5. 随机事件统计意义及其应用二、随机变量及其分布1. 随机变量和离散随机变量2. 连续随机变量和正态分布3. 分布函数和密度函数4. 分布函数函数的特点和变换5. 随机变量的期望和方差6. 协方差和相关系数三、概率分布和大数定律1. 均匀分布和二项分布2. 泊松分布和指数分布3. 伯努利分布和离散型分布4. 中心极限定理和大数定律五、假设检验及其应用1. 参数估计的方法和理论2. 假设检验及其基本步骤3. 判断检验统计量和检验的标准4. 检验的类型和检验的应用五、回归分析及其应用1. 简单线性回归模型和多元回归模型2. 线性估计和最小二乘估计3. 回归系数的解释和意义4. 回归分析的应用和推断六、其他相关部分1. 多项分布和正态总体的推断2. χ2分布和F分布的性质和应用3. 随机变量和概率的重点和难点4. 抽样分布和置信区间的估计5. 统计推断的应用和计算方法第三篇:实分析一、数列极限1. 数列和极限的概念2. 数列极限的性质和判别法则3. 收敛数列的上限和下限性质4. 数列的单调性和递推数列的收敛5. Cauchy准则和部分和与收敛的关系6. Stolz定理和夹逼定理二、函数极限和连续1. 函数极限的定义2. 函数极限的运算和计算方法3. 函数的连续性和间断点的分类4. 点、区间的连续性和闭集5. 一致连续性和介值定理三、导数和微分1. 导数的概念和定义2. 导数的性质、运算和计算法则3. 泰勒公式和应用4. 导数的连续性和可导性5. 微分的定义和性质6. 微分和导数的关系四、积分和不等式1. 可积性和Riemann和Lebesgue积分2. 积分的性质和常用的计算公式3. 积分的应用和重要定理4. 柯西不等式和霍尔德不等式5. 三角不等式和欧式空间的性质五、级数和函数项级数1. 级数和收敛性的定义和判别法2. 级数极限的性质和运算3. 绝对收敛和条件收敛的关系4. 非单调项级数和Leibniz定理5. 函数项级数的收敛和一致收敛六、一元函数的应用1. 绝对极值和有界性2. 函数的单调性和反函数3. 极值、驻点和拐点定理4. 曲率和曲率圆5. 多元函数的连续性和极限七、其他相关部分1. 多元函数的微分和全微分2. 多元函数的偏导数和方向导数3. 隐函数和反函数的求导和计算方法4. 一元函数和多元函数的应用5. 异常点和奇点的计算和讨论。
考研数学二专业知识点总结
考研数学二专业知识点总结
一、线性代数
1.1 线性方程组及其解的表示
1.2 行列式及其应用
1.3 矩阵及其运算
1.4 线性空间
1.5 线性变换
1.6 特征值和特征向量
1.7 对称矩阵的对角化
1.8 正交矩阵的特征值与特征向量
二、概率与统计
2.1 随机变量及其分布
2.2 多元随机变量及其分布
2.3 随机变量的数字特征
2.4 多元随机变量的数字特征
2.5 大数定律与中心极限定理
2.6 统计推断
2.7 回归分析
2.8 方差分析
三、常微分方程
3.1 一阶常微分方程
3.2 高阶常微分方程
3.3 线性常系数微分方程
3.4 非齐次线性常系数微分方程及其应用
3.5 矩阵微分方程
3.6 非线性微分方程
3.7 特殊常微分方程
3.8 线性化与稳定性
四、偏微分方程
4.1 扩散方程
4.2 波动方程
4.3 热传导方程
4.4 边值问题
4.5 分离变量法
4.6 特征线法
4.7 变分法
4.8 黎曼问题
以上是数学二专业的知识点总结,这些知识点都是考研数学二专业的重要内容,希望同学们在备战考研数学二专业的时候,能够仔细复习这些知识点,掌握这些知识,提高数学二专业的成绩。
2021考研数学二考试大纲解析
2021考研数学二考试大纲解析1.大纲变动对比(1)数学(二)试卷内容结构高等数学(微积分)分值比例由“78%”改为“约80%”,线性代数分值比例由“22%”改为“约20%”,(2)数学(二)试卷题型结构发生了变化选择题由“8小题,每小题4分,共32分”改为“10小题,每小题5分,共50分”;填空题由“6小题,每小题4分,共24分”改为“6小题,每小题5分,共30分”;解答题由“9小题,共94分”改为“6小题,共70分.(3)数学(二)大纲内容的变化有两处(与2021年考试大纲相比)(1)在一元积分学部分,“了解反常积分的概念,会计算反常积分”修订为“理解反常积分的概念,了解反常积分收敛的比较判别法,会计算反常积分”。
(2)在多元积分学部分,“了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标)”修订为“理解二重积分的概念,了解二重积分的基本性质,了解二重积分的中值定理,掌握二重积分的计算方法(直角坐标、极坐标)”。
(3)增加了“了解而二重积分的积分中值定理”(4)在微分方程部分,“理解二阶线性微分方程解的性质及解的结构定理”修订为“理解线性微分方程解的性质及解的结构”。
考试范围扩大.(5)线性代数部分的第五章矩阵的特征值和特征向量部分,“会将矩阵化为相似对角矩阵”变为“掌握将矩阵化为相似对角矩阵的方法”,增加了对矩阵化为对角矩阵方法的掌握(6)线性代数部分的第五章矩阵的特征值和特征向量部分,实对称矩阵的特征值和特征向量的性质的考试要求“理解”变为“掌握”,考试要求提高.(7)线性代数部分,第六章的二次型部分,“会用矩阵形式表示二次型”变为“掌握二次型及其矩阵表示”,考试要求提高.(8)线性代数部分,第六章的二次型部分,“会用正交变换化二次型为标准形”变为“掌握用正交变换化二次型为标准形的方法”,考试要求提高.2.大纲解析(1)从分值上看,数学二增加了高数部分的分值(增加了3-5分),更加体现了高数的优势学科位子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、多元函数微积分学
考试内容
多元函数的概念,二元函数的几何意义,二元函数的极限与连续的概念,有
界闭区域上二元连续函数的性质,多元函数的偏导数和全微分,多元复合函数、
隐函数的求导法,二阶偏导数,多元函数的极值和条件极值、最大值和最小值,
二重积分的概念、基本性质和计算
考试要求
1.了解多元函数的概念,了解二元函数的几何意义。
2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质。
3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,
会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数。
4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质
(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
二、一元函数微分学
考试内容
导数和微分的概念,导数的几何意义和物理意义,函数的可导性与连续性之
间的关系,平面曲线的切线与法线,导数和微分的四则运算,基本初等函数的导
数,复合函数、反函数和隐函数以及参数方程所确定的函数的微分法,高阶导数,
考试内容
函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性,复合函数、反函数、分段函数和隐函数,基本初等函数的性质及其图形,初等函数,函数关系的建立
数列极限与函数极限的定义及其性质,函数的左极限和右极限,无穷小量和
无穷大量的概念及其关系,无穷小量的性质及及无穷小量的比较,极限的四则运
算,极限存在的两个准则:单调有界准则和夹逼准则,两个重要极限:
化为相似对角矩阵。
3.理解实对称矩阵的特征值和特征向量的性质。
六、二次型
考试内容
二次型及其矩阵表示,合同变换与合同矩阵,二次型的秩,惯性定理,二
次型的标准形和规范形,用正交变换和配方法化二次型为标准形,二次型及其矩
阵的正定性
考试要求
1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的
一些物理量,理解函数的可导性与连续性之间的关系。
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数
公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。
3
3.了解高阶导数的概念,会求简单函数的高阶导数。
4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的
掌握换元积分法与分部积分法。
3.会求有理函数、三角函数有理式和简单无理函。
5.了解反常积分的概念,会计算反常积分。
6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线
的弧长、旋转体的体积及侧面积、平等截面面积为已知的立体体积、功、引
矩阵的转置,逆矩阵的概念和性质,矩阵可逆的充分必要条件,伴随矩阵,矩阵
的初等变换,初等矩阵,矩阵的秩,矩阵的等价,分块矩阵及其运算
考试要求
1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩
阵、反对称矩阵和正交矩阵以及它们的性质。
2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方
阶导数,当( ) 0 f // x >时,f(x)的图形是凹的;当( ) 0 f // x <时,
f(x)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描
绘函数的图形。
9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径。
三、一元函数积分学
考试内容
原函数和不定积分的概念,不定积分的基本性质,基本积分公式,定积分的
概念和基本性质,定积分中值定理,积分上限的函数及其导数,牛顿—莱布尼茨
(Newton-Leibniz)公式,不定积分和定积分的换元积分法与分部积分法,有理
函数、三角函数的有理式和简单无理函数的积分,反常(广义)积分,定积分的
应用
考试要求
1.理解原函数的概念,理解不定积分与定积分的概念。
2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,
微分方程,可降阶的高阶微分方程,线性微分方程解的性质及解的结构定理,二
阶常系数齐次线性微分方程,高于二阶的某些常系数齐次线性微分方程,简单的
二阶常系数非齐次线性微分方程,微分方程的简单应用
考试要求
1.了解微分方程及其阶、解、通解、初始条件和特解等概念。
2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程。
3.会用降阶法解下列形式的微分方程:
y(n) = f (x), y// = f (x, y/ )和y// = f ( y, y/ )。
4.理解二阶线性微分方程解的性质及解的结构定理。
5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐
次线性微分方程。
6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的
二阶常系数非齐次线性微分方程。
7.会用微分方程解决一些简单的应用问题。
线性代数
一、行列式
考试内容
行列式的概念和基本性质,行列式按行(列)展开定理
考试要求
1.了解行列式的概念,掌握行列式的性质。
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式。
二、矩阵
考试内容
矩阵的概念,矩阵的线性运算,矩阵的乘法,方阵的幂,方阵乘积的行列式,
5.会用初等行变换求解线性方程组。
五、矩阵的特征值和特征向量
考试内容
7
矩阵的特征值和特征向量的概念、性质,相似矩阵的概念及性质,矩阵可相
似对角化的充分必要条件及相似对角矩阵,实对称矩阵的特征值、特征向量及其
相似对角矩阵
考试要求
1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量。
2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵
向量组的极大线性无关组,等价向量组,向量组的秩,向量组的秩与矩阵的秩之
间的关系,向量的内积,线性无关向量组的正交规范化方法
考试要求
1.理解n维向量、向量的线性组合与线性表示的概念。
2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的
有关性质及判别法。
3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性
概念。
2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定
理,会用正交变换和配方法化二次型为标准形。
3.理解正定二次型、正定矩阵的概念,并掌握其判别法。__
阵乘积的行列式的性质。
3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解
伴随矩阵的概念,会用伴随矩阵求逆矩阵。
4.理解矩阵的初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解
矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法。
5.了解分块矩阵及其运算。
三、向量
考试内容
向量的概念,向量的线性组合与线性表示,向量组的线性相关与线性无关,
函数连续的概念,函数间断点的类型,初等函数的连续性,闭区间上连续函
数的性质。
2
考试要求
1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系。
2.了解函数的有界性、单调性、周期性和奇偶性。
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4.掌握基本初等函数的性质及其图形,了解初等函数的概念。
2013考研数2大纲详细版
2012考研数学2大纲
所谓“了解”和“理解”是指对于“基本概念”的理解程度,“会求”和“掌握”则是指对于“基本解题方法”的把握程度。当然“了解”低于“理解”,“会求”低于“掌握”。
因此“了解”和“会求”一般限于出选择和填空题,“理解”和“掌握”则有可能出计算题和证明题。
一、函数、极限、连续
无关组及秩。
4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系。
5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法。
四、线性方程组
考试内容
线性方程组的克莱姆(Crammer)法则,齐次线性方程组有非零解的充分必
要条件,非齐次线性方程组有解的充分必要条件,线性方程组解的性质和解的结
了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘
数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单
的应用题。
5.了解二重积分的概念与基本性质,掌握二重积分(直角坐标、极坐标)的计算方法。
五、常微分方程
考试内容
常微分方程的基本概念,变量可分离的微分方程,齐次微分方程,一阶线性
一阶微分形式的不变性,微分中值定理,洛必达(L’Hospital)法则,函数单调
性的判别,函数的极值,函数图形的凹凸性、拐点及渐近线,函数图形的描绘,
函数的最大值与最小值,弧微分,曲率的概念,曲率圆与曲率半径
考试要求
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的的几何意义,
会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述
5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极
限、右极限的关系。
6.掌握极限的性质及四则运算法则。
7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求
极限的方法。
8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷
小量求极限。
9.理解函数连续性的概念(含左连续和右连续),会判别函数间断点的类型。
导数。
5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)