碱裂解法提取dna的方法
第二课 碱裂解法小量提取质粒DNA
实验原理
• 乙醇沉淀 乙醇沉淀DNA
– 回收后的水相含有足够多的盐,因此只要加入2倍体积的乙醇, 在室温放置几分钟后离心就可以将质粒DNA沉淀出来。 – 在pH为8左右的溶液中,DNA分子是带负电荷的,乙醇可以 消除核酸的水化层,使带负电荷的磷酸基团暴露出来。Na离 Na 子能与这些带电基团结合,在沉淀形成的部位降低多核苷酸 链之间的排斥作用,易于互相聚合而形成DNA钠盐沉淀。最 常用的盐是醋酸铵/氯化锂/氯化钠/醋酸钠。 – 沉淀体系如果盐浓度高,应在室温下沉淀。放到-20℃,时 间一长反而会导致大量盐的沉淀。 – 为了去除随DNA沉淀的盐,可用70%的乙醇洗涤沉淀。
第一,时间不能过长,因为在这样的碱性条件下DNA片断 会慢慢断裂; 第二,混合必须轻柔,不然DNA也会断裂。
2. 1% SDS(十二烷基磺酸钠):是一种阴离子表 面活性剂,它既能使细菌细胞裂解,又能使一些 蛋白质变性。
实验原理
• 溶液III:醋酸钾溶液,Ph4.8 :醋酸钾溶液, 溶液
– – 当加入pH4.8的酸性乙酸钾降低溶液pH值,使溶液pH值 恢复较低的近中性水平时, 质粒的两条小分子单链可迅 速复性恢复双链结构,但是主染色体DNA则难以复性。 SDS遇到钾离子后变成十二烷基硫酸钾(potassium dodecylsulfate, PDS),而PDS是不溶于水的,而高浓 度的盐使得沉淀更完全。SDS极易和蛋白质结合,平均 两个氨基酸上结合一个SDS分子,钾钠离子置换所产生 的大量沉淀自然就将绝大部分蛋白质沉淀了。 同时,尽管SDS并不与DNA分子结合,由于大肠杆菌的 基因组DNA很长,很容易和变性的蛋白质缠绕在一起。 在离心时,大部分主染色体与细胞碎片,变性蛋白质等 缠绕一起被沉淀,而复性的质粒DNA以可溶性状态留在 上清夜中。
质粒DNA的提取-碱裂解法实验原理及步骤
实验二质粒DNA的提取-碱裂解法一、实验原理细菌质粒是一类双链、闭环的DNA,大小范围从1kb至200kb以上不等。
各种质粒都是存在于细胞质中、独立于细胞染色体之外的自主复制的遗传成份,通常情况下可持续稳定地处于染色体外的游离状态,但在一定条件下也会可逆地整合到寄主染色体上,随着染色体的复制而复制,并通过细胞分裂传递到后代。
一般分离质粒DNA的方法都包括3个步骤:①培养细菌,使质粒DNA大量扩增;②收集和裂解细菌;③分离和纯化质粒DNA。
分离制备质粒DNA的方法很多,其中常用的方法有碱裂解法、煮沸法、SDS法、羟基磷灰石层析法等。
在实际操作中可以根据宿主菌株类型、质粒分子大小、碱基组成和结构等特点以及质粒DNA的用途进行选择。
本实验介绍碱裂解法提取质粒DNA。
碱裂解法提取质粒DNA是根据共价闭合环状质粒DNA和线性染色体DNA在拓扑学上的差异来分离质粒DNA。
在pH值介于12.0-12.5这个狭窄的范围内,线性的DNA双螺旋结构解开而被变性,尽管在这样的条件下,共价闭环质粒DNA的氢键会被断裂,但两条互补链彼此相互盘绕,仍会紧密地结合在一起。
当加入pH4.8乙酸钾高盐缓冲液恢复pH至中性时,因为共价闭合环状的质粒DNA的两条互补链仍保持在一起,因此复性迅速而准确,而线性的染色体DNA 的两条互补链彼此已完全分开,复性就不会那么迅速而准确,它们相互缠绕形成不溶性网状结构,而复性的质粒DNA恢复原来构型,保持可溶性状态。
通过离心,染色体DNA与不稳定的大分子RNA,蛋白质-SDS复合物等一起沉淀下来而被除去,最后用酚氯仿抽提纯化上清液中的质粒DNA。
二、仪器及试剂1.仪器及耗材:37℃恒温摇床、冷冻离心机、台式离心机、微量移液器、50 ml离心管、1.5 ml离心管管、枪头、各种规格的量筒、接种环、试剂瓶、100 l或者250 ml三角瓶、玻棒等。
2.试剂及配制:LB培养液的配制:酵母浸提物 5.0 g;胰蛋白胨 10.0 g;NaCl 10.0 g;依次称量后加入800 ml去离子水后搅拌至完全溶解,用5 mol/L NaOH (约0.2 ml)调节培养液的pH值至7.0。
SDS碱裂解法制备质粒DNA
SDS碱裂解法制备质粒DNA步骤(1)挑取转化后的单菌落,接种到2ml的含有适当抗生素的丰富培养基中,37℃振摇培养过夜(培养物的体积小于溶液体积的1/4,否则容器不易盖紧,剧烈振摇培养)(2)收菌,将菌液倒入离心管中,4℃,12500r/min,3min。
(离心后将上清液倒入费废液缸中,倒扣在吸水纸上,若还有液体残留,用移液枪吸出)(3)将细菌沉淀重悬于100μl的预冷的碱性裂解液I(Glu, EDTA, Tris-Hcl)中,涡旋振荡。
(4)加200μl新配置的碱性裂解液II(0.2M NaOH,1%SDS)于每管细菌重悬液中,盖紧管口,快速颠倒离心管5次以混合内容物,切勿振荡,将离心管放置在冰上3-5min. (5)加150μl预冷的碱性裂解液III(CH3COOH,CH3COONa),盖紧管口,反复颠倒数次,使得溶液在粘稠度额细菌裂解物中分散均匀。
冰上防止3-5min。
(6)离心(4℃,12000r/min,6min),并将上清转移到另一个离心管中。
(7)在通风橱内加400μl的氯仿:异戊醇(24:1)(8)抽提:将管放在漂浮板上,划8字8min,后离心(4℃,12000r/min,7min),吸取上清液300μl到另一个离心管中。
(9)加无水乙醇600μl,混匀放置在-20℃沉淀15min,后离心(4℃,12000r/min,15min)(10)小心吸去上清液,将离心管倒置在吸水纸上,加70%乙醇700μl洗涤沉淀,弹起沉淀,浸泡一会,离心(4℃,12000r/min,4min),洗涤两次。
(11)倒掉上清,甩一下,吸去上清,晾干。
(12)TRE溶解(1mlTE,1μlRNA酶)20μl/管。
(13)65℃15min,后4℃冰箱保存。
碱裂解法大量提取质粒DNA
碱裂解法大量提取质粒DNA(同时纯化)准备工作:细菌培养:小量提取质粒DNA鉴定正确后,将菌液以1/50~1/20体积的比例接种到250ml 液体培养基中,37℃振荡培养过夜至对数生长晚期。
注:培养体积与最终质粒DNA的收获量并无线性关系。
只要培养条件适宜,50ml的培养液有时也可得到总量高达1m g以上的质粒。
操作步骤:1、细菌的收获:将菌液倒入合适的离心管中,8000g离心5分钟,弃上清,并在吸水纸上倒置离心管使上清全部流尽。
2、将细菌沉淀重悬于10ml溶液I中。
溶液I:50mmol/L葡萄糖,25mmol/L Tris•Cl(pH8.0),10mmol/LEDTA(pH8.0)注:(1)若溶液Ⅰ/Ⅱ/Ⅲ配制时间过久,可加入少量溶菌酶;(2)由于沉淀的影响,悬液的体积会达到11~13ml。
3、加15ml溶液Ⅱ,颠倒混匀。
溶液Ⅱ:0.2mol/L NaOH,1%SDS4、加12ml溶液Ⅲ,轻微振荡混匀。
溶液Ⅲ:5mol/L乙酸钾60ml,冰乙酸11.5ml,水28.5ml5、12000g离心5分种,弃沉淀。
将上清转移到另一离心管中。
6、加入60%体积的异丙醇,颠倒混匀后,室温静置5分钟。
12000g离心5分钟,弃上清。
7、沉淀溶解于4~6ml TE中,加入1/50体积RNase A贮存液,颠倒混匀,37℃静置10分钟。
8、加入1/2体积的Tris饱和酚、1/2体积的氯仿-异戊醇(24:1)混合液,剧烈振荡混匀。
9、4℃12000g离心30秒,将上层液体与少量下层液体转移到另一离心管后,再12000g离心5分种,小心吸取上层液体。
10、加入等体积13%聚乙二醇(PEG8000)-1.6mol/L NaCl混合液,颠倒混匀,冰上静置0.5~2小时。
11、4℃12000g离心10分种,弃上清,DNA沉淀用70%乙醇洗涤。
12、沉淀干燥后,溶解于适量高压灭菌的水中。
注:(1)溶解体积一般为0.2~1ml;(2)此时得到的是已经纯化的质粒DNA,可直接进行各种酶学操作。
基础生物化学实验实验六 质粒DNA的提取(碱裂解法)及酶切分析)
(2) 挑选单菌落,在无菌条件下放入5 ml LB液体培养基中 (100 g /ml氨苄青霉素),200-300 rpm,37℃过夜培养。 (3) 取1.5 ml菌液(其余菌液加入25%的灭菌甘油,放入对 应编号的1.5 ml离心管中,-70℃ 下作菌种保存),5000 g离心5 min。 (4) 弃上清夜,加入100 l预冷的溶液I,悬浮沉淀,室温 放 置5 min。 (5) 加入200 l 新鲜的溶液II,边加边震荡,但不能剧烈, 冰上放置5 min。 (6) 加入75 l溶液III,震荡混匀,冰上放置5 min。 (7) 12000 g 离心5 min。 (8) 取上清液,加入两倍体积的预冷无水乙醇,12000 g离 心10 min。 (9) 用1 ml 70%的乙醇洗涤沉淀,空气中放置3-5 min。 (10) 用30-50 l TE溶解,用紫外分光光度计进行DNA含量 测定,EB琼脂糖(1.4%)凝胶电泳分析。
实验六 质粒DNA的提取(碱裂解法)及酶分析
(1) 溶液配制: 溶液 I 50 mmol/L 葡萄糖 25 mmol/L Tris-Cl (pH 8.0) 10 mmol/L EDTA (pH 8.0) 溶液 II 0.2 mol/L NaOH 0.5% SDS 溶液 III 3 mol/L KAc (用冰醋酸调 pH值至5.0)
质粒DNA的酶切分析参照相关酶的说明书 操作步骤进行
实验二 碱裂解法抽提质粒DNA-2
实验一、碱裂解法抽提质粒DNA
质粒是携带外源基因进入细菌中扩增或表达的主要载体,它在 基因操作中具有重要作用。 质粒的分离与提取是最常用、最基本的实验技术。 质粒的提取方法很多,大多包括 3 个主要步骤:细菌的培养、 细菌的收集和裂解、质粒 DNA 的分离和纯化。
3、乙醇沉淀:是从水溶液中回收核酸的标准方法。乙醇能够消除核酸的水
化层,使带负电荷的磷酸基团暴露出来。Na+之类的平衡离子能够与这 些带电基团结合,在沉淀形成部位降低多核苷酸链之间的排斥作用。因
此,只有在阳离子的量足以中和暴露的磷酸残基的电荷时才会发生乙醇
沉淀。
思考题(质粒抽提)
1、为什么真核生物的基因组DNA不能用碱法抽提?
本实验以碱裂解法为例,介绍质粒的抽提过程。
一、实验目的
1、掌握碱裂解法抽提质粒的原理、步骤及各试剂的作用; 2、掌握常用分子生物学试剂的配制;
3、掌握无菌操作技术;
4、掌握大肠杆菌的培养、保存及液体培养物OD值测定的方法; 5、掌握移液器、分光光度计、离心机的正确使用方法;
6、学会根据实验需要选择合适的大肠杆菌菌株和质粒载体。
7、离心几秒钟,用移液器尽可能除去酒精,风干(或热板上烘干1 min)。
8、根据DNA沉淀的大小加20~50 l 1× TE 溶解DNA沉淀,并在65℃热板上温育 10分钟(可使DNase失活),之后于 -20 ℃保存备用。
质粒抽提方法即去除 RNA,将质粒与细菌基因组 DNA分开,去除蛋白质及 其它杂质,以得到相对纯净的质粒。 使用相对过量的试剂 — 这是适合所有核酸抽提的建议。试剂相对过量的好处 是:稳定性好,纯度高,操作更简单。 关注溶液I、溶液II和溶液III的比例!
naoh裂解法提dna
naoh裂解法提dnaNaOH裂解法提取DNADNA是生物体内的重要遗传物质,它携带着生物体的遗传信息。
在科学研究和实验室中,我们常使用NaOH裂解法来提取DNA。
本文将介绍NaOH裂解法的原理和步骤。
一、NaOH裂解法的原理NaOH裂解法是一种常用的DNA提取方法,其原理是利用NaOH的碱性特性和高温作用下,使细胞膜破裂,使DNA从细胞中释放出来。
NaOH的碱性条件以及高温可以使DNA双链断裂,使DNA解旋成单链。
二、NaOH裂解法的步骤1. 准备样本:将待提取DNA的样本收集到离心管中,如细菌培养物、动物组织或植物组织等。
2. 加入NaOH溶液:向离心管中加入适量浓度为0.1-1M的NaOH溶液,使样本完全浸泡在NaOH中。
3. 水浴加热:将离心管放入水浴中,加热至85-100℃,保持一段时间,通常为5-10分钟。
高温和NaOH的碱性条件可以破坏细胞膜和核膜,使DNA从细胞中释放出来。
4. 中和:将离心管取出,加入等体积的中和缓冲液,如三氯乙酸钠(pH≈4.0)或醋酸钠(pH≈5.0),使pH值迅速下降。
中和后,DNA 双链会重新形成。
5. 离心:将离心管放入离心机中,以最大速度离心1-2分钟,将DNA沉淀到离心管底部。
6. 去除上清液:将上清液轻轻倒掉,保留DNA沉淀。
7. 洗涤:加入80%的乙醇溶液,轻轻颠倒离心管,使DNA沉淀与乙醇充分接触,去除杂质。
8. 离心:将离心管放入离心机中,以最大速度离心1-2分钟,去除乙醇溶液。
9. 干燥:将离心管倒置于洁净的工作台上,待DNA干燥后,加入适量的溶剂(如TE缓冲液)重溶。
三、注意事项1. 操作要注意无菌,避免污染。
2. NaOH具有腐蚀性,使用时要注意安全,避免接触皮肤和眼睛。
3. 高温加热时要注意防止样本溢出。
4. DNA的提取量和质量受到多种因素的影响,如细胞类型、样本保存条件等。
通过NaOH裂解法提取DNA是一种简单、快速的方法,适用于大多数生物体的DNA提取。
碱裂解法提取质粒DNA
葡萄糖增稠,使悬浮后的大肠杆菌不会快速沉积到管子的底部;EDTA 抑制DNase的活性
这一步溶液中还可以加入RNase,不受EDTA影响,并且可以在后续步骤中被除去
溶液Ⅱ 0.2M NaOH / 1% SDS
�
破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。
加入溶液Ⅱ之后必须温柔混合,不然基因组DNA会物理断裂;
停留的时间不能过长,因为强碱性条件下基因组DNA会慢慢化学断裂
溶液Ⅲ 3M 醋酸钾 / 2M 醋酸
这一步的K置换了SDS(十二烷基磺酸钠)中的Na,得到PDS(十二烷基磺酸钾)沉淀;
SDS易与蛋白质结合,平均两个氨基酸上结合一个SDS分子,钾钠离子置换所产生的大量沉淀
自然就将绝大部分蛋白质也沉淀了,同时基因组DNA也被PDDNA时,多数情况下能看到三条带,按电泳速度由快到慢排序,
分别是 超螺旋带、开环带 和 复制中间体带(即没有复制完全的两个质粒连在了一起)。
碱裂法小规模提取质粒DNA及琼脂糖凝胶电泳
碱裂法小规模提取质粒DNA及琼脂糖凝胶电泳一.实验原理碱裂解抽提质粒DNA是基于染色体DNA与质粒DNA的变性和复性的差异而达到分离目的。
在碱性条件下,线性大分子细菌染色体DNA的氢键断裂,双螺旋结构互补链变性解开。
质粒DNA的大部分氢键也断裂,但超螺旋共价闭合环状结构的两条互补链不会完全分离。
当用pH4.8的NaAc高盐缓冲液调其pH值至中性,变性的质粒DNA又恢复到原来的构型,保存在溶液中为可溶状态。
而染色体DNA不能复性,形成缠连的网状结构。
通过离心将细胞碎片,染色体DNA与不稳定的大分子RNA,蛋白质-SDS复合物等一起沉淀下来被除去,质粒DNA及部分RNA,蛋白质则存在于上清中,再用RNaseA 处理,酚/氯仿抽提和乙醇沉淀而获得质粒DNA。
质粒(plasmid)通常指细菌中独立于染色体外,能自主复制的遗传因子,它能够稳定地遗传某些性状。
天然的质粒都是环状双链DNA,大小从5kb到400kb不等。
质粒虽然独立于染色体外自主复制和遗传,但其复制又依赖于宿主编码的酶和蛋白质复制因子。
质粒按照其稳定拷贝数的多少可分为严谨型和松弛型,严谨型质粒在每个细菌细胞中有1~5拷贝,松弛型质粒在每个细菌细胞中可达10~200个,甚至更多拷贝。
1.质粒的结构:(1)抗性基因(Antibiotic resistance gene,such as Ampicillin resistance gene, Kanamycine resistance gene)ori, Origin of replication); (2)启始复制子((3)多克隆位点(MSC, Multiple cloning site or polylinker)2.细菌裂解的方法:(1)碱裂解法:0.2molNaOH+1%SDS(2)煮沸裂解法:沸水煮沸40秒(3)SDS裂解法:10%SDS,一般用于质粒大量提取。
SDS是一种阴离子表面活性剂,它既能使细菌细胞裂解,又能使一些蛋白质变性,所以SDS处理细菌细胞后,会导致细菌细胞壁的破裂,从而使质粒DNA以及基因组DNA从细胞中同时释放出来。
质粒DNA的提取实验报告
质粒DNA的提取一、实验方法碱裂解法抽提质粒DNA二、实验原理基于质粒DNA与染色体DNA变性与复性的差异。
三、实验步骤1)质粒提取1. 10,000g,1min离心收集1.5-5ml菌液沉淀于1.5ml离心管中。
2. 加入100μl溶液1,振荡至彻底悬浮。
3. 加入200μl溶液2,立即轻柔颠倒离心管6次,使菌体充分裂解,随后将离心管冰上放置3分钟4. 加入150μl溶液3,立即温和颠倒离心管数次,冰上放置3分钟,10,000g离心10min。
5. 将步骤4的上清转移至新的离心管(尽量去除杂质),加入等体积的苯酚/氯仿/异戊醇混合均匀10,000g离心5min。
6. 将步骤5的上清转移至新的离心管,加入2倍体积的无水乙醇,室温放置5-10min,沉降DNA7. 10,000g离心10分钟,弃乙醇,保留沉淀,加入1ml 70%的乙醇洗涤沉淀,10,000g离心5分钟8. 倒掉乙醇溶液,用吸水纸吸净管壁上的水珠,室温蒸发痕量乙醇9. 加入适量含RNase的TE或灭菌双蒸水溶解质粒DNA2)质粒鉴定→琼脂糖凝胶电泳灌胶:胶中加入荧光染料(SYBR Green I)加样:质粒+上样缓冲液→混匀电泳结果观察:UV灯下四、实验结果五、实验分析裂解细胞中除含有质粒DNA外,还含有基因组DNA、各种RNA、蛋白质和脂类等物质,因此用碱裂解法除去杂质1、防止DNA裂解:Solution 11)、所含糖增加溶液黏度,维持渗透压,防止DNA受机械剪切作用降解2)、所含EDTA抑制酶活性2、溶解与变性:Solution21)强碱使质粒DNA和染色体DNA变性2)离子型表面活性剂SDS可溶解膜蛋白3、沉降与复性:Solution31)质粒DNA复性2)在钾盐中,染色体DNA形成缠连的不溶性网状结构,和不稳定的大分子RNA以及变性的蛋白质和细菌碎片等一起沉淀预期结果为剩余质粒DNA4、琼脂糖凝胶电泳1)荧光染色染料分子可嵌入双链DNA分子配对碱基之间2)琼脂糖可起到电泳和分子筛的作用,因所带电荷、分子量大小和构型不同,泳动速度不同六、误差分析实验失败,本组实验出现4条带,3明1暗,明亮处应为DNA分子数最多的,为质粒DNA,质粒DNA前有较暗的两条带,推测其中一条为未复性质粒DNA,可能Solution2处变性过长,不易复性,或Solution3处时间过短,复性不充分。
碱裂解法提取质粒DNA
碱裂解法提取质粒DNA细菌质粒是一类双链、闭环的DNA,大小范围从1kb~200kb以上不等。
存在于细胞之中,独立于细胞染色体之外的自主复制的遗传成分。
碱裂解法是一种应用最为广泛的制备质粒DNA的一种方法,它利用染色体DNA与质粒DNA 的变性与复性的差异来达到分离的目的。
其基本原理为:当菌体在NaOH和SDS溶液中(PH12.6)裂解时,染色体DNA的氢键断裂,双螺旋结构解开而变性,质粒DNA的氢键也大部分断裂,双螺旋也有部分解开,但共价闭合环状结构的两条互补连不会完全打开,当加入KAc(PH4.8)中和后,质粒DNA分子能够迅速复性,成溶解状态,离心时留在上清中,蛋白质与染色体DNA难于复性而成絮状,离心时可与细胞碎片一起沉淀下来。
试剂:1.溶液I:50mmol/L 葡萄糖(使悬浮的大肠杆菌不会快速沉积到底部,其次调节渗透压)25 mmol/L Tris.HCl (PH8.0) (缓冲体系)10 mmol/L EDTA (PH8.0)(Ca离子、Mg离子等二价阳离子的螯合剂,抑制DNase活性)2.溶液II: 使用前临时配制0.2 mmol/L NaOH (溶解细胞)1% SDS (使细胞膜崩解)与此同时,提高溶液PH,使染色体DNA、蛋白质及质粒均变性。
3.溶液III:100mL5mol/LKAc 60mL (Na被K置换成十二烷基磺酸钾PDS,PDS结合蛋白质沉淀,同时牵连染色体发生沉淀)冰醋酸11.5 mL(中和NaOH,长时间的碱性条件会打断DNA,所以要中和。
基因组DNA一旦发生断裂,只要是50-100 kb大小的片断,就没有办法再被PDS共沉淀了)ddH2O 28.5 mL注意:①NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向micelle(微囊)结构的相变化所导致。
要新从浓NaOH稀释制备0.2M的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。
碱裂解法抽提质粒DNA
实验一碱裂解法抽提质粒DNA[实验原理]质粒是存在于染色体外的小型双链环状DNA,大小在1-200kb之间,能在宿主菌中自主复制。
宿主细胞中质粒的拷贝数各有不同,一种是低拷贝数的,每个细胞仅含有一个或几个质粒分子,称为“严紧型”复制的质粒,另一类高拷贝的质粒,拷贝数可达到20个以上,这种类型称为“松弛型”复制的质粒。
质粒能编码一些遗传性状,如抗药性(氨苄青霉素、四环素等抗性),利用这些抗性可以对宿主菌或重组菌进行筛选。
质粒作为基因工程载体必须具备以下条件(1)复制子(ori):一段具有特殊结构的DNA序列;(2)有一个或多个便于检测的遗传表型,如抗药性、显色表型反应等;(3)有一个或几个限制性内切酶位点,便于外源基因片段的插入;(4)适当的拷贝数。
制备质粒载体是分子生物学的常规技术。
碱裂解法是一种应用最为广泛的制备质粒DNA的方法,其基本原理为:当菌体在NaOH和SDS溶液中裂解时,蛋白质与DNA发生变性,当加入中和液后,质粒DNA分子能够迅速复性,呈溶解状态,离心时留在上清中;蛋白质与染色体DNA不变性而呈絮状,离心时可沉淀下来。
纯化质粒DNA的方法通常是利用了质粒DNA相对较小及共价闭环两个性质。
例如,氯化铯-溴化乙锭梯度平衡离心、离子交换层析、凝胶过滤层析、聚乙二醇分级沉淀等方法,但这些方法相对昂贵或费时。
对于小量制备的质粒DNA,经过苯酚、氯仿抽提,RNA酶消化和乙醇沉淀等简单步骤去除残余蛋白质和RNA,所得纯化的质粒DNA已可满足细菌转化、DNA片段的分离和酶切、常规亚克隆及探针标记等要求,故在分子生物学实验室中常用。
[实验目的]1、掌握碱裂解法抽提质粒DNA的原理和方法。
2、掌握紫外吸收光谱法测定核酸含量的原理和方法。
[实验步骤]1、试剂配制(1)LB培养液10 g Tryptone,5 g Yeast Extract,10 g NaCl,双蒸水定容至1000mL,高压灭菌后4℃保存。
实验一-碱裂解法提取质粒DNA
实验一-碱裂解法提取质粒DNA
碱裂解法是一种常用的质粒DNA提取方法。
下面是进行碱裂
解法提取质粒DNA的实验步骤:
1. 培养细胞:选择所需的质粒含有目标基因的细菌,如大肠杆菌等,并在适当的培养基中培养细菌,使其达到对数生长期。
2. 收集细菌:将培养好的细菌菌液转移到离心管中,并进行离心,以沉淀细菌。
3. 溶解细菌:加入一定浓度的碱液(例如0.2N NaOH)使细
菌溶解。
通常使用细菌菌液总量的1/5体积的碱液,并轻轻摇
晃混合。
4. 添加中和液:将等体积的中和液(例如3M乙酸酸化乙酸钠
溶液)加入到溶解好的细菌溶液中,并迅速而轻轻地混合。
5. 离心:将混合液进行离心,以除去沉淀的细菌残渣和碱液。
6. 提取DNA:将上一步离心得到的上清液转移至新的离心管中,加入等体积的冷乙醇,并轻轻摇晃,使DNA沉淀。
7. 沉淀DNA:进行高速离心,使DNA沉淀。
8. 弃去上清液:弃去上清液,保留沉淀的DNA。
9. 洗涤DNA:使用70%乙醇洗涤沉淀的DNA,以去除残留的盐类和碱液。
10. 干燥DNA:使用洗涤干净的乙醇或空气干燥DNA沉淀。
11. 溶解DNA:用适当的缓冲液(如TE缓冲液)溶解DNA。
12. 储存DNA:将溶解好的DNA储存于适当的温度和条件下,用于后续实验。
质粒DNA提取方案(碱裂解法)
质粒提取原理采用碱裂解法抽提质粒DNA是基于染色体DNA 与质粒DNA的变性与复性的差异不同而达到分离目的的。
在PH大于12的碱性条件下,染色体DNA的氢键断裂,双螺旋结构解开,DNA变性。
质粒DNA 的大部分氢键也断裂,但超螺旋共价闭合环状结构的两条互补链不会完全分离,当以pH5.2的乙酸钠高盐缓冲液调节其pH至中性时,变性的质粒DNA又恢复到原来的构型,留在溶液中。
而染色体DNA不能复性而形成缠连的网状结构。
通过离心,染色体DNA、不稳定的大分子RNA及蛋白质-SDS复合物等一起沉淀下来而被除去。
Solution I:葡萄糖可增加溶液的年度,维持渗透压,防止染色体DNA受机械剪切作用而被降解,污染质粒DNA;溶菌酶(可省略)水解菌体细胞壁的化学成分肽聚糖中的β-1,4糖苷键,具有溶菌的作用。
当pH<8.0时,溶菌酶受到抑制;EDTA有两个作用:(1)螯合Mg2+等金属离子,抑制DNase对DNA的降解。
(2) EDTA的存在有利于溶菌酶的作用,因为溶菌酶的反应要求有较低的离子强度环境;Tris-HCl作为缓冲溶液维持适当的浓度和pH值。
Solution II:NaOH,DNA在5.0<pH<9.0时时稳定的,但当pH>12或pH<3时,就会引起双链之间氢键的解离而使DNA变性。
加Solution II后系统的pH高达12.6,线性染色体DNA和环型质粒DNA氢键均发生断裂,双链解开而变性,但质粒DNA由于其闭合环型结构,氢键只发生部分断裂,且其两条链不会发生完全分离,待pH调至中性闭合环型质粒DNA很快复性恢复原来的构型,而染色体DNA不能复性。
SDS 是阴离子表面活性剂,它有溶解膜蛋白破坏细胞膜,解聚细胞中核蛋白,能与蛋白质结合成为R-O-SO3-···R+-蛋白质复合物,使蛋白质变性而沉淀下来。
但SDS能抑制RNase的作用,所以在以后提取中必须将其除干净。
碱裂解法提取dna
碱裂解法提取dna
DNA 可以被定义为“类状分子”,因为它有单线螺旋结构并且具有机械强度。
DNA 是
一种只能在细胞内发现的未被加入任何外来结构的化学物质。
它在某些农业和工业应用中
被用做原料。
要提取DNA,就需要采用不同的方法。
其中一种方法是叫做碱裂解法。
碱裂解法是一种常见的提取 DNA 的方法。
这种技术的基本原理是,通过运用高浓度
的碱性物质来破坏细胞结构以释放DNA,破坏细胞成份里的膜结构,使其包含的 DNA 可以被释放出来。
通过使用碱性物质,原本嵌入在细胞中的DNA将得到释放,而不被特定的细
胞结构所结合。
首先,采用速溶碱来悬浮样本,比如人体细胞或细菌。
然后,加入抗性染料,以防止DNA和染料结合,赋予染料光学性质,这样便于后续分拣。
接着,加入高浓度的碱性物质
进行破坏膜,使DNA可以释放出来。
碱性物质会将DNA从其原始嵌入的细胞中抽出,形成
一液状溶液。
最后,使用冷冻凝固来将 DNA 陆续从液体中物理抽提出来,并确认 DNA 的
几何结构、纯度和其他特性以完成 DNA 的提取。
碱裂解法被广泛应用到细胞和细菌的 DNA 提取,因为它是一种高效、可靠、经济、
安全可操作性强的 DNA 提取技术。
然而,由于有时碱性物质会与 DNA 本身发生氢键结合,可能会使 DNA 的活性受到影响,因此必须引起重视。
另外,由于 DNA 结合的流体的物理
性质和碱性物质的性质都有影响,因此必须要进行精确测试才能得到比较精确的结果。
sds碱裂解法制备质粒dna
sds碱裂解法制备质粒dna
SDS碱裂解法是一种常用的质粒DNA提取方法。
该方法利用定量的SDS和NaOH对细菌细胞进行裂解,使DNA迅速释放。
接着,加入适当的中和缓冲液,使DNA回复其天然形态,并去除蛋白质等污染物。
最后,通过酒精沉淀法或硅胶柱层析法纯化DNA。
以下是该方法的具体步骤:
1.生长细菌
生长适量细菌菌株并收获细菌:可以选择不同种类、不同来源、不同
体积得到不同量的细菌。
2.裂解细胞壁
将细菌沉淀后加入缓冲液和SDS混合。
SDS能够破坏细菌的细胞膜,使细胞壁裂解,从而将DNA释放出来。
3.中和
加入NaOH将溶液pH值升高至12,使DNA形状发生改变,变得易于析出。
接着,加入Tris-HCl中和缓冲液降低pH值,恢复DNA天
然形态,并使DNA强度不受影响。
4.去除杂质
通过高速离心将DNA沉淀下来,将上清液与DNA分离。
可以采用氯仿提取法以去除蛋白质和其他杂质,专用的富集试剂和离心柱可做更细致的纯化。
5.精华DNA
通过酒精沉淀法或硅胶柱层析法纯化DNA。
酒精沉淀法适用于大量DNA纯化,但对于大片段、GC富集的DNA适用。
硅胶柱层析法适用于小规模、高质量、片段少的DNA纯化,但成本稍高,操作复杂。
总之,SDS碱裂解法是一种快速,简单的质粒DNA提取方法。
由于其便捷的操作和高质量的DNA回收率,它已被广泛应用于基因工程和分子生物学等领域。
质粒dna提取的方法
质粒dna提取的方法
提取质粒DNA的常用方法主要有:
1. 碱裂解法:将含有质粒DNA的细菌株进行裂解,使细菌质粒DNA与蛋白质分离。
一般使用碱性裂解缓冲液(如0.2 M NaOH)和含有细菌裂解酶(如SDS)的胰酶溶液进行裂解,然后使用中性盐溶液(如3 M醋酸钠)进行酸性沉淀,最后通过离心分离沉淀的质粒DNA。
2. 除菌剂法:使用含有除菌剂(如SDS)的裂解缓冲液直接裂解细菌细胞,使质粒DNA与细菌蛋白质分离。
然后使用物理方法(如离心)分离DNA和蛋白质,最后使用醋酸盐沉淀法分离质粒DNA。
3. 膜裂解法:将含有质粒DNA的细菌株均匀涂在含有质粒DNA结合断裂物的特殊膜上,经裂解后,膜上会形成质粒DNA的斑点。
然后使用洗脱缓冲液将质粒DNA从膜上洗脱,得到纯化的质粒DNA。
4. 商业化质粒DNA提取试剂盒:市面上有各种质粒DNA提取试剂盒可供选择,这些试剂盒能够提供简便、快速、高产量且高质量的质粒DNA纯化方法。
根据试剂盒的不同,步骤和原理会有所区别。
不同的方法适用于不同的实验目的和样品类型,请根据具体情况选择合适的提取方法。
碱裂解法提取质粒DNA
碱裂解法
1、取1.5ml培养液倒入1.5ml离心管中,4℃下12000g离心30秒。
2、弃上清,将管倒置于卫生纸上数分钟,使液体流尽。
3、菌体沉淀重悬浮于100μl溶液Ⅰ中(需剧烈振荡),室温下放置5-10分钟。
4、加入新配制的溶液Ⅱ200μl,盖紧管口,快速温和颠倒离心管数次,以混匀内容物(千万不要振荡),冰浴5分钟。
5、加入150μl预冷的溶液Ⅲ,盖紧管口,并倒置离心管,温和振荡10秒,使沉淀混匀,冰浴中5-10分钟,4℃下12000g离心5-10分钟。
6、上清液移入干净离心管中,加入等体积的酚/氯仿(1:1),振荡混匀,4℃下12000g离心5分钟。
7、将水相移入干净离心管中,加入2倍体积的无水乙醇,振荡混匀后置于-20℃冰箱中20分钟,然后4℃下12000g离心10分钟。
8、弃上清,将管口敞开倒置于卫生纸上使所有液体流出,加入1ml70%乙醇洗沉淀一次,4℃下12000g离心5-10分钟。
9、吸除上清液,将管倒置于卫生纸上使液体流尽,真空干燥10分钟或室温干燥。
10、将沉淀溶于20μl STE缓冲液(pH8.0,含20μg/mlRNaseA)中,储于-20℃冰箱中。
[注意]1.提取过程应尽量保持低温。
2.提取质粒DNA过程中除去蛋白很重要,采用酚/氯仿去除蛋白效果较单独用酚或氯仿好,要将蛋白尽量除干净需多次抽提。
3.沉淀DNA通常使用冰乙醇,在低温条件下放置时间稍长可使DNA沉淀完全。
沉淀DNA也可用异丙醇(一般使用等体积),且沉淀完全,速度快,但常把盐沉淀下来,所以多数还是用乙醇。
质粒DNA的提取(碱裂解法)
质粒DNA的提取(碱裂解法)实验原理:碱裂解法提取质粒利用的是共价闭合环状质粒DNA与线状的染色体DNA片段在拓扑学上的差异来分离它们。
在pH 值介于12.0-12.5这个狭窄的范围内,线状的DNA双螺旋结构解开变性,在这样的条件下,共价闭环质粒DNA的氢键虽然断裂,但两条互补链彼此依然相互盘绕而紧密地结合在一起。
当加入pH4.8的醋酸钾高盐缓冲液使pH降低后,共价闭合环状的质粒DNA的两条互补链迅速而准确地复性,而线状的染色体DNA的两条互补链彼此已完全分开,不能迅速而准确地复性,它们缠绕形成网状结构。
通过离心,染色体DNA 与不稳定的大分子RNA、蛋白质-SDS复合物等一起沉淀下来,而质粒DNA却留在上清液中。
提取步骤:1.吸取1.5mL菌液于1.5mL离心管中,4℃下12000rpm离心2min,吸干上清液,使细菌沉淀尽可能干燥2.加入100μLSolutionⅠ,枪头充分打匀,使细胞重新悬浮。
此步骤菌体一定要悬浮均匀,不能有结块,否则会降低抽提得率3.加入200μL新配制的SolutionⅡ,轻柔颠倒混匀(千万不要振荡),冰上放置至清亮(小于5min)。
这一步操作要注意两点:第一,时间不能过长,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合,不然基因组DNA也会断裂。
4.加入150μL solutionⅢ,颠倒混匀(温和振荡10秒),使溶液Ⅲ在粘稠的细菌裂解物中分散均匀冰浴10min,使杂质充分沉淀5.4℃下12000rpm离心15min,小心将上清转至新的1.5mL离心管中6.加入6μL 10μgl/μL的RaseA,混匀,37℃温浴30min。
7.等体积TriS饱和酚:氯仿:异戊醇(25:24:l)抽提1次,小心将上清吸至新的 1.5mL离心管中8.等体积氯仿:异戊醇(24:l)抽提1次,小心将上清吸至新的 1.5mL离心管中9.加入2.5倍体积的冰冻无水乙醇,冰浴0.5-1h,沉淀双链 DNA。
碱裂解法提取dna的方法
碱裂解法提取质粒DNA实验目的1、掌握最常用的提取质粒DNA的方法和检测方法;2、了解制备原理及各种试剂的作用。
实验原理碱裂解法是基于DNA的变性与复性差异而达到分离目的的。
碱性使质粒DNA变性,再将pH 值调至中性使其复性,复性的为质粒DNA,而染色体DNA不会复性,缠结成网状物质,通过离心除去。
细菌质粒是一类双链、闭环的DNA,大小范围从1kb至200kb以上不等。
各种质粒都是存在于细胞质中、独立于细胞染色体之外的自主复制的遗传成份,通常情况下可持续稳定地处于染色体外的游离状态,但在一定条件下也会可逆地整合到寄主染色体上,随着染色体的复制而复制,并通过细胞分裂传递到后代。
质粒已成为目前最常用的基因克隆的载体分子,重要的条件是可获得大量纯化的质粒DNA 分子。
目前已有许多方法可用于质粒DNA的提取,本实验采用碱裂解法提取质粒DNA。
碱裂解法是一种应用最为广泛的制备质粒DNA的方法,碱变性抽提质粒DNA是基于染色体DNA与质粒DNA的变性与复性的差异而达到分离目的。
在pH值高达12.6的碱性条件下,染色体DNA的氢键断裂,双螺旋结构解开而变性。
质粒DNA的大部分氢键也断裂,但超螺旋共价闭合环状的两条互补链不会完全分离,当以pH4.8的NaAc/KAc高盐缓冲液去调节其pH值至中性时,变性的质粒DNA又恢复原来的构型,保存在溶液中,而染色体DNA不能复性而形成缠连的网状结构,通过离心,染色体DNA与不稳定的大分子RNA、蛋白质-SDS 复合物等一起沉淀下来而被除去。
一、材料含pUC19质粒的大肠杆菌,1.5ml塑料离心管,离心管架,枪头及盒、卫生纸。
二、设备微量移液器(20μl,200μl,1000μl),台式高速离心机,恒温振荡摇床,高压蒸汽消毒器(灭菌锅),涡旋振荡器,恒温水浴锅,双蒸水器,冰箱等。
三、试剂准备1、LB液体培养基:称取蛋白胨(Tryptone)10 g,酵母提取物(Yeast extract) 5g,NaCl 10g,溶于800ml去离子水中,用NaOH调pH至7.5,加去离子水至总体积1升,高压下蒸气灭菌20分钟。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
碱裂解法提取质粒DNA
实验目的
1、掌握最常用的提取质粒DNA的方法和检测方法;
2、了解制备原理及各种试剂的作用。
实验原理
碱裂解法是基于DNA的变性与复性差异而达到分离目的的。
碱性使质粒DNA变性,再将pH 值调至中性使其复性,复性的为质粒DNA,而染色体DNA不会复性,缠结成网状物质,通过离心除去。
细菌质粒是一类双链、闭环的DNA,大小范围从1kb至200kb以上不等。
各种质粒都是存在于细胞质中、独立于细胞染色体之外的自主复制的遗传成份,通常情况下可持续稳定地处于染色体外的游离状态,但在一定条件下也会可逆地整合到寄主染色体上,随着染色体的复制而复制,并通过细胞分裂传递到后代。
质粒已成为目前最常用的基因克隆的载体分子,重要的条件是可获得大量纯化的质粒DNA 分子。
目前已有许多方法可用于质粒DNA的提取,本实验采用碱裂解法提取质粒DNA。
碱裂解法是一种应用最为广泛的制备质粒DNA的方法,碱变性抽提质粒DNA是基于染色体DNA与质粒DNA的变性与复性的差异而达到分离目的。
在pH值高达12.6的碱性条件下,染色体DNA的氢键断裂,双螺旋结构解开而变性。
质粒DNA的大部分氢键也断裂,但超螺旋共价闭合环状的两条互补链不会完全分离,当以pH4.8的NaAc/KAc高盐缓冲液去调节其pH值至中性时,变性的质粒DNA又恢复原来的构型,保存在溶液中,而染色体DNA不能复性而形成缠连的网状结构,通过离心,染色体DNA与不稳定的大分子RNA、蛋白质-SDS 复合物等一起沉淀下来而被除去。
一、材料
含pUC19质粒的大肠杆菌,1.5ml塑料离心管,离心管架,枪头及盒、卫生纸。
二、设备
微量移液器(20μl,200μl,1000μl),台式高速离心机,恒温振荡摇床,高压蒸汽消毒器(灭菌锅),涡旋振荡器,恒温水浴锅,双蒸水器,冰箱等。
三、试剂准备
1、LB液体培养基:称取蛋白胨(Tryptone)10 g,酵母提取物(Yeast extract) 5g,NaCl 10g,溶于800ml去离子水中,用NaOH调pH至7.5,加去离子水至总体积1升,高压下蒸气灭菌20分钟。
2. 氨苄青霉素(Ampicillin, Amp)母液:配成100mg/ml水溶液,-20℃保存备用。
3. 溶液Ⅰ:50mM葡萄糖,25mM Tris-HCl(pH 8.0),10mM EDTA(pH 8.0)。
1M Tris-HCl (pH 8.0)12.5ml,0.5M EDTA(pH 8.0)10ml,葡萄糖4.730g,加ddH2O至500ml。
在121℃高压灭菌15min ,贮存于4℃。
4. 溶液Ⅱ:0.2M NaOH,1% SDS。
2M NaOH 1ml,10%SDS 1ml,加ddH2O至10ml。
使用前临时配置。
5. 溶液Ⅲ:醋酸钾(KAc)缓冲液,pH 4.8。
5M KAc 300ml,冰醋酸57.5ml,加ddH 2O至500ml。
4℃保存备用。
6. TE:10mM Tris-HCl(pH 8.0),1mM EDTA(pH 8.0)。
1M Tris-HCl(pH 8.0)1ml,0.5M EDTA(pH 8.0)0.2ml,加ddH 2O至100ml。
121高压湿热灭菌20min,4℃保存备用。
1M Tris Cl(Tris(三羟甲基)氨基甲烷):800ml H 2O中溶解121g Tris碱,用浓盐酸调pH值,混匀后加水到1L;
0.5M EDTA(乙二胺四乙酸):700ml H 2O中溶解186.1g Na 2EDTA-2H 2O,用10M NaOH调pH8.0(需约50ml),补H 2O到1L。
7. 苯酚/氯仿/异戊醇(25:24:1)。
氯仿可使蛋白变性并有助于液相与有机相的分开,异戊醇则可起消除抽提过程中出现的泡沫。
酚和氯仿均有很强的腐蚀性,操作时应戴手套。
8. 无水乙醇;
9. 70%乙醇;
10. RNA酶A母液:将RNA酶A溶于10mmol/L Tris・Cl(pH7.5),5mmol/L NaCl中,配成10mg/ml的溶液,于100℃加热15分钟,使混有的DNA酶失活。
冷却后用1.5ml eppendorf 管分装成小份保存于-20℃。
11 灭菌双蒸水ddH 2O
四、操作步骤
1. 挑取LB固体培养基上生长的单菌落,接种于20ml LB(含Amp100ug/ml)液体培养基中,37℃、250rmp振荡培养过夜(约12-14hr)。
2. 取1.5ml培养液倒入1.5ml eppendorf管中,12000rmp离心1-2min。
弃上清,将离心管倒置于卫生纸上几分钟,使液体尽可能流尽。
3、菌体沉淀重悬浮于100μl溶液Ⅰ中(需剧烈振荡,使菌体分散混匀。
),室温下放置5-10 min。
4、加入新配制的溶液Ⅱ200μl,盖紧管口,快速温和颠倒eppendorf管数次,以混匀内容物(千万不要振荡),冰浴5 min,使细胞膜裂解(溶液Ⅱ为裂解液,故离心管中菌液逐渐变清)。
5、加入150μl预冷的溶液Ⅲ,盖紧管口,将管温和颠倒数次混匀,见白色絮状沉淀,可在冰上放置5min。
12000rmp离心10min。
溶液Ⅲ为中和溶液,此时质粒DNA复性,染色体和蛋白质不可逆变性,形成不可溶复合物,同时K+使SDS-蛋白复合物沉淀。
6、上清液移入干净eppendorf管中,加入等体积的酚/氯仿/异戊醇,振荡混匀,12000rmp离心10min。
(450μl的苯酚/氯仿/异戊醇。
)
7、小心移出上清于一新微量离心管中,加入2倍体积预冷的无水乙醇,混匀,室温放置2-5min,离心12000rmp×10min。
8、弃上清,将管口敞开倒置于卫生纸上使所有液体流出,加入1ml 70%乙醇洗沉淀一次,12000rmp离心5 min。
9、吸除上清液,将管倒置于卫生纸上使液体流尽,室温干燥。
10、将沉淀溶于20μl TE缓冲液(pH8.0,含20μg /ml RnaseA,约4μl)中,37℃水浴30min以降解RNA分子,储于-20℃冰箱中。
注意事项
1. 提取过程应尽量保持低温。
2. 沉淀DNA通常使用冰乙醇,在低温条件下放置时间稍长可使DNA沉淀完全。
沉淀DNA也可用异丙醇(一般使用等体积),且沉淀完全,速度快,但常把盐沉淀下来,所以多数还是用乙醇。