小学五年级奥数常用公式
学习小学奥数的必备十大公式
学习小学奥数的必备十大公式:一、和差问题的公式(和+差)÷2=大数(和-差)÷2=小数二、和倍问题的公式和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)三、差倍问题的公式差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)四、植树问题的公式1.非封闭线路上的植树问题主要可分为以下三种情形:1.1.如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)1.2.如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数1.3.如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2.封闭线路上的植树问题的数量关系如下:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数五、盈亏问题的公式(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数六、相遇问题的公式相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间七、追及问题的公式追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间八、流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2九、浓度问题的公式溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量十、利润与折扣问题的公式利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)。
小学奥数公式大全
小学奥数公式大全一、基本运算符号:1.加法公式:a+b=b+a2.减法公式:a-b≠b-a3.乘法公式:a×b=b×a4.除法公式:a÷b≠b÷a二、数的性质:1.奇数与奇数相加等于偶数:奇数+奇数=偶数2.奇数与偶数相加等于奇数:奇数+偶数=奇数3.偶数与偶数相加等于偶数:偶数+偶数=偶数4.0与任何数相乘等于0:0×a=05.1与任何数相乘等于原数:1×a=a6. 除零是不存在的:a ÷ 0 = undefined三、算术运算公式:1.两个数相加:a+b=c2.两个数相减:a-b=c3.两个数相乘:a×b=c4.两个数相除:a÷b=c四、公约数与最大公约数:1.求两个数的公约数:a、b的公约数有d2.求两个数的最大公约数:a、b的最大公约数为d五、倍数与最小公倍数:1.求一个数的倍数:a的倍数有b2.求两个数的最小公倍数:a、b的最小公倍数为c六、平方与平方根:1.一个数的平方:a的平方是b,即a²=b2.开平方:一个数的平方根:√a=b,b²=a七、百分数与比例:1.百分数转换为小数:百分数÷100=小数2.小数转换为百分数:小数×100=百分数3.比例换算:a:b=c:d八、平均数:1.n个数的平均数:(a₁+a₂+...+aₙ)÷n=平均数九、等差数列:1.等差数列的通项公式:第n个数aₙ=a₁+(n-1)×d2.求等差数列前n项和:前n项和Sn=(a₁+aₙ)×n÷2十、等比数列:1.等比数列的通项公式:第n个数aₙ=a₁×q^(n-1)2.求等比数列前n项和:前n项和Sn=a₁(1-q^n)÷(1-q),(q≠1)十一、三角形:1.三角形的周长:周长=边1+边2+边32.直角三角形勾股定理:c²=a²+b²(c为斜边,a、b为直角边)3. 正弦定理:a/sinA = b/sinB = c/sinC4. 余弦定理:a² = b² + c² - 2bc × cosA。
五年级暑期奥数
暑期奥数秘籍五(下)开发大脑活跃思维姓名:小学五年级奥数常用公式1、和差问题:(和+差)÷2=大数(和-差)÷2=小数2、和倍问题:和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)18、差倍问题:差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)3、植树问题植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,株数=段数+1=全长÷株距-1 全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,(或封闭路线)那就这样:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1 全长=株距×(株数+1)株距=全长÷(株数+1)4、盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数5、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间6、追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间7、流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷28、等差数列和=(首项+末项)×项数÷2项数=(末项-首项)÷公差+1首项=2和÷项数-末项末项=2和÷项数-首项末项=首项+(项数-1)×公差9、火车过桥问题(桥长+列车长)÷速度=过桥时间;(桥长+列车长)÷过桥时间=速度;速度×过桥时间=桥、车长度之和。
小学五年级奥数常用公式
1.两数相加的和等于两数交换后的和a+b=b+a2.两数相减的差等于两数交换后的差a-b=b-a3.两数相乘的积等于两数交换后的积a×b=b×a4.除法的基本性质:a÷b=c,则a=b×c5.乘方的性质a^m×a^n=a^(m+n)a^m÷a^n=a^(m-n)(a^m)^n=a^(m×n)(a×b)^n=a^n×b^n6.开方的性质a^(1/n)=n√aa^(1/n)×b^(1/n)=(a×b)^(1/n)(a/b)^(1/n)=(a^(1/n))/(b^(1/n))7.相关系数平均数:a,b,c三个数的平均数=(a+b+c)/3百分数:百分数=(每百份中的部分数)/总数×100%比例:a:b=c:d如果a、b、c、d都是整数,并且所给的比例是最简比,则a:b=c:d=k;他们的第一项的倍数是相同的。
计算面积:长方形的面积=长×宽正方形的面积=边长×边长三角形的面积=底×高/2圆的面积=π×半径×半径计算体积:长方体的体积=长×宽×高立方体的体积=边长×边长×边长圆柱体的体积=π×半径×半径×高锥形的体积=1/3×圆锥的底面积×高单位换算:1千克=1000克1千克=0.001吨1千米=1000米1米=100厘米1厘米=10毫米1平方米=10000平方厘米1立方米=1000000立方厘米。
小学生五年级奥数解题常用公式【三篇】
【导语】芬芳袭⼈花枝俏,喜⽓盈门捷报到。
⼼花怒放看通知,梦想实现今⽇事,喜笑颜开忆往昔,勤学苦读最美丽。
在学习中学会复习,在运⽤中培养能⼒,在总结中不断提⾼。
以下是⽆忧考为⼤家整理的《⼩学⽣五年级奥数解题常⽤公式【三篇】》供您查阅。
【篇⼀】⼀、基本概念与性质: 分数:把单位“1”平均分成⼏份,表⽰这样的⼀份或⼏份的数。
分数的性质:分数的分⼦和分母同时乘以或除以相同的数(0除外),分数的⼤⼩不变。
分数单位:把单位“1”平均分成⼏份,表⽰这样⼀份的数。
百分数:表⽰⼀个数是另⼀个数百分之⼏的数。
⼆、常⽤⽅法: ①逆向思维⽅法:从题⽬提供条件的反⽅向(或结果)进⾏思考。
②对应思维⽅法:找出题⽬中具体的量与它所占的率的直接对应关系。
③转化思维⽅法:把⼀类应⽤题转化成另⼀类应⽤题进⾏解答。
最常见的是转换成⽐例和转换成倍数关系;把不同的标准(在分数中⼀般指的是⼀倍量)下的分率转化成同⼀条件下的分率。
常见的处理⽅法是确定不同的标准为⼀倍量。
④假设思维⽅法:为了解题的⽅便,可以把题⽬中不相等的量假设成相等或者假设某种情况成⽴,计算出相应的结果,然后再进⾏调整,求出最后结果。
⑤量不变思维⽅法:在变化的各个量当中,总有⼀个量是不变的,不论其他量如何变化,⽽这个量是始终固定不变的。
有以下三种情况:A、分量发⽣变化,总量不变。
B、总量发⽣变化,但其中有的分量不变。
C、总量和分量都发⽣变化,但分量之间的差量不变化。
⑥替换思维⽅法:⽤⼀种量代替另⼀种量,从⽽使数量关系单⼀化、量率关系明朗化。
⑦同倍率法:总量和分量之间按照同分率变化的规律进⾏处理。
⑧浓度配⽐法:⼀般应⽤于总量和分量都发⽣变化的状况。
【篇⼆】⼀、常⽤公式 (1)⼀般公式: ⼯效×⼯时=⼯作总量; ⼯作总量÷⼯时=⼯效; ⼯作总量÷⼯效=⼯时。
(2)⽤假设⼯作总量为“1”的⽅法解⼯程问题的公式: 1÷⼯作时间=单位时间内完成⼯作总量的⼏分之⼏; 1÷单位时间能完成的⼏分之⼏=⼯作时间。
小学奥数必考公式25个
25个小学奥数必考公式1、和差倍问题:每份数×份数=总数总数÷每份数=份数总数÷份数=每份数倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数2、年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3、归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4、植树问题:5、鸡兔同笼问题:基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
6、盈亏问题:基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量。
基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量。
基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
小学奥数所有公式
姓名:1、和差问题的公式(和+差)÷2=大数(和-差)÷2=小数2、和倍问题的公式和÷(倍数-1)=小数×倍数=大数(或者和-小数=大数) 3、差倍问题的公式差÷(倍数-1)=小数×倍数=大数(或小数+差=大数)3、植树问题的公式⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数4、盈亏问题的公式(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数5、相遇问题的公式相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间6、流水问题顺水路程=顺水速度×时间逆水路程=逆水速度×时间顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷27、过桥问题过桥问题的一船的数量关系是:路程=桥长+车长车速=(桥长+车长)÷通过时间通过时间=(桥长+车长)÷车速车长=车速×通过时间-桥长桥长=车速×通过时间-车长8、浓度问题的公式溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量9、圆形S面积C周长d直径r (1)周长=直径×圆周率=2×圆周率×半径C=∏d=2∏r d= C (2)面积=半径×半径×∏半径∏圆周率÷(2∏)r= d÷∏÷2 r= C。
小学奥数数论十大公式
小学奥数数论十大公式小学奥数数论十大公式,经常被用来帮助小学生学习数论,在数论的学习过程中,这些公式可以帮助小学生更好地理解数论的知识点,从而更好地掌握数论的知识。
那么,小学奥数数论十大公式是什么呢?一、抽象公式:1. 抽象公式:抽象公式指的是用数字来代表一个抽象的概念,它可以帮助小学生把一个复杂的概念归结为一个简单的公式,从而更好地理解数论的概念。
2. 抽象公式:抽象公式指的是用数字和符号来表示一个抽象的概念,它可以帮助小学生把一个复杂的概念归结为一个简单的公式,从而更好地理解数论的概念。
二、代数公式:1. 二次公式:二次公式是一个二元一次方程,它可以帮助小学生计算二元一次方程的解,并且可以帮助小学生更好地理解方程的概念。
2. 三次公式:三次公式是一个三元一次方程,它可以帮助小学生计算三元一次方程的解,并且可以帮助小学生更好地理解方程的概念。
三、几何公式:1. 三角形公式:三角形公式可以帮助小学生计算三角形的面积,周长,以及内角和外角等等,并且可以帮助小学生更好地理解几何的概念。
2. 圆形公式:圆形公式可以帮助小学生计算圆形的面积,周长,以及圆心角等等,并且可以帮助小学生更好地理解几何的概念。
四、数列公式:1. 等差数列公式:等差数列公式可以帮助小学生计算等差数列的前n项和,并且可以帮助小学生更好地理解数列的概念。
2. 等比数列公式:等比数列公式可以帮助小学生计算等比数列的前n项和,并且可以帮助小学生更好地理解数列的概念。
五、概率公式:1. 概率公式:概率公式可以帮助小学生计算概率,并且可以帮助小学生更好地理解概率的概念。
2. 条件概率公式:条件概率公式可以帮助小学生计算条件概率,并且可以帮助小学生更好地理解条件概率的概念。
六、函数公式:1. 一元函数公式:一元函数公式可以帮助小学生计算一元函数的值,并且可以帮助小学生更好地理解函数的概念。
2. 二元函数公式:二元函数公式可以帮助小学生计算二元函数的值,并且可以帮助小学生更好地理解函数的概念。
小学奥数公式大全
小学奥数公式大全小学奥数中的公式主要包括数学、几何和概率等方面的公式。
下面是一些小学奥数常用的公式:一、数学公式:1.正整数相乘的结果等于两个数的乘积:a×b=c2.正整数相除的结果等于除数a的倍数:a÷b=c3.正整数相减的结果等于差:a-b=c4.正整数相加的结果等于和:a+b=c5. 两个数的平方和等于两个数平方的和与两倍乘积的和:(a + b)² = a² + 2ab + b²6. 两个数的差的平方等于两个数平方的差与两倍乘积的差:(a -b)² = a² - 2ab + b²7.两个数的乘积的平方等于两个数平方的积的平方:(a×b)²=a²×b²8.两个数的商的平方等于两个数平方的商的平方:(a÷b)²=a²÷b²9.n个相同的数相乘的结果可以表示为这个数的n次幂:a×a×...×a=a^n10.平方数是两个相邻奇数的和:1²=1,2²=3,3²=5...,n²=(n-1)+(n+1)二、几何公式:11.长方形的面积等于长乘以宽:面积=长×宽12.正方形的面积等于边长的平方:面积=边长²13.三角形的面积等于底边乘以高的一半:面积=1/2×底边×高14.圆的面积等于半径的平方乘以π(圆周率):面积=π×半径²15.圆的周长等于直径乘以π:周长=直径×π16.矩形的周长等于两倍的长加两倍的宽:周长=2×(长+宽)17.等边三角形的内角为60°18.三条边长度为a、b、c的三角形,满足a+b>c、b+c>a、c+a>b19.两条边为a、b的锐角三角形的第三边最大为√(a²+b²)20.两条边为a、b的直角三角形的斜边长度为√(a²+b²)三、概率公式:21.事件的概率等于有利结果数目除以总结果数目:P(A)=有利结果数目/总结果数目22.两个相互独立的事件同时发生的概率等于各自概率的乘积:P(A且B)=P(A)×P(B)23.两个互为逆事件的概率之和等于1:P(A)+P(非A)=1这些是小学奥数中常见的一些公式,掌握了这些公式可以帮助你更好地解题。
奥数34个常用公式
34个小学奥数必考公式1、和差倍问题:和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2、年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3、归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4、植树问题:基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5、鸡兔同笼问题:基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
奥数34个常用公式
34个小学奥数必考公式1、和差倍问题:和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2、年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3、归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4、植树问题:基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5、鸡兔同笼问题:基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
小学奥数公式大全
小学奥数公式大全1.两数之和:a+b=c例如:5+3=82.两数之差:a-b=c例如:7-2=53.两数之积:a×b=c例如:4×3=124.两数之商:a÷b=c例如:9÷3=35.平方:a²=b例如:3²=96.开方:√a=b例如:√9=37.百分数:a%=b例如:25%=0.258.两个数的平均数:(a+b)÷2=c例如:(3+5)÷2=49.相邻角和:a+b=180°例如:80°+100°=180°10.对角线的关系:正方形对角线相等,长方形对角线不相等,且满足勾股定理。
例如:正方形ABCD,对角线AC=BD;长方形ABCD,对角线AC≠BD。
11.垂直线的斜率乘积为-1例如:两条互相垂直的线的斜率之积为-112.正整数相邻数之积减1的平方根之和等于整数本身。
例如:3×4-1=√11+√1113.等边三角形三个内角都是60°。
14.三角形周长:a+b+c=p其中,a、b、c分别是三角形的三边的长度,p是三角形的周长。
例如:三角形ABC,AB = 3cm,BC = 4cm,CA = 5cm,则周长p = 3 + 4 + 5 = 12cm15.相似三角形对应边的比例相等:若三角形A与三角形B相似,则AB/DE=AC/DF=BC/EF。
16.平行线的性质:平行线之间的对应角相等,对顶角互补,内错角相等。
17.枚举法:通过列举所有可能的情况来解题。
18.因数分解:将一个数拆分成几个素数的乘积。
19.最大公约数(最小公倍数)的性质:若a能被b整除,且a能被c整除,那么a也能被b与c的最大公约数整除。
20.偶数与奇数相加的结果是奇数。
小学奥数常用公式及使用技巧(含例题)
小学奥数常用公式及使用技巧(含例题)下面是小学奥数常用公式及相关技巧,每个公式和技巧后附带一个例题,并给出答案和解析。
1. 加法交换律:a + b = b + a-例题:计算28 + 17-答案:28 + 17 = 17 + 28 = 45-解析:根据加法交换律,可以将数的位置互换,便于计算。
2. 减法定义:a - b = c,其中b + c = a-例题:求39 - 15 = ?-答案:39 - 15 = 24-解析:减法是加法的逆运算,要找出一个数,与减数相加等于被减数。
3. 乘法分配律:a ×(b + c) = a ×b + a ×c-例题:计算17 ×(8 + 3)-答案:17 ×(8 + 3) = 17 ×8 + 17 ×3 = 136 + 51 = 187-解析:乘法分配律可以将一个数与括号里的两个数相乘,等于对这两个数分别做乘法再相加。
4. 乘法交换律:a ×b = b ×a-例题:计算12 ×7-答案:12 ×7 = 7 ×12 = 84-解析:乘法交换律可以将乘法的顺序互换,便于计算。
5. 乘法结合律:(a ×b) ×c = a ×(b ×c)-例题:计算4 ×(3 ×5)-答案:4 ×(3 ×5) = (4 ×3) ×5 = 12 ×5 = 60-解析:乘法结合律可以改变乘法的顺序,不改变最终结果。
6. 九九乘法口诀表-例题:填空:6 ×___ = 42-答案:6 ×7 = 42-解析:利用九九乘法口诀表,我们可以找到6的乘法表,找到与之乘积为42的一个数。
7. 乘法倒数:1/a ×a = 1-例题:计算1/5 ×5-答案:1/5 ×5 = 1-解析:乘法倒数是指一个数与其倒数相乘得到1。
小学奥数-公式大全
目录计算板块 (2)计数板块 (5)数论板块 (7)应用题板块 (11)几何板块 (15)行程板块 (21)计算板块1、加法交换律:a b b a +=+,b c a c b a ++=++2、加法结合律:()()c b a c b a ++=++3、乘法交换律:a b b a ⨯=⨯,b c a c b a ⨯⨯=⨯⨯4、乘法结合律:()()c b a c b a ⨯⨯=⨯⨯5、乘法分配律:()c a b a c b a ⨯+⨯=+⨯6、“除法分配律”:()c b c a c b a ÷+÷=÷+7、减法性质:()c b a c b a +-=--8、除法性质:()c b a c b a ⨯÷=÷÷9、商不变性质:()()()()n b n a m b m a b a ⨯÷⨯=÷÷÷=÷,()0,0≠≠n m 10、积不变性质:()()m b m a b a ÷⨯⨯=⨯,()0≠m11、等差数列相关:项数()n ,公差()d ,首项()1a ,第n 项()n a ,前n 项和()n S ,通项公式:()d n a a n ⨯-+=11, ()d m n a a m n ⨯-+=, 项数公式:()11+÷-=d a a n n , 若q p n m +=+,q p n m a a a a +=+ 求和公式:()21÷⋅+=n a a S n n ,中项定理,奇数项等差数列:n a S n n ⋅=+21从1开始连续自然数求和: ()2121+=+++n n n 从1开始连续奇数求和:()21231n n =-+++ 从2开始连续偶数求和:()1242+=+++n n n12、多位数乘法: ()110999-⨯=⨯nn M M 个 当999个n M ≤时,积的数字和为n 9 13、()2222b ab a b a ++=+,()2222b ab a b a +-=-()()22b a b a b a -=-+,()()111+++=++b a ab b a()3223333b ab b a a b a +++=+()()2233b ab a b a b a ++-=-,()()2233b ab a b a b a +-+=+14、平方求和:()()1216121222++=+++n n n n 立方求和:()()2223331412121+=+++=+++n n n n 15、整数裂项:()()()213113221++=+++⨯+⨯n n n n n ()()()()()3214121432321+++=++++⨯⨯+⨯⨯n n n n n n n()()()()()[]31212326112125331+-++=+-++⨯+⨯n n n n n分数裂项:()11111321211+-=+++⨯+⨯n n n ()()()()⎥⎦⎤⎢⎣⎡++-⨯=++++⨯⨯+⨯⨯2112112121143213211n n n n n16、缺8数:123456799111111111⨯=, 1234567918222222222⨯=,···,1234567981999999999⨯=;12345679898765432⨯=17、走马灯数:··742851.071=,··485712.072=, ··128574.073=, ··871425.074=,··514287.075=, ··257148.076= 2857142142857=⨯,4285713142857=⨯,5714284142857=⨯,7142855142857=⨯,8571426142857=⨯,9999997142857=⨯.18、山顶数:1211111=⨯,12321111111=⨯, ······山顶数列求和:()()2121121n n n n =+++-++-+++ ()222121121=++⨯,()23331232112321=++++⨯, ······ 奇数山顶数列求和:()()()()2213212121311n n n n n +++-+++-+++=++19、重码数:abab ab =⨯101,ab ab ab 01001=⨯abcabc abc =⨯1001,ababab ab =⨯1010120、车轮数:()111143214123341223411234⨯+++=+++21、循环小数化分数:9.0·a a =,··0.99ab a b =,··0.990abc aabc -=附:若一个最简分数,它的分母仅含质因数2和5,则它可化为有限小数,反之必为无限循环小数;若分母仅含2,5以外的质因数,则必可化为纯循环小数,若分母含质因数2或5,且含2,5以外的质因数,则必可化为混循环小数.22、等比数列相关:()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧≠--=--====-1111111111q q q a a q q a S q na S q a a n nn n n n 23、常用数列:1,4,9,16,25,36,······,2n a n = 0,3,8,15,24,35,······,12-=n a n 1,3,7,13,21,31,······,12+-=n n a n 1,2,4,8,16,32,······,12-=n n a1,1,2,3,5,8,13,······,21--+=n n n a a a 1,3,6,10,15,21,······,()121+=n n a n计数板块1、 容斥原理二元容斥:B A B A B A -+=三元容斥:C B A C A C B B A C B A C B A +---++=2、 抽屉原理苹果数÷抽屉数(n)=商……余数余数:(1)余数=)1n ≤x ≤1(x -, 结论:至少有“商+1”个苹果在同一个抽屉里 (2)余数=0, 结论:至少有“商”个苹果在同一个抽屉里3、 排列组合排列:)!m n (!n )1m n ()2n )(1n (n A P m n mn -=+---==组合:!m ×)!m n (!n 1××)2m )(1m (m )1m n ()2n )(1n (n C m n -=--+---=其他:1C C n n 0n ==,m n n m n C C -=,012nn n n n n C 2C C C ++++=常用方法:捆绑法;插空法;隔板法;排除法;枚举法.4、 几何计数① 线段:一条线段被分成n 个互不重叠的小线段,那么这条线段共包含的线段数为:211123(1)2n n C n n +⋯⋯=+++++=条。
小学奥数常用公式大全
小学奥数常用公式大全在小学奥数竞赛中,掌握一些常用的数学公式是非常重要的。
这些公式可以帮助学生更好地解决数学问题,并提高其在奥数竞赛中的竞争力。
本文将为大家介绍一些常见的小学奥数公式。
一、四则运算公式1.1 加法:a + b = c例子:4 + 5 = 91.2 减法:a - b = c例子:8 - 3 = 51.3 乘法:a × b = c例子:3 × 6 = 181.4 除法:a ÷ b = c例子:24 ÷ 4 = 6二、整数运算公式2.1 整数相乘:(-a) × (-b) = c例子:(-2) × (-3) = 62.2 整数相除:(-a) ÷ (-b) = c例子:(-12) ÷ (-4) = 32.3 整数的乘方:(-a)的-b次方 = c例子:(-2)的3次方 = -8三、几何公式3.1 矩形的面积:面积 = 长 ×宽例子:矩形的面积 = 4 × 6 = 243.2 正方形的面积:面积 = 边长 ×边长例子:正方形的面积 = 5 × 5 = 253.3 圆的周长:周长= 2 × π × 半径例子:圆的周长≈ 2 × 3.14 × 5 ≈ 31.4四、分数运算公式4.1 分数的加法:a/b + c/d = (ad + bc) / bd例子:1/2 + 1/3 = (1 × 3 + 1 × 2) / (2 × 3) = 5/6 4.2 分数的减法:a/b - c/d = (ad - bc) / bd例子:3/4 - 1/2 = (3 × 2 - 4 × 1) / (4 × 2) = 1/8 4.3 分数的乘法:(a/b) × (c/d) = ac / bd例子:2/3 × 3/5 = (2 × 3) / (3 × 5) = 6/15 = 2/5 4.4 分数的除法:(a/b) ÷ (c/d) = ad / bc例子:2/3 ÷ 4/5 = (2 × 5) / (3 × 4) = 10/12 = 5/6五、平方和立方公式5.1 平方的计算:a² = a × a例子:7² = 7 × 7 = 495.2 立方的计算:a³ = a × a × a例子:4³ = 4 × 4 × 4 = 64六、百分数公式6.1 百分数转小数:百分数 / 100例子:50% = 50 / 100 = 0.56.2 小数转百分数:小数 × 100例子:0.6 = 0.6 × 100 = 60%七、简单方程求解公式7.1 小学一元一次方程求解:ax + b = c例子:2x + 3 = 7,解得 x = 27.2 小学二元一次方程求解:ax + by = c例子:2x + 3y = 12,3x + 4y = 14,解得 x = 2,y = 3综上所述,小学奥数中常用的公式包括四则运算公式、整数运算公式、几何公式、分数运算公式、平方和立方公式、百分数公式以及简单方程求解公式等。
小学五六年级奥数学竞赛常用计算公式
常用计算公式【大海传功】 一、求和公式 1.等差数列: ⑴求和公式:和=(首项+末项)×项数÷2 中项定理:项数为奇数时,和=中间数×项数1 3 52n 1 =n⑵ 21 2 n21=n22.平方和公式:二、平方公式⑴平方差公式: a 2 b 2= a b a b⑵完全平方公式222a b ab 2aba bab ab2222理解:首平方,尾平方,2倍乘积在中央 【例1】(★★)222211 +2 +3 + +1 21nn (n )( n ) 63.立方和公式:10099989721_____计算:222222333321 221 +2 +3 + +n(1 2 3n )n (n 1)4【例2】(★★★)12345671234567 12345661234568 _____计算:【例4】(★★★★)计算:12 2242 52 72 82 102 112 132 142162_____【例5】(★★★)【例3】(★★★)12320063333计算:1232006_____101112200_____计算:22221【例6】(★★★)计算:135********_____ 33333333【例8】(★★★★★)计算:199********1_____【例7】(★★★)【例9】(★★★)(2242621002)(123252992)计算:12391098321_____11111111计算:135********248163264128256111719______。
5121024一、本讲重点知识回顾1.求和公式等差数列:⑴求和公式:和=(首项+末项)×项数÷2中项定理:项数为奇数时,和=中间数×项数1352n 1=n2⑵12n 21=n2平方和公式:2.平方公式⑴平方差公式:a b ab a b22=⑵完全平方公式222a b a b2aba b a bab2222 3. 高频考点:逆用公式222211+2+3++n n(n 1)(2n 1)6立方和公式:二、本讲经典例题例1,例2,例3,例7,例8333321221+2+3++n (123n)n(n 1)42。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学五年级奥数常用公
式
集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-
小学五年级奥数常用公式
1、和差问题:
(和+差)÷2=大数(和-差)÷2=小数
2、和倍问题:
和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)18、差倍问题:
差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)3、植树问题
植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,
株数=段数+1=全长÷株距-1 全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,(或封闭路线)那就这样:
株数=段数=全长÷株距全长=株距×株数株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1 全长=株距×(株数+1)
株距=全长÷(株数+1)
4、盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
5、相遇问题
相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
6、追及问题
追及距离=速度差×追及时间追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
7、流水问题
顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2。