常用的简单控制变频器方法

合集下载

PLC控制变频器的几种方法

PLC控制变频器的几种方法

在工业自动化控制系统中,最为常见的是PLC和变频器的组合应用,并且产生了多种多样的PLC控制变频器的方法,其中采用RS-485通讯方式实施控制的方案得到广泛的应用:因为它抗干扰能力强、传输速率高、传输距离远且造价低廉;但是,RS-485的通讯必须解决数据编码、求取校验和、成帧、发送数据、接收数据的奇偶校验、超时处理和出错重发等一系列技术问题,一条简单的变频器操作指令,有时要编写数十条PLC梯形图指令才能实现,编程工作量大而且繁琐,令设计者望而生畏;本文介绍一种非常简便的三菱FX系列PLC通讯方式控制变频器的方法:它只需在PLC主机上安装一块RS-485通讯板或挂接一块RS-485通讯模块;在PLC的面板下嵌入一块造价仅仅数百元的“功能扩展存储盒”,编写4条极其简单的PLC梯形图指令,即可实现8台变频器参数的读取、写入、各种运行的监视和控制,通讯距离可达50m或500m;这种方法非常简捷便利,极易掌握;本文以三菱产品为范例,将这种“采用扩展存储器通讯控制变频器”的简便方法作一简单介绍;2、三菱PLC采用扩展存储器通讯控制变频器的系统配置系统硬件组成FX2N系列PLC产品版本V 以上1台软件采用FX-PCS/WIN-C V 版;FX2N-485-BD通讯模板1块最长通讯距离50m;或FX0N-485ADP通讯模块1块+FX2N-CNV-BD板1块最长通讯距离500m;FX2N-ROM-E1功能扩展存储盒1块安装在PLC本体内;带RS485通讯口的三菱变频器8台S500系列、E500系列、F500系列、F700系列、A500系列、V500系列等,可以相互混用,总数量不超过8台;三菱所有系列变频器的通讯参数编号、命令代码和数据代码相同;;RJ45电缆5芯带屏蔽;终端阻抗器终端电阻100Ω;选件:人机界面如F930GOT等小型触摸屏1台;硬件安装方法1 用网线专用压接钳将电缆的一头和RJ45水晶头进行压接;另一头则按图1~图3的方法连接FX2N-485-BD通讯模板,未使用的2个P5S端头不接;2 揭开PLC主机左边的面板盖, 将FX2N-485-BD通讯模板和FX2N-ROM-E1功能扩展存储器安装后盖上面板;3 将RJ45电缆分别连接变频器的PU口,网络末端变频器的接受信号端RDA、RDB之间连接一只100Ω终端电阻,以消除由于信号传送速度、传递距离等原因,有可能受到反射的影响而造成的通讯障碍;变频器通讯参数设置为了正确地建立通讯,必须在变频器设置与通讯有关的参数如“站号”、“通讯速率”、“停止位长/字长”、“奇偶校验”等等;变频器内的~参数用于设置通讯参数;参数设定采用操作面板或变频器设置软件FR-SW1-SETUP-WE在PU口进行;变频器设定项目和指令代码举例变频器数据代码表举例PLC编程方法及示例1 通讯方式PLC与变频器之间采用主从方式进行通讯,PLC为主机,变频器为从机;1个网络中只有一台主机,主机通过站号区分不同的从机;它们采用半双工双向通讯,从机只有在收到主机的读写命令后才发送数据;2 变频器控制的PLC指令规格3 变频器运行监视的PLC语句表程序示例及注释LD M8000 运行监视;EXTR K10 K0 H6F D0 EXTR K10:运行监视指令;K0:站号0;H6F:频率代码见表1; D0:PLC读取地址数据寄存器;指令解释:PLC一直监视站号为0的变频器的转速频率;4 变频器运行控制的PLC语句表程序示例及注释LD X0 运行指令由X0输入;SET M0 置位M0辅助继电器;LD M0 EXTR K11 K0 HFA H02 EXTR K11:运行控制指令; K0:站号0;HFA:运行指令 H02:正转指令;AND M8029 指令执行结束;指令解释:PLC向站号为0的变频器发出正转指令;5 变频器参数读取的PLC语句表程序示例及注释LD X3 参数读取指令由X3输入;SET M2 置位M2辅助继电器;LD M2 EXTR K12 K3 K2 D2 EXTR K10:变频器参数读取指令; K3:站号3;K2:参数2-下限频率; D2:PLC读取地址数据寄存器;OR RST M2 复位M2辅助继电器;指令解释:PLC一直读取站号3的变频器的2号参数-下限频率;6 变频器参数写入的PLC语句表程序示例及注释LD X1 参数变更指令由X3输入;SET M1 置位M1辅助继电器;LD M1 EXTR K13 K3 K7 K10 EXTR K13:变频器参数写入指令;K3:站号3;K7:参数7-加速时间;K10:写入的数值;EXTR K13 K3 K8 K10 EXTR K13:变频器参数写入指令;K3:站号3;K8:参数8-减速时间;K10:写入的数值;AND M8029 指令执行结束;指令解释:PLC将站号3的变频器的7号参数-加速时间、8号参数-减速时间变更为10;3、三菱PLC控制变频器的各种方法综合评述与对比PLC的开关量信号控制变频器PLCMR型或MT型的输出点、COM点直接与变频器的STF正转启动、RH高速、RM中速、RL 低速、输入端SG等端口分别相连;PLC可以通过程序控制变频器的启动、停止、复位;也可以控制变频器高速、中速、低速端子的不同组合实现多段速度运行;但是,因为它是采用开关量来实施控制的,其调速曲线不是一条连续平滑的曲线,也无法实现精细的速度调节;这种开关量控制方法,其调速精度无法与采用扩展存储器通讯控制的相比;PLC的模拟量信号控制变频器硬件:FX1N型、FX2N型PLC主机,配置1路简易型的FX1N-1DA-BD扩展模拟量输出板;或模拟量输入输出混合模块FX0N-3A;或两路输出的FX2N-2DA;或四路输出的FX2N-4DA模块等;优点: PLC程序编制简单方便,调速曲线平滑连续、工作稳定;缺点:在大规模生产线中,控制电缆较长,尤其是DA模块采用电压信号输出时,线路有较大的电压降,影响了系统的稳定性和可靠性;另外,从经济角度考虑,如控制8台变频器,需要2块FX2N-4DA模块,其造价是采用扩展存储器通讯控制的5~7倍;PLC采用RS-485无协议通讯方法控制变频器这是使用得最为普遍的一种方法,PLC采用RS串行通讯指令编程;优点:硬件简单、造价最低,可控制32台变频器;缺点:编程工作量较大;从本文的第二章可知:采用扩展存储器通讯控制的编程极其简单,从事过PLC编程的技术人员只要知道怎样查表,仅仅数小时即可掌握,增加的硬件费用也很低;这种方法编程的轻松程度,是采用RS-485无协议通讯控制变频器的方法所无法相比的; PLC采用RS-485的Modbus-RTU通讯方法控制变频器三菱新型F700系列变频器使用RS-485端子利用Modbus-RTU协议与PLC进行通讯;优点: Modbus通讯方式的PLC编程比RS-485无协议方式要简单便捷;缺点: PLC编程工作量仍然较大;PLC采用现场总线方式控制变频器三菱变频器可内置各种类型的通讯选件,如用于CC-Link现场总线的FR-A5NC选件;用于Profibus DP现场总线的FR-A5APA选件;用于DeviceNet现场总线的FR-A5ND选件等等;三菱FX系列PLC有对应的通讯接口模块与之对接;优点:速度快、距离远、效率高、工作稳定、编程简单、可连接变频器数量多;缺点:造价较高,远远高于采用扩展存储器通讯控制的造价;综上所述,PLC采用扩展存储器通讯控制变频器的方法确有造价低廉、易学易用、性能可靠的优势;若配置人机界面,变频器参数设定和监控将变得更加便利;1台PLC和不多于8台变频器组成的交流变频传动系统是常见的小型工业自动化系统,广泛地应用在小型造纸生产线、单面瓦楞纸板机械、塑料薄膜生产线、印染煮漂机械、活套式金属拉丝机等各个工业领域;采用简便控制方法,可以使工程方案拥有通讯控制的诸多优势,又可省却RS-485数据通讯中的诸多繁杂计算,使工程质量和工作效率得到极大的提高;但是,这种简便方法也有其缺陷:它只能控制变频器而不能控制其它器件;此外,控制变频器的数量也受到了限制;4、结束语本文较为详细地介绍了PLC采用扩展存储器通讯控制变频器的简便方法,并综合评述了三菱PLC控制变频器的各种方法;深入了解这些方法,有助于提高交流变频传动控制系统设计的科学性、先进性和经济性;读者可以根据系统的具体情况,选择合适的方案;本文重点介绍的简便方法尽管有其缺陷,但仍不失为一种有推广价值的好方法。

变频器常用的几种控制方式

变频器常用的几种控制方式

变频器常用的几种控制方式Prepared on 22 November 2020变频器常用的几种控制方式变频调速技术是现代电力传动技术的重要发展方向,而作为变频调速系统的核心—变频器的性能也越来越成为调速性能优劣的决定因素,除了变频器本身制造工艺的“先天”条件外,对变频器采用什么样的控制方式也是非常重要的。

本文从工业实际出发,综述了近年来各种变频器控制方式的特点,并展望了今后的发展方向。

1、变频器简介变频器的基本结构变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。

对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU 以及一些相应的电路。

变频器的分类变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM 控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。

2、变频器中常用的控制方式非智能控制方式在交流变频器中使用的非智能控制方式有V/f协调控制、转差频率控制、矢量控制、直接转矩控制等。

(1) V/f控制V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。

V/f控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。

(2) 转差频率控制转差频率控制是一种直接控制转矩的控制方式,它是在V/f控制的基础上,按照知道异步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有对应的输出转矩。

变频器频率调节方法

变频器频率调节方法

变频器频率调节方法变频器是一种用于调节电机运行速度和输出功率的装置,广泛应用于工业领域。

在实际应用中,频率调节是变频器的核心功能之一。

本文将介绍几种常见的变频器频率调节方法。

一、电压/频率(V/F)调节法电压/频率(V/F)调节法是最简单和常见的一种方法。

它通过控制变频器输出电压和频率的比值来实现电机的调速。

在这种调节方法下,当频率增加时,输出电压也相应增加,以保持电机的电磁转矩基本不变。

这种方法适用于大多数恒转矩负载的情况下,例如风机、水泵等。

在运行过程中,需要根据负载的变化不断调整电压和频率的比值,以保持电机的稳定运行。

二、矢量控制调节法矢量控制调节法是一种相对复杂的调节方法,它可以实现更高的速度响应和控制精度。

在矢量控制中,通过对电机的电流进行控制,实现对电机的转矩、转速和位置的精确控制。

与V/F调节法相比,矢量控制可以更好地适应负载的变化,并且可以实现起动转矩和低速运行时的高转矩输出。

这种调节方法适用于对控制精度和动态性能要求较高的负载,如机床、卷烟机等。

三、磁场定向调节法磁场定向调节法是在矢量控制的基础上发展起来的一种高级调节方法。

它通过对电机的转子磁化电流和轴向磁化电流进行控制,实现对电机磁场的定向,从而实现对电机的转矩和转速的精确控制。

磁场定向调节法具有更高的动态性能和控制精度,能够在较宽的速度范围内提供稳定的输出转矩。

这种调节方法适用于对控制精度要求极高的负载,如电梯、印刷机等。

四、PID闭环控制调节法PID闭环控制调节法是一种通过测量电机速度和设定速度之间的差异,并根据差异大小自动调整输出频率的方法。

PID控制器根据系统反馈信号和设定值之间的偏差,即误差进行计算,通过比例、积分和微分三种方式进行控制,从而实现对电机转速的精确控制。

这种调节方法适用于对转速控制要求较高的负载,如精密机械加工设备等。

综上所述,变频器频率调节方法有电压/频率调节法、矢量控制调节法、磁场定向调节法和PID闭环控制调节法等。

PLC控制变频器转速的几种方法

PLC控制变频器转速的几种方法

PLC控制变频器转速的几种方法
导语:如果plc和变频器都有串行通行口,并能使用相同的协议,硬件上不用增加其他的,就可以轻松的控制变频器,但必须熟悉通信协议和设计通信程序。

变频器现在的应用是越来越广泛了,那么用PLC如何来控制变频器呢,下面我就简单的把我们常用的方法写出来,供大家参考。

1、简单点的,就是用plc的开关量输入\输出信号有极的调节变频器的输出频率,就是我们常见的高中低速用外部线路驱动,这种方式接线简单,抗干扰能力强。

用plc的开关量输出端可以控制变频器的正反转,有极调节转速和加减速的时间。

2、常用的,用plc的模拟量输出模块,即DA模块,以直流电压0-10V或4-20mA直流电流给变频器,这种方式接线简单,控制灵活,大家一般都采用。

3、高速脉冲输出信号作为频率给定信号,有些变频器有高速脉冲输入功能,就可以用此种方法。

4、串行通信提供频率给定信号,plc和变频器之间可传送大量的
参数设置信息和状态信息。

如果plc和变频器都有串行通行口,并能使用相同的协议,硬件上不用增加其他的,就可以轻松的控制变频器,但必须熟悉通信协议和设计通信程序。

以上大概就是我们常用的几种方式。

变频器的控制方法

变频器的控制方法

变频器的控制方法变频器是一种能够控制交流电动机转速的设备,通常用于工业生产中的电机调速和节能控制。

它通过改变电机输入的电压和频率,使电机达到所需的转速。

变频器的控制方法有多种,下面将详细介绍几种常见的控制方法。

1. 简单开关控制方法简单开关控制方法是变频器最基本的控制方式,通过控制电机的开/关状态来实现转速控制。

这种方法的控制精度较低,转速调节范围也较有限,适用于一些对转速要求不高的应用。

2. 转矩控制方法转矩控制方法是通过调节变频器输出的电压和频率来实现对电机输出转矩的控制。

通过改变电压和频率的比例关系,可以实现电机的恒转矩调速。

这种控制方法适用于一些需要保持恒定转矩的场合,如起重机械、卷取机等。

3. PI控制方法PI控制方法是一种闭环控制方法,它通过测量电机的输出转速与期望转速之间的差异,并根据差异调整变频器的输出电压和频率来控制转速。

这种控制方法具有较高的控制精度和适应性,可以根据实际情况进行参数调整,实现稳定的转速控制。

4. 矢量控制方法矢量控制方法是一种高级的闭环控制方法,它可以实现更精确的转速控制和较高的转矩响应。

矢量控制方法通过对电机的电流、电压和转速进行测量和计算,并根据计算结果调整变频器的输出,使电机能够精确地跟随给定的转速和转矩变化。

5. 力矩控制方法力矩控制方法是一种特殊的转矩控制方法,它可以根据负载的力矩需求来调整电机输出的转矩。

通过测量负载的力矩大小,并根据力矩与转速的关系进行计算和控制,可以实现对电机输出的力矩进行精确的控制。

综上所述,变频器的控制方法有简单开关控制、转矩控制、PI控制、矢量控制和力矩控制等多种方式。

不同的控制方法适用于不同的应用场合,可以根据实际需求选择最合适的控制方式。

随着技术的不断进步和应用领域的扩大,变频器的控制方法也在不断发展和创新,为工业生产提供更加高效和可靠的电机控制解决方案。

变频器操作方法有几种

变频器操作方法有几种

变频器操作方法有几种
变频器是一种调节电力频率的设备,可用于控制交流电动机的转速、提供稳定的电源频率等。

根据操作方法的不同,变频器的操作可以分为以下几种方式:
1. 手动操作:通过手动控制开关、旋钮、按钮等来调节变频器的输出频率和其他参数。

这种操作方式主要适用于较简单的应用场景,对变频器的参数进行简单的调整。

2. 自动操作:通过自动化控制系统,实时监测相关参数,自动调节变频器的输出频率和相关参数,以实现对电机或设备的精确控制。

这种操作方式主要适用于需要精确控制和自动化管理的场景。

3. 远程操作:通过远程控制设备,通过网络或无线信号等方式,远程操作调节变频器的输出频率和相关参数。

这种操作方式主要适用于需要从远程地点对设备进行控制和管理的场景。

总的来说,变频器的操作方法可以根据具体应用场景的要求选择合适的方式,手动操作适用于简单的场景,自动操作适用于需要精确控制和自动化管理的场景,远程操作适用于需要远程控制和管理的场景。

变频器控制电路设计方法(1)

变频器控制电路设计方法(1)

控制线路的设计方法
功能添加法 较简单的控制线路 步进逻辑公式法 多个工作过程自动循环的复杂线路
功能添加法举例说明
设计要求: 1、有两台电动机,正转运行, 2、第一台电机必须先开后停,正常停车为 斜坡停车。 3、如果任何一台电机过载时,两台电机同 时快速停车。
设计两个能独立开停的控制线路
第三次添加功能——加过载同时停车 过载保护可以在Set-ttd参数设置电机热态阈值, 然后用变频器的内部继电器R1(或R2)停车, 即设置R1参数为I-O-r1=tSA(达到热态阈值)。 由于正常停车与过载停车停车模式与停车时间均 不相同,所以过载时应通过逻辑输入快速停车, 设置Fun-StC-FSt=LI5,即分配变频器的输入 端子LI5为过载停车端子
第三次添加功能后,虽然过载后两台电机 能快速停车,但停车后1KA、2KA线圈仍 处于吸合状态,无法重新起动,除非先按 下按钮2SB1和1SB1,使1KA、2KA线圈失 电,很不方便。我们可以用KA的触点使 1KA、2KA线圈自动失电,主电路不变
第四次添加功能——过载停车后,1KA、2KA线 圈自动失电
第二次添加功能——第一台电机不能先停。将 2KA的常开触点与停车按钮1SB1并联
第三次添加功能——加过载同时停车 过载保护可以在Set-ttd参数设置电机热态阈值, 然后用变频器的内部继电器R1(或R2)停车, 即设置R1参数为I-O-r1=tSA(达到热态阈值)。 由于正常停车与过载停车停车模式与停车时间均 不相同,所以过载时应通过逻辑输入快速停车, 设置Fun-StC-FSt=LI5,即分配变频器的输入 端子LI5为过载停车端子
L
N
1QS 2QSFU1SB Nhomakorabea 2SB1

plc控制变频器的方法

plc控制变频器的方法

plc控制变频器的方法一、PLC与变频器连接基础1.1 硬件连接的要点PLC和变频器要想协同工作,首先得把硬件连接好。

这就好比两个人要合作,得先握个手建立联系一样。

一般来说,常见的连接方式有模拟量连接和通信连接。

模拟量连接呢,就像是用一根线来传递信号,这个信号是连续变化的,像水流一样。

比如说,PLC输出一个0 10V或者4 20mA的模拟量信号给变频器,来控制变频器的输出频率。

而通信连接就高级一些了,就像是两个人用一种特殊的语言在对话。

像Modbus通信协议,PLC和变频器通过这个协议来交换数据,速度快而且准确。

不过这通信连接也有点小脾气,参数设置得特别小心,就像走钢丝一样,一个不小心就可能出问题。

1.2 电源与接地的讲究电源和接地可是个大问题,这就像盖房子打地基一样重要。

电源要是不稳定,就像人走路一脚深一脚浅,PLC和变频器都没法好好工作。

接地呢,得做到可靠接地,要是接地不好,就像人站在摇晃的船上,信号会受到干扰,设备可能会出现莫名其妙的故障。

咱可不能在这方面马虎大意,不然到时候设备出问题了,就像热锅上的蚂蚁,急得团团转也没用。

二、PLC编程控制变频器2.1 简单控制逻辑PLC编程来控制变频器,简单的逻辑就像搭积木一样。

比如说,我们要实现一个电机的启动停止和简单的调速功能。

在PLC程序里,我们可以用一个简单的开关量信号来控制变频器的启动停止,这就像按电灯开关一样简单。

然后通过模拟量输出模块来输出一个电压或者电流信号去控制变频器的频率,就像调收音机的频道一样,想要快就把频率调高,想要慢就把频率调低。

2.2 复杂控制逻辑要是复杂一点的控制逻辑,那可就像解一道复杂的数学题了。

例如,根据不同的工艺要求,实现多段速控制。

这时候,PLC程序里就得写一些判断语句,就像交通警察指挥交通一样,根据不同的情况来决定变频器的输出频率。

还有一些情况,需要根据传感器反馈回来的信号来动态调整变频器的输出,这就像根据天气情况来调整穿衣一样,得灵活多变。

变频器的输出电压和频率的控制方法

变频器的输出电压和频率的控制方法

变频器的输出电压和频率的控制方法近年来,电机变频器在工业生产中的应用越来越广泛,涉及到了生产中的各个行业,而变频器的输出电压和频率的控制方法则是其中一个比较重要的问题。

在实际应用中,电机的运行状态需要通过调整变频器的输出电压和频率进行控制,而这也是变频器的主要作用之一。

本文将探讨变频器的输出电压和频率的控制方法。

一、控制方法在变频器的控制系统中,输出电压和频率是两个非常重要的参数。

因此,在控制过程中,需要采用一些特殊的方法来控制变频器的电压和频率输出。

目前,在变频器控制系统中,比较常见的方法有以下几种:1. 闭环控制法闭环控制法是指变频器会通过传感器获取电机转速信息,并将这些信息反馈到变频器控制器中。

在控制器的控制下,变频器会根据电机的转速信息来控制电压和频率的输出,以达到最佳的控制效果。

2. 开环控制法开环控制法是指变频器在控制时不需要对电机转速进行反馈,而是直接根据设定的电压和频率值进行输出。

这种控制方式比较简单,但是效果不如闭环控制法好。

3. 模糊控制法模糊控制法是指通过多个自变量和多个规则来控制输出电压和频率的控制方法。

这种方法不仅可以降低电机运行过程中的波动,还可以提高电机的控制精度。

二、控制技术除了以上的控制方法,还有一些控制技术可以用来控制变频器的输出电压和频率。

常见的控制技术包括:1. 调制控制调制控制是指在控制器中添加相应的控制电路来控制输出电压和频率的方法,这种控制技术比较常见,效果也比较好。

2. 矢量控制矢量控制是指通过矢量控制器来控制输出电压和频率的方法。

这种控制技术可以提高电机控制的精度和效率,但是同时也会增加电路的复杂度。

因此,在实际应用中,需要根据具体情况进行选择。

三、总结在电机变频器的控制系统中,输出电压和频率的控制是非常重要的。

通过采用适合的控制方法和控制技术,可以达到更好的控制效果。

在实际应用中,需要根据电机的需求和控制要求选择合适的控制方法和控制技术,并加以实施。

变频器常用的10种控制方式

变频器常用的10种控制方式

变频器常用的10种控制方式
变频调速技术是现代电力传动技术的重要发展方向,而作为变频调速系统的核心—变频器的性能也越来越成为调速性能优劣的决定因素。

除了变频器本身制造工艺的“先天”条件外,对变频器采用什么样的控制方式也是非常重要的。

本文从工业实际出发,综述了近年来各种变频器控制方式的特点,并展望了今后的发展方向。

一、变频器的分类
变频器的分类方法有多种。

按照主电路工作滤波方式分类,可以分为电压型变频器和电流型变频器。

按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM控制变频器。

按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等。

按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。

二、变频器中常用的控制方式
1、非智能控制方式
在交流变频器中使用的非智能控制方式有V/f控制、转差频率控制、矢量控制、直接转矩控制等。

(1) V/f控制
V/f就是加在电机定子上的电压和电源频率的比值。

如下图,V/F符合直线AB,则是直线型;符合折线段ABC,则是多点型;符合曲线AB,则是平方型。

变频器的控制常用模式介绍

变频器的控制常用模式介绍

变频器的控制常用模式介绍随着现代工业的快速发展,电机在工业生产中的应用越来越广泛。

而作为电机控制的重要组成部分,变频器的出现使得电机的控制更加灵活和高效。

在变频器中,控制模式是影响电机运行的关键因素之一。

本文将介绍变频器的控制常用模式。

1. 开环控制模式开环控制模式是最简单和最基础的控制模式之一。

在开环控制模式下,变频器根据给定的频率和电压信号直接控制电机的转速和负载。

然而,这种控制模式并不能对电机的运行状态进行反馈和监控,因此无法实现对电机的精确控制。

2. 闭环控制模式闭环控制模式是一种通过对电机输出信号与实际运行情况进行反馈,从而实现对电机转速和负载的精确控制的模式。

在闭环控制模式下,变频器通过反馈装置(如编码器)获取电机的实际运行状态,并根据差异调整输出信号,实现对电机的反馈控制。

3. 矢量控制模式矢量控制模式是一种较为先进和高级的控制模式,其基本原理是通过分析电机的转子磁通和转速,实现对电机的精确控制。

在矢量控制模式下,变频器能够对电机的电流、转速和转矩进行精确控制,从而实现更高的控制精度和响应速度。

4. 脉宽调制(PWM)控制模式脉宽调制控制模式是一种通过改变脉冲宽度的方式来控制电机转速的模式。

在脉宽调制控制模式下,变频器通过改变电压的脉冲宽度来控制电机的转速。

脉宽调制模式具有控制精度高、响应速度快等优点,在工业生产中得到了广泛的应用。

5. 多点抑制(MPC)控制模式多点抑制控制模式是一种通过对电机的多个参量进行调整和抑制来实现对电机的控制的模式。

多点抑制控制模式具有较高的控制精度和稳定性,能够有效抑制电机在运行过程中的不稳定因素,提高电机的运行效率。

总结:变频器的控制模式包括开环控制、闭环控制、矢量控制、脉宽调制控制和多点抑制控制等多种模式。

不同的控制模式适用于不同的电机应用场景,可以根据具体需求选择合适的控制模式来实现对电机的精确控制和高效运行。

随着科技的不断进步,相信变频器的控制模式将会不断发展和创新,为工业生产带来更多的便利和高效。

变频器常用控制功能与相关参数的设置方法

变频器常用控制功能与相关参数的设置方法

变频器常用控制功能与相关参数的设置方法电动机的负载种类繁多,为了让变频器在驱动不同负裁的电动机时充分发挥其功能,应把握变频器掌握功能与参数的设置,现在就以赫茨变频器为例,介绍一些常用的掌握功能与相关参数的设置方法。

一、掌握模式选择变频器的速度掌握模式是输入掌握方式为速度输入,输入量为频率或者转速,参数是P0.00,有以下3个选项:1、V/F掌握:适用于对精度要求不高的场所,2、无PG矢量掌握,3、转矩掌握对,其中1为默认选项,也是我们最常用的,2、3为特别要求,不常用。

二、运行指令选择是用来选择频率变频器掌握指令的通道,变频器的掌握命令包括:起动、停机、正转、反转、点动、故障复位等。

参数是P0.01,包括以下3个选项:键盘指令、端子指令、通讯指令三、键盘/端子UP/DOWN设定参数是P0.02,用于数字的递增或递减。

四、最大输出频率变频器的最大输出电压所对应的频率称为基本频率,基本频率一般与电动机的额定倾率相等,最大频率是指变频器能设定的最大输出撷率,参数是P0.03五、上限频率上限频率是指变频器运行时不允许超过的最高输出频率.P0.04参数用来设置输出频率的上限频率(最大频率),假如运行频率设定值高于该位,输出频率会嵌在上限频率上。

【留意】:上限频率是依据生产需要预置的最大运行颇率,它并不和某个确定参数相对应。

例如采纳模拟量给定方式,给定信号为0-5 V 的电压信号,给定频率对应为0一50 Hz,假如上限频率设定为40 Hz,就表示当给定的电压大于4 V以后,不论如何变化,变颇器输出的最大颇率始终为40 Hz在设置上限频率时,一般不要超过变频器的最大频率,若超出最大频率,变领器会自动以最大频率作为上限频率。

六、下限频率下限频率是指不允许低于的最低输出频率,P0.05参数用来设置输出频率的下限频率(最小频率),假如运行频率设定值低于该值,输出频率会嵌在下限频率上。

七、键盘设定频率:参数是P0.06,表示变频器的频率数字设定为初始值。

几种常用的简单控制变频器方法,让变频器运转起来!

几种常用的简单控制变频器方法,让变频器运转起来!

几种常用的简单控制变频器方法,让变频器运转起来!随着现代化工业的发展,电机在许多生产领域中起着重要的作用。

变频器作为一种电机控制器,被广泛使用,很大程度上提高了生产效率和节能。

但是对于不少用户来说,掌握变频器的控制方法仍然是一项挑战。

那么,在本文中,我们将介绍几种常用的简单控制变频器的方法,以帮助您更好地理解和使用它们。

1. 启动和停止变频器启动和停止变频器是使用变频器的基本操作。

要启动变频器,我们只需要按下启动按钮,或者通过外部信号来控制变频器的启动。

在变频器启动后,电机转速将逐渐增加,直到达到设定的频率。

停止变频器也很简单。

我们可以通过按下停止按钮来停止电机,或者通过外部信号来控制变频器的停止。

一旦停止,电机的转速将逐渐降低,并停止运转。

2. 调节变频器的频率调节变频器的频率,是控制电机转速的关键。

通过控制变频器的频率,我们可以更好地控制电机的转速和运行状态。

对于数字型变频器,我们可以通过变频器面板上的按键和数值输入来设置电机的频率。

有些型号的变频器还支持远程控制,可以使用PLC或其他自动化控制系统。

对于模拟型变频器,我们通常需要通过转动变频器面板上的旋钮来调节电机的频率。

由于模拟型变频器的使用范围已经逐渐减少,因此在本文中不再做详细介绍。

3. 设置变频器的运行模式在变频器的运行过程中,我们可能需要调整变频器的运行模式。

具体地说,这可能包括:•控制方式:变频器可以设置为向前、向后或停止。

•内部控制和外部控制:变频器可以通过内部控制或外部控制来控制电机。

•自动和手动控制:自动控制模式下,变频器将按照预设的参数运行。

手动控制模式下,变频器将以调节器设置的频率和时间运行。

这些运行模式的设置可以通过变频器面板上的按键或者外部信号来控制。

4. 监控变频器的运行状态监控变频器的运行状态同样十分重要,可以帮助我们及时发现问题并保证设备的正常运行。

我们可以通过变频器面板上的指示灯来监测变频器的运行状态。

例如,当变频器正常运行时,指示灯将显示绿色;当电机过载或故障时,指示灯将变为红色。

变频器的控制方法

变频器的控制方法

变频器的控制方法变频器是一种用于调节电机转速的电子设备,它通过改变电压、频率和电流来控制电机的运行。

变频器的控制方法有很多种,下面将就几种常见的控制方法进行介绍。

1. 开环控制开环控制是最基本的变频器控制方法之一,也是最简单的控制方法。

在开环控制中,变频器根据事先设定的频率和电压输出信号,直接控制电机的运行。

这种方法适用于负载要求不高的场合,但无法对电机的运行状态进行实时监测和调整。

2. 闭环控制闭环控制是一种反馈控制方法,它通过传感器实时监测电机的运行状态,将监测到的反馈信号与设定值进行比较,并根据比较结果调整输出信号,从而实现对电机转速的精确控制。

闭环控制可以使电机在各种负载条件下保持稳定的运行,具有较高的控制精度和稳定性。

3. 矢量控制矢量控制是一种较为复杂的控制方法,它不仅可以精确控制电机的转速,还可以同时控制电机的转矩和位置。

矢量控制将电机分解为磁场定向控制和转矩控制两个部分,通过控制两个部分的信号来实现对电机的全面控制。

矢量控制具有高精度、高效率、低噪音等优点,适用于对电机运行精度要求较高的场合。

4. 伺服控制伺服控制是一种高性能的控制方法,它通过将电机的转速和位置与设定值进行比较,通过控制电机的输出信号实现对电机的精确控制。

伺服控制具有较高的动态响应能力和控制精度,适用于对电机运行要求非常高的场合,如机床、印刷设备等。

5. 多变量控制多变量控制是一种综合应用多种控制方法的控制策略,它可以根据电机运行的实际需求,同时控制电机的转速、转矩、位置等多个参数。

多变量控制可以根据不同的工况自动调整控制参数,从而实现对电机的最优控制。

这种控制方法适用于对电机运行精度要求高、工况变化较大的场合。

变频器的控制方法有很多种,每种方法都有其适用的场合和优势。

在选择控制方法时,需要根据具体的应用需求和电机的特性进行合理选择,并结合实际情况进行参数调整和优化,以实现对电机的精确控制。

控制变频器的方法

控制变频器的方法

控制变频器的方法控制变频器是指控制交流电动机转速和转矩的装置。

通过控制变频器,可以实现对电动机的恒定转速、恒定转矩和变速运行,并且可以降低电动机的启动电流,减少设备的损耗和节能。

控制变频器的方法有多种,下面将详细介绍常见的控制方法。

1. 网络控制方法在工业生产中,常常使用网络控制方法对变频器进行控制。

网络控制方法是指通过网络连接变频器和控制器,利用现代化的技术手段进行远程控制。

这种方法可以实现对变频器的远程开关、调速和监控,不仅方便了操作人员的操作,也提高了工作效率和安全性。

2. 数字控制方法数字控制方法是指通过数字化的方式对变频器进行控制。

现代化的变频器常常配备了数字化的控制系统,通过数字输入和输出信号,可以对电动机的转速、转矩和运行状态进行精确控制。

这种方法具有控制精度高、操作灵活等优点,适用于对电动机要求较高的场合。

3. 模拟控制方法模拟控制方法是指通过模拟信号对变频器进行控制。

这种方法一般通过模拟量输入输出模块对变频器进行控制,通过调节模拟信号的幅度和频率来实现对电动机的调速和调节。

模拟控制方法简单、成本低,适用于一些简单的调速要求。

4. PLC控制方法PLC控制是一种常见的控制变频器的方法。

通过PLC控制器,可以实现对变频器的精确控制和编程控制,适用于对电动机转速、转矩和运行状态要求较高的场合。

PLC控制方法灵活、可编程性强,可以实现对整个生产线的自动化控制。

5. 按钮控制方法按钮控制方法是指通过操作按钮对变频器进行手动控制。

一般来说,变频器会配备操作面板,上面会有各种按钮和旋钮,通过操作按钮和旋钮可以实现对电动机的启停、调速和监控。

这种方法简单易行,适用于一些简单的场合。

通过上述介绍,可以看出,控制变频器的方法有多种,不同的方法适用于不同的场合。

在实际应用中,根据工程的具体要求和现场的实际情况,可以选择合适的控制方法。

同时,在选择和应用控制方法时,需要考虑到控制精度、成本、可靠性和安全性等方面,以达到最佳的控制效果。

变频器的控制策略及其实现

变频器的控制策略及其实现

变频器的控制策略及其实现随着电气自动化技术的快速发展,变频器作为一种重要的电力调节设备在工业领域得到了广泛的应用。

变频器可将固定频率的交流电转换成可调频率的电能输出,实现对电动机速度的精确控制。

本文将介绍变频器的控制策略以及其实现方法。

一、变频器的控制策略1. 开环控制策略开环控制策略是最基本的变频器控制方法之一,它根据预设的转速要求直接计算输出频率,并通过变频器将对应频率的电能提供给电动机。

开环控制策略简单直接,适用于一些转速要求相对较为稳定的场合。

2. 闭环控制策略闭环控制策略是一种反馈控制方法,通过对电动机实际转速进行测量,与预设的转速进行比较,根据误差信号调整变频器的输出频率,以达到精确控制电动机转速的目的。

闭环控制策略具有较好的稳定性和抗负载能力,在要求转速精度较高的场合得到广泛应用。

3. 矢量控制策略矢量控制策略是在闭环控制的基础上进一步发展而来的一种高级控制方法。

它不仅能够精确控制电动机的转速,还可以控制其转矩。

矢量控制策略通过对电机转子磁场的测量和计算,实现对电机的精确控制。

矢量控制策略在高性能要求的应用场合中得到了广泛的应用。

二、变频器控制策略的实现1. 控制电路设计变频器的控制电路设计关系到其控制效果和稳定性。

在开环控制策略中,需要设计一个简单的电路来计算输出频率并进行调整。

而闭环控制策略和矢量控制策略需要设计更为复杂的电路,以实现实时测量电机转速和转矩,并进行相应的调节。

2. 算法编程变频器的控制策略实现还需要进行算法编程。

通过编写相应的控制算法,可以实现对电机频率、转速和转矩等参数的精确控制。

算法编程需要考虑到控制精度、计算速度和系统稳定性等方面的问题。

3. 参数调试变频器的控制策略实现后,还需要进行参数调试。

通过调整控制算法中的参数,可以进一步优化变频器的控制效果。

参数调试是一个反复试验和调整的过程,需要根据实际应用情况进行反复优化。

三、变频器的应用前景随着工业自动化水平的提高和能源节约的要求,变频器在各个领域的应用不断扩大。

变频器的调速方法

变频器的调速方法

变频器的调速方法变频器是一种能够改变电机转速的设备,它可以通过调节电机的电压和频率来实现不同转速的控制。

在工业生产中,变频器的广泛应用使得电机的运行更加灵活和高效。

本文将介绍几种常见的变频器调速方法。

一、电压/频率控制调速方法电压/频率控制是最常见的变频器调速方法之一、根据电动机的特性,电机的转速与电压和频率成正比。

通过控制变频器的输出电压和频率,可以实现对电机转速的精确控制。

在调节电压/频率变化的过程中,需要考虑电机的负载、电磁兼容性等因素。

二、矢量控制调速方法矢量控制是一种高性能的变频器调速方法。

它采用了感应电机的电流/磁场定向控制原理,通过测量电机的转子位置和电流反馈信号,计算出电机的电磁矢量,进而控制电机的转速。

矢量控制具有较高的响应速度和较好的转矩控制能力,适用于对转速和转矩精度要求较高的应用场景。

三、闭环控制调速方法闭环控制调速是一种采用反馈控制方式的变频器调速方法。

它通过测量电机输出端的转速信号,与设定的转速进行比较,计算出误差信号,然后通过控制变频器的输出进行补偿,使得电机的转速能够稳定在设定值附近。

闭环控制调速方法能够更精确地控制电机的转速,适用于对转速精度要求较高的应用场景。

四、多点控制调速方法多点控制调速是一种能够实现多个转速设定的变频器调速方法。

通过对变频器进行编程设置,可以实现电机在不同工况下的转速切换。

这种调速方法适用于需要频繁改变转速的应用场景,能够优化电机的运行效率和能耗。

五、过热保护调速方法过热保护调速是一种通过监测电机的温度信号以保护电机的调速方法。

在电机运行过程中,如果温度超过设定的阈值,则会触发保护措施,如降低电机的转速或直接停机。

这种调速方法能够有效保护电机,延长其使用寿命,并防止因过热而导致的事故发生。

综上所述,变频器具有多种调速方法,可以根据不同的应用场景选取合适的调速方式。

通过合理配置和运用变频器的调速功能,可以提高电机的运行效率、降低能耗,实现对电机转速的精确控制,进而提高生产效率和质量。

变频器的控制方法

变频器的控制方法

变频器的控制方法变频器是一种用于控制电动机转速的设备,它通过改变电源的频率来实现对电动机的精确控制。

变频器的控制方法有多种,下面将逐一介绍。

1. 开关控制:开关控制是变频器最基本的控制方式之一。

通过手动或自动操作,将变频器的开关打开或关闭,从而控制电动机的启停。

这种控制方法简单直接,适用于一些简单的应用场景,但无法实现精确的转速调节。

2. 脉宽调制(PWM)控制:脉宽调制是一种常见的变频器控制方法。

它通过改变电源信号的脉冲宽度来控制电动机的转速。

脉宽调制技术可以实现高效的能量转换,使得电动机在不同负载下都能保持稳定的转速。

同时,脉宽调制还可以实现电动机的正反转和制动功能。

3. 矢量控制:矢量控制是一种较为高级的变频器控制方法。

它通过对电动机的转子位置和速度进行准确测量,并根据测量结果计算出合适的电流矢量,从而实现对电动机的精确控制。

矢量控制可以实现电动机的高速响应和精确的转速调节,适用于一些对转速要求较高的场合。

4. 感应电动机矢量控制:感应电动机矢量控制是一种应用广泛的变频器控制方法。

它通过对感应电动机的转子位置和转速进行测量,并根据测量结果调整电动机的电流矢量,从而实现对电动机的精确控制。

感应电动机矢量控制具有响应速度快、转速范围广等优点,适用于各种工业领域。

5. 闭环控制:闭环控制是一种基于反馈的变频器控制方法。

它通过测量电动机的转速,并将转速信号与设定值进行比较,然后根据比较结果调整电动机的控制参数,从而实现对电动机转速的闭环控制。

闭环控制可以有效消除外界干扰和负载变化对电动机转速的影响,实现更加精确的转速控制。

以上是几种常见的变频器控制方法,每种方法都有自己的特点和适用场景。

在实际应用中,可以根据具体需求选择合适的控制方法,并结合其他控制策略进行综合控制,以实现更好的控制效果。

变频器的控制方法不断创新和发展,为电动机控制提供了更多的选择和可能性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

很多变频器使用方式都是大同小异的!介绍几种常用简单的控制变频器的方法。

一、变频器主电路的接线方法:
R S T这三个接线端子是变频器电源进线端,三根火线接入。

U V W是出线端接需要控制的电机。

首先,变频器有单相220V、三相220V、三相380/480V、三相690V等几种电源规格的变频器,我们需要根据变频器规格选择合适的电源和断路器。

将输入电源接到变频器的L1、L2(单相220V)或者R、S、T端子。

在断路器和变频器之间一般不加接触器,如果必须要加入接触器的场合,也要注意不能使接触器动作或于频繁。

另外为了改善功率因素和消除干扰,可在输入侧加入交流输入电抗器和噪音滤波器,这个可以根据需要和使用场合选择加不加。

输入侧连接完成,将三相电动机接到变频器的输出端子U、V、W上。

注意:变频器输出侧不能加电容器或者浪涌抑制器,否则会导致变频器损坏。

最后要保证接地端子可靠接地,以保证设备和人员的安全。

二、控制方式种类:
1、面板控制方式。

这种控制方式是通过变频器面板启停变频器修改频率等。

2、通过外部控制器或仪表控制方式。

这种控制方式主要通过控制器如PLC 给变频器启停信号和频率信号,这种控制方式依据信号类型的不同又可以分为两种。

一种类型是开关量信号和模拟信号另外一种是通讯数字信号。

控制回路部分不同品牌的变频器端子号和功能会有所不同,我们可以根据变频器说明书进行判断。

首先,我们要选择控制方式,在参数设置里找到相应参数进行设置,控制方式分为操作面板命令通道、端子命令通道和通讯命令通道。

选择操作面板命令通道的时候,面板上的RUN和STOP键就可以实现变频器的运行和停止,通过递增和递减键对电机进行调速。

注意:有的变频器操作面板上装有电位器,在设置里选择模拟输入为板载电位器,调整电位器就可以实现电动机调速。

另外变频器面板可以拆下,可以通过延长线将面板装到操作柜面板进行操作。

使用端子命令通道,可通过设置参数选择二线式或者三线式控制。

二线式控制时,我们只需要将正、反转端子和电源公共端分别闭合就可以实现电动机正、反转。

三线式控制时,则需要使能端子和公共端闭合后,正反转端子和公共端闭合才起作用。

模拟输入方面,变频器提供+10V电源,我们可以根据需要使用外接电位器、各种传感器等来实现电动机调速。

变频器可通过参数设置或者跳线开关进行选择模拟信号为电压信号还是电流信号通讯命令通道是通过上位机通讯对变频器进行控制。

为了让电动机更好的运行,我们还需要对电动机的参数、加减速时间、运行频率等进行设置。

基本上这些简单的设置就可以实现变频器控制电动机的运行。

在使用中,根据实际情况,可能还要加制动电阻或者制动单元等等,对变频器参数进行更详细的设置。

由于对变频器的了解只限于简单的使用,更为复杂的设置还不算十分了解,所以内容有限,最后提醒一下大家,一定要可靠接地!
三、控制回路接线
面板控制的接线:面板控制最简单也是接线最少的一种,变频器的使能端子必须要接线,无论什么控制方式都必须先使能变频器!
电位器接线,如果觉得面板按钮不太方便那么可以使用电位器来调节频率,有的变频器的面板上已经装好了电位器有的没有装但是预留的有电位器接线端子!
通过外部控制器或仪表控制方式的接线:这种方式根据信号类型不同接线方式也不同
1、依靠开关量和模拟量控制的接线方式需要接使能端子,启动端子,频率给定端子一般是电流或电压信号,如果是PID调节的闭环控制的话还需要把外部传感器信号接到变频器的信号采集端子。

2、依靠通讯方式控制变频器接线方式需要接使能端子,通讯电缆连接变频器和通讯伙伴的通讯口就可以了。

四、变频器参数设置
1、面板控制参数:电机功率;控制方式:面板;频率给定方式:面板/电位
器;频率上下限;不同的变频器参数有细微差别!
2、开关量和模拟量控制方式参数:电机功率;控制方式:远程;频率给定:外部模拟量;外部模拟量通道:根据接线而定,接的是哪一路就选哪一路;外部模拟量通道信号类型:根据PLC输出的模拟量信号类型确定一般有电流和电压信号,信号范围是多少根据实际PLC模拟量输出通道决定,常用4至20ma,0至10v;PLC一侧需要写控制程序。

3、数字量通讯信参数:电机功率;控制方式:通讯;通讯地址:也可以说是站号;通讯协议:使用变频器和PLC都支持的通讯协议;PLC一侧需要写通讯程序!。

相关文档
最新文档