动量守恒定律弹簧模型

合集下载

动量守恒定律的典型模型

动量守恒定律的典型模型
是匀速行走还是变速行走,甚至往返行走,只要 人最终到达船的左端,那么结论都是相同的。
3、人船模型的适用条件是:两个物体组成的 系统动量守恒,系统的合动量为零。
例7. 质量为m的人站在质量为M,长为L的静止小船的 右端,小船的左端靠在岸边。当他向左走到船的左端时, 船左端离岸多远?
解:先画出示意图。人、船系统动量守恒,总动
动量守恒典型问题
碰撞中弹簧模型
三、碰撞中弹簧模型
注意:状态的把握 由于弹簧的弹力随形变量变化,弹簧 弹力联系的“两体模型”一般都是作加速 度变化的复杂运动,所以通常需要用“动 量关系”和“能量关系”分析求解。复杂 的运动过程不容易明确,特殊的状态必须 把握:弹簧最长(短)时两体的速度相同; 弹簧自由时两体的速度最大(小)。
完全非弹性碰撞
碰撞后系统以相同的速度运动 v1=v2=v 动量守恒:
m1v10 m2v20 m1 m2 v
动能损失为
E=
1 2
m1v120
1 2
m2v220
1 2
m1
m2
v 2
m1m1
2 m1 m2
v10 v20 2
例1. 如图所示,光滑水平面上质量为m1=2kg的物 块以v0=2m/s的初速冲向质量为m2=6kg静止的光滑 1/4圆弧面斜劈体。求:
多大的速度做匀速运动.取重力加速度g=10m/s2.
m=1.0kg
C
v0 =2.0m/s
B
A
M=2.0kg M=2.0kg
解:先假设小物块C 在木板B上移动距离 x 后,停在B上.这
时A、B、C 三者的速度相等,设为V.
由动量守恒得 mv0 (m 2M )V

在此过程中,木板B 的位移为S,小木块C 的位移为S+x.

动量守恒定律 子弹 弹簧模型

动量守恒定律 子弹 弹簧模型

一、子弹大木块1、如图所示,质量为M的木块固定在光滑的水平面上,有一质量为m的子弹以初速度v0水平射向木块,并能射穿,设木块的厚度为d,木块给子弹的平均阻力恒为f.若木块可以在光滑的水平面上自由滑动,子弹以同样的初速度水平射向静止的木块,假设木块给子弹的阻力与前一情况一样,试问在此情况下要射穿该木块,子弹的初动能应满足什么条件?2、如图所示,静止在光滑水平面上的木块,质量为、长度为。

—颗质量为的子弹从木块的左端打进。

设子弹在打穿木块的过程中受到大小恒为的阻力,要使子弹刚好从木块的右端打出,则子弹的初速度应等于多大?涉及子弹打木块的临界问题二、板块3、如图1所示,一个长为L、质量为M的长方形木块,静止在光滑水平面上,一个质量v从木块的左端滑向右端,设物块与木块间的动为m的物块(可视为质点),以水平初速度摩擦因数为 ,当物块与木块达到相对静止时,物块仍在长木块上,求系统机械能转化成内能的量Q。

图14、如图所示,—质量为M、长为l的长方形木板B放在光滑的水平地面上,在其右端放一质量为m的小木块A,m<M.现以地面为参照系给A和B以大小相等、方向相反的初速度(如图),使A开始向左运动、B开始向右运动,但最后A刚好没有滑离B板.以地面为参照系,(1)若已知A和B的初速度大小为,求它们最后的速度的大小和方向.(2)若初速度的大小未知,求小木块A向左运动到达的最远处(从地面上看)离出发点的距离.三、 弹簧5.(8分)如图2所示,质量M =4 kg 的滑板B 静止放在光滑水平面上,其右端固定一根轻质弹簧,弹簧的自由端C 到滑板左端的距离L =0.5 m ,这段滑板与木块A (可视为质点)之间的动摩擦因数μ=0.2,而弹簧自由端C 到弹簧固定端D 所对应的滑板上表面光滑.小木块A 以速度v 0=10 m/s 由滑板B 左端开始沿滑板B 表面向右运动.已知木块A 的质量m =1 kg ,g 取10 m/s 2.求:(1)弹簧被压缩到最短时木块A 的速度 ; 2 m/s (2)木块A 压缩弹簧过程中弹簧的最大弹性势能. 39 J6、(09·山东·38)(2)如图所示,光滑水平面轨道上有三个木块,A 、B 、C ,质量分别为m B =m c =2m ,m A =m ,A 、B 用细绳连接,中间有一压缩的弹簧 (弹簧与滑块不栓接)。

高三总复习物理课件 动量守恒中的三类典型模型

高三总复习物理课件 动量守恒中的三类典型模型
动量守恒中的三类典型模型
01
着眼“四翼” 探考点
题型·规律·方法
பைடு நூலகம்
02
聚焦“素养” 提能力
巧学·妙解·应用
01
着眼“四翼” 探考点
题型·规律·方法
模型一 “滑块—弹簧”模型
模型 图示
模型 特点
(1)两个或两个以上的物体与弹簧相互作用的过程中,若系统所受外力的 矢量和为零,则系统动量守恒。 (2)在能量方面,若系统所受的外力和除弹簧弹力以外的内力不做功,系 统机械能守恒。 (3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大,系统动 能通常最小(完全非弹性碰撞拓展模型)。 (4)弹簧恢复原长时,弹性势能为零,系统动能最大(完全弹性碰撞拓展模 型,相当于碰撞结束时)
[例 1] 如图甲所示,物块 A、B 的质量分别是 mA=4.0 kg 和 mB=3.0 kg。用轻弹 簧拴接,放在光滑的水平地面上,物块 B 右侧与竖直墙相接触。另有一物块 C 从 t=0 时以一定速度向右运动,在 t=4 s 时与物块 A 相碰,并立即与 A 粘在一起不再分开, 物块 C 的 v-t 图像如图乙所示。求:
()
A.13mv02 C.112mv02
B.15mv02 D.145mv02
解析:当 C 与 A 发生弹性正碰时,根据动量守恒定律和能量守恒定律有 mv0=mv1+ 2mv2,12mv02=12mv12+12(2m)v22,联立解得 v2=23v0,当 A、B 速度相等时,弹簧的弹 性势能最大,设共同速度为 v,以 A 的初速度方向为正方向,则由动量守恒定律得 2mv2 =(2m+3m)v,由机械能守恒定律可知,Ep+12(5m)v2=12(2m)v22,解得 Ep=145mv02; 当 C 与 A 发生完全非弹性正碰时,根据动量守恒定律有 mv0=3mv1′,当 A、B、C 速度相等时弹簧的弹性势能最大,设共同速度为 v′,则由动量守恒定律得 3mv1′= 6mv′,由机械能守恒定律可知,Ep′=12(3m)v1′2-12(6m)v′2,解得 Ep′=112mv02,由 此可知,碰后弹簧的最大弹性势能范围是112mv02≤Ep≤145mv02,故选 A。 答案:A

(完整版)动量守恒定律弹簧模型

(完整版)动量守恒定律弹簧模型

弹簧模型+子弹打木块模型弹簧模型1.两物块A、B用轻弹簧相连,质量均为2kg,初始时弹簧处于原长,A、B两物块都以v=6m/s的速度在光滑的水平地面上运动,质量为4kg的物块C静止在前方,如图4所示.B 与C碰撞后二者会粘在一起运动.则在以后的运动中:(1)当弹簧的弹性势能最大时,物块A的速度为多大?(2)系统中弹性势能的最大值是多少?2.(多选)光滑水平地面上,A、B两物体质量都为m,A以速度v向右运动,B原来静止,左端有一轻弹簧,如图所示,当A撞上弹簧,弹簧被压缩最短时()A.A、B系统总动量仍然为mvB.A的动量变为零C.B的动量达到最大值D.A、B的速度相等3.如图所示,质量相等的两个滑块位于光滑水平桌面上,其中弹簧两端分别与静止的滑块N 和挡板P相连接,弹簧与挡板的质量均不计;滑块M以初速度v0向右运动,它与档板P碰撞(不粘连)后开始压缩弹簧,最后滑块N以速度v0向右运动。

在此过程中( )A.M的速度等于0时,弹簧的弹性势能最大B.M与N具有相同的速度时,两滑块动能之和最小C.M的速度为v0/2时,弹簧的长度最长D.M的速度为v0/2时,弹簧的长度最短4.如图甲所示,一轻弹簧的两端与质量分别是m1和m2的两木块A、B相连,静止在光滑水平面上.现使A瞬间获得水平向右的速度v=3 m/s,以此时刻为计时起点,两木块的速度随时间变化规律如图乙所示,从图示信息可知()A.t1时刻弹簧最短,t3时刻弹簧最长B.从t1时刻到t2时刻弹簧由伸长状态恢复到原长C.两木块的质量之比为m1:m2=1:2D.在t2时刻两木块动能之比为E K1:E K2=1:45.质量为m的物块甲以3 m/s的速度在光滑水平面上运动,有一轻弹簧固定其上,另一质量也为m的物块乙以4 m/s的速度与甲相向运动,如图所示,则()A.甲、乙两物块在弹簧压缩过程中,由于弹力作用,动量不守恒B.当两物块相距最近时,物块甲的速率为零C.当物块甲的速率为1 m/s时,物块乙的速率可能为2 m/s,也可能为0D.物块甲的速率可能达到5 m/s6.如图所示,质量M=4 kg的滑板B静止放在光滑水平面上,其右端固定一根轻质弹簧,弹簧的自由端C到滑板左端的距离L=0.5 m,这段滑板与木块A(可视为质点)之间的动摩擦因数μ=0.2,而弹簧自由端C到弹簧固定端D所对应的滑板上表面光滑.小木块A以速度v0=10 m/s由滑板B左端开始沿滑板B表面向右运动.已知木块A的质量m=1 kg,g取10 m/s2.求:(1)弹簧被压缩到最短时木块A的速度大小;(2)木块A压缩弹簧过程中弹簧的最大弹性势能.7.如图光滑水平直轨道上有三个质量均为m的物块A、B、C.B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C碰撞过程时间极短.求从A开始压缩弹簧直至与弹簧分离的过程中,(3)整个系统损失的机械能;(4)弹簧被压缩到最短时的弹性势能.8.质量为m的钢板与直立弹簧的上端连接,弹簧下端固定在地上,平衡时,弹簧的压缩量为x0,如图所示,一物块从钢板正上方距离为3x0的A处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动.已知物块质量也为m时,它们恰能回到O点。

弹簧模型(原卷版)—动量守恒的十种模型解读和针对性训练

弹簧模型(原卷版)—动量守恒的十种模型解读和针对性训练

动量守恒的十种模型解读和针对性训练弹簧模型模型解读【典例分析】【典例】(2024高考辽吉黑卷)如图,高度0.8m h =的水平桌面上放置两个相同物块A 、B ,质量A B 0.1kg m m ==。

A 、B 间夹一压缩量Δ0.1m x =的轻弹簧,弹簧与A 、B 不栓接。

同时由静止释放A 、B ,弹簧恢复原长时A 恰好从桌面左端沿水平方向飞出,水平射程A 0.4m x =;B 脱离弹簧后沿桌面滑行一段距离B 0.25m x =后停止。

A 、B 均视为质点,取重力加速度210m/s g =。

求:(1)脱离弹簧时A 、B 的速度大小A v 和B v ;(2)物块与桌面间动摩擦因数μ;(3)整个过程中,弹簧释放的弹性势能p E D。

的【针对性训练】1. (2024年3月江西赣州质检)如图甲所示,光滑水平地面上有A 、B 两物块,质量分别为2kg 、6kg ,B 的左端拴接着一劲度系数为200N/m 3的水平轻质弹簧,它们的中心在同一水平线上。

A 以速度v 0向静止的B 方向运动,从A 接触弹簧开始计时至A 与弹簧脱离的过程中,弹簧长度l 与时间t 的关系如图乙所示,弹簧始终处在弹性限度范围内,已知弹簧的弹性势能2p 12E kx =(x 为弹簧的形变量),则( )A. 在0~2t 0内B 物块先加速后减速B. 整个过程中,A 、B 物块构成的系统机械能守恒C. v 0=2m/sD. 物块A 在t 0时刻时速度最小2. (2024河南新郑实验高中3月质检)如图甲所示,一轻弹簧的两端与质量分别为m 1、m 2的两物块A、B 相连接,并静止在光滑水平面上。

现使A 获得水平向右、大小为3m/s 的瞬时速度,从此刻开始计时,两物块的速度随时间变化的规律如图乙所示,从图像提供的信息可得( )A.在t 1、t 3时刻两物块达到共同速度1m/s ,且弹簧都处于伸长状态B.从t 3到t 4时刻间弹簧由压缩状态恢复到原长C.两物体的质量之比为m 1:m 2=1:2D.在t 2时刻A 、B 两物块的动能之比为E k 1:E k 2=8:13. (2024山东济南期末)如图甲所示,物块A 、B 用轻弹簧拴接,放在光滑水平面上,B 左侧与竖直墙壁接触。

动量守恒之弹簧及圆弧模型

动量守恒之弹簧及圆弧模型

相互作用的两个物体在很多情况下运动特征与碰撞问题类似,可以运用动量、能量守恒来分析,物块弹簧模型是一类典型的问题。

我们首先结合下面的例子,说明如何分析物块弹簧模型的运动情景。

【问题】如图所示,物块B 左端固定一轻弹簧,静止在光滑的水平面上,A 物体以速度0v 向B 运动,假设A 与弹簧接触之后立即与弹簧粘连在一起不再分开,那么此后A 、B 与弹簧相互作用的过程中,运动情景如何呢?【分析】A 、B 的运动涉及追及相遇问题,重点要把握住:两物体距离最近(弹簧最短)或最远(弹簧最长)时二者的速度相等。

⑴ 弹簧刚开始被压缩的过程中,B 受到弹簧的弹力向右做加速运动,A 受到弹力做减速运动,开始时A 的速度大于B 的速度,弹簧一直被压缩;⑵ 当A B 、的速度相等时,弹簧缩短到最短,此时弹簧的弹性势能最大;⑶ 此后由于A 继续减速,B 继续加速,B 的速度开始大于A 的速度,弹簧压缩量逐渐减小;⑷ 当弹簧恢复至原长时,弹性势能为零,A 的速度减至最小,B 的速度增至最大;⑸ 此后弹簧开始伸长,A 做加速运动,B 做减速运动;⑹ 当弹簧伸长至最长时,A B 、的速度再次相等,弹簧的弹性势能最大;⑺ 此后A 继续加速,B 继续减速,弹簧逐渐缩短至原长;⑻ 当弹簧再恢复至原长时,弹性势能为零,A 的速度增至最大,B 的速度减至最小。

此后将重复上述过程。

上面我们从受力和运动的角度,分析了弹簧的运动情景。

如果两物体是在光滑水平面上运动,系统的动量守恒;在这个过程中只有两物体的动能和弹簧弹性势能的相互转化;因此,我们可以从动量和能量的角度来分析问题。

设任意时刻A 、B 的速度分别为A v 、B v ,弹簧的弹性势能为p E 。

由动量守恒可得:0A A A B B m v m v m v =+;由能量守恒可得:2220p 111222A A AB B m v m v m v E =++;由此可以求解整个运动过程中各种速度及弹性势能的极值问题,具体结果请同学们自己分析。

动量守恒定律应用2:弹簧模型

动量守恒定律应用2:弹簧模型
F
VP>VQ 弹簧一直缩短
弹簧最短时 VP=VQ
弹簧原长时 弹性势能为零
变式训练
如图所示,位于光滑水平桌面上的小滑块P和Q都 可视为质点,质量相等,都为m。P、Q与轻质弹簧 相连,弹簧处于原长。设P静止, Q以初速度v0向 右运动,在弹簧拉伸过程中,弹簧具有的最大弹性 势能是多少?
V0
弹簧模型规律
1滑块和木板 2弹簧模型 3光滑1/4圆轨道轨道 (某一方向的动量守恒) 4人船模型 (平均动量守恒)
动量和机械能守恒情况常见模型图
m
v0
A
B
O
h
R
M
b
a
动量守恒定律
一、动量(P)
1、概念: 物体的质量m和速度v的乘积叫做动量。
2、定义式: P = m v
3、单位: 千克米每秒,符号是 kg ·m/s
m1=2kg的物块以v1=2m/s的初速冲向
质量为m2=6kg静止的光滑圆弧面斜
1
劈体,物块不会冲出斜劈。求:
1. 物块m1滑到最高点位置时,二者的速度 2. 物体上升的最大高度 3. 物块m1从圆弧面滑下后,二者速度 4. 若m1= m2物块m1从圆弧面滑下后,二者速度
动量和能量综合典型物理模型
弹簧最短时 VP=VQ
弹簧模型1
如图所示,位于光滑水平桌面上的小滑块 P 和 Q 都可视为质点,质量相等,都为 m.Q 与轻质弹簧相 连.设 Q 静止, P 以初速度 v0 向 Q 运动并与弹簧发 生碰撞. (1)在整个碰撞过程中,弹簧具有的最大弹性势能是多 少? (2)弹簧再次恢复原长时,P 的动能是多少?
4、方向:与运动方向相同
(1)矢量性 (2)瞬时性
运算遵循平行四边形定则 是状态量。

专题十一 动量守恒中的四类典型模型-2025届高中物理

专题十一 动量守恒中的四类典型模型-2025届高中物理

第七章动量守恒定律专题十一动量守恒中的四类典型模型核心考点五年考情命题分析预测子弹打木块模型本专题是本章的难点,滑块+弹簧模型和滑块+滑板模型是高考的热点.预计2025年高考会出现考查滑块+滑板模型的选择题或滑块+弹簧模型的计算题.滑块+弹簧模型2023:辽宁T15,浙江6月T18;2022:全国乙T25;2021:天津T10;2019:全国ⅢT25滑块+斜(曲)面模型2023:湖南T15,山东T18滑块+滑板模型2023:辽宁T15;2022:山东T18,河北T13题型1子弹打木块模型1.模型图示2.模型特点(1)子弹水平打进木块的过程中,系统的动量守恒.(2)系统的机械能有损失.3.两种情境(1)子弹嵌入木块中,两者速度相等,机械能损失最多(完全非弹性碰撞)动量守恒:mv 0=(m +M )v .能量守恒:Q =F f s =12m 02-12(M +m )v 2.(2)子弹穿透木块动量守恒:mv 0=mv 1+Mv 2.能量守恒:Q=F f d=12m02-(12M22+12m12).1.[子弹未穿透木块/2024江苏淮安模拟]如图所示,质量为M=0.45kg的木块静止于光滑水平面上,一质量为m=0.05kg的子弹以水平速度v0=100m/s打入木块并停在木块中,下列说法正确的是(A)A.子弹打入木块后子弹和木块的共同速度为v=10m/sB.子弹对木块做的功W=25JC.木块对子弹做正功D.子弹打入木块过程中产生的热量Q=175J解析根据动量守恒定律可得mv0=(M+m)v,解得子弹打入木块后子弹和木块的共同速度为v=B0+=10m/s,故A正确;根据动能定理可知,子弹对木块做的功为W=12Mv2-0=22.5J,故B错误;由于子弹的动能减小,根据动能定理可知,木块对子弹做负功,故C错误;根据能量守恒定律可知,子弹打入木块过程中产生的热量为Q=12m02−12(M+m)v2=225J,故D错误.2.[子弹穿透木块]如图所示,在光滑的水平桌面上静止放置一个质量为980g的匀质木块,现有一颗质量为20g的子弹以大小为300m/s的水平速度沿木块的中心轴线射向木块,最终留在木块中没有射出,和木块一起以共同的速度运动.已知木块沿子弹运动方向的长度为10cm,子弹打进木块的深度为6cm.设木块对子弹的阻力保持不变.(1)求子弹和木块的共同速度以及它们在此过程中所产生的内能.(2)若子弹是以大小为400m/s的水平速度从同一方向水平射向该木块,则在射中木块后能否射穿该木块?答案(1)6m/s882J(2)能解析(1)设子弹射入木块后与木块的共同速度为v,对子弹和木块组成的系统,由动量守恒定律得mv0=(M+m)v解得v=6m/s此过程系统所增加的内能ΔE=12m02-12(M+m)v2=882J.(2)假设子弹以v'0=400m/s的速度入射时没有射穿木块,则对以子弹和木块组成的系统,由动量守恒定律得mv'0=(M+m)v'解得v'=8m/s此过程系统所损耗的机械能为ΔE'=12mv'20-12(M +m )v'2=1568J 由功能关系有ΔE =F 阻x 相=F 阻d ΔE'=F 阻x'相=F 阻d'则ΔΔ'=阻阻'='解得d'=1568147cm因为d'>10cm ,所以假设不成立,能射穿木块.题型2滑块+弹簧模型模型图示水平地面光滑模型特点(1)两个或两个以上的物体与弹簧相互作用的过程中,若系统所受外力的矢量和为零,则系统动量守恒;(2)在能量方面,由于弹簧形变会使弹性势能发生变化,系统的总动能将发生变化;若系统所受的外力和除弹簧弹力以外的内力不做功,系统机械能守恒;(3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大,系统动能通常最小(完全非弹性碰撞拓展模型);(4)弹簧恢复原长时,弹性势能为零,系统动能最大(弹性碰撞拓展模型,相当于碰撞结束时)3.[滑块与弹簧连接/多选]如图甲所示,一个轻弹簧的两端与质量分别为m 1和m 2的两物块A 、B 相连接并静止在光滑的水平地面上.现使A 以3m/s 的速度向B 运动压缩弹簧,速度—时间图像如图乙,则有(CD)A.在t 1、t 3时刻两物块达到共同速度1m/s ,且弹簧都处于压缩状态B.从t3到t4时刻弹簧由压缩状态恢复原长C.两物块的质量之比为m1:m2=1:2D.在t2时刻A与B的动能之比E k1:E k2=1:8解析由题图乙可知t1、t3时刻两物块达到共同速度1m/s,且此时系统动能最小,根据系统机械能守恒可知,此时弹性势能最大,t1时刻弹簧处于压缩状态,而t3时刻处于伸长状态,故A错误;结合图像弄清两物块的运动过程,开始时A逐渐减速,B逐渐加速,弹簧被压缩,t1时刻二者速度相同,系统动能最小,势能最大,弹簧被压缩到最短,然后弹簧逐渐恢复原长,B仍然加速,A先减速为零,然后反向加速,t2时刻,弹簧恢复原长状态,由于此时两物块速度相反,因此弹簧的长度将逐渐增大,两物块均减速,在t3时刻,两物块速度相等,系统动能最小,弹簧最长,因此从t3到t4过程中弹簧由伸长状态恢复原长,故B错误;根据动量守恒定律,可知t=0时刻和t=t1时刻系统总动量相等,有m1v1=(m1+m2)v2,其中v1=3m/s,v2=1m/s,解得m1:m2=1:2,故C正确;在t2时刻A的速度为v A=-1m/s,B的速度为v B=2m/s,根据m1:m2=1:2,求出E k1:E k2=1:8,故D正确.命题拓展命题条件不变,一题多设问下列说法不正确的是(C)A.t1~t2时间内B的加速度在减小B.t1和t3时刻弹簧的弹性势能相等C.t2时刻弹簧处于压缩状态D.t3时刻弹簧的弹性势能最大解析由v-t图像可知t1~t2时间内B的加速度在减小,A正确,不符合题意;t1和t3时刻,A和B的速度均相等,则A和B系统的总动能相等,弹簧的弹性势能相等,B正确,不符合题意;t2时刻,A和B的加速度均为零,说明弹簧弹力为零,则弹簧在t2时刻处于原长状态,C错误,符合题意;t3时刻,A和B的速度相等,弹簧的弹性势能最大,D正确,不符合题意.4.[滑块与弹簧不连接]如图所示,一木板放在光滑水平面上,木板的右端与一根沿水平方向放置的轻质弹簧相连,弹簧的自由端在Q点.木板的上表面左端点P与Q点之间是粗糙的,P、Q之间的距离为L,Q点右侧表面是光滑的.一质量为m=0.2kg的滑块(可视为质点)以水平速度v0=3m/s从木板的左端沿板面向右滑行,压缩弹簧后又被弹回.已知木板质量M=0.3kg,滑块与木板表面P、Q之间的动摩擦因数为μ=0.2,g=10m/s2.(1)若L=0.8m,求滑块滑上木板后的运动过程中弹簧的最大弹性势能;(2)要使滑块既能挤压弹簧,最终又没有滑离木板,则木板上P 、Q 之间的距离L 应在什么范围内?答案(1)0.22J(2)0.675m≤L <1.35m解析(1)滑块滑上木板后将弹簧压缩到最短时,弹簧具有最大弹性势能,此时滑块、木板共速,取向右为正方向,由动量守恒定律得mv 0=(m +M )v 共由能量守恒定律得E p =12m 02-12(m +M )共2-μmgL解得E p =0.22J(2)滑块最终没有离开木板,滑块和木板具有共同的末速度,设为u ,滑块与木板组成的系统动量守恒,有mv 0=(m +M )u设共速时滑块恰好滑到Q 点,由能量守恒定律得μmgL 1=12m 02-12(m +M )u2解得L 1=1.35m设共速时滑块恰好回到木板的左端P 点处,由能量守恒定律得2μmgL 2=12m 02-12(m +M )u 2解得L 2=0.675m所以P 、Q 之间的距离L 应满足0.675m≤L <1.35m.题型3滑块+斜(曲)面模型模型图示水平地面光滑、曲面光滑模型特点(1)最高点:m 与M 具有共同水平速度v 共,m 不会从此处或提前偏离轨道,系统水平方向动量守恒,mv 0=(M +m )v 共;系统机械能守恒,12m v 02=12(M +m )v 共2+mgh ,其中h 为滑块上升的最大高度,不一定等于圆弧轨道的高度(完全非弹性碰撞拓展模型);(2)最低点:m 与M 分离点,系统水平方向动量守恒,mv 0=mv 1+Mv 2;系统机械能守恒,12m 02=12m 12+12M 22(弹性碰撞拓展模型)5.[滑块脱离曲面]如图所示,在光滑的水平地面上,静置一质量为m的四分之一光滑圆弧滑块,圆弧半径为R,一质量也为m的小球,以水平速度v0自滑块的左端A处滑上滑块,当二者共速时,小球刚好到达圆弧上端B.若将小球的初速度增大为2v0,不计空气阻力,则小球能达到距B点的最大高度为(C)A.RB.1.5RC.3RD.4R解析若小球以水平速度v0滑上滑块,小球上升到圆弧的上端时,小球与滑块速度相同,设为v1,以小球的初速度v0的方向为正方向,在水平方向上,由动量守恒定律得mv0=2mv1,由机械能守恒定律得12m02=12×2m12+mgR,代入数据解得v0=2g,若小球以水平速度2v0冲上滑块,小球上升到圆弧的上端时,小球与滑块水平方向上速度相同,设为v2,以小球的初速度方向为正方向,在水平方向上,由动量守恒定律得2mv0=2mv2,由能量守恒定律得12m×(2v0)2=12×2m22+mgR+12m2,解得v y=6g,小球离开圆弧后做斜抛运动,竖直方向做匀减速运动,则h=22=3R,故距B点的最大高度为3R,故选C.命题拓展情境不变,一题多设问以水平速度v0自滑块的左端A处滑上滑块,小球与滑块分离时的速度是多少?答案0解析从小球滑上滑块至小球离开滑块的过程中,根据能量守恒定律得12m02=12m球2+12m块2,小球和滑块系统水平方向动量守恒,有mv0=mv球+mv块,解得v球=0.6.[滑块不脱离曲面/2024广东广州部分学校联考]如图所示,质量m0=5g的小球用长l=1m的轻绳悬挂在固定点O,质量m1=10g的物块静止在质量m2=30g的14光滑圆弧轨道的最低点,圆弧轨道静止在光滑水平面上,悬点O在物块m1的正上方,将小球拉至轻绳与竖直方向成37°角后,由静止释放小球,小球下摆至最低点时与物块发生弹性正碰,碰后物块恰能到达圆弧轨道的最上端.若小球、物块可视为质点,不计空气阻力,重力加速度g取10m/s2,sin37°=0.6,cos37°=0.8.求:(1)小球与物块碰撞前瞬间小球的速度v0;(2)小球与物块碰撞后瞬间物块的速度v1;(3)圆弧轨道的半径R.答案(1)v0=2m/s(2)v1=43m/s(3)R=115m解析(1)小球下摆至最低点,满足机械能守恒定律,有m0gl(1-cos37°)=12m002解得v0=2g(1-Hs37°)=2m/s(2)小球与物块碰撞,满足动量守恒定律、机械能守恒定律,有m0v0=m0v01+m1v1 12m002=12m0012+12m112解得v1=43m/s(3)物块滑到圆弧轨道最高点的过程,满足动量守恒定律、机械能守恒定律,则有m1v1=(m1+m2)v212m112=12(m1+m2)22+m1gR解得R=115m.7.[滑块与斜面结合]如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3m/s的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h=0.3m(h小于斜面体的高度).已知小孩与滑板的总质量为m1=30kg,冰块的质量为m2=10kg,小孩与滑板始终无相对运动.取重力加速度的大小g=10m/s2.(1)求斜面体的质量;(2)通过计算判断,冰块与斜面体分离后能否追上小孩?答案(1)20kg(2)不能,理由见解析解析(1)规定向左为正方向.冰块在斜面体上上升到最大高度时两者达到共同速度,设此共同速度为v,斜面体的质量为m3.对冰块与斜面体,由水平方向动量守恒和机械能守恒定律得m2v0=(m2+m3)v①12m202=12(m2+m3)v2+m2gh②式中v0=3m/s为冰块推出时的速度,联立①②式并代入题给数据得v=1m/s,m3=20kg ③.(2)设小孩推出冰块后的速度为v1,对小孩与冰块,由动量守恒定律有m1v1+m2v0=0④代入数据得v1=-1m/s⑤设冰块与斜面体分离后的速度分别为v2和v3,对冰块与斜面体,由动量守恒定律和机械能守恒定律有m2v0=m2v2+m3v3⑥12m 202=12m 222+12m 332⑦联立③⑥⑦式并代入数据得v 2=-1m/s⑧由于冰块与斜面体分离后的速度与小孩推出冰块后的速度相同且冰块处在小孩后方,故冰块不能追上小孩.题型4滑块+滑板模型示意图木板初速度为零且足够长木板有初速度且足够长,板块反向地面光滑地面光滑v -t 图像8.[滑块、滑板同向运动]如图所示,质量为M 、长为L 的长木板放在光滑水平面上,一个质量也为M 的物块(可视为质点)以一定的初速度从左端冲上木板,如果长木板是固定的,物块恰好停在木板的右端,如果长木板不固定,则物块冲上木板后在木板上滑行的距离为(C)A.LB.34C.2 D.4解析设物块受到的滑动摩擦力为F f ,物块的初速度为v 0.如果长木板是固定的,物块恰好停在长木板的右端,对物块的滑动过程运用动能定理得-F f L =0-12M 02,如果长木板不固定,物块冲上木板后,物块向右减速的同时,木板要加速,最终两者一起做匀速运动,该过程系统所受外力的合力为零,动量守恒,规定向右为正方向,根据动量守恒定律得Mv 0=(M +M )v 1,对系统运用能量守恒定律有F f L'=12M 02−12(2M )12,联立解得L'=2,C 正确,A 、B 、D 错误.9.[滑块、滑板反向运动]质量为M=1.0kg的长木板A在光滑水平面上以v1=0.5m/s的速度向左运动,某时刻质量为m=0.5kg的小木块B以v2=4m/s的速度从左端向右滑上长木板,经过时间t=0.6s小木块B相对A静止,已知重力加速度g取10m/s2,求:(1)两者相对静止时的运动速度v;(2)从木块滑上木板到相对木板静止的过程中,木板A的动量变化量的大小;(3)小木块与长木板间的动摩擦因数μ.答案(1)1m/s,方向水平向右(2)1.5kg·m/s(3)0.5解析设水平向右为正方向(1)从开始到相对静止,系统在水平方向动量守恒-Mv1+mv2=(M+m)v解得v=1m/s,方向水平向右.(2)长木板的动量变化量大小Δp=Mv-(-Mv1)=1.5kg·m/s.(3)对小木块B,根据动量定理得-μmgt=mv-mv2解得μ=0.5.10.[多个滑块综合考查/2024辽宁沈阳模拟]如图,粗糙水平地面上放着两个相同的木板B和C,可视为质点的物块A以初速度v0冲上木板B.已知A质量为2m,与B、C间动摩擦因数均为μ;B、C质量均为m,与地面间动摩擦因数均为12μ.当A运动至B最右端时,A、B速度相同且B、C恰好相撞(碰撞时间极短),撞后B、C粘在一起.重力加速度为g.求:(1)开始时B、C间的距离;(2)A最终离C右端的距离;(3)从A冲上木板B到最终C静止的整个过程系统因摩擦产生的热量.答案(1)029B(2)230272B(3)3536m02解析(1)A在B上滑动时,对A有2μmg=2ma A故a A=μg对B有2μmg-32μmg=ma B故a B=12μg设经过t1时间A、B速度相同,则有v0-a A t1=a B t1解得t1=203B由于x B=12a B12,解得x B=029B,此即B、C的初始距离(2)木板B的长度等于A、B共速时的相对位移,有L=(v0t1-12a A12)-12a B12解得L=023B由动量守恒定律可得,A滑到B最右端时,A、B共速的速度v1=13v0此时B与C发生完全非弹性碰撞,有mv1=2mv2故碰撞后瞬间B、C的速度为v2=16v0A以13v0的速度滑上C,继续以a A=μg的加速度减速,而此时B、C整体所受合力为零,做匀速直线运动,设经过时间t2后A与B、C共速,则有v1-a A t2=v2解得t2=06B此过程中A相对C的位移大小为x AC=(v1t2-12a A22)-v2t2解得x AC=0272B此后A、C相对静止,故A最终离C右端的距离为L-x AC=230272B(3)B、C碰撞过程损失的机械能为12m12-12×2m22=136m02整个过程系统的总机械能损失为12×2m02-0=m02因此整个过程系统因摩擦产生的热量Q=3536m02.1.[滑块+曲面/2023山东]如图所示,物块A和木板B置于水平地面上,固定光滑弧形轨道末端与B的上表面所在平面相切,竖直挡板P固定在地面上.作用在A上的水平外力,使A 与B以相同速度v0向右做匀速直线运动.当B的左端经过轨道末端时,从弧形轨道某处无初速度下滑的滑块C恰好到达最低点,并以水平速度v滑上B的上表面,同时撤掉外力,此时B右端与P板的距离为s.已知v0=1m/s,v=4m/s,m A=m C=1kg,m B=2kg,A与地面间无摩擦,B与地面间动摩擦因数μ1=0.1,C与B间动摩擦因数μ2=0.5,B足够长,使得C 不会从B上滑下.B与P、A的碰撞均为弹性碰撞,不计碰撞时间,取重力加速度大小g=10m/s2.(1)求C下滑的高度H;(2)与P碰撞前,若B与C能达到共速,且A、B未发生碰撞,求s的范围;(3)若s=0.48m,求B与P碰撞前,摩擦力对C做的功W;(4)若s=0.48m,自C滑上B开始至A、B、C三个物体都达到平衡状态,求这三个物体总动量的变化量Δp的大小.答案(1)0.8m(2)0.625m≤s≤2+2m(3)-6J(4)(6+322)N·s解析(1)C下滑过程,由动能定理有m C gH=12m C v2,解得H=0.8m(2)设C滑上B以后,C的加速度大小为a C,B的加速度大小为a1,B、C共速时间为t1,s的最小值为s1,B、C共同的加速度大小为a2,经过t2时间A追上B,s的最大值为s2,则由牛顿第二定律有μ2m C g=m C a C解得a C=5m/s2μ2m C g-μ1(m B+m C)g=m B a1解得a1=1m/s2又v0+a1t1=v-a C t1解得t1=0.5s由运动学规律有s1=v0t1+12a112联立解得s1=58m=0.625mB、C共速后,由牛顿第二定律得μ1(m B+m C)g=(m B+m C)a2解得a2=1m/s2由运动学公式得s2=s1+(v0+a1t1)t2-12a222s2=v0(t1+t2)联立解得s2=2+2m故s的范围为0.625m≤s≤2+2m(3)由题意知s<s1,所以B与P碰撞时,B与C未共速.设C在B板上滑动的时间为t3,B与P相碰时C的速度大小为v1,则由运动学公式得s=v0t3+12a132解得t3=0.4s(另一解舍去)v1=v-a C t3解得v1=2m/s对物体C从刚滑上B到B与P碰撞前的过程,由动能定理有W=12m C(12-v2)解得W=-6J(4)设B与P碰撞前瞬间的速度大小为v2,B与P碰撞后瞬间的速度为v3,B向左运动的加速度大小为a3,B向左运动时间t4与A相遇.设A、B碰撞前瞬间B的速度大小为v4;A、B碰撞后瞬间,A的速度为v5,B的速度为v6,C的速度大小为v7,则由运动学公式得v2=v0+a1t3解得v2=1.4m/s由于P固定在地面上,B与P的碰撞为弹性碰撞,所以有v3=v2=1.4m/sB与P碰撞后向左运动的过程中,对B由牛顿第二定律得μ2m C g+μ1(m B+m C)g=m B a3解得a3=4m/s2自B、P碰撞后至A、B发生碰撞的过程,由运动学公式得s-v0t3=v0t4+v3t4-12a342解得t4(另一解舍去)v4=v3-a3t4解得v41)m/sv7=v1-a C t4解得v7=(22-1)m/s以向右为正方向,A、B发生弹性碰撞,由动量守恒定律得m A v0-m B v4=m A v5+m B v6由机械能守恒定律得12m A02+12m B42=12m A+12m B62联立解得v5=(1m/s、v6=(1m/s(另一组解舍去)即A、B碰撞后,A以速度v5向左运动,B以初速度v6向右运动经分析可得,B、C最终静止,A最终以速度v5向左运动,故自C滑上B开始至三物体达到平衡状态,这三个物体总动量的变化量为Δp=m A v5-[(m A+m B)v0+m C v]解得Δ=(6N·s2.[滑块+弹簧/2022全国乙]如图(a),一质量为m的物块A与轻质弹簧连接,静止在光滑水平面上;物块B向A运动,t=0时与弹簧接触,到t=2t0时与弹簧分离,第一次碰撞结束,A、B的v-t图像如图(b)所示.已知从t=0到t=t0时间内,物块A运动的距离为0.36v0t0.A、B分离后,A滑上粗糙斜面,然后滑下,与一直在水平面上运动的B再次碰撞,之后A再次滑上斜面,达到的最高点与前一次相同.斜面倾角为θ(sinθ=0.6),与水平面光滑连接.碰撞过程中弹簧始终处于弹性限度内.求(1)第一次碰撞过程中,弹簧弹性势能的最大值;(2)第一次碰撞过程中,弹簧压缩量的最大值;(3)物块A与斜面间的动摩擦因数.图(a)图(b)答案(1)0.6m02(2)0.768v0t0(3)0.45解析(1)水平面光滑,故在水平面上两物块碰撞过程动量守恒,从B与弹簧接触到弹簧第一次压缩到最短过程中有m B v1=(m B+m A)v0其中v1=1.2v0可得m B=5m该过程中机械能守恒,设弹簧最大弹性势能为E p,得E p+12(m A+m B)02=12m B12由上式得E p=0.6m02(2)由图像知0~t0内物块B与物块A的位移差等于弹簧的最大压缩量,也就是题图中该段时间物块A、B图像所夹面积,物块A在0~t0时间内的位移S A=0.36v0t0,即为0~t0内,v-t图像中A线与t轴所夹面积.解法1在压缩弹簧的过程中,物块A、B所受弹簧弹力大小相等,方向相反,则物块A的加速度始终是物块B加速度的5倍,有a A=5a B若两者均做初速度为零的变速运动,则两者的位移满足S A=5S'B在图1中深灰色阴影面积为S A,浅灰色阴影面积为S'B.最大压缩量为X=1.2v0t0-S A-S'B=0.768v0t0图1图2解法20~t0过程,由动量守恒定律有mv A+5mv B=(m+5m)v0结合运动学知识有mS A+5mS B=6mv0t0解得S B=1.128v0t0(B在0~t0内的位移)最大压缩量为X=S B-S A=1.128v0t0-0.36v0t0=0.768v0t0(3)设物块A第一次从斜面滑到平面上时的速度为v x,物块A(含弹簧)回到水平面,第二次与B相互作用过程系统机械能守恒、动量守恒.则有m B v2-m A v x=m B v3+m A·2v012m B22+12m A2=12m B32+12m A(2v0)2其中v2=0.8v0可得v x=v0(另一解舍去)物块A第一次从斜面底端滑到最高点的过程,由动能定理有-mgμs cosθ-mgs sinθ=0-12m(20)2物块A第一次从最高点滑到水平面的过程,由动能定理有-mgμs cosθ+mgs sinθ=12m02-0由上式得μ=0.45.1.[多选]如图所示,在光滑的水平面上放有两个小球A和B,mA>m B,B球上固定一轻质弹簧.A球以速率v去碰撞静止的B球,则(BD)A.A球的最小速率为零B.B球的最大速率为2+vC.当弹簧压缩到最短时,B球的速率最大D.两球的动能最小值为222(+)解析A球与弹簧接触后,弹簧被压缩,弹簧对A球产生向左的弹力,对B球产生向右的弹力,故A球做减速运动,B球做加速运动,当B球的速度等于A球的速度时弹簧的压缩量最大,此后A球继续减速,B球继续加速,弹簧压缩量减小,当弹簧恢复原长时,B球速度最大,A球速度最小,此过程满足动量守恒定律和能量守恒定律,有m A v=m A v1+m B v2,12m A v2=12m A12+12m B22,解得v1=−+v,v2=2+v,因为m A>m B,可知A球的最小速率不为零,B球的最大速率为2+v,故A、C错误,B正确;两球共速时,弹簧压缩到最短,弹性势能最大,此时两球动能最小,根据动量守恒定律有m A v=(m A+m B)v共,E k=12(m A+m B)共2,联立可得E k=222(+),故D正确.2.[2024北京八一中学校考/多选]如图所示,静止在光滑水平桌面上的物块A和B用一轻质弹簧拴接在一起,弹簧处于原长.一颗子弹沿弹簧轴线方向射入物块A并留在其中,射入时间极短.下列说法中正确的是(BD)A.子弹射入物块A的过程中,子弹和物块A的机械能守恒B.子弹射入物块A的过程中,子弹对物块A的冲量大小等于物块A对子弹的冲量大小C.子弹射入物块A后,两物块与子弹的动能之和等于射入物块A前子弹的动能D.两物块运动过程中,弹簧最短时的弹性势能等于弹簧最长时的弹性势能解析子弹射入物块A的过程为完全非弹性碰撞,有动能损失,则子弹和物块A的机械能不守恒,故A错误;子弹射入物块A的过程中,子弹对物块A的作用力与物块A对子弹的作用力是一对相互作用力,等大反向,而且两个力作用时间相等,由I=Ft知,子弹对物块A的冲量大小等于物块A对子弹的冲量大小,故B正确;子弹射入物块A后,两物块与子弹的动能之和小于射入物块A前子弹的动能,因为子弹射入物块A过程中有动能转化为内能,故C错误;两物块运动过程中,弹簧最短时与弹簧最长时都是两物块具有共同速度时,有(m A+m子)v1=(m A+m子+m B)v2,ΔE p=12(m A+m子)12−12(m A+m子+m B)22,则弹簧最短时的弹性势能等于弹簧最长时的弹性势能,故D正确.3.[2024河南三门峡模拟/多选]光滑水平面上停放着质量为m、装有光滑弧形槽的小车,一质量也为m的小球以水平速度v0沿槽口向小车滑去,到达某一高度后,小球又返回右端,图甲小车放置在无阻碍的光滑水平面上,图乙小车靠墙停放,已知重力加速度为g,则(BC)A.图甲中小球返回右端将向右做平抛运动B.图乙中小球返回右端将向右做平抛运动C.图甲中小球在弧形槽内上升的最大高度为024D.图甲中全过程小球对小车压力的冲量为mv0解析题图甲中,小球离开小车时,设小球的速度为v1,小车的速度为v2,整个过程中系统在水平方向上动量守恒,以向左为正方向,由动量守恒定律得mv0=mv1+mv2,对系统由机械能守恒定律得12m02=12m12+12m22,联立解得v1=0,v2=v0,所以题图甲中小球返回右端将做自由落体运动,A错误;题图乙中小车静止不动,因此小球返回右端将向右做平抛运动,B正确;设题图甲中小球在弧形槽内上升的最大高度为h,由系统水平方向动量守恒得mv0=2mv,由能量守恒定律得12m02=12×2mv2+mgh,解得h=024,C正确;由以上分析可知,题图甲中小球返回右端将做自由落体运动,小车将向左做匀速直线运动,速度为v0,对小车水平方向,由动量定理可得I x=Δp=mv0,由于小球对小车一直有竖直向下的压力分量,故全过程小球对小车压力的冲量不等于mv0,D错误.4.[多选]如图所示,光滑水平面上有一质量为2M、半径为R(R足够大)的14光滑圆弧曲面C,质量为M的小球B置于其底端,质量为2的小球A以v0=6m/s的速度向B运动,并与B发生弹性碰撞,两小球均可视为质点,则(AD)A.B的最大速率为4m/sB.B运动到最高点时的速率为34m/sC.B能与A再次发生碰撞D.B不能与A再次发生碰撞解析A与B发生弹性碰撞,取水平向右为正方向,根据动量守恒定律和机械能守恒定律得2v0=2v A+Mv B,12·202=12·22+12M2,解得v A=-2m/s,v B=4m/s,故B的最大速率为4m/s,A正确;B冲上C并运动到最高点时二者共速,设为v,则Mv B=(M+2M)v,得v=43m/s,B错误;B冲上C然后又滑下的过程,设B、C分离时速度分别为v'B、v'C,由水平方向动量守恒有Mv B=Mv'B+2Mv'C,由机械能守恒有12M2=12Mv'2B+12·2Mv'2C,联立解得v'B=-43m/s,由于|v'B|<|v A|,所以二者不会再次发生碰撞,C错误,D正确.5.[设问创新/2024江苏盐城模拟]如图所示,一质量为M=3.0kg的长木板B放在光滑水平地面上,在其右端放一个质量为m=1.0kg的小木块A.同时给A和B大小均为v=5.0m/s、方向相反的初速度,使A开始向左运动,B开始向右运动,A始终没有滑离B.在A做加速运动的时间内,B的速度大小可能是(C)A.1.8m/sB.2.4m/sC.2.8m/sD.3.5m/s解析以A、B组成的系统为研究对象,因为系统不受外力,则系统动量守恒,选择水平向右的方向为正方向,从A、B开始运动到A的速度为零,根据动量守恒定律可得(M-m)v=Mv B1,解得v B1=103m/s,从A、B开始运动到A、B共速,根据动量守恒定律可得(M-m)v=(M+m)v B2,解得v B2=2.5m/s,木块A加速运动的过程为其速度减为零到与B共速的过程,此过程中B始终减速,则在木块A做加速运动的时间内,B的速度范围为2.5m/s≤v B≤103m/s,故C正确,ABD错误.6.[2024湖南长沙南雅中学校考]质量为M,长度为d的木块放在光滑的水平面上,在木块的右边有一个销钉把木块挡住,使木块不能向右滑动,质量为m的子弹以水平速度v0射入静止的木块,刚好能将木块射穿.现拔去销钉,使木块能在水平面上自由滑动,而子弹仍以水平速度v0射入静止的木块,设子弹在木块中受到的阻力大小恒定,则(C)A.拔去销钉,木块和子弹组成的系统动量守恒,机械能也守恒B.子弹在木块中受到的阻力大小为B02C.拔去销钉,子弹在木块中运动的时间为2B(+)0D.拔去销钉,子弹射入木块的深度为B+解析拔去销钉,木块和子弹之间的摩擦力是系统内力,故木块和子弹组成的系统动量守恒;但因摩擦力要做功,故系统机械能不守恒,故A错误.当木块固定时,由动能定理可知-fd=0-12m02,解得f=B022,故B错误.拔去销钉,子弹与木块系统动量守恒,则根据动量守恒定律可得mv0=(m+M)v,解得v=B0+,对木块根据动量定理可得ft=Mv,子弹在木块中运动的时间为2B(+p0,故C正确.拔去销钉,由C选项分析可知最终速度,故整个过程根据动能定理有-fx=12(m+M)v2-12m02,解得x=B+,D错误.7.[2024江西南昌模拟]质量相等的A、B两球之间压缩一根轻质弹簧,静置于光滑水平桌面上,当用挡板挡住A球而只释放B球时,B球被弹出落到距桌边水平距离为x的地面上,如图所示,若再次以相同力压缩该弹簧,取走A左边的挡板,将A、B同时释放,则B球的落地点距桌边水平距离为(D)A.2 B.2x C.x解析当用挡板挡住A球而只释放B球时,B球做平抛运动,设高度为h,则有h=12gt2,x=v0t,所以弹簧的弹性势能为E p=12m02.若再次以相同力压缩该弹簧,取走A左边的挡板,将A、B同时释放,取向右为正方向,由动量守恒定律可得0=mv1-。

动量守恒(二)——弹簧连接体模型

动量守恒(二)——弹簧连接体模型

欢迎共阅
动量守恒(二)——弹簧连接体模型
另一物体C 跟物体B 靠在一起,但不与B 相连,它们的质量分别为m A =0.2 kg ,
m B =m C =0.1 kg 。

现用力将C 、B 和A 压在一起,使弹簧缩短,在这过程中,外力对弹簧做功7.2 J .然后,由静止释放三物体.求:
(1)弹簧伸长最大时,弹簧的弹性势能.
(2)弹簧从伸长最大回复到原长时,A 、B 的速度.(设弹簧在弹性限度内) 6、质量为M 的小车置于水平面上,小车的上表面由光滑的1/4圆弧和光滑平面组成,圆弧半径为R ,车的右端固定有一不计质量的弹簧。

现有一质量为m 的滑块从圆弧最高处无初速下滑,如图所示,与弹簧相接触并压缩弹簧。

求:(1)弹簧具有最大的弹性势能;(2)当滑块与弹簧分离时小车的速度。

至A 、B 速度相等,弹簧伸长最大,设此时A 、B 的速度为v .
由水平方向动量守恒可列式:
m A v A +m B v BC =(m A +m B )v 由机械能守恒可列式:
21 m A v A2+21 m B v BC 2=2
1
(m A +m B )v 2+E 弹′
解得:v =2 m/s,E 弹′=4.8 J
(2)设弹簧从伸长最大回到原长时A 的速度为v 1,B 的速度为v 2,由动量守恒可列式:
(m A +m B )v =m A v 1+m B v 2 由机械能守恒又可列式:
21 (m A +m B )v 2+E 弹′=21 m A v 12+2
1
m B v 22 ,解得
组成的系统动量守恒,有:
解得
系统损失的机械能为= v=
根据能量守恒定律得,弹簧的最大弹性势能=
.。

微专题一动量守恒之弹簧模型

微专题一动量守恒之弹簧模型
微专题一动量守恒之弹簧模型
一、弹簧模型
1.对于光滑水平面上的弹簧类问题,在作用过程中,系统所受合外力为零,
满足动量守恒条件;
2.系统只涉及弹性势能、动能,因此系统机械能守恒;
3.弹簧压缩至最短或拉伸到最长时,弹簧连接的两物体共速,此时弹簧的弹
性势能最大。
4.弹簧从原长到最短或最长相当于完非,从原长再到原长相当于完弹。
1
解得 v3= v1=1 m/s
6
由机械能守恒定律有
1
1
2
Ep=2(mA+mB)v2 -2(mA+mB+mC)v32
解得Ep=3 J
被压缩弹簧再次恢复自然长度时,滑块C脱离
弹簧,设此时滑块A、B的速度为v4,滑块C的
速度为 v5 ,由动量守恒定律和机械能守恒定
律有
(mA+mB)v2=(mA+mB)v4+mCv5
5.具体过程及规律如下:
vB′是滑块B全程最大的速度,若A未与弹簧连接,则3状态是滑块A脱离弹
簧的时刻,脱离时的速度为vA′,其大小方向如何由mA、mB决定。
6.A、B运动过程的v-t图像如图所示。
1.A、B 两小球静止在光滑水平面上,用轻质弹簧相连接,A、B 两球
的质量分别为 mA 和 mB(mA <mB)。若使A球获得初速度 v (图甲),弹
C.两物块的质量之比为m1∶m2=1∶2
D.在t2时刻A与B的动能之比Ek1∶Ek2=1∶8
3.如图所示,质量为2m的小球B与轻质弹簧连接后静止于光滑水平面上,质量为m的小球A
以初速度v0向右运动逐渐压缩弹簧,A,B通过弹簧相互作用一段时间后A球与弹簧分离。若
以水平向右为正方向,且A球与弹簧分离时A,B小球的动量分别为pA和pB,运动过程中弹簧

动量守恒定律的应用弹簧问题ppt课件

动量守恒定律的应用弹簧问题ppt课件
11
[解析] 设碰后 A、B 和 C 的共同速度大小为 v,由动量守
恒有 mv0=3mv

设 C 离开弹簧时,A、B 的速度大小为 v1,由动量守恒有
3mv=2mv1+mv0

设弹簧的弹性势能为 Ep,从细线断开到 C 与弹簧分开的过
程中机械能守恒,有
12(3m)v2+Ep=12(2m)v1 2+12mv0 2
3.如图所示,P物体与一个连着弹簧的Q物体正碰,碰 撞后P物体静止,Q物体以P物体碰撞前速度v离开,已 知P与Q质量相等,弹簧质量忽略不计,那么当弹簧被
压缩至最短时,下列的结论中正确的应是( BD)
A.P的速度恰好为零 B.P与Q具有相同速度 C.Q刚开始运动 D.P、Q弹簧组成的系统动量守恒
理解:弹簧被压缩至最短时的临界条件。 7
动量守恒定律的应用 —— 弹簧模型
1
水平面光滑,弹簧开始时处于原长
(1)何时两物体相距最近,即弹簧最短
Nv N
F弹
F弹
G
G
两物体速度相等时弹簧最短,且损失的动能
转化为弹性势能
(2)何时两物体相距最远,即弹簧最长
v
两物体速度相等时弹簧最长,且损失的动能转
化为弹性势能
2
弹簧模型的特点与方法
1.注意弹簧弹力特点及运动过程。
v
AB
C
9
6.如图所示,一轻质弹簧的一端固定在滑块B上,另 一端与滑块C接触但未连接,该整体静止放在离地面 高为H的光滑水平桌面上。现有一滑块A从光滑曲面 上离桌面h高处由静止开始滑下,与滑块B发生碰撞 (时间极短)并粘在一起压缩弹簧推动滑块C向前运 动,经一段时间,滑块C脱离弹簧,继续在水平桌面 上匀速运动一段时间后从桌面边缘飞出。已知

专题21动量守恒定律(弹簧模型)-2019高考物理一轮复习专题详解(解析版)

专题21动量守恒定律(弹簧模型)-2019高考物理一轮复习专题详解(解析版)

1.动量守恒条件.(1)系统不受外力或合外力为零时,动量守恒.(2)若在某一方向合外力为0,则该方动量守恒.2.规律方法应用动量守恒定律解题的基本思路(1)分析题意,明确研究对象,确定所研究的系统是由哪些物体组成的.(2)对各阶段所选系统内的物体进行受力分析,区分系统内力和外力,在受力分析的基础上根据动量守恒定律条件判断能否应用动量守恒定律.(3)明确所研究物体间的相互作用的过程,确定过程的初、末状态,即系统内各个物体的初动量和末动量.(4)规定正方向,确定初、末状态的动量的正、负号,根据动量守恒定律列方程求解.3.在一个多过程、或者比较复杂的运动中,可能存在着同时满足动量守恒和能量守恒以及机械能守恒的问题,那么我们要根据题中的条件判断是否符合动量守恒和机械能守恒的条件,然后利用公式解题。

动量守恒的条件:系统不受外力或者所受合外力为零,则系统机械能是守恒的机械能守恒的条件:只有重力或系统内弹力做功,系统的机械能是守恒的。

动量守恒可以说某个方向上守恒,但机械能守恒不能说某个方向上守恒。

解动力学问题的三个基本观点(1)力的观点:运用牛顿定律结合运动学知识解题,可处理匀变速运动问题(2)能量观点:用动能定理和能量守恒观点解题,可处理非匀变速运动问题(3)动量观点:用动量守恒观点解题,可处理非匀变速运动问题利用动量和能量的观点解题的技巧(l )若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律(机械能守恒定律).(2)若研究对象为单一物体,且涉及功和位移问题时,应优先考虑动能定理(3)因为动量守恒定律、能量守恒定律(机械能守恒定律)、动能定理都只考查一个物理过程的始末两个状态有关物理量间的关系,对过程的细节不予细究,这正是它们的方便之处,特别对于变力做功问题,就更显示出它们的优越性例题分析典例 1 如图所示,轻弹簧的一端固定在竖直墙上,质量为m 的光滑弧形槽静止放在光滑水平面上,弧形槽底端与水平面相切,一个质量也为m 的小物块从槽高h 处开始自由下滑,下列说法正确的是()A .在下滑过程中,物块的机械能守恒B .在下滑过程中,物块和槽的动量守恒C .物块被弹簧反弹后,做匀速直线运动D.物块被弹簧反弹后,能回到槽高h 处【答案】C典例 2. 如图所示,木块 A 和 B 质量均为 2 kg,置于光滑水平面上. B 与一轻质弹簧一端相连,弹簧另一端固定在竖直挡板上,当 A 以 4 m/s的速度向 B 撞击时,A、B 之间由于有橡皮泥而粘在一起运动,那么弹簧被压缩到最短时,具有的弹性势能大小为( )A. 4 J B.8 J C.16 J D.32 J【答案】B【解析】 A 与 B 碰撞过程动量守恒,有m A v A=(m A+m B)v AB,所以v AB==2 m/s.当弹簧被压缩到最短时,A、B 的动能完全转化成弹簧的弹性势能,所以E p=(m A+m B)v =8 J.典例 3 如图所示,物体 A 静止在光滑的水平面上, A 的左边固定有轻质弹簧,与 A 质量相等的物体 B 以速度v 向 A 运动并与弹簧发生碰撞,A、B 始终沿同一直线运动,则A、B 组成的系统动能损失最大的时刻是( )A . A 开始运动时B. A 的速度等于v 时C. B 的速度等于零时D . A 和 B 的速度相等时答案】D【解析】当 B 触及弹簧后减速, 而物体 A 加速, 当 A 、B 两物体速度相等时, A 、B 间距离最小, 弹簧 压缩量最大, 弹性势能最大, 由能的转化与守恒定律可知系统损失的动能最多, 故只有 D 正确 典例 4 (多选)如图甲所示,一轻弹簧的两端与质量分别为m 1和 m 2的两物块 A 、B 相连接,并静止在光滑的水平面上.现使 B 瞬时获得水平向右的速度 3 m/s ,以此刻为计时起点,两物块的速度随时间变化的规律如 图乙所示,从图象信息可得 ( )A . 在 t 1、t 3时刻两物块达到共同速度 1 m/s ,且弹簧都处于伸长状态B . 从 t 3到 t 4时刻弹簧由压缩状态恢复到原长C . 两物体的质量之比为 m 1∶ m 2=1∶2D . 在 t 2时刻 A 与 B 的动能之比为E k1∶E k2=8∶1【答案】 BD专题练习1 (多选 )如图所示, 两物块质量关系为 m 1=2m 2;两物块与水平面间的动摩擦因数 μ2= 2μ1,两物块原来静止,轻质弹簧被压缩,若烧断细线后,弹簧恢复到原长时,两物块脱离弹簧且速率均不为零,则 ( )A .两物块在脱离弹簧时速率最大C .两物块的速率同时达到最大D .两物体在弹开后同时达到静止【答案】 BCDB .两物块在刚脱离弹簧时速率之比为 v 1 1v 2=2【分析】 烧断细线后,对 m 1、m 2及弹簧组成的系统,在 m 1、m 2 运动过程中,都受到滑动摩擦力的作用, 其中 F 1= μ1m 1g ,F 2=μ2m 2g ,根据题设条件,两摩擦力大小相等,方向相反,系统所受外力的合力为零,动 量守恒.两物块未脱离弹簧时,在水平方向各自受到弹簧弹力和地面对物体的摩擦力作用,其运动过程分 为两个阶段:先是弹簧弹力大于摩擦力,物块做变加速运动,直到弹簧弹力等于摩擦力时,物块速度达到 最大,此后弹簧弹力小于摩擦力,物块做变减速运动,弹簧恢复原长时,两物块与弹簧脱离.脱离弹簧后, 物块在水平方向只受摩擦力作用,做匀减速运动,直到停止.【点评】 对于所研究的系统,只要所受外力的合力为零,无论有多少个过程,无论系统内各物体是否接 触,也无论系统内物体间相互作用力的性质如何,动量守恒定律都适用.解题中既可以。

弹簧模型(解析版)-高中物理动量守恒的十种模型

弹簧模型(解析版)-高中物理动量守恒的十种模型

动量守恒的十种模型模型一弹簧模型模型解读【典例分析】1(2024高考辽吉黑卷)如图,高度h=0.8m的水平桌面上放置两个相同物块A、B,质量m A=m B=0.1kg。

A、B间夹一压缩量Δx=0.1m的轻弹簧,弹簧与A、B不栓接。

同时由静止释放A、B,弹簧恢复原长时A恰好从桌面左端沿水平方向飞出,水平射程x A=0.4m;B脱离弹簧后沿桌面滑行一段距离x B=0.25m后停止。

A、B均视为质点,取重力加速度g=10m/s2。

求:(1)脱离弹簧时A、B的速度大小v A和v B;(2)物块与桌面间动摩擦因数μ;(3)整个过程中,弹簧释放的弹性势能ΔE p。

【答案】(1)1m/s,1m/s;(2)0.2;(3)0.12J(1)对物块A,由平抛运动规律,h=12gt2,x A=v A t,联立解得:v A=1m/s弹簧将两物块弹开,由动量守恒定律,m A v A=m B v B,解得v B=v A=1m/s(2)对物块B,由动能定理,-μm B g x B=0-12m B v B2解得:μ=0.2(3)由能量守恒定律,整个过程中,弹簧释放的弹性势能△E p=μm B g×12△x+μm A g×12△x+12m A v A2+12m B v B2=0.12J【针对性训练】1(2024年3月江西赣州质检)如图甲所示,光滑水平地面上有A、B两物块,质量分别为2kg、6kg,B的左端拴接着一劲度系数为2003N/m的水平轻质弹簧,它们的中心在同一水平线上。

A以速度v0向静止的B方向运动,从A接触弹簧开始计时至A与弹簧脱离的过程中,弹簧长度l与时间t的关系如图乙所示,弹簧始终处在弹性限度范围内,已知弹簧的弹性势能E p=12kx2(x为弹簧的形变量),则()A.在0~2t0内B物块先加速后减速B.整个过程中,A、B物块构成的系统机械能守恒C.v0=2m/sD.物块A在t0时刻时速度最小【答案】C【解析】在0~2t0内,弹簧始终处于压缩状态,即B受到的弹力始终向右,所以B物块始终做加速运动,故A错误;整个过程中,A、B物块和弹簧三者构成的系统机械能守恒,故B错误;由图可知,在t0时刻,弹簧被压缩到最短,则此时A、B共速,此时弹簧的形变量为x=0.4m-0.1m=0.3m则根据A、B物块系统动量守恒有m1v0=(m1+m2)v根据A、B物块和弹簧三者构成的系统机械能守恒有1 2m1v20=12(m1+m2)v2+E pv0=2m/s故C正确;在0~2t0内,弹簧始终处于压缩状态,即A受到弹力始终向左,所以A物块始终做减速运动,则物块A在2t0时刻时速度最小,故D错误。

弹簧模型动量守恒定律应用PPT课件

弹簧模型动量守恒定律应用PPT课件

水平向右为正方向,有Ep=
1 2
mBv12
I=mBvB-mBv1
代入数据得I=-4 N·s,其大小为4 N·s
(3)设绳断后A的速度为vA,取水平向右为正方
向,有mBv1=mBvB+mAvA
W= 1
2
mAvA2
代入数据得W=8 J
答案 (1)5 m/s (2)4 N·s (2)8 J
选修3-5 动量 近代物理初步
选修3-5 动量 近代物理初步
SUCCESS
THANK YOU
2019/8/24
选修3-5 动量 近代物理初步
解析 (1)设B在绳被拉断后瞬间的速度为vB, 到达12 Cm点BvB时2=的12 速mBv度C2为+2vmCB,g有R mB代g=入mB数vRc2据得vB=5 m/s (2)设弹簧恢复到自然长度时B的速度为v1,取
选修3-5 动量 近代物理初步
选修3-5 动量 近代物理初步
第一讲 动量 动量守恒定律
第7课 弹簧模型
水平面光滑,弹簧开始时处于原长
(1)何时两物体相距最近,即弹簧最短
Nv
N
F弹F弹GG Nhomakorabea两物体速度相等时弹簧最短,且损失的动能
转化为弹性势能
(2)何时两物体相距最远,即弹簧最长
v
两物体速度相等时弹簧最长,且损失的动能转

由①②③式得弹簧所释放的势能为 Ep=13mv0 2
[答案]
1 3mv0
2
选修3-5 动量 近代物理初步
1.如图所示,光滑轨道上,小车A、B用轻弹 簧连接,将弹簧压缩后用细绳系在A、B上, 然后使A、B以速度v0沿轨道向右运动,运动 中细绳突然断开, 当弹簧第一次恢复到自 然长度时, A的速度刚好为0 ,已知A、B的 质量分别为mA、mB,且mA<mB ,求:被压缩的弹 簧具有的弹性势能Ep.

动量守恒定律的应用弹簧问题

动量守恒定律的应用弹簧问题
v
AB
C
6.如图所示,一轻质弹簧的一端固定在滑块B上,另 一端与滑块C接触但未连接,该整体静止放在离地面 高为H的光滑水平桌面上。现有一滑块A从光滑曲面 上离桌面h高处由静止开始滑下,与滑块B发生碰撞 (时间极短)并粘在一起压缩弹簧推动滑块C向前运 动,经一段时间,滑块C脱离弹簧,继续在水平桌面 上匀速运动一段时间后从桌面边缘飞出。已知
A.若A、B与平板车上表面间的动摩擦因数相同,A、
B组成系统的动量守恒
B.若A、B与平板车上表面间的动摩擦因数相同,A、
B、C组成系统的动量守恒
C.若A、B所受的摩擦力大小相等,A、B、C组成系
统的动量守恒
D.若平板车足够长,
A
B
最终A、B、C将静止。
弹簧弹力联系的“两体模型”
注意:状态的把握 由于弹簧的弹力随形变量变化,所以弹簧 弹力联系的“两体模型”一般都是作加速度变 化的复杂运动,所以通常需要用“动量关系” 和“能量关系”分析求解。复杂的运动过程不 容易明确,特殊的状态必须把握:弹簧最长 (短)时两体的速度相同;弹簧自由时两体的 速度最大(小)。

由①②③式得弹簧所释放的势能为 Ep=13mv0 2
[答案]
1 3mv0
2
A.a尚未离开墙壁前,a和b组成的系统动量守恒
B.a尚未离开墙壁前,a和b组成的系统动量不守恒
C.a离开墙壁后,a和b组成的系统动量守恒
D.a离开墙壁后,a和b组成的系统动量不守恒
a
F b
2.原来静止在平板小车C上,A、B间有一根被压缩
的弹簧,地面光滑,A的质量是B的2倍,当弹簧突然
释放后,则下列说法错误的( A)
2.弹簧连接两种形式:连接或不连接。 连接:可以表现为拉力和压力。 不连接:只表现为压力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弹簧模型+子弹打木块模型
弹簧模型
1.两物块A、B用轻弹簧相连,质量均为2kg,初始时弹簧处于原长,A、B两物块都以v=6m/s的速度在光滑的水平地面上运动,质量为4kg的物块C静止在前方,如图4所示.B 与C碰撞后二者会粘在一起运动.则在以后的运动中:
(1)当弹簧的弹性势能最大时,物块A的速度为多大?
(2)系统中弹性势能的最大值是多少?
2.(多选)光滑水平地面上,A、B两物体质量都为m,A以速度v向右运动,B原来静止,左端有一轻弹簧,如图所示,当A撞上弹簧,弹簧被压缩最短时()
A.A、B系统总动量仍然为mv
B.A的动量变为零
C.B的动量达到最大值
D.A、B的速度相等
3.如图所示,质量相等的两个滑块位于光滑水平桌面上,其中弹簧两端分别与静止的滑块N 和挡板P相连接,弹簧与挡板的质量均不计;滑块M以初速度v0向右运动,它与档板P碰撞(不粘连)后开始压缩弹簧,最后滑块N以速度v0向右运动。

在此过程中( )
A.M的速度等于0时,弹簧的弹性势能最大
B.M与N具有相同的速度时,两滑块动能之和最小
C.M的速度为v0/2时,弹簧的长度最长
D.M的速度为v0/2时,弹簧的长度最短
4.如图甲所示,一轻弹簧的两端与质量分别是m1和m2的两木块A、B相连,静止在光滑水平面上.现使A瞬间获得水平向右的速度v=3 m/s,以此时刻为计时起点,两木块的速度随时间变化规律如图乙所示,从图示信息可知()
A.t1时刻弹簧最短,t3时刻弹簧最长
B.从t1时刻到t2时刻弹簧由伸长状态恢复到原长
C.两木块的质量之比为m1:m2=1:2
D.在t2时刻两木块动能之比为E K1:E K2=1:4
5.质量为m的物块甲以3 m/s的速度在光滑水平面上运动,有一轻弹簧固定其上,另一质量也为m的物块乙以4 m/s的速度与甲相向运动,如图所示,则()
A.甲、乙两物块在弹簧压缩过程中,由于弹力作用,动量不守恒
B.当两物块相距最近时,物块甲的速率为零
C.当物块甲的速率为1 m/s时,物块乙的速率可能为2 m/s,也可能为0
D.物块甲的速率可能达到5 m/s
6.如图所示,质量M=4 kg的滑板B静止放在光滑水平面上,其右端固定一根轻质弹簧,弹簧的自由端C到滑板左端的距离L=0.5 m,这段滑板与木块A(可视为质点)之间的动摩擦因数μ=0.2,而弹簧自由端C到弹簧固定端D所对应的滑板上表面光滑.小木块A以速度v0=10 m/s由滑板B左端开始沿滑板B表面向右运动.已知木块A的质量m=1 kg,g取10 m/s2.求:
(1)弹簧被压缩到最短时木块A的速度大小;
(2)木块A压缩弹簧过程中弹簧的最大弹性势能.
7.如图光滑水平直轨道上有三个质量均为m的物块A、B、C.B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C碰撞过程时间极短.求从A开始压缩弹簧直至与弹簧分离的过程中,
(3)整个系统损失的机械能;
(4)弹簧被压缩到最短时的弹性势能.
8.质量为m的钢板与直立弹簧的上端连接,弹簧下端固定在地上,平衡时,弹簧的压缩量为x0,如图所示,一物块从钢板正上方距离为3x0的A处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动.已知物块质量也为m时,它们恰能回到O点。

若物块质量为2m,仍从A处自由落下,则物块与钢板回到O点时,还具有向上的速度,求物块向上运动到达的最高点与O点的距离。

子弹打木块模型
1.子弹打木块的过程很短暂,认为该过程内力远大于外力,则系统动量守恒.
2.在子弹打木块过程中摩擦生热,系统机械能不守恒,机械能向内能转化.
3.若子弹不穿出木块,二者最后有共同速度,机械能损失最多.
1.如图所示,在水平地面上放置一质量为M 的木块,一质量为m 的子弹以水平速度v 射入木块(未穿出),若木块与地面间的动摩擦因数为μ,求:
(1) 子弹射入后,木块在地面上前进的距离;
(2) 射入的过程中,系统损失的机械能.
2.如图所示,在光滑水平面上放置一质量为M 的静止木块,一质量为m 的子弹以水平速度v 0射向木块,穿出后子弹的速度变为v 1,求木块和子弹所构成的系统损失的机械能.
3.子弹在射入木块前的动能为E 1,动量大小为1p ;射穿木板后子弹的动能为E 2,动量大小为2p 。

若木板对子弹的阻力大小恒定,则子弹在射穿木板的过程中的平均速度大小为(BC)
A 、2121p p E E ++
B 、1212p p E E --
C 、2211p E p E +
D 、2
211p E p E - 4.如图所示,子弹水平射入放在光滑水平地面上静止的木块,子弹未穿透木块,此过程木块的动能增加了6 J ,那么此过程产生的内能可能为( )
A.16 J
B.2 J
C.6 J
D.4 J.
5.(多选)矩形滑块由不同材料的上、下两层粘合在一起组成,将其放在光滑的水平面上,质量为m 的子弹以速度v 水平射向滑块,若射击下层,子弹刚好不射出,若射击上层,则子弹刚好能射进一半厚度,如图6所示,上述两种情况相比较( )
A.子弹对滑块做功一样多
B.子弹对滑块做的功不一样多
C.系统产生的热量一样多
D.系统产生的热量不一定多
6.光滑水平面上有两个小木块A和B,其质量m A=1kg、m B=4kg,它们中间用一根轻质弹簧相连.一颗水平飞行的子弹质量为m=50g,以V0=500m/s的速度在极短时间内射穿两木块,
已知射穿A木块后子弹的速度变为原来的
3
5
,且子弹射穿A木块损失的动能是射穿B木块损失的动能的2倍.求:系统运动过程中弹簧的最大弹性势能.
7.如图所示,一不可伸长的轻质细绳,静止地悬挂着质量为M的木块,一质量为m的子弹,以水平速度v0击中木块,已知M=9m,不计空气阻力.问:
(3)如果子弹击中木块后未穿出(子弹进入木块时间极短),在木块上升的最高点比悬点O低的情况下,木块能上升的最大高度是多少?(设重力加速度为g)
(4)如果子弹在极短时间内以水平速度
v0
4穿出木块,则在这一过程中子弹、木块系统损失的机械能是多少?
8.如图所示,质量为mB=2kg的平板车B上表面水平,开始时静止在光滑水平面上,在平板车左端静止着一块质量为mA=2kg的物体A,一颗质量为m0=0.01kg的子弹以υ0=600m/s的水平初速度瞬间射穿A后,速度变为υ2=100m/s,已知A、B之间的动摩擦因数不为零,且A与B最终达到相对静止.
①求物体A的最大速度υA;
②求平板车B的最大速度υB;
③若从B开始运动到取得最大速度历时0.25s,g=10m/s2,求A、B间动摩擦因数μ.
A B
v0
9.如图,一质量为M的物快静止在桌面边缘,桌面离水平地面的高度为h。

一质量为m的子弹以水平速度v0射入物块后,以水平速度v0/2射出。

重力加速度为g。


(1)此过程中系统损失的机械能?
(2)此后物块落地点离桌面边缘的水平距离?。

相关文档
最新文档