(完整版)动量守恒定律弹簧模型

合集下载

动量守恒定律的典型模型及应用(正式)详解

动量守恒定律的典型模型及应用(正式)详解
1.运动性质:子弹对地在滑动摩擦力作用下匀减 速直线运动;木块在滑动摩擦力作用下做匀加速 运动。
2.符合的规律:子弹和木块组成的系统动量守恒, 机械能不守恒。 3.共性特征:一物体在另一物体上,在恒定的阻 力作用下相对运动,系统动量守恒,机械能不守 恒,ΔE = f 滑d相对
• 例. 质量为M的木块静止在光滑水平面上, 一质量为m的子弹以速度v0水平射入木块中, 如果子弹所受阻力的大小恒为f,子弹没有 穿出木块,木块和子弹的最终速度为 v共 , 在这个过程中木块相对地面的位移为 s 木 , 子弹相对与地面的位移为 s子,求子弹相对与 木块的位移为 s ? b a
动量守恒定律的典型应用
几个模型: (一)碰撞中动量守恒
(二)反冲运动、爆炸模型
(三)碰撞中 弹簧模型 (四)子弹打木块类的问题 (五)人船模型:平均动量守恒
(一)碰撞中动量守恒
1.弹性碰撞的规律 两球发生弹性碰撞时应满足动量守恒和动能守恒. 以质量为m1速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为
基础自测 1.抛出的手雷在最高点时的水平速度为 10 m/s,这时 突然炸成两块,其中大块质量 300 g 仍按原方向飞行,其速 度测得为 50 m/s,另一小块质量为 200 g,求它的速度的大 小和方向.
解析:设手雷原飞行方向为正方向,则整体初速度v0 =10 m/s;m1=0.3 kg的大块速度为v1=50 m/s,m2=0.2 kg 的小块速度为v2,方向不清,暂设为正方向. 由动量守恒定律:(m1+m2)v0=m1v1+m2v2 代入数据解得v2=-50 m/s 此结果表明,质量为200 g的那部分以50 m/s的速度向 反方向运动,其中负号表示与所设正方向相反.
(二)反冲运动、爆炸模型

动量守恒定律应用2:弹簧模型

动量守恒定律应用2:弹簧模型
F
VP>VQ 弹簧一直缩短
弹簧最短时 VP=VQ
弹簧原长时 弹性势能为零
变式训练
如图所示,位于光滑水平桌面上的小滑块P和Q都 可视为质点,质量相等,都为m。P、Q与轻质弹簧 相连,弹簧处于原长。设P静止, Q以初速度v0向 右运动,在弹簧拉伸过程中,弹簧具有的最大弹性 势能是多少?
V0
弹簧模型规律
1滑块和木板 2弹簧模型 3光滑1/4圆轨道轨道 (某一方向的动量守恒) 4人船模型 (平均动量守恒)
动量和机械能守恒情况常见模型图
m
v0
A
B
O
h
R
M
b
a
动量守恒定律
一、动量(P)
1、概念: 物体的质量m和速度v的乘积叫做动量。
2、定义式: P = m v
3、单位: 千克米每秒,符号是 kg ·m/s
m1=2kg的物块以v1=2m/s的初速冲向
质量为m2=6kg静止的光滑圆弧面斜
1
劈体,物块不会冲出斜劈。求:
1. 物块m1滑到最高点位置时,二者的速度 2. 物体上升的最大高度 3. 物块m1从圆弧面滑下后,二者速度 4. 若m1= m2物块m1从圆弧面滑下后,二者速度
动量和能量综合典型物理模型
弹簧最短时 VP=VQ
弹簧模型1
如图所示,位于光滑水平桌面上的小滑块 P 和 Q 都可视为质点,质量相等,都为 m.Q 与轻质弹簧相 连.设 Q 静止, P 以初速度 v0 向 Q 运动并与弹簧发 生碰撞. (1)在整个碰撞过程中,弹簧具有的最大弹性势能是多 少? (2)弹簧再次恢复原长时,P 的动能是多少?
4、方向:与运动方向相同
(1)矢量性 (2)瞬时性
运算遵循平行四边形定则 是状态量。

动量守恒二——弹簧连接体模型

动量守恒二——弹簧连接体模型

动量守恒(二)一一弹簧连接体模型1在如图所示的装置中,木块B与水平面间的接触面是光滑的,子弹A沿水平方向向射入木块后并留在木块内,将弹簧压缩到最短。

现将木块、弹簧、子弹合在一起作为研究对象,则此系统在从子弹开始射入到弹簧压缩到最短的过程中[??]A •动量守恒,机械能守恒?B•动量不守恒,机械能不守恒?C•动量守恒,机械能不守恒?D•动量不守恒,机械能守恒2、如图所示放在光滑水平桌面上的A、B木块中部夹一被压缩的弹簧,当弹簧被放开时,它们各自在桌面上滑行一段距离后,飞离桌面落在地上.A的落地点与桌边水平距离0.5米,B的落点距桌边1米,那么A.A、B离开弹簧时速度比为1 : 2???????B.A、B质量比为2 : 1C.未离弹簧时,A、B所受冲量比为1 : 2?D.未离弹簧时,A、B加速度之比为1 : 23、如图所示,一轻质弹簧两端连着物体 A 和B ,放在光滑的水平面上,物体A 被水平速度 为V 。

的子弹射中并且嵌入其中。

已知物体B 的质量为m ,物体A 的质量是物体B 的质量的 3/4,子弹的质量是物体B 的质量的1/4②求弹簧压缩到最短时B 的速度③弹簧的最大弹性势能。

4、如图所示,质量为m 2和m 3的物体静止在光滑的水平面上,两者之间有压缩着的弹簧, 一个质量为m i 的物体以速度V 。

向右冲来,为了防止冲撞,m 2物体将m 3物体以一定速度弹 射出去,设m i 与m 3碰撞后粘合在一起,则 m 3的弹射速度至少为多大,才能使以后 m 3和 m 2不发生碰撞?5、如图所示,在光滑的水平面上,物体 A 跟物体B 用一根不计质量的弹簧相连,另一物 体C 跟物体B 靠在一起,但不与B 相连,它们的质量分别为m A =0 • 2 kg, m B = m c =0 . 1 kg 。

现用力将C 、B 和A 压在一起,使弹簧缩短,在这过程中,外力对弹簧做功 7. 2 J.然后,(1)弹簧伸长最大时,弹簧的弹性势能.(2)弹簧从伸长最大回复到原长时,A 、B 的速度.(设弹簧在弹性限度内)6质量为M 的小车置于水平面上,小车的上表面由光滑的 1/4圆弧和光滑平面组成,圆弧半径为R ,车的右端固定有一不计质量的弹簧。

动量守恒定律的应用弹簧问题

动量守恒定律的应用弹簧问题
(1)当弹簧的弹性势能最大时,物体A的速度是多大? (2)弹性势能最大值是多少?
v
AB
C
动量守恒定律的应用(弹簧问题)9B、C组成系统的动量守恒
C.若A、B所受的摩擦力大小相等,A、B、C组成系
统的动量守恒
D.若平板车足够长,
A
B
最终A、B、C将静止。
动量守恒定律的应用(弹簧问题)
6
题型二、两个物体的问题
3.如图所示,P物体与一个连着弹簧的Q物体正碰,碰 撞后P物体静止,Q物体以P物体碰撞前速度v离开,已 知P与Q质量相等,弹簧质量忽略不计,那么当弹簧被
动量守恒定律的应用(二) 弹簧模型
动量守恒定律的应用(弹簧问题)
1
弹簧模型的特点与方法
1.注意弹簧弹力特点及运动过程。
弹簧弹力不能瞬间变化。
2.弹簧连接两种形式:连接或不连接。
连接:可以表现为拉力和压力。
不连接:只表现为压力。
3.动量问题:动量守恒。
4.能量问题:机械能守恒(弹性碰撞)。
动能和弹性势能之间转化. 动量守恒定律的应用(弹簧问题)
(2)弹簧的这个过程中做的总功.
答案
2 mv02 3
动量守恒定律的应用(弹簧问题)
8
题型三、三个物体及综合问题
5.用轻弹簧相连的质量均为2kg的A、B两物 块都以v=6m/s的速度在光滑水平面上运动,弹 簧处于原长,质量为4kg的物块C在前方静止, 如图所示。B和C碰后二者粘在一起运动,在以 后的运动中,求:
2
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我

动量守恒定律的应用弹簧问题

动量守恒定律的应用弹簧问题
压缩至最短时,下列的结论中正确的应是( BD)
A.P的速度恰好为零
B.P与Q具有相同速度
C.Q刚开始运动
D.P、Q弹簧组成的系统动量守恒
理解:弹簧被压缩至最短时的临界条件。动量守恒定律的应 Nhomakorabea(弹簧问题)
5
4.质量分别为3m和m的两个物体, 用一根细线相连,中 间夹着一个被压缩的轻质弹簧,整个系统原来在光滑 水平地面上以速度v0向右匀速运动,如图所示.后来细 线断裂,质量为m的物体离开弹簧时的速度变为2v0. 求(1)质量为3m的物体离开弹簧时的速度
(1)当弹簧的弹性势能最大时,物体A的速度是多大? (2)弹性势能最大值是多少?
v
AB
C
动量守恒定律的应用(弹簧问题)
7
2
题型一、判断动量是否守恒
1.木块a和b用一轻弹簧连接,放在光滑水平面上, a紧靠在墙壁上,在b上施加向左的水平力使弹簧
压缩,当撤去外力后,下列说法正确的是(BC)
A.a尚未离开墙壁前,a和b组成的系统动量守恒
B.a尚未离开墙壁前,a和b组成的系统动量不守恒
C.a离开墙壁后,a和b组成的系统动量守恒
B、C组成系统的动量守恒
C.若A、B所受的摩擦力大小相等,A、B、C组成系
统的动量守恒
D.若平板车足够长,
A
B
最终A、B、C将静止。
动量守恒定律的应用(弹簧问题)
4
题型二、两个物体的问题
3.如图所示,P物体与一个连着弹簧的Q物体正碰,碰 撞后P物体静止,Q物体以P物体碰撞前速度v离开,已 知P与Q质量相等,弹簧质量忽略不计,那么当弹簧被
D.a离开墙壁后,a和b组成的系统动量不守恒
a
动量守恒定律的应用(弹簧问题)

动量守恒定律子弹打木块弹簧板块三模型

动量守恒定律子弹打木块弹簧板块三模型

一、 子弹大木块【例2】如图所示,质量为M 的木块固定在光滑的水平面上,有一质量为m 的子弹以初速度v0水平射向木块,并能射穿,设木块的厚度为d ,木块给子弹的平均阻力恒为f .若木块可以在光滑的水平面上自由滑动,子弹以同样的初速度水平射向静止的木块,假设木块给子弹的阻力与前一情况一样,试问在此情况下要射穿该木块,子弹的初动能应满足什么条件?【解析】若木块在光滑水平面上能自由滑动,此时子弹若能恰好打穿木块,那么子弹穿出木块时(子弹看为质点),子弹和木块具有相同的速度,把此时的速度记为v ,把子弹和木块当做一个系统,在它们作用前后系统的动量守恒,即mv 0=(m +M )v对系统应用动能定理得fd =12mv 20-12(M +m )v 2由上面两式消去v 可得 fd =12mv 20-12(m +M )(mv 0m +M )2整理得12mv 20=m +M M fd即12mv 20=(1+m M)fd 据上式可知,E 0=12mv 20就是子弹恰好打穿木块所必须具有的初动能,也就是说,子弹恰能打穿木块所必须具有的初动能与子弹受到的平均阻力f 和木块的厚度d (或者说与f ·d )有关,还跟两者质量的比值有关,在上述情况下要使子弹打穿木块,则子弹具有的初动能E 0必须大于(1+mM)f ·d .72、如图所示,静止在光滑水平面上的木块,质量为、长度为。

—颗质量为的子弹从木块的左端打进。

设子弹在打穿木块的过程中受到大小恒为的阻力,要使子弹刚好从木块的右端打出,则子弹的初速度应等于多大?涉及子弹打木块的临界问题分析:取子弹和木块为研究对象,它们所受到的合外力等于零,故总动量守恒。

由动量守恒定律得:①要使子弹刚好从木块右端打出,则必须满足如下的临界条件:②根据功能关系得:③解以上三式得:二、 板块1、 如图1所示,一个长为L 、质量为M 的长方形木块,静止在光滑水平面上,一个质量为m 的物块(可视为质点),以水平初速度0v 从木块的左端滑向右端,设物块与木块间的动摩擦因数为μ,当物块与木块达到相对静止时,物块仍在长木块上,求系统机械能转化成内能的量Q 。

微专题一动量守恒之弹簧模型

微专题一动量守恒之弹簧模型
微专题一动量守恒之弹簧模型
一、弹簧模型
1.对于光滑水平面上的弹簧类问题,在作用过程中,系统所受合外力为零,
满足动量守恒条件;
2.系统只涉及弹性势能、动能,因此系统机械能守恒;
3.弹簧压缩至最短或拉伸到最长时,弹簧连接的两物体共速,此时弹簧的弹
性势能最大。
4.弹簧从原长到最短或最长相当于完非,从原长再到原长相当于完弹。
1
解得 v3= v1=1 m/s
6
由机械能守恒定律有
1
1
2
Ep=2(mA+mB)v2 -2(mA+mB+mC)v32
解得Ep=3 J
被压缩弹簧再次恢复自然长度时,滑块C脱离
弹簧,设此时滑块A、B的速度为v4,滑块C的
速度为 v5 ,由动量守恒定律和机械能守恒定
律有
(mA+mB)v2=(mA+mB)v4+mCv5
5.具体过程及规律如下:
vB′是滑块B全程最大的速度,若A未与弹簧连接,则3状态是滑块A脱离弹
簧的时刻,脱离时的速度为vA′,其大小方向如何由mA、mB决定。
6.A、B运动过程的v-t图像如图所示。
1.A、B 两小球静止在光滑水平面上,用轻质弹簧相连接,A、B 两球
的质量分别为 mA 和 mB(mA <mB)。若使A球获得初速度 v (图甲),弹
C.两物块的质量之比为m1∶m2=1∶2
D.在t2时刻A与B的动能之比Ek1∶Ek2=1∶8
3.如图所示,质量为2m的小球B与轻质弹簧连接后静止于光滑水平面上,质量为m的小球A
以初速度v0向右运动逐渐压缩弹簧,A,B通过弹簧相互作用一段时间后A球与弹簧分离。若
以水平向右为正方向,且A球与弹簧分离时A,B小球的动量分别为pA和pB,运动过程中弹簧

动量守恒定律的应用弹簧问题ppt课件

动量守恒定律的应用弹簧问题ppt课件
11
[解析] 设碰后 A、B 和 C 的共同速度大小为 v,由动量守
恒有 mv0=3mv

设 C 离开弹簧时,A、B 的速度大小为 v1,由动量守恒有
3mv=2mv1+mv0

设弹簧的弹性势能为 Ep,从细线断开到 C 与弹簧分开的过
程中机械能守恒,有
12(3m)v2+Ep=12(2m)v1 2+12mv0 2
3.如图所示,P物体与一个连着弹簧的Q物体正碰,碰 撞后P物体静止,Q物体以P物体碰撞前速度v离开,已 知P与Q质量相等,弹簧质量忽略不计,那么当弹簧被
压缩至最短时,下列的结论中正确的应是( BD)
A.P的速度恰好为零 B.P与Q具有相同速度 C.Q刚开始运动 D.P、Q弹簧组成的系统动量守恒
理解:弹簧被压缩至最短时的临界条件。 7
动量守恒定律的应用 —— 弹簧模型
1
水平面光滑,弹簧开始时处于原长
(1)何时两物体相距最近,即弹簧最短
Nv N
F弹
F弹
G
G
两物体速度相等时弹簧最短,且损失的动能
转化为弹性势能
(2)何时两物体相距最远,即弹簧最长
v
两物体速度相等时弹簧最长,且损失的动能转
化为弹性势能
2
弹簧模型的特点与方法
1.注意弹簧弹力特点及运动过程。
v
AB
C
9
6.如图所示,一轻质弹簧的一端固定在滑块B上,另 一端与滑块C接触但未连接,该整体静止放在离地面 高为H的光滑水平桌面上。现有一滑块A从光滑曲面 上离桌面h高处由静止开始滑下,与滑块B发生碰撞 (时间极短)并粘在一起压缩弹簧推动滑块C向前运 动,经一段时间,滑块C脱离弹簧,继续在水平桌面 上匀速运动一段时间后从桌面边缘飞出。已知

动量守恒定律的应用弹簧问题课件

动量守恒定律的应用弹簧问题课件
2.弹簧连接两种形式:连接或不连接。 连接:可以表现为拉力和压力。 不连接:只表现为压力。
3.动量问题:动量守恒。 4.能量问题:机械能守恒(弹性碰撞)。
动能和弹性势能之间转化.
题型一、判断动量是否守恒
1.木块a和b用一轻弹簧连接,放在光滑水平面上, a紧靠在墙壁上,在b上施加向左的水平力使弹簧
压缩,当撤去外力后,下列说法正确的是(BC)
答案
2 02 3
题型三、三个物体及综合问题
5.用轻弹簧相连的质量均为2kg的A、B两物 块都以v=6m/s的速度在光滑水平面上运动,弹 簧处于原长,质量为4kg的物块C在前方静止, 如图所示。B和C碰后二者粘在一起运动,在以 后的运动中,求:
(1)当弹簧的弹性势能最大时,物体A的速度是多大? (2)弹性势能最大值是多少?
动量守恒定律的应用弹簧问题
水平面光滑,弹簧开始时处于原长
(1)何时两物体相距最近,即弹簧最短
Nv N
F弹
F弹
G
G
两物体速度相等时弹簧最短,且损失的动能
转化为弹性势能
(2)何时两物体相距最远,即弹簧最长
v
两物体速度相等时弹簧最长,且损失的动能转 化为弹性势能
弹簧模型的特点与方法
1.注意弹簧弹力特点及运动过程。 弹簧弹力不能瞬间变化。
理解:弹簧被压缩至最短时的临界条件。
4.质量分别为3m和m的两个物体, 用一根细线
相连,中间夹着一个被压缩的轻质弹簧,整个系
统原来在光滑水平地面上以速度v0向右匀速运 动,如图所示.后来细线断裂,质量为m的物体离
开弹簧时的速度变为2v0. 求(1)质量为3m的物体离开弹簧时的速度
(2)弹簧的这个过程中做的总功.
v

动量守恒定律的应用弹簧问题课件

动量守恒定律的应用弹簧问题课件

PART 05
弹簧问题中的能量守恒
能量守恒定律的定 义
能量守恒定律
能量既不会凭空产生,也不会凭空消失,它只能从一种形式 转化为传递过程中能量的总量保持不变。
弹性势能
物体由于发生弹性形变而具有的能,与物体的形变量大小有 关,形变量越大,弹性势能越大。
事、体育等领域,如炮弹发射、弹弓等。
THANKS
感谢观看
性。
弹射装置设计
总结词
弹射装置设计中,利用动量守恒定律和能量守恒定律,通过弹簧等弹性元件的作用,将 储存的能量瞬间释放,将物体快速弹出。
详细描述
在弹射装置设计中,通过设计合理的弹簧结构和参数,根据动量守恒定律和能量守恒定 律,将储存的能量瞬间释放,产生足够的推力将物体快速弹出。这种设计广泛应用于军
非完全弹性碰撞
总结词
非完全弹性碰撞中,弹簧的弹力作用使得部分动能转化为内能,系统动量仍然守恒。
详细描述
在非完全弹性碰撞中,弹簧的弹力作用使得部分动能转化为内能,系统动量仍然守恒。此时,两个物 体在碰撞后速度减缓,动能减小,部分能量转化为内能。这种情况下,需要通过动量守恒定律和能量 守恒定律来求解碰撞后的速度和运动状态。
弹簧问题中的能量守恒应用实例
弹簧振荡器
利用弹簧的振动来产生振荡的装 置,如钟摆、振动筛等。通过调 节弹簧的刚度和质量分布,可以
改变振荡器的频率和振幅。
减震器
利用弹簧的弹性来吸收和分散冲 击能量的装置,广泛应用于车辆、
建筑和各种机械设备中,以减少 振动和噪音。
弹簧碰撞实验
通过控制弹簧的长度和刚度,以 及物体的质量和速度等参数,可 以进行碰撞实验,研究能量守恒 定律在碰撞过程中的表现和应用。
确定相互作用

弹簧模型动量守恒定律应用PPT课件

弹簧模型动量守恒定律应用PPT课件

水平向右为正方向,有Ep=
1 2
mBv12
I=mBvB-mBv1
代入数据得I=-4 N·s,其大小为4 N·s
(3)设绳断后A的速度为vA,取水平向右为正方
向,有mBv1=mBvB+mAvA
W= 1
2
mAvA2
代入数据得W=8 J
答案 (1)5 m/s (2)4 N·s (2)8 J
选修3-5 动量 近代物理初步
选修3-5 动量 近代物理初步
SUCCESS
THANK YOU
2019/8/24
选修3-5 动量 近代物理初步
解析 (1)设B在绳被拉断后瞬间的速度为vB, 到达12 Cm点BvB时2=的12 速mBv度C2为+2vmCB,g有R mB代g=入mB数vRc2据得vB=5 m/s (2)设弹簧恢复到自然长度时B的速度为v1,取
选修3-5 动量 近代物理初步
选修3-5 动量 近代物理初步
第一讲 动量 动量守恒定律
第7课 弹簧模型
水平面光滑,弹簧开始时处于原长
(1)何时两物体相距最近,即弹簧最短
Nv
N
F弹F弹GG Nhomakorabea两物体速度相等时弹簧最短,且损失的动能
转化为弹性势能
(2)何时两物体相距最远,即弹簧最长
v
两物体速度相等时弹簧最长,且损失的动能转

由①②③式得弹簧所释放的势能为 Ep=13mv0 2
[答案]
1 3mv0
2
选修3-5 动量 近代物理初步
1.如图所示,光滑轨道上,小车A、B用轻弹 簧连接,将弹簧压缩后用细绳系在A、B上, 然后使A、B以速度v0沿轨道向右运动,运动 中细绳突然断开, 当弹簧第一次恢复到自 然长度时, A的速度刚好为0 ,已知A、B的 质量分别为mA、mB,且mA<mB ,求:被压缩的弹 簧具有的弹性势能Ep.

动量守恒(二)——弹簧连接体模型

动量守恒(二)——弹簧连接体模型

欢迎共阅
动量守恒(二)——弹簧连接体模型
另一物体C 跟物体B 靠在一起,但不与B 相连,它们的质量分别为m A =0.2 kg ,
m B =m C =0.1 kg 。

现用力将C 、B 和A 压在一起,使弹簧缩短,在这过程中,外力对弹簧做功7.2 J .然后,由静止释放三物体.求:
(1)弹簧伸长最大时,弹簧的弹性势能.
(2)弹簧从伸长最大回复到原长时,A 、B 的速度.(设弹簧在弹性限度内) 6、质量为M 的小车置于水平面上,小车的上表面由光滑的1/4圆弧和光滑平面组成,圆弧半径为R ,车的右端固定有一不计质量的弹簧。

现有一质量为m 的滑块从圆弧最高处无初速下滑,如图所示,与弹簧相接触并压缩弹簧。

求:(1)弹簧具有最大的弹性势能;(2)当滑块与弹簧分离时小车的速度。

至A 、B 速度相等,弹簧伸长最大,设此时A 、B 的速度为v .
由水平方向动量守恒可列式:
m A v A +m B v BC =(m A +m B )v 由机械能守恒可列式:
21 m A v A2+21 m B v BC 2=2
1
(m A +m B )v 2+E 弹′
解得:v =2 m/s,E 弹′=4.8 J
(2)设弹簧从伸长最大回到原长时A 的速度为v 1,B 的速度为v 2,由动量守恒可列式:
(m A +m B )v =m A v 1+m B v 2 由机械能守恒又可列式:
21 (m A +m B )v 2+E 弹′=21 m A v 12+2
1
m B v 22 ,解得
组成的系统动量守恒,有:
解得
系统损失的机械能为= v=
根据能量守恒定律得,弹簧的最大弹性势能=
.。

动量守恒二弹簧连接体模型

动量守恒二弹簧连接体模型

动量守恒(二)——弹簧连接体模型 1、在如图所示的装置中,木块B 与水平面间的接触面是光滑的,子弹A 沿水平方向向射入木块后并留在木块内,将弹簧压缩到最短。

现将木块、弹簧、子弹合在一起作为研究对象,则此系统在从子弹开始射入到弹簧压缩到最短的过程中[??] A .动量守恒,机械能守恒?B .动量不守恒,机械能不守恒?C .动量守恒,机械能不守恒?D .动量不守恒,机械能守恒2、如图所示放在光滑水平桌面上的A 、B 木块中部夹一被压缩的弹簧,当弹簧被放开时,它们各自在桌面上滑行一段距离后,飞离桌面落在地上.A 的落地点与桌边水平距离0.5米,B 的落点距桌边1米,那么A .A 、B 离开弹簧时速度比为1 :2???????B .A 、B 质量比为2 :1C .未离弹簧时,A 、B 所受冲量比为1 :2?D.未离弹簧时,A 、B 加速度之比为1 :2 3、如图所示,一轻质弹簧两端连着物体A 和B ,放在光滑的水平面上,物体A 被水平速度为v 0的子弹射中并且嵌入其中。

已知物体B 的质量为m ,物体A 的质量是物体B 的质量的3/4,子弹的质量是物体B 的质量的1/4①A 物体获得的最大速度②求弹簧压缩到最短时B 的速度。

③弹簧的最大弹性势能。

4、如图所示,质量为m 2和m 3的物体静止在光滑的水平面上,两者之间有压缩着的弹簧,一个质量为m 1的物体以速度v 0向右冲来,为了防止冲撞,m 2物体将m 3物体以一定速度弹射出去,设m 1与m 3碰撞后粘合在一起,则m 3的弹射速度至少为多大,才能使以后m 3和m 2不发生碰撞?5、如图所示,在光滑的水平面上,物体A 跟物体B 用一根不计质量的弹簧相连,另一物体C跟物体B 靠在一起,但不与B 相连,它们的质量分别为m A =0.2 kg ,m B =m C =0.1 kg 。

现用力将C 、B 和A 压在一起,使弹簧缩短,在这过程中,外力对弹簧做功7.2 J .然后,由静止释放三物体.求:(1)弹簧伸长最大时,弹簧的弹性势能. (2)弹簧从伸长最大回复到原长时,A 、B 的速度.(设弹簧在弹性限度内)6、质量为M 的小车置于水平面上,小车的上表面由光滑的1/4圆弧和光滑平面组成,圆弧半径为R ,车的右端固定有一不计质量的弹簧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弹簧模型+子弹打木块模型
弹簧模型
1.两物块A、B用轻弹簧相连,质量均为2kg,初始时弹簧处于原长,A、B两物块都以v=6m/s的速度在光滑的水平地面上运动,质量为4kg的物块C静止在前方,如图4所示.B 与C碰撞后二者会粘在一起运动.则在以后的运动中:
(1)当弹簧的弹性势能最大时,物块A的速度为多大?
(2)系统中弹性势能的最大值是多少?
2.(多选)光滑水平地面上,A、B两物体质量都为m,A以速度v向右运动,B原来静止,左端有一轻弹簧,如图所示,当A撞上弹簧,弹簧被压缩最短时()
A.A、B系统总动量仍然为mv
B.A的动量变为零
C.B的动量达到最大值
D.A、B的速度相等
3.如图所示,质量相等的两个滑块位于光滑水平桌面上,其中弹簧两端分别与静止的滑块N 和挡板P相连接,弹簧与挡板的质量均不计;滑块M以初速度v0向右运动,它与档板P碰撞(不粘连)后开始压缩弹簧,最后滑块N以速度v0向右运动。

在此过程中( )
A.M的速度等于0时,弹簧的弹性势能最大
B.M与N具有相同的速度时,两滑块动能之和最小
C.M的速度为v0/2时,弹簧的长度最长
D.M的速度为v0/2时,弹簧的长度最短
4.如图甲所示,一轻弹簧的两端与质量分别是m1和m2的两木块A、B相连,静止在光滑水平面上.现使A瞬间获得水平向右的速度v=3 m/s,以此时刻为计时起点,两木块的速度随时间变化规律如图乙所示,从图示信息可知()
A.t1时刻弹簧最短,t3时刻弹簧最长
B.从t1时刻到t2时刻弹簧由伸长状态恢复到原长
C.两木块的质量之比为m1:m2=1:2
D.在t2时刻两木块动能之比为E K1:E K2=1:4
5.质量为m的物块甲以3 m/s的速度在光滑水平面上运动,有一轻弹簧固定其上,另一质量也为m的物块乙以4 m/s的速度与甲相向运动,如图所示,则()
A.甲、乙两物块在弹簧压缩过程中,由于弹力作用,动量不守恒
B.当两物块相距最近时,物块甲的速率为零
C.当物块甲的速率为1 m/s时,物块乙的速率可能为2 m/s,也可能为0
D.物块甲的速率可能达到5 m/s
6.如图所示,质量M=4 kg的滑板B静止放在光滑水平面上,其右端固定一根轻质弹簧,弹簧的自由端C到滑板左端的距离L=0.5 m,这段滑板与木块A(可视为质点)之间的动摩擦因数μ=0.2,而弹簧自由端C到弹簧固定端D所对应的滑板上表面光滑.小木块A以速度v0=10 m/s由滑板B左端开始沿滑板B表面向右运动.已知木块A的质量m=1 kg,g取10 m/s2.求:
(1)弹簧被压缩到最短时木块A的速度大小;
(2)木块A压缩弹簧过程中弹簧的最大弹性势能.
7.如图光滑水平直轨道上有三个质量均为m的物块A、B、C.B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C碰撞过程时间极短.求从A开始压缩弹簧直至与弹簧分离的过程中,
(3)整个系统损失的机械能;
(4)弹簧被压缩到最短时的弹性势能.
8.质量为m的钢板与直立弹簧的上端连接,弹簧下端固定在地上,平衡时,弹簧的压缩量为x0,如图所示,一物块从钢板正上方距离为3x0的A处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动.已知物块质量也为m时,它们恰能回到O点。

若物块质量为2m,仍从A处自由落下,则物块与钢板回到O点时,还具有向上的速度,求物块向上运动到达的最高点与O点的距离。

子弹打木块模型
1.子弹打木块的过程很短暂,认为该过程内力远大于外力,则系统动量守恒.
2.在子弹打木块过程中摩擦生热,系统机械能不守恒,机械能向内能转化.
3.若子弹不穿出木块,二者最后有共同速度,机械能损失最多.
1.如图所示,在水平地面上放置一质量为M 的木块,一质量为m 的子弹以水平速度v 射入木块(未穿出),若木块与地面间的动摩擦因数为μ,求:
(1) 子弹射入后,木块在地面上前进的距离;
(2) 射入的过程中,系统损失的机械能.
2.如图所示,在光滑水平面上放置一质量为M 的静止木块,一质量为m 的子弹以水平速度v 0射向木块,穿出后子弹的速度变为v 1,求木块和子弹所构成的系统损失的机械能.
3.子弹在射入木块前的动能为E 1,动量大小为1p ;射穿木板后子弹的动能为E 2,动量大小为2p 。

若木板对子弹的阻力大小恒定,则子弹在射穿木板的过程中的平均速度大小为(BC)
A 、2121p p E E ++
B 、1212p p E E --
C 、2211p E p E +
D 、2
211p E p E - 4.如图所示,子弹水平射入放在光滑水平地面上静止的木块,子弹未穿透木块,此过程木块的动能增加了6 J ,那么此过程产生的内能可能为( )
A.16 J
B.2 J
C.6 J
D.4 J.
5.(多选)矩形滑块由不同材料的上、下两层粘合在一起组成,将其放在光滑的水平面上,质量为m 的子弹以速度v 水平射向滑块,若射击下层,子弹刚好不射出,若射击上层,则子弹刚好能射进一半厚度,如图6所示,上述两种情况相比较( )
A.子弹对滑块做功一样多
B.子弹对滑块做的功不一样多
C.系统产生的热量一样多
D.系统产生的热量不一定多
6.光滑水平面上有两个小木块A 和B ,其质量m A =1kg 、m B =4kg ,它们中间用一根轻质弹簧相连.一颗水平飞行的子弹质量为m =50g ,以V 0=500m/s 的速度在极短时间内射穿两木块,
已知射穿A 木块后子弹的速度变为原来的35
,且子弹射穿A 木块损失的动能是射穿B 木块损失的动能的2倍.求:系统运动过程中弹簧的最大弹性势能. 7.如图所示,一不可伸长的轻质细绳,静止地悬挂着质量为M 的木块,一质量为m 的子弹,以水平速度v 0击中木块,已知M =9m ,不计空气阻力.问:
(3) 如果子弹击中木块后未穿出(子弹进入木块时间极短),在木块上升的最高点比悬点O 低的情况下,木块能上升的最大高度是多少?(设重力加速度为g )
(4) 如果子弹在极短时间内以水平速度v 04
穿出木块,则在这一过程中子弹、木块系统损失的机械能是多少?
8.如图所示,质量为mB=2kg 的平板车B 上表面水平,开始时静止在光滑水平面上,在平板车左端静止着一块质量为mA=2kg 的物体A ,一颗质量为m0=0.01kg 的子弹以υ0=600m/s 的水平初速度瞬间射穿A 后,速度变为υ2=100m/s ,已知A 、B 之间的动摩擦因数不为零,且A 与B 最终达到相对静止.
①求物体A 的最大速度υA ;
②求平板车B 的最大速度υB ;
③若从B 开始运动到取得最大速度历时0.25s ,g=10m/s2,求A 、B 间动摩擦因数μ.
A B
v 0
9.如图,一质量为M的物快静止在桌面边缘,桌面离水平地面的高度为h。

一质量为m的子弹以水平速度v0射入物块后,以水平速度v0/2射出。

重力加速度为g。


(1)此过程中系统损失的机械能?
(2)此后物块落地点离桌面边缘的水平距离?。

相关文档
最新文档