小学奥数公式大全

合集下载

学习小学奥数的必备十大公式

学习小学奥数的必备十大公式

学习小学奥数的必备十大公式:一、和差问题的公式(和+差)÷2=大数(和-差)÷2=小数二、和倍问题的公式和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)三、差倍问题的公式差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)四、植树问题的公式1.非封闭线路上的植树问题主要可分为以下三种情形:1.1.如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)1.2.如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数1.3.如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2.封闭线路上的植树问题的数量关系如下:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数五、盈亏问题的公式(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数六、相遇问题的公式相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间七、追及问题的公式追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间八、流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2九、浓度问题的公式溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量十、利润与折扣问题的公式利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)。

(完整版)小学奥数公式汇总

(完整版)小学奥数公式汇总

奥数公式和差倍问题:年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度” 等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;植树问题:鸡兔同笼问题:基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数X总头数-总脚数)宁(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数X总头数)宁(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

盈亏问题:基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)宁两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)宁两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)宁两次每份数的差基本特点:对象总量和总的组数是不变的。

关键问题:确定对象总量和总的组数。

牛吃草问题:基本思路:假设每头牛吃草的速度为“ 1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

基本特点:原草量和新草生长速度是不变的;关键问题:确定两个不变的量。

最新小学奥数所有公式

最新小学奥数所有公式

小学奥数公式和差问题的公式(和+差)÷2=大数 (和-差)÷2=小数和倍问题的公式和÷(倍数-1)=小数小数×倍数=大数 (或者和-小数=大数) 差倍问题的公式差÷(倍数-1)=小数小数×倍数=大数 (或小数+差=大数) 植树问题的公式1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题的公式(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题的公式相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题的公式追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺水路程=顺水速度×时间逆水路程=逆水速度×时间顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2过桥问题过桥问题的一船的数量关系是:路程=桥长+车长车速=(桥长+车长)÷通过时间通过时间=(桥长+车长)÷车速车长=车速×通过时间-桥长桥长=车速×通过时间-车长浓度问题的公式溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题的公式利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)等差数列求和数列是指按一定规律顺序排列成一列数。

小学奥数公式大全

小学奥数公式大全

小学奥数公式大全一、基本运算符号:1.加法公式:a+b=b+a2.减法公式:a-b≠b-a3.乘法公式:a×b=b×a4.除法公式:a÷b≠b÷a二、数的性质:1.奇数与奇数相加等于偶数:奇数+奇数=偶数2.奇数与偶数相加等于奇数:奇数+偶数=奇数3.偶数与偶数相加等于偶数:偶数+偶数=偶数4.0与任何数相乘等于0:0×a=05.1与任何数相乘等于原数:1×a=a6. 除零是不存在的:a ÷ 0 = undefined三、算术运算公式:1.两个数相加:a+b=c2.两个数相减:a-b=c3.两个数相乘:a×b=c4.两个数相除:a÷b=c四、公约数与最大公约数:1.求两个数的公约数:a、b的公约数有d2.求两个数的最大公约数:a、b的最大公约数为d五、倍数与最小公倍数:1.求一个数的倍数:a的倍数有b2.求两个数的最小公倍数:a、b的最小公倍数为c六、平方与平方根:1.一个数的平方:a的平方是b,即a²=b2.开平方:一个数的平方根:√a=b,b²=a七、百分数与比例:1.百分数转换为小数:百分数÷100=小数2.小数转换为百分数:小数×100=百分数3.比例换算:a:b=c:d八、平均数:1.n个数的平均数:(a₁+a₂+...+aₙ)÷n=平均数九、等差数列:1.等差数列的通项公式:第n个数aₙ=a₁+(n-1)×d2.求等差数列前n项和:前n项和Sn=(a₁+aₙ)×n÷2十、等比数列:1.等比数列的通项公式:第n个数aₙ=a₁×q^(n-1)2.求等比数列前n项和:前n项和Sn=a₁(1-q^n)÷(1-q),(q≠1)十一、三角形:1.三角形的周长:周长=边1+边2+边32.直角三角形勾股定理:c²=a²+b²(c为斜边,a、b为直角边)3. 正弦定理:a/sinA = b/sinB = c/sinC4. 余弦定理:a² = b² + c² - 2bc × cosA。

小奥数公式定理大全

小奥数公式定理大全

小奥数公式定理大全
小学奥数公式定理如下:
1. 每份数×份数=总数,总数÷每份数=份数,总数÷份数=每份数。

2. 1倍数×倍数=几倍数,几倍数÷1倍数=倍数,几倍数÷倍数=1倍数。

3. 速度×时间=路程,路程÷速度=时间,路程÷时间=速度。

4. 单价×数量=总价,总价÷单价=数量,总价÷数量=单价。

5. 工作效率×工作时间=工作总量,工作总量÷工作效率=工作时间,工作总量÷工作时间=工作效率。

6. 加数+加数=和,和-一个加数=另一个加数。

7. 被减数-减数=差,被减数-差=减数,差+减数=被减数。

8. 因数×因数=积,积÷一个因数=另一个因数。

9. 被除数÷除数=商,被除数÷商=除数,商×除数=被除数。

以上是小奥数的公式定理,仅供参考,可以查阅奥数书籍获取更多公式定理。

小学奥数常用公式

小学奥数常用公式

§1等差数列公式:1、末项=首项+项数-1×公差2、an =a1+n-1 ×d3、项数=末项-首项÷公差+14、n=an -a1÷d+15、中项定理:和=中间数×项数6、 S =中间数×n7、仅奇数列可用注意:连续的奇数或偶数肯定是等差数列,公差一定是2.平方差公式:a2-b2=a+b×a-ba+ba-b=a2-b2§2统筹与最优化时间统筹:单列和多列排队排序:快的在前,慢的在后注意:每列不同位置的等待人数;过河问题画图快去快回,慢者结伴5人以下常用,7人以上可尝试;地点统筹:1、点无大小奇数点选中间点,偶数点选中间段;2、点有大小一段法轻往重移,小往大移§3整除特征:四大金刚:变形金刚:2×5=10 ×5=14×25=100 4×=108×125=1000 8×=1016×625=10000㈠末尾系:1、末1位:2、52、末2位:4、253、末3位:8、125㈡和系:1、数字和弃9 法:3、92、两位一截求和:33、99重点㈢差系:11奇数位数字和-偶数位数字和㈣截位系三位一截7、11、13奇段和-偶段和;㈤试除法适用于末尾未知二部曲 1、用最大数试;992、检验;综合就用:⑴拆数拆成学过的数⑵先考虑末尾系,再考虑其它;§4加乘原理:1、加法原理:分类相加类类独立2、乘法原理:分步相乘,步步相关;常规题型:1、排数字:⑴注意有无重复;⑵特殊位置优先处理;⑶“0”的出现① 0不能放在首位② 0和偶数同时出现必分类2、插旗子:按顺序分类讨论;染色问题:1、排序:从邻圈最多开始排;2、染色:颜色数量;§5流水行船:1、基本公式:① V顺=V船+V水② V逆=V船-V水③ V船=V顺+V逆÷2④V水=V顺-V逆÷2静水速度=船速 V静= V船顺水速度=船速+水速 V顺=V船+V水逆水速度=船速-水速 V逆=V船-V水相遇追击:相遇:S和=V和×t相遇追击:S差=V差×t追击水面上:速度和、速度差与水速无关;搬到陆地上做;§6 抽屉原理初步:1、最不利原则:倒霉蛋原则,把最倒霉的情况都考虑一遍;2、抽屉原则:⑴把n+1个苹果放入n个抽屉,必定至少有2个苹果在一个抽屉里;⑵苹果数÷抽屉数=商…余至少有的苹果=商+1基本题型:证明题、计算题§7最值问题:给几个小朋友分苹果:⑴若每人苹果数可相同:最多的最少=平均数+1⑵若苹果数不能相同:最多的最少:平均值附近局部调整极端最多的最多,极端思想最值原理:和一定,差小积大§8智巧趣题:1、过河问题⑴画图⑵河两端、河上都必须共存2、倒水问题⑴是否可以倒掉⑵加减构造⑶列表§9 进位制初步1、进制初识⑴逢n进1⑵进制当中的可用数字:十进制:0~9十二进制:0~9、A、B、C二进制:0、12、进制间的转换⑴n进制→十进制:按权相加⑵十进制→n进制:短除,除n倒取余数⑶m进制→n进制:以十进制为桥梁3、进制计算⑴逢n进1⑵借1当n用:二进制,借1当2用§10相遇及追及综合1、核心公式:S=v×t相遇:S和=v和×t反向追及:S差=v差×t同向2、环形跑道⑴相遇反向a、同时同地:每遇一次,合跑一圈b、同时不同地:注意第一次,即初始距离⑵追及同向a、同时同地:每追上一次,多跑一圈b、同时不同地:注意第一次和方向,即初始距离3、火车问题:七大公式⑴火车过树:无宽度,无速度火车尾绑小人L车=V车×t⑵火车过桥:有长度,无速度a、完全过桥:L车+L桥=V车×tb、完全在桥:L桥-L车=V车×t⑶火车过人必须掌握无宽度,有速度a、火车遇人:L车=V车+V人×tb、火车追人:L车=V车-V人×t⑷火车过火车了解a、相遇:LA+LB=VA+VB×tb、追及:LA+LB=VA-VB×t§11对称平移旋转1、对称⑴轴对称图形⑵画出轴对称图形①做垂直②等距离⑶将军饮马①把同侧的两个点转化到异侧做对称点②连接异侧的两点,找交点③画出最短线路2、平移⑴形状、大小不变⑵角和对应边不变3、旋转⑴确定旋转中心和旋转的角度⑵旋转过程中大小和形状不变§12图形的分割和剪拼1、面积相等2、形状、面积相等①常见图形的分割方法②切小:倍数关系。

(完整版)小学奥数公式汇总

(完整版)小学奥数公式汇总
2、常用符号:整除符号“|”,不能整除符号“”;因为符号"•”,所以的
符号
二、整除判断方法:
1.能被2、5整除:末位上的数字能被2、5整除。
2.能被4、25整除:末两位的数字所组成的数能被4、25整除。
3.能被8、125整除:末三位的数字所组成的数能被8、125整除。
4.能被3、9整除:各个数位上数字的和能被3、9整除。
关键问题:确定已知量和未知量,确定使用的公式;
二进制及其应用: 十进制:用0~9十个数字表示,逢10进1;不同数位上的数字表示不同的含义,
十位上的2表示20,百位上的2表示200。所以234=200+30+4=次102+3X 10+4。
鼻时&AAA】,=AnX10n-1+An-1 x 10n-2+An-2 x
那么12和18的公约数有:1、2、3、6;
那么12和18最大的公约数是:6,记作(12, 18) =6;
求最大公约数基本方法:
1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。
2、短除法:先找公有的约数,然后相乘。
3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的 最大公约数。
奥数公式
和差倍问题:
和差1可题
和倍问题
差倍问题
已知条件
几个数的和马差
几个数的和与倍数
几个数的差与倍数
公式适用范围
已知两个数的和,差,倍数关系
公式r
1(和一差)+2=较小数 较小数+差=较大数 和-较小数=较大数
2(和+差)+2=较大数 较大数-差=较小数 和-较大数=较小数
和+(倍数+1)=小数 小数X倍数=大数 和一小数=大数

小学奥数必考公式25个

小学奥数必考公式25个

25个小学奥数必考公式1、和差倍问题:每份数×份数=总数总数÷每份数=份数总数÷份数=每份数倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数2、年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3、归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4、植树问题:5、鸡兔同笼问题:基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

6、盈亏问题:基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量。

基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量。

基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学奥数公式大全
1 、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数
2 、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3 、速度×时间=路程路程÷速度=时间路程÷时间=速度
4 、单价×数量=总价总价÷单价=数量总价÷数量=单价
5 、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6 、加数+加数=和和-一个加数=另一个加数
7 、被减数-减数=差被减数-差=减数差+减数=被减数
8 、因数×因数=积积÷一个因数=另一个因数
9 、被除数÷除数=商被除数÷商=除数商×除数=被除数
1 、正方形
C周长 S面积 a边长周长=边长× 4C=4a
面积=边长×边长S=a×a
表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a
3 、长方形
C周长 S面积 a边长周长=(长+宽)×2C=2(a+b)
面积=长×宽S=ab
4 、长方体
V:体积 s:面积 a:长 b: 宽 h:高(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高V=abh
5 、三角形
s面积 a底 h高面积=底×高÷2s=ah÷2
三角形高=面积×2÷底三角形底=面积×2÷高
6 、平行四边形
s面积 a底 h高面积=底×高s=ah
7 、梯形
s面积 a上底 b下底 h高面积=(上底+下底)×高÷2s=(a+b)× h÷2
8、圆形
S面积 C周长∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径C=∏d=2∏r
(2)面积=半径×半径×∏
9 、圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径
10 、圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)
差倍问题
差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距全长=株距×株数株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距全长=株距×株数株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间
浓度问题
溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量
--------------------------------------------------------------------------------
每周专题训练(四)
1、甲、乙两车分别从A、B两地出发相向而行。

出发时,甲、乙的速度比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米。

那么A、B两地相距___千米。

【解】甲、乙原来的速度比是5:4,相遇后的速度比是
5×(1-20%):4×(1+20%)=4:4.8=5:6。

相遇时,甲、分别走了全程的和。

A、B两地相距10÷(-× )=450(千米)
2、早晨8点多钟有两辆汽车先后离开化肥厂向幸福村开去。

两辆车的速度都是每小时60
千米。

8点32分的时候,第一辆汽车离开化肥厂的距离是第二辆汽车的三倍。

到了8 点39分的时候,第一辆汽车离开化肥厂的距离是第二辆汽车的2倍。

那么,第一辆汽车是8点几分离开化肥厂的?
【解】39-32=7,这7分钟每辆行驶的距离恰好等于第二辆车在8点32分行过的距离的1(=3-2)倍,因此第一辆车在8点32分已行了7×3=21(分),它是8点11分离开化肥厂的(32-21=11)
注:本题结论与两车的速度大小无关,只要它们的速度相同,答案都是8点11分。

3、甲、乙两车都从A地出发经过B地驶往C地,A、B两地的距离等于B、C两地的距离。

乙车的速度是甲车速度的80%。

已知乙车比甲车早出发11分钟,但在B地停留了7分钟;甲则不住地驶往C地。

最后乙车比甲车迟4分钟到达C地。

那么,乙车出发后____分钟时,甲车就超过乙车。

【解】从A地到C地,不考虑中途停留,乙车比甲车多用时8分钟.最后甲比乙早到4分钟,
所以甲车在中点B超过乙.甲车行全程所用时间是乙所用时间的80%,所以乙行全程用
8÷(1-80%)=40(分钟) 甲行全程用40-8=32(分钟)
甲行到B用32÷2=16(分钟)
即在乙出发后11+16=27(分钟)甲车超过乙车
4、铁路旁的一条平等小路上,有一行人与一骑车人同时向南行进,行人速度为3.6千米/小时,骑车人速度为10.8千米/小时。

这时,有一列火车从他们背后开过来,火车通过行人用22秒钟,通过骑车人用26秒钟。

这列火车的车身总长是____(①22米②56米③781米④286米⑤308米)
【解】设这列火车的速度为x米/秒,又知行人速度为1米/秒,骑车人速度为3米/秒。

依题意,这列火车的车身长度是(x-1)×22=(x-3)×26化简得4 x=56,即x=14(米/秒)所以火车的车身总长是(14-1)×22=286(米),故选④。

6、某司机开车从A城到B城。

如果按原定速度前进,可准时到达。

当路程走了一半时,司机发现前一半路程中,实际平均速度只可达到原定速度的11/13 。

现在司机想准时到达B 城,在后一半的行程中,实际平均速度与原速度的比是_______。

【解】前一半路程用的时间是原定的,多用了-1=。

要起准时到达,后一半路程只能用原定时间的1-=,所以后一半行程的速度是原定速度的,即11:9
7、甲、乙两辆汽车分别从A、B两站同时出发,相向而行,第一次相遇在距A站28千米处,相遇后两车继续行进,各自到达B、A两站后,立即沿原路返回,第二次相遇在距A站60
千米处。

A、B两站间的路程是___千米。

【解】甲、乙第一次相遇在C处,此时,甲、乙所行路程之和等于A、B间的距离。

甲、乙第二次相遇在D处,乙由C到A再沿反方向行到D,共走60+28=88(千米),甲由C到B再沿反方向行到D。

此时,甲、乙所行路程之和等于A、B间的距离的2倍,于是第二次之和等于A、B间的距离的2倍,甲、乙所走的路程也分别是第一次相遇时各自所行路程的2倍。

这样,第一次相遇时乙所行路程BC=88÷2=44(千米)。

从而AB=28+44=72(千米)。

相关文档
最新文档