直线与平面平行的性质(课堂PPT)

合集下载

直线、平面平行的判定及其性质课件

直线、平面平行的判定及其性质课件

思考6:设直线a,b为异面直线,经过
直线a可作几个平面与直线b平行?过a,
b外一点P可作几个平面与直线a,b都
平行?
a
b
p
b a a
p b
理论迁移
例1 在空间四边形ABCD中,E,F分别是 AB,AD的中点,求证:EF//平面BCD.
A E B
F D
C
例2 在长方体ABCD—A1B1C1D1中. (1)作出过直线AC且与直线BD1平行的
思考4:有一块木料如图,
E
P为面BCEF内一点,要求 过点P在平面BCEF内画一
F
P D
条直线和平面ABCD平行,
那么应如何画线?
A
C B
思考5:如图,设直线b在平面α内,直 线a在平面α外,猜想在什么条件下直线 a与平面α平行?
a
a//b
α
b
探究(二):直线与平面平行的判断定理
思考1:如果直线a与平面α内的一条直 线b平行,则直线a与平面α一定平行吗?
D′
A′
P
C′
B′ D
C
A
B
例2 已知平面外的两条平行直线中的 一条平行于这个平面,求证另一条也 平行于这个平面.
如图,已知直线a,b
和平面α ,a∥b,
a
b
a∥α , a,b都在 平面α外 .
c α
求证:b∥α .
作业: P61练习,习题2.2A组:1,2. (做在书上) P62习题2.2A组:5,6. P63习题2.2B组:1,2.
由此可得什么推论?
推论 如果一个平 面内有两条相交直 线分别平行于另一
a
b
α
个平面内的两条直
线,那么这两个平 β

新高考数学直线、平面平行的判定与性质精品课件

新高考数学直线、平面平行的判定与性质精品课件
B
(2)在正方体ABCD-A1B1C1D1中,E,H分别为DD1,AB的中点,点F,G分别在棱BC, CC1上,且CF=CG=BC,则在F,G,H这三点中任取两点确定的直线中,与平面ACE平行的直线的条数为( )A.0 B.1 C.2 D.3
课堂考点探究
[解析]如图,取CE的中点I,CC1的中点K,连接AI,IG,EK,因为CI=IE,CG=GK,所以IG∥EK,且IG=EK,又AB∥EK, AB=EK,AH=AB,所以IG AH,所以四边形AHGI为平行四边形,则AI∥GH,又GH⊄平面ACE,AI⊂平面ACE,所以GH∥平面ACE.易知HF,GF均不与平面ACE平行,故选B.
6.下列说法中正确的是 .(填序号) ①若a,b是两条直线,且a∥b,则a平行于经过b的任何平面;②若直线a和平面α满足a∥α,则a与α内的任何直线平行;③平行于同一条直线的两个平面平行;④若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α.
课前基础巩固
[解析]对于①,a可以在经过b的平面内,故①错误;对于②,a与α内的直线平行或异面,故②错误;对于③,两平面也可以相交,故③错误;对于④,若a∥b,a∥α,b⊄α,则b∥α,故④正确.
D
(2)在正方体ABCD-A1B1C1D1中,E,H分别为DD1,AB的中点,点F,G分别在棱BC, CC1上,且CF=CG=BC,则在F,G,H这三点中任取两点确定的直线中,与平面ACE平行的直线的条数为( )A.0 B.1 C.2 D.3
课堂考点探究
[思路点拨]由题意作出图形,取CE的中点I,连接AI,证出AI∥GH,利用线面平行的判定定理可知GH∥平面ACE,又HF,GF均不与平面ACE平行,即可得解.
图7-39-1
4. [教材改编] 如图7-39-2,平面α∥平面β,△PAB所在的平面与α,β分别交于CD,AB,若PC=2,CA=3,CD=1,则AB= .

直线与平面平行及性质课件-高一下学期数学人教A版(2019)必修第二册

直线与平面平行及性质课件-高一下学期数学人教A版(2019)必修第二册

D C
O
A
B
技巧点拨:中点问题可考虑利用中位线的性质解决.
例3、如图,四棱锥P-ABCD中,底面ABCD是平行四边形,E、F 分别是AB,PC的中点, 求证:EF//平面PAD
技巧点拨:可通过构造平行四边形寻找平行线.
如果一条直线和一个平面平行,那么这条直线和这个平面内的 直线有怎样的位置关系?
•CD//AB →→ •CD//平面α
直线与平面平行的判定定理:
如果平面外一条直线与此平面内的一条直线平行,那么该直线与 此平面平行
例2、求证:空间四边形相邻两边中点的连线,平行于经过另两边的平面. 解题流程:画图→写出已知求证→作出辅助线→证明
已知:空间四边形ABCD中,E、F分别是AB,AD的中 点. 求证:EF∥平面BCD.
点,求证:四边形EFGH是平行四边形.
A
EH // GF
H E
D
B
G
F C
探究:若加上条件AC=BD,那么四边形EFGH为什么图形?
2.等角定理
A’
E’
D’
A
E
D
如果空间中两个角的两条边分别对应平行, 那么这两个角相等或互补.
推论:
如果两条相交直线和另两条相交直线分别平行, 那么这两组直线所成的锐角(或直角)相等.
a
α
平行或异面
三、直线与平面平行的性质定理
一条直线与一个平面平行,则过这条直线的任一平面与此 平面的交线与该直线平行.
βa
αb
线面平行
先找平面再线找线两平平行 面的交线
例4、有一块木料如图,已知棱BC平行于面A′C′ (1)要经过木料表面A′B′C′D′内的一点P和棱BC将木料
锯开,应怎样画线? (2)所画的线和面AC有什么关系?

直线和平面平行的判定定理ppt课件

直线和平面平行的判定定理ppt课件

判定定理二:向量
03
共线法
向量共线法原理
定义
若两向量方向相同或相反,则称这两 向量共线。
性质
应用
在直线与平面平行判定中,通过判断 直线的方向向量与平面上两不共线向 量的关系,确定直线与平面的位置关 系。
共线的向量可以表示为同一基向量的 倍数。
向量运算规则
加法运算
向量加法满足平行四边形 法则或三角形法则。
$l parallel alpha$。
实例二
若直线$l$的方向向量$vec{a}$ 与平面$alpha$的法向量
$vec{n}$满足$vec{a} cdot vec{n} = 0$,则$l parallel
alpha$。
讨论
通过实例分析,我们可以发现向 量共线法在直线与平面平行判定 中的重要作用。同时,需要注意 判定条件的充分性和必要性,以
及特殊情况的处理。
判定定理三:距离
04
相等法
距离相等法原理
直线与平面平行时,直线上任意一点 到平面的距离都相等。
利用这一性质,可以通过比较直线上 不同点到平面的距离是否相等来判断 直线与平面是否平行。
点到直线距离公式
点$P(x_0, y_0, z_0)$到平面 $Ax + By + Cz + D = 0$的距 离公式为
直线与平面的距离为零
当直线上的任意一点到平面的距离都为零时,直线与平面平行。可 以通过计算点到平面的距离公式来判断。
复杂问题简化策略
转化为基本问题
将复杂问题转化为判断直线与平面是否平行的基本问题,以便运 用上述方法进行求解。
利用已知条件
充分利用题目中给出$d = frac{|Ax_0 + By_0 + Cz_0 + D|}{sqrt{A^2 + B^2 + C^2}}$

8.5空间直线、平面的平行(1)PPT课件(人教版)

8.5空间直线、平面的平行(1)PPT课件(人教版)

形,BD∩AC=G,∴G是BD的中点.又∵E是
BB1的中点,∴DB1∥GE.又DB1⊄平面
ACE,GE⊂平面ACE,∴B1D∥平面ACE.
变式 (1)如图,四棱锥P-ABCD的底面为平行四边形,M为棱PC的中点.
求证:(1)BC∥平面PAD;
(2)AP∥平面MBD.
证明:(1)因为四棱锥P-ABCD的底面为平行四边形,所以BC∥AD,又BC⊄平面
意可知四边形ABC1D1为平行四边形,则AD1∥BC1.又AD1∥EF,所以EF∥BC1.因
为EF⊄平面BCC1B1,BC1⊂平面BCC1B1,所以EF∥平面BCC1B1.显然正方体的其
余4个面都不与EF平行.故选B.
变式 (3)如图所示,四棱锥S - ABCD的底面是平行四边

形,M,N分别是SA,BD上的点,且 = .求证:MN∥平面

SBC.

证明:连接AN并延长,使之交BC于点P,连接SP.因为AD∥BC,所以 = .又



= ,所以 = ,所以MN∥SP.


因为MN⊄平面SBC,SP⊂平面SBC,所以MN∥平面SBC.
小结
1.利用直线与平面平行的判定定理证明线面平行的一般步骤
解析
思考►►►
如何判定一条直线与一个平面平行?
【解析】 如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面
平行.
解析
直线与平面平行的判定定理:
表示定理
直线与平面
平行的
判定定理
图形
文字
符号
如果平面外一条直线
a⊄α,
与此平面内的一条直
b⊂α,
线平行,那么该直线

第八章 第三节 直线、平面平行的判定与性质 课件(共58张PPT)

第八章 第三节 直线、平面平行的判定与性质 课件(共58张PPT)
第八章 立体几何初步
第三节 直线、平面平行的判定与性质
栏目一 知识·分步落实 栏目二 考点·分类突破 栏目三 微专题系列
栏目导引
课程标准
考向预测
1.以立体几何的定义、公理和定理为
出发,借助长方体,通过直观感知, 考情分析: 直线与平面以及平面与
了解空间中线面平行的有关性质与 平面平行的判定和性质仍会是高考
所以 A1G 綊 EB,所以四边形 A1EBG 是平行四边形,
所以 A1E∥GB. 因为 A1E⊄平面 BCHG,GB⊂平面 BCHG, 所以 A1E∥平面 BCHG. 又因为 A1E∩EF=E,所以平面 EFA1∥平面 BCHG.
1.如图,平面 α∥平面 β,△PAB 所在的平面与 α,β分别交于 CD,AB,
平行命题的判断 (1)解决与平行相关命题的判断问题,以与平行相关的判定定理和性质定 理为依据,注意定理中相关条件的检验,必须进行严密的逻辑推理. (2)如果判断某个命题错误,则往往利用正方体或其他几何体作为模型构 造反例说明.
直线与平面平行的判定与性质 角度一 直线与平面平行的判定
如图所示,斜三棱柱 ABC-A1B1C1 中,点 D,D1 分别为 AC,A1C1 的中点.求证:
BC∥平面ADF
BC⊂平面BCPQ
⇒BC∥PQ.
平面BCPQ∩平面ADF=PQ
PQ∥BC
PQ⊄平面ABCD PQ∥平面 ABCD.
BC⊂平面ABCD
应用线面平行的性质定理的关键是确定交线的位置,有时 需要经过已知直线作辅助平面来确定交线.该定理的作用是由线面平行转化 为线线平行.
1.(2020·深圳市统一测试)如图,在直四棱柱 ABCD-A1B1C1D1 中,底面 ABCD 是平行四边形,点 M,

直线与平面平行的判定定理(公开课)ppt课件

直线与平面平行的判定定理(公开课)ppt课件
若两向量的点积为零,则 它们垂直。
应用
通过计算直线方向向量与 平面法向量的点积,可以 判断直线与平面是否平行 。
判定定理三:法向量垂直
定义
若一直线与一平面平行, 则该直线的法向量与该平 面的法向量平行。
推论
若两向量平行,则它们的 分量成比例。
应用
通过比较直线法向量与平 面法向量的分量比例,可 以判断直线与平面是否平 行。
直线与平面平行的定义
阐述直线与平面平行的基本概念,为后续判定定理 的引入做铺垫。
判定定理的重要性
说明直线与平面平行判定定理在几何学中的地位和 作用,以及在实际应用中的价值。
教学目标
80%
知识与技能
掌握直线与平面平行的判定定理 及其证明方法,理解相关概念, 能够运用所学知识解决相关问题 。
100%
过程与方法
应用举例二:判断两平面是否平行
方法一
利用平行平面的性质,通过证明一个 平面内有两条相交直线分别与另一个 平面平行,从而判定两个平面平行。
方法二
利用向量法,通过计算两个平面的法 向量是否共线,从而判定两个平面是 否平行。
应用举例三:解决实际问题中的平行问题
1 2
实例一
在建筑设计中,利用直线与平面平行的性质,确 保建筑物的立面、地面等各部分保持平行,以达 到美观和稳定的效果。
定义
应用
若一直线与一平面平行,则该直线与 该平面内任意一条直线的斜率相等。
通过比较直线与平面内某一直线的斜 率,可以判断直线与平面是否平行。
推论
若两直线的斜率相等,则它们或者平 行或者重合。
判定定理二:方向向量平行
01
02
03
定义
若一直线与一平面平行, 则该直线的方向向量与该 平面的法向量垂直。

直线与平面平行的性质 课件

直线与平面平行的性质  课件

自测 自评
2.如果 a,b 是异面直线,且 a∥平面 α,那么 b 与 α 的位置关系是( )
A.b∥α B.b 与 α 相交
C.b⊂α D.不确定
解析:b 与 α 相交或 b⊂α 两种情况. 答案:D
自测 自评
3.如果一条直线和一个平面平行,夹在直线和平面间 的两线段相等,那么这两条线段所在直线的位置关系是
(2)证明线线平行常用的方法有: ①定义法:在同一个平面内没有公共点的两条直线 平行. ②平行公理:平行于同一条直线的两条直线平行. ③直线与平面平行的性质定理.
④反证法:假设两条直线不平行,然后推出矛盾, 进而证明两条直线应当是平行的.
跟踪 训练
2.已知:α∩β=l,a∥α,a∥β,求证:a∥l.
跟踪 训练
3.如图,a∥α,A 是 α 另一侧的点,B,C,D∈a, 线段 AB,AC,AD 交 α 于 E,F,G 三点,若 BD=4, CF=4,AF=2,求 EG.
跟踪 训练
解析:∵A∉a,∴A,a 可确定一个平面,设为 β. ∵B∈a,∴B∈β. 又 A∈β,∴AB⊂β.
同理 AC⊂β,AD⊂β. ∵点 A 与直线 a 在 α 的异侧, ∴β 与 α 相交. ∴平面 ABD 与平面 α 相交,设交线为 EG.
又∵l1∥l2,∴l2∥l3, ∴l1∥l3,l2∥l3. 点评:直线与平面平行的判定定理与直线与平面 平行的性质定理经常交替使用,也就是通过线线平行 推出线面平行,再通过线面平行推出新的线线平行, 复杂的题目还可继续推下去.
跟踪 训练
1.如图所示,过正方体 ABCDA1B1C1D1 的棱 BB1 作一平 面交平面 CDD1C1 于 EE1,求证:BB1∥EE1.
证明:因为EF∥平面BCD,BD=面ABD∩面BCD,所 以EF∥BD,因为E为空间四边形ABCD的边AB的中点,所 以F是AD的中点.

直线与平面平行的性质 课件

直线与平面平行的性质 课件
4.底面是平行四边形的四棱柱中有________对面互相平 行.
[答案] 3
第二章 2.2 2.2.3
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修2
新知导学 直线与平面平行的性质定理
一条直线与一个平面平行,则过这条直线的任一 文字语言 平面与此平面的交线与该直线__平__行___
第二章 2.2 2.2.3
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修2
4.对于直线m、n和平面α,下面叙述正确的是( ) A.如果m⊂α,n⊄α,m、n是异面直线,那么n∥α B.如果m⊂α,n与α相交,那么m、n是异面直线 C.如果m⊂α,n∥α,m、n共面,那么m∥n D.如果m∥α,n∥α,m、n共面,那么m∥n [答案] C
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修2
3.已知平面α∩平面β=a,平面β∩平面γ=b,平面γ∩平面 α=c,若a∥b,则c与a,b的位置关系是( )
A.c与a,b都是异面 B.c与a,b都相交 C.c至少与a,b中的一条相交 D.c与a,b都平行 [答案] D [解析] 由线面平行的判定及其性质定理易得c∥a,c∥b.
中与直线a平行的直线有( )
A.0条
B.1条
C.0或1条
D.无数条
[答案] C
第二章 2.2 2.2.3
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修2
3.如图所示,已知AB∥平面α,AC∥BD,且AC,BD与α 分别相交于点C,D.求证:AC=BD.
[分析] 利用线面平行的性质定理证明AB∥CD,从而得四 边形ABCD是平行四边形.
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修2

必修第二册8.5.2直线与平面平行课件共18张PPT

必修第二册8.5.2直线与平面平行课件共18张PPT

线面平行 空间问题
例1、求证:空间四边形相邻两边中点的连线平行于经过另外两边 所在的平面
已知:如图,空间四边形ABCD中,E、F分别是AB,AD的中点.
求证:EF∥平面BCD.
A
证 明 : 连 接BD. 因为AE EB, AF FD 所以EF // BD
E
F
D
B
C
因为EF 平面BCD,BD 平面BCD,
面有没有公共点.
但是,直线无限延长,平面无限延展,如何保证直线与 平面没有公共点呢
a
三、观察探究
1、门扇转动的一边与门框所在的平面之间的位置关系.
观察 在门扇的旋转过程中: 直线AB在门框所在的平面外 直线CD在门框所在的平面内 直线AB与CD始终是平行的
A1
A
B1
B
三、观察探究
2、 将一本书平放在桌面上,翻动书的封面,封面边缘AB所在直线 与桌面所在平面具有什么样的位置关系?
课堂练习
利用平行线分线段成比例定理
1、平面与ABC的两边AB, AC分别交于D, E,且 AD AE ,
DB EC
如图所示,则BC与平面的关系是( A )
A、 平 行
B、 相 交
C、异面 D、BC
C
B
E
D
α
A
2、 在 空 间 四 边 形ABCD中 ,E、F分 别 是AB和BC上 的 点 ,
复习
基本事实4 :平行于同一条直线的两条直线互相平行。
基本事实4表述的性质通常叫做空间平行线的传递性
b
用符号语言表示如下:
c
a
已知a、b、c三条直线,若a//c,且b//c,则a//b
等角定理:空间中如果有两个角的两边分别对应平行,那 么这两个角相等或互补.

空间中的平行关系PPT精品课件

空间中的平行关系PPT精品课件
答案:平行 5.过三棱柱ABC-A1B1C1任意两条 棱的中点作直线,其中与平面ABB1A1平 行的直线共有__________条.
答案:6
课堂互动讲练
考点一 直线与平面平行的判定
判定直线与平面平行,主要有 三种方法:
(1)利用定义(常用反证法). (2)利用判定定理:关键是找平 面内与已知直线平行的直线.可先 直观判断平面内是否已有,若没有, 则需作出该直线,常考虑三角形的 中位线、平行四边形的对边或过已 知直线作一平面找其交线.
规律方法总结
2.在解决线面、面面平行的判 定时,一般遵循从“低维”到“高维”的 转化,即从“线线平行”到“线面平行”, 再到“面面平行”;而在应用性质定理 时,其顺序恰好相反,但也要注意, 转化的方向总是由题目的具体条件而 定,决不可过于“模式化”.
规律方法总结
3.在应用有关定理、定义等解 决问题时,应当注意规范性训练,即 从定理、定义的每个条件开始,培养 一种规范、严密的逻辑推理习惯,切 不可只求目标,不顾过程,或言不达 意,出现推理“断层”的错误.
课堂互动讲练
∴PQ∥EK. 又 PQ⊄平面 BEC,EK⊂面 BEC, ∴PQ∥平面 BEC. 法三:如图所示,作 PH∥EB 交 AB 于 H,连结 HQ,则AHHB=APEP, ∵AE=BD,AP=DQ, ∴PE=BQ,
∴AH=AP=DQ, HB PE BQ
课堂互动讲练
∴HQ∥AD,即HQ∥BC. 又PH∩HQ=H,BC∩EB=B, ∴平面PHQ∥平面BCE, 而PQ⊂平面PHQ, ∴PQ∥平面BCE.
课堂互动讲练
【名师点评】 法一、法二均是 依据线面平行的判定定理在平面BCE 内寻找一条直线l,证得它与PQ平 行.
特别注意直线l的寻找往往是通过 过直线PQ的平面与平面BCE相交的交 线来确定.
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PE
P
E
B
A
O
C
D
5
1、如图所示,四边形 EFGH 为空间四边 形 ABCD 的一个截面,若截面为平行四边形。 求证: AB ∥平面 EFGH , CD ∥平面 EFGH ;
6
课堂练习
2、ABCD是平行四边形,点P是平面ABCD外一点, M是PC的中点,在DM上取一点G,过G和AP作平 面交平面BDM于GH。求证:AP∥GH
线线平行
线面平行
4、证线线平行的基本方法:
线面平行
线线平行
P
M G D H
O A
C B
1、如图,在六面体 ABCD A1B1C1D1 中,
AA1 // CC1 , A1B A1D , AB AD .
求证: BB1 // DD1 .
D1 A1
C1 B1
D A
C B
8
课堂小结
1、直线与平面的位置关系;
2、直线与平面平行的判定定理及性质定理;
3、证线面平行的基本方法:
D1
A1 D
A
.F C1 P

B1 C
B
1、如图,在四棱锥 P ABCD 中, BC//平面 PAD. 求证: AD// 平面 PBC ;
P
ADBiblioteka BC41、如图,在四棱锥 P-ABCD 中,O 为 AC 与 BD 的交点,
DC//AB,DA=DC=2AB.若点 E 为棱 PA 上一点, 且 OE∥平面 PBC,求AE的值;
直线和平面平行的性质 定理
直线与平面平行的性质定理:
如果一条直线和一个平面平行,经过这条 直线的平面和这个平面相交,那么这条直线 和交线平行.
已知: l // ,l ,I m
求证:l // m .
l
证明:I m.
m
m
l //
l I m
又l
l
//
m
m
例题讲解:
例2.一个长方体如图所示.要经过平面A1C1内 一点P和棱BC将木块锯开,应该怎样画线?
相关文档
最新文档