碱裂解法提取dna的方法

合集下载

第二课 碱裂解法小量提取质粒DNA

第二课 碱裂解法小量提取质粒DNA
SDS溶液 溶液 1. 0.2 N NaOH:是最佳的溶解细胞的试剂,不管 是大肠杆菌还是哺乳动物细胞,碰到了碱都会几 乎在瞬间就溶解,这是由于细胞膜发生了从 bilayer(双层膜)结构向micelle(微囊)结构 的相变化所导致。由于质粒和细菌染色体的拓扑 结构不同,变性时前者虽然两条链分离,却仍然 缠绕在一起不分开;但后者完全变性分甚至出现 断裂。因此,在裂解细菌时要注意:
实验原理
• 乙醇沉淀 乙醇沉淀DNA
– 回收后的水相含有足够多的盐,因此只要加入2倍体积的乙醇, 在室温放置几分钟后离心就可以将质粒DNA沉淀出来。 – 在pH为8左右的溶液中,DNA分子是带负电荷的,乙醇可以 消除核酸的水化层,使带负电荷的磷酸基团暴露出来。Na离 Na 子能与这些带电基团结合,在沉淀形成的部位降低多核苷酸 链之间的排斥作用,易于互相聚合而形成DNA钠盐沉淀。最 常用的盐是醋酸铵/氯化锂/氯化钠/醋酸钠。 – 沉淀体系如果盐浓度高,应在室温下沉淀。放到-20℃,时 间一长反而会导致大量盐的沉淀。 – 为了去除随DNA沉淀的盐,可用70%的乙醇洗涤沉淀。
第一,时间不能过长,因为在这样的碱性条件下DNA片断 会慢慢断裂; 第二,混合必须轻柔,不然DNA也会断裂。
2. 1% SDS(十二烷基磺酸钠):是一种阴离子表 面活性剂,它既能使细菌细胞裂解,又能使一些 蛋白质变性。
实验原理
• 溶液III:醋酸钾溶液,Ph4.8 :醋酸钾溶液, 溶液
– – 当加入pH4.8的酸性乙酸钾降低溶液pH值,使溶液pH值 恢复较低的近中性水平时, 质粒的两条小分子单链可迅 速复性恢复双链结构,但是主染色体DNA则难以复性。 SDS遇到钾离子后变成十二烷基硫酸钾(potassium dodecylsulfate, PDS),而PDS是不溶于水的,而高浓 度的盐使得沉淀更完全。SDS极易和蛋白质结合,平均 两个氨基酸上结合一个SDS分子,钾钠离子置换所产生 的大量沉淀自然就将绝大部分蛋白质沉淀了。 同时,尽管SDS并不与DNA分子结合,由于大肠杆菌的 基因组DNA很长,很容易和变性的蛋白质缠绕在一起。 在离心时,大部分主染色体与细胞碎片,变性蛋白质等 缠绕一起被沉淀,而复性的质粒DNA以可溶性状态留在 上清夜中。

质粒DNA的提取-碱裂解法实验原理及步骤

质粒DNA的提取-碱裂解法实验原理及步骤

实验二质粒DNA的提取-碱裂解法一、实验原理细菌质粒是一类双链、闭环的DNA,大小范围从1kb至200kb以上不等。

各种质粒都是存在于细胞质中、独立于细胞染色体之外的自主复制的遗传成份,通常情况下可持续稳定地处于染色体外的游离状态,但在一定条件下也会可逆地整合到寄主染色体上,随着染色体的复制而复制,并通过细胞分裂传递到后代。

一般分离质粒DNA的方法都包括3个步骤:①培养细菌,使质粒DNA大量扩增;②收集和裂解细菌;③分离和纯化质粒DNA。

分离制备质粒DNA的方法很多,其中常用的方法有碱裂解法、煮沸法、SDS法、羟基磷灰石层析法等。

在实际操作中可以根据宿主菌株类型、质粒分子大小、碱基组成和结构等特点以及质粒DNA的用途进行选择。

本实验介绍碱裂解法提取质粒DNA。

碱裂解法提取质粒DNA是根据共价闭合环状质粒DNA和线性染色体DNA在拓扑学上的差异来分离质粒DNA。

在pH值介于12.0-12.5这个狭窄的范围内,线性的DNA双螺旋结构解开而被变性,尽管在这样的条件下,共价闭环质粒DNA的氢键会被断裂,但两条互补链彼此相互盘绕,仍会紧密地结合在一起。

当加入pH4.8乙酸钾高盐缓冲液恢复pH至中性时,因为共价闭合环状的质粒DNA的两条互补链仍保持在一起,因此复性迅速而准确,而线性的染色体DNA 的两条互补链彼此已完全分开,复性就不会那么迅速而准确,它们相互缠绕形成不溶性网状结构,而复性的质粒DNA恢复原来构型,保持可溶性状态。

通过离心,染色体DNA与不稳定的大分子RNA,蛋白质-SDS复合物等一起沉淀下来而被除去,最后用酚氯仿抽提纯化上清液中的质粒DNA。

二、仪器及试剂1.仪器及耗材:37℃恒温摇床、冷冻离心机、台式离心机、微量移液器、50 ml离心管、1.5 ml离心管管、枪头、各种规格的量筒、接种环、试剂瓶、100 l或者250 ml三角瓶、玻棒等。

2.试剂及配制:LB培养液的配制:酵母浸提物 5.0 g;胰蛋白胨 10.0 g;NaCl 10.0 g;依次称量后加入800 ml去离子水后搅拌至完全溶解,用5 mol/L NaOH (约0.2 ml)调节培养液的pH值至7.0。

SDS碱裂解法制备质粒DNA

SDS碱裂解法制备质粒DNA

SDS碱裂解法制备质粒DNA步骤(1)挑取转化后的单菌落,接种到2ml的含有适当抗生素的丰富培养基中,37℃振摇培养过夜(培养物的体积小于溶液体积的1/4,否则容器不易盖紧,剧烈振摇培养)(2)收菌,将菌液倒入离心管中,4℃,12500r/min,3min。

(离心后将上清液倒入费废液缸中,倒扣在吸水纸上,若还有液体残留,用移液枪吸出)(3)将细菌沉淀重悬于100μl的预冷的碱性裂解液I(Glu, EDTA, Tris-Hcl)中,涡旋振荡。

(4)加200μl新配置的碱性裂解液II(0.2M NaOH,1%SDS)于每管细菌重悬液中,盖紧管口,快速颠倒离心管5次以混合内容物,切勿振荡,将离心管放置在冰上3-5min. (5)加150μl预冷的碱性裂解液III(CH3COOH,CH3COONa),盖紧管口,反复颠倒数次,使得溶液在粘稠度额细菌裂解物中分散均匀。

冰上防止3-5min。

(6)离心(4℃,12000r/min,6min),并将上清转移到另一个离心管中。

(7)在通风橱内加400μl的氯仿:异戊醇(24:1)(8)抽提:将管放在漂浮板上,划8字8min,后离心(4℃,12000r/min,7min),吸取上清液300μl到另一个离心管中。

(9)加无水乙醇600μl,混匀放置在-20℃沉淀15min,后离心(4℃,12000r/min,15min)(10)小心吸去上清液,将离心管倒置在吸水纸上,加70%乙醇700μl洗涤沉淀,弹起沉淀,浸泡一会,离心(4℃,12000r/min,4min),洗涤两次。

(11)倒掉上清,甩一下,吸去上清,晾干。

(12)TRE溶解(1mlTE,1μlRNA酶)20μl/管。

(13)65℃15min,后4℃冰箱保存。

碱裂解法大量提取质粒DNA

碱裂解法大量提取质粒DNA

碱裂解法大量提取质粒DNA(同时纯化)准备工作:细菌培养:小量提取质粒DNA鉴定正确后,将菌液以1/50~1/20体积的比例接种到250ml 液体培养基中,37℃振荡培养过夜至对数生长晚期。

注:培养体积与最终质粒DNA的收获量并无线性关系。

只要培养条件适宜,50ml的培养液有时也可得到总量高达1m g以上的质粒。

操作步骤:1、细菌的收获:将菌液倒入合适的离心管中,8000g离心5分钟,弃上清,并在吸水纸上倒置离心管使上清全部流尽。

2、将细菌沉淀重悬于10ml溶液I中。

溶液I:50mmol/L葡萄糖,25mmol/L Tris•Cl(pH8.0),10mmol/LEDTA(pH8.0)注:(1)若溶液Ⅰ/Ⅱ/Ⅲ配制时间过久,可加入少量溶菌酶;(2)由于沉淀的影响,悬液的体积会达到11~13ml。

3、加15ml溶液Ⅱ,颠倒混匀。

溶液Ⅱ:0.2mol/L NaOH,1%SDS4、加12ml溶液Ⅲ,轻微振荡混匀。

溶液Ⅲ:5mol/L乙酸钾60ml,冰乙酸11.5ml,水28.5ml5、12000g离心5分种,弃沉淀。

将上清转移到另一离心管中。

6、加入60%体积的异丙醇,颠倒混匀后,室温静置5分钟。

12000g离心5分钟,弃上清。

7、沉淀溶解于4~6ml TE中,加入1/50体积RNase A贮存液,颠倒混匀,37℃静置10分钟。

8、加入1/2体积的Tris饱和酚、1/2体积的氯仿-异戊醇(24:1)混合液,剧烈振荡混匀。

9、4℃12000g离心30秒,将上层液体与少量下层液体转移到另一离心管后,再12000g离心5分种,小心吸取上层液体。

10、加入等体积13%聚乙二醇(PEG8000)-1.6mol/L NaCl混合液,颠倒混匀,冰上静置0.5~2小时。

11、4℃12000g离心10分种,弃上清,DNA沉淀用70%乙醇洗涤。

12、沉淀干燥后,溶解于适量高压灭菌的水中。

注:(1)溶解体积一般为0.2~1ml;(2)此时得到的是已经纯化的质粒DNA,可直接进行各种酶学操作。

基础生物化学实验实验六 质粒DNA的提取(碱裂解法)及酶切分析)

基础生物化学实验实验六 质粒DNA的提取(碱裂解法)及酶切分析)

(2) 挑选单菌落,在无菌条件下放入5 ml LB液体培养基中 (100 g /ml氨苄青霉素),200-300 rpm,37℃过夜培养。 (3) 取1.5 ml菌液(其余菌液加入25%的灭菌甘油,放入对 应编号的1.5 ml离心管中,-70℃ 下作菌种保存),5000 g离心5 min。 (4) 弃上清夜,加入100 l预冷的溶液I,悬浮沉淀,室温 放 置5 min。 (5) 加入200 l 新鲜的溶液II,边加边震荡,但不能剧烈, 冰上放置5 min。 (6) 加入75 l溶液III,震荡混匀,冰上放置5 min。 (7) 12000 g 离心5 min。 (8) 取上清液,加入两倍体积的预冷无水乙醇,12000 g离 心10 min。 (9) 用1 ml 70%的乙醇洗涤沉淀,空气中放置3-5 min。 (10) 用30-50 l TE溶解,用紫外分光光度计进行DNA含量 测定,EB琼脂糖(1.4%)凝胶电泳分析。
实验六 质粒DNA的提取(碱裂解法)及酶分析
(1) 溶液配制: 溶液 I 50 mmol/L 葡萄糖 25 mmol/L Tris-Cl (pH 8.0) 10 mmol/L EDTA (pH 8.0) 溶液 II 0.2 mol/L NaOH 0.5% SDS 溶液 III 3 mol/L KAc (用冰醋酸调 pH值至5.0)
质粒DNA的酶切分析参照相关酶的说明书 操作步骤进行

实验二 碱裂解法抽提质粒DNA-2

实验二 碱裂解法抽提质粒DNA-2
四仪器设备五实验用具四仪器设备五实验用具高压灭菌锅超净工作台恒温摇床恒温培养箱干燥箱台式离心机冷冻式或非冷冻式旋涡振荡器培养用试管量筒冰盒微量离心管移液器吸管头若干六试剂细菌培养用试剂细菌裂解用试剂质粒提取用试剂质粒提取用试剂核酸沉淀纯化溶解用试剂注
实验一、碱裂解法抽提质粒DNA
质粒是携带外源基因进入细菌中扩增或表达的主要载体,它在 基因操作中具有重要作用。 质粒的分离与提取是最常用、最基本的实验技术。 质粒的提取方法很多,大多包括 3 个主要步骤:细菌的培养、 细菌的收集和裂解、质粒 DNA 的分离和纯化。
3、乙醇沉淀:是从水溶液中回收核酸的标准方法。乙醇能够消除核酸的水
化层,使带负电荷的磷酸基团暴露出来。Na+之类的平衡离子能够与这 些带电基团结合,在沉淀形成部位降低多核苷酸链之间的排斥作用。因
此,只有在阳离子的量足以中和暴露的磷酸残基的电荷时才会发生乙醇
沉淀。
思考题(质粒抽提)
1、为什么真核生物的基因组DNA不能用碱法抽提?
本实验以碱裂解法为例,介绍质粒的抽提过程。
一、实验目的
1、掌握碱裂解法抽提质粒的原理、步骤及各试剂的作用; 2、掌握常用分子生物学试剂的配制;
3、掌握无菌操作技术;
4、掌握大肠杆菌的培养、保存及液体培养物OD值测定的方法; 5、掌握移液器、分光光度计、离心机的正确使用方法;
6、学会根据实验需要选择合适的大肠杆菌菌株和质粒载体。
7、离心几秒钟,用移液器尽可能除去酒精,风干(或热板上烘干1 min)。
8、根据DNA沉淀的大小加20~50 l 1× TE 溶解DNA沉淀,并在65℃热板上温育 10分钟(可使DNase失活),之后于 -20 ℃保存备用。
质粒抽提方法即去除 RNA,将质粒与细菌基因组 DNA分开,去除蛋白质及 其它杂质,以得到相对纯净的质粒。 使用相对过量的试剂 — 这是适合所有核酸抽提的建议。试剂相对过量的好处 是:稳定性好,纯度高,操作更简单。 关注溶液I、溶液II和溶液III的比例!

naoh裂解法提dna

naoh裂解法提dna

naoh裂解法提dnaNaOH裂解法提取DNADNA是生物体内的重要遗传物质,它携带着生物体的遗传信息。

在科学研究和实验室中,我们常使用NaOH裂解法来提取DNA。

本文将介绍NaOH裂解法的原理和步骤。

一、NaOH裂解法的原理NaOH裂解法是一种常用的DNA提取方法,其原理是利用NaOH的碱性特性和高温作用下,使细胞膜破裂,使DNA从细胞中释放出来。

NaOH的碱性条件以及高温可以使DNA双链断裂,使DNA解旋成单链。

二、NaOH裂解法的步骤1. 准备样本:将待提取DNA的样本收集到离心管中,如细菌培养物、动物组织或植物组织等。

2. 加入NaOH溶液:向离心管中加入适量浓度为0.1-1M的NaOH溶液,使样本完全浸泡在NaOH中。

3. 水浴加热:将离心管放入水浴中,加热至85-100℃,保持一段时间,通常为5-10分钟。

高温和NaOH的碱性条件可以破坏细胞膜和核膜,使DNA从细胞中释放出来。

4. 中和:将离心管取出,加入等体积的中和缓冲液,如三氯乙酸钠(pH≈4.0)或醋酸钠(pH≈5.0),使pH值迅速下降。

中和后,DNA 双链会重新形成。

5. 离心:将离心管放入离心机中,以最大速度离心1-2分钟,将DNA沉淀到离心管底部。

6. 去除上清液:将上清液轻轻倒掉,保留DNA沉淀。

7. 洗涤:加入80%的乙醇溶液,轻轻颠倒离心管,使DNA沉淀与乙醇充分接触,去除杂质。

8. 离心:将离心管放入离心机中,以最大速度离心1-2分钟,去除乙醇溶液。

9. 干燥:将离心管倒置于洁净的工作台上,待DNA干燥后,加入适量的溶剂(如TE缓冲液)重溶。

三、注意事项1. 操作要注意无菌,避免污染。

2. NaOH具有腐蚀性,使用时要注意安全,避免接触皮肤和眼睛。

3. 高温加热时要注意防止样本溢出。

4. DNA的提取量和质量受到多种因素的影响,如细胞类型、样本保存条件等。

通过NaOH裂解法提取DNA是一种简单、快速的方法,适用于大多数生物体的DNA提取。

碱裂解法提取质粒DNA

碱裂解法提取质粒DNA
溶液Ⅰ 50mM 葡萄糖 / 10mM EDTA / 25mM Tris-HCl,pH=8.0
葡萄糖增稠,使悬浮后的大肠杆菌不会快速沉积到管子的底部;EDTA 抑制DNase的活性
这一步溶液中还可以加入RNase,不受EDTA影响,并且可以在后续步骤中被除去
溶液Ⅱ 0.2M NaOH / 1% SDS

破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。
加入溶液Ⅱ之后必须温柔混合,不然基因组DNA会物理断裂;
停留的时间不能过长,因为强碱性条件下基因组DNA会慢慢化学断裂
溶液Ⅲ 3M 醋酸钾 / 2M 醋酸
这一步的K置换了SDS(十二烷基磺酸钠)中的Na,得到PDS(十二烷基磺酸钾)沉淀;
SDS易与蛋白质结合,平均两个氨基酸上结合一个SDS分子,钾钠离子置换所产生的大量沉淀
自然就将绝大部分蛋白质也沉淀了,同时基因组DNA也被PDDNA时,多数情况下能看到三条带,按电泳速度由快到慢排序,
分别是 超螺旋带、开环带 和 复制中间体带(即没有复制完全的两个质粒连在了一起)。

碱裂法小规模提取质粒DNA及琼脂糖凝胶电泳

碱裂法小规模提取质粒DNA及琼脂糖凝胶电泳

碱裂法小规模提取质粒DNA及琼脂糖凝胶电泳一.实验原理碱裂解抽提质粒DNA是基于染色体DNA与质粒DNA的变性和复性的差异而达到分离目的。

在碱性条件下,线性大分子细菌染色体DNA的氢键断裂,双螺旋结构互补链变性解开。

质粒DNA的大部分氢键也断裂,但超螺旋共价闭合环状结构的两条互补链不会完全分离。

当用pH4.8的NaAc高盐缓冲液调其pH值至中性,变性的质粒DNA又恢复到原来的构型,保存在溶液中为可溶状态。

而染色体DNA不能复性,形成缠连的网状结构。

通过离心将细胞碎片,染色体DNA与不稳定的大分子RNA,蛋白质-SDS复合物等一起沉淀下来被除去,质粒DNA及部分RNA,蛋白质则存在于上清中,再用RNaseA 处理,酚/氯仿抽提和乙醇沉淀而获得质粒DNA。

质粒(plasmid)通常指细菌中独立于染色体外,能自主复制的遗传因子,它能够稳定地遗传某些性状。

天然的质粒都是环状双链DNA,大小从5kb到400kb不等。

质粒虽然独立于染色体外自主复制和遗传,但其复制又依赖于宿主编码的酶和蛋白质复制因子。

质粒按照其稳定拷贝数的多少可分为严谨型和松弛型,严谨型质粒在每个细菌细胞中有1~5拷贝,松弛型质粒在每个细菌细胞中可达10~200个,甚至更多拷贝。

1.质粒的结构:(1)抗性基因(Antibiotic resistance gene,such as Ampicillin resistance gene, Kanamycine resistance gene)ori, Origin of replication); (2)启始复制子((3)多克隆位点(MSC, Multiple cloning site or polylinker)2.细菌裂解的方法:(1)碱裂解法:0.2molNaOH+1%SDS(2)煮沸裂解法:沸水煮沸40秒(3)SDS裂解法:10%SDS,一般用于质粒大量提取。

SDS是一种阴离子表面活性剂,它既能使细菌细胞裂解,又能使一些蛋白质变性,所以SDS处理细菌细胞后,会导致细菌细胞壁的破裂,从而使质粒DNA以及基因组DNA从细胞中同时释放出来。

质粒DNA的提取实验报告

质粒DNA的提取实验报告

质粒DNA的提取一、实验方法碱裂解法抽提质粒DNA二、实验原理基于质粒DNA与染色体DNA变性与复性的差异。

三、实验步骤1)质粒提取1. 10,000g,1min离心收集1.5-5ml菌液沉淀于1.5ml离心管中。

2. 加入100μl溶液1,振荡至彻底悬浮。

3. 加入200μl溶液2,立即轻柔颠倒离心管6次,使菌体充分裂解,随后将离心管冰上放置3分钟4. 加入150μl溶液3,立即温和颠倒离心管数次,冰上放置3分钟,10,000g离心10min。

5. 将步骤4的上清转移至新的离心管(尽量去除杂质),加入等体积的苯酚/氯仿/异戊醇混合均匀10,000g离心5min。

6. 将步骤5的上清转移至新的离心管,加入2倍体积的无水乙醇,室温放置5-10min,沉降DNA7. 10,000g离心10分钟,弃乙醇,保留沉淀,加入1ml 70%的乙醇洗涤沉淀,10,000g离心5分钟8. 倒掉乙醇溶液,用吸水纸吸净管壁上的水珠,室温蒸发痕量乙醇9. 加入适量含RNase的TE或灭菌双蒸水溶解质粒DNA2)质粒鉴定→琼脂糖凝胶电泳灌胶:胶中加入荧光染料(SYBR Green I)加样:质粒+上样缓冲液→混匀电泳结果观察:UV灯下四、实验结果五、实验分析裂解细胞中除含有质粒DNA外,还含有基因组DNA、各种RNA、蛋白质和脂类等物质,因此用碱裂解法除去杂质1、防止DNA裂解:Solution 11)、所含糖增加溶液黏度,维持渗透压,防止DNA受机械剪切作用降解2)、所含EDTA抑制酶活性2、溶解与变性:Solution21)强碱使质粒DNA和染色体DNA变性2)离子型表面活性剂SDS可溶解膜蛋白3、沉降与复性:Solution31)质粒DNA复性2)在钾盐中,染色体DNA形成缠连的不溶性网状结构,和不稳定的大分子RNA以及变性的蛋白质和细菌碎片等一起沉淀预期结果为剩余质粒DNA4、琼脂糖凝胶电泳1)荧光染色染料分子可嵌入双链DNA分子配对碱基之间2)琼脂糖可起到电泳和分子筛的作用,因所带电荷、分子量大小和构型不同,泳动速度不同六、误差分析实验失败,本组实验出现4条带,3明1暗,明亮处应为DNA分子数最多的,为质粒DNA,质粒DNA前有较暗的两条带,推测其中一条为未复性质粒DNA,可能Solution2处变性过长,不易复性,或Solution3处时间过短,复性不充分。

碱裂解法提取质粒DNA

碱裂解法提取质粒DNA

碱裂解法提取质粒DNA细菌质粒是一类双链、闭环的DNA,大小范围从1kb~200kb以上不等。

存在于细胞之中,独立于细胞染色体之外的自主复制的遗传成分。

碱裂解法是一种应用最为广泛的制备质粒DNA的一种方法,它利用染色体DNA与质粒DNA 的变性与复性的差异来达到分离的目的。

其基本原理为:当菌体在NaOH和SDS溶液中(PH12.6)裂解时,染色体DNA的氢键断裂,双螺旋结构解开而变性,质粒DNA的氢键也大部分断裂,双螺旋也有部分解开,但共价闭合环状结构的两条互补连不会完全打开,当加入KAc(PH4.8)中和后,质粒DNA分子能够迅速复性,成溶解状态,离心时留在上清中,蛋白质与染色体DNA难于复性而成絮状,离心时可与细胞碎片一起沉淀下来。

试剂:1.溶液I:50mmol/L 葡萄糖(使悬浮的大肠杆菌不会快速沉积到底部,其次调节渗透压)25 mmol/L Tris.HCl (PH8.0) (缓冲体系)10 mmol/L EDTA (PH8.0)(Ca离子、Mg离子等二价阳离子的螯合剂,抑制DNase活性)2.溶液II: 使用前临时配制0.2 mmol/L NaOH (溶解细胞)1% SDS (使细胞膜崩解)与此同时,提高溶液PH,使染色体DNA、蛋白质及质粒均变性。

3.溶液III:100mL5mol/LKAc 60mL (Na被K置换成十二烷基磺酸钾PDS,PDS结合蛋白质沉淀,同时牵连染色体发生沉淀)冰醋酸11.5 mL(中和NaOH,长时间的碱性条件会打断DNA,所以要中和。

基因组DNA一旦发生断裂,只要是50-100 kb大小的片断,就没有办法再被PDS共沉淀了)ddH2O 28.5 mL注意:①NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向micelle(微囊)结构的相变化所导致。

要新从浓NaOH稀释制备0.2M的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。

碱裂解法抽提质粒DNA

碱裂解法抽提质粒DNA

实验一碱裂解法抽提质粒DNA[实验原理]质粒是存在于染色体外的小型双链环状DNA,大小在1-200kb之间,能在宿主菌中自主复制。

宿主细胞中质粒的拷贝数各有不同,一种是低拷贝数的,每个细胞仅含有一个或几个质粒分子,称为“严紧型”复制的质粒,另一类高拷贝的质粒,拷贝数可达到20个以上,这种类型称为“松弛型”复制的质粒。

质粒能编码一些遗传性状,如抗药性(氨苄青霉素、四环素等抗性),利用这些抗性可以对宿主菌或重组菌进行筛选。

质粒作为基因工程载体必须具备以下条件(1)复制子(ori):一段具有特殊结构的DNA序列;(2)有一个或多个便于检测的遗传表型,如抗药性、显色表型反应等;(3)有一个或几个限制性内切酶位点,便于外源基因片段的插入;(4)适当的拷贝数。

制备质粒载体是分子生物学的常规技术。

碱裂解法是一种应用最为广泛的制备质粒DNA的方法,其基本原理为:当菌体在NaOH和SDS溶液中裂解时,蛋白质与DNA发生变性,当加入中和液后,质粒DNA分子能够迅速复性,呈溶解状态,离心时留在上清中;蛋白质与染色体DNA不变性而呈絮状,离心时可沉淀下来。

纯化质粒DNA的方法通常是利用了质粒DNA相对较小及共价闭环两个性质。

例如,氯化铯-溴化乙锭梯度平衡离心、离子交换层析、凝胶过滤层析、聚乙二醇分级沉淀等方法,但这些方法相对昂贵或费时。

对于小量制备的质粒DNA,经过苯酚、氯仿抽提,RNA酶消化和乙醇沉淀等简单步骤去除残余蛋白质和RNA,所得纯化的质粒DNA已可满足细菌转化、DNA片段的分离和酶切、常规亚克隆及探针标记等要求,故在分子生物学实验室中常用。

[实验目的]1、掌握碱裂解法抽提质粒DNA的原理和方法。

2、掌握紫外吸收光谱法测定核酸含量的原理和方法。

[实验步骤]1、试剂配制(1)LB培养液10 g Tryptone,5 g Yeast Extract,10 g NaCl,双蒸水定容至1000mL,高压灭菌后4℃保存。

实验一-碱裂解法提取质粒DNA

实验一-碱裂解法提取质粒DNA

实验一-碱裂解法提取质粒DNA
碱裂解法是一种常用的质粒DNA提取方法。

下面是进行碱裂
解法提取质粒DNA的实验步骤:
1. 培养细胞:选择所需的质粒含有目标基因的细菌,如大肠杆菌等,并在适当的培养基中培养细菌,使其达到对数生长期。

2. 收集细菌:将培养好的细菌菌液转移到离心管中,并进行离心,以沉淀细菌。

3. 溶解细菌:加入一定浓度的碱液(例如0.2N NaOH)使细
菌溶解。

通常使用细菌菌液总量的1/5体积的碱液,并轻轻摇
晃混合。

4. 添加中和液:将等体积的中和液(例如3M乙酸酸化乙酸钠
溶液)加入到溶解好的细菌溶液中,并迅速而轻轻地混合。

5. 离心:将混合液进行离心,以除去沉淀的细菌残渣和碱液。

6. 提取DNA:将上一步离心得到的上清液转移至新的离心管中,加入等体积的冷乙醇,并轻轻摇晃,使DNA沉淀。

7. 沉淀DNA:进行高速离心,使DNA沉淀。

8. 弃去上清液:弃去上清液,保留沉淀的DNA。

9. 洗涤DNA:使用70%乙醇洗涤沉淀的DNA,以去除残留的盐类和碱液。

10. 干燥DNA:使用洗涤干净的乙醇或空气干燥DNA沉淀。

11. 溶解DNA:用适当的缓冲液(如TE缓冲液)溶解DNA。

12. 储存DNA:将溶解好的DNA储存于适当的温度和条件下,用于后续实验。

质粒DNA提取方案(碱裂解法)

质粒DNA提取方案(碱裂解法)

质粒提取原理采用碱裂解法抽提质粒DNA是基于染色体DNA 与质粒DNA的变性与复性的差异不同而达到分离目的的。

在PH大于12的碱性条件下,染色体DNA的氢键断裂,双螺旋结构解开,DNA变性。

质粒DNA 的大部分氢键也断裂,但超螺旋共价闭合环状结构的两条互补链不会完全分离,当以pH5.2的乙酸钠高盐缓冲液调节其pH至中性时,变性的质粒DNA又恢复到原来的构型,留在溶液中。

而染色体DNA不能复性而形成缠连的网状结构。

通过离心,染色体DNA、不稳定的大分子RNA及蛋白质-SDS复合物等一起沉淀下来而被除去。

Solution I:葡萄糖可增加溶液的年度,维持渗透压,防止染色体DNA受机械剪切作用而被降解,污染质粒DNA;溶菌酶(可省略)水解菌体细胞壁的化学成分肽聚糖中的β-1,4糖苷键,具有溶菌的作用。

当pH<8.0时,溶菌酶受到抑制;EDTA有两个作用:(1)螯合Mg2+等金属离子,抑制DNase对DNA的降解。

(2) EDTA的存在有利于溶菌酶的作用,因为溶菌酶的反应要求有较低的离子强度环境;Tris-HCl作为缓冲溶液维持适当的浓度和pH值。

Solution II:NaOH,DNA在5.0<pH<9.0时时稳定的,但当pH>12或pH<3时,就会引起双链之间氢键的解离而使DNA变性。

加Solution II后系统的pH高达12.6,线性染色体DNA和环型质粒DNA氢键均发生断裂,双链解开而变性,但质粒DNA由于其闭合环型结构,氢键只发生部分断裂,且其两条链不会发生完全分离,待pH调至中性闭合环型质粒DNA很快复性恢复原来的构型,而染色体DNA不能复性。

SDS 是阴离子表面活性剂,它有溶解膜蛋白破坏细胞膜,解聚细胞中核蛋白,能与蛋白质结合成为R-O-SO3-···R+-蛋白质复合物,使蛋白质变性而沉淀下来。

但SDS能抑制RNase的作用,所以在以后提取中必须将其除干净。

碱裂解法提取dna

碱裂解法提取dna

碱裂解法提取dna
DNA 可以被定义为“类状分子”,因为它有单线螺旋结构并且具有机械强度。

DNA 是
一种只能在细胞内发现的未被加入任何外来结构的化学物质。

它在某些农业和工业应用中
被用做原料。

要提取DNA,就需要采用不同的方法。

其中一种方法是叫做碱裂解法。

碱裂解法是一种常见的提取 DNA 的方法。

这种技术的基本原理是,通过运用高浓度
的碱性物质来破坏细胞结构以释放DNA,破坏细胞成份里的膜结构,使其包含的 DNA 可以被释放出来。

通过使用碱性物质,原本嵌入在细胞中的DNA将得到释放,而不被特定的细
胞结构所结合。

首先,采用速溶碱来悬浮样本,比如人体细胞或细菌。

然后,加入抗性染料,以防止DNA和染料结合,赋予染料光学性质,这样便于后续分拣。

接着,加入高浓度的碱性物质
进行破坏膜,使DNA可以释放出来。

碱性物质会将DNA从其原始嵌入的细胞中抽出,形成
一液状溶液。

最后,使用冷冻凝固来将 DNA 陆续从液体中物理抽提出来,并确认 DNA 的
几何结构、纯度和其他特性以完成 DNA 的提取。

碱裂解法被广泛应用到细胞和细菌的 DNA 提取,因为它是一种高效、可靠、经济、
安全可操作性强的 DNA 提取技术。

然而,由于有时碱性物质会与 DNA 本身发生氢键结合,可能会使 DNA 的活性受到影响,因此必须引起重视。

另外,由于 DNA 结合的流体的物理
性质和碱性物质的性质都有影响,因此必须要进行精确测试才能得到比较精确的结果。

sds碱裂解法制备质粒dna

sds碱裂解法制备质粒dna

sds碱裂解法制备质粒dna
SDS碱裂解法是一种常用的质粒DNA提取方法。

该方法利用定量的SDS和NaOH对细菌细胞进行裂解,使DNA迅速释放。

接着,加入适当的中和缓冲液,使DNA回复其天然形态,并去除蛋白质等污染物。

最后,通过酒精沉淀法或硅胶柱层析法纯化DNA。

以下是该方法的具体步骤:
1.生长细菌
生长适量细菌菌株并收获细菌:可以选择不同种类、不同来源、不同
体积得到不同量的细菌。

2.裂解细胞壁
将细菌沉淀后加入缓冲液和SDS混合。

SDS能够破坏细菌的细胞膜,使细胞壁裂解,从而将DNA释放出来。

3.中和
加入NaOH将溶液pH值升高至12,使DNA形状发生改变,变得易于析出。

接着,加入Tris-HCl中和缓冲液降低pH值,恢复DNA天
然形态,并使DNA强度不受影响。

4.去除杂质
通过高速离心将DNA沉淀下来,将上清液与DNA分离。

可以采用氯仿提取法以去除蛋白质和其他杂质,专用的富集试剂和离心柱可做更细致的纯化。

5.精华DNA
通过酒精沉淀法或硅胶柱层析法纯化DNA。

酒精沉淀法适用于大量DNA纯化,但对于大片段、GC富集的DNA适用。

硅胶柱层析法适用于小规模、高质量、片段少的DNA纯化,但成本稍高,操作复杂。

总之,SDS碱裂解法是一种快速,简单的质粒DNA提取方法。

由于其便捷的操作和高质量的DNA回收率,它已被广泛应用于基因工程和分子生物学等领域。

质粒dna提取的方法

质粒dna提取的方法

质粒dna提取的方法
提取质粒DNA的常用方法主要有:
1. 碱裂解法:将含有质粒DNA的细菌株进行裂解,使细菌质粒DNA与蛋白质分离。

一般使用碱性裂解缓冲液(如0.2 M NaOH)和含有细菌裂解酶(如SDS)的胰酶溶液进行裂解,然后使用中性盐溶液(如3 M醋酸钠)进行酸性沉淀,最后通过离心分离沉淀的质粒DNA。

2. 除菌剂法:使用含有除菌剂(如SDS)的裂解缓冲液直接裂解细菌细胞,使质粒DNA与细菌蛋白质分离。

然后使用物理方法(如离心)分离DNA和蛋白质,最后使用醋酸盐沉淀法分离质粒DNA。

3. 膜裂解法:将含有质粒DNA的细菌株均匀涂在含有质粒DNA结合断裂物的特殊膜上,经裂解后,膜上会形成质粒DNA的斑点。

然后使用洗脱缓冲液将质粒DNA从膜上洗脱,得到纯化的质粒DNA。

4. 商业化质粒DNA提取试剂盒:市面上有各种质粒DNA提取试剂盒可供选择,这些试剂盒能够提供简便、快速、高产量且高质量的质粒DNA纯化方法。

根据试剂盒的不同,步骤和原理会有所区别。

不同的方法适用于不同的实验目的和样品类型,请根据具体情况选择合适的提取方法。

碱裂解法提取质粒DNA

碱裂解法提取质粒DNA

碱裂解法
1、取1.5ml培养液倒入1.5ml离心管中,4℃下12000g离心30秒。

2、弃上清,将管倒置于卫生纸上数分钟,使液体流尽。

3、菌体沉淀重悬浮于100μl溶液Ⅰ中(需剧烈振荡),室温下放置5-10分钟。

4、加入新配制的溶液Ⅱ200μl,盖紧管口,快速温和颠倒离心管数次,以混匀内容物(千万不要振荡),冰浴5分钟。

5、加入150μl预冷的溶液Ⅲ,盖紧管口,并倒置离心管,温和振荡10秒,使沉淀混匀,冰浴中5-10分钟,4℃下12000g离心5-10分钟。

6、上清液移入干净离心管中,加入等体积的酚/氯仿(1:1),振荡混匀,4℃下12000g离心5分钟。

7、将水相移入干净离心管中,加入2倍体积的无水乙醇,振荡混匀后置于-20℃冰箱中20分钟,然后4℃下12000g离心10分钟。

8、弃上清,将管口敞开倒置于卫生纸上使所有液体流出,加入1ml70%乙醇洗沉淀一次,4℃下12000g离心5-10分钟。

9、吸除上清液,将管倒置于卫生纸上使液体流尽,真空干燥10分钟或室温干燥。

10、将沉淀溶于20μl STE缓冲液(pH8.0,含20μg/mlRNaseA)中,储于-20℃冰箱中。

[注意]1.提取过程应尽量保持低温。

2.提取质粒DNA过程中除去蛋白很重要,采用酚/氯仿去除蛋白效果较单独用酚或氯仿好,要将蛋白尽量除干净需多次抽提。

3.沉淀DNA通常使用冰乙醇,在低温条件下放置时间稍长可使DNA沉淀完全。

沉淀DNA也可用异丙醇(一般使用等体积),且沉淀完全,速度快,但常把盐沉淀下来,所以多数还是用乙醇。

质粒DNA的提取(碱裂解法)

质粒DNA的提取(碱裂解法)

质粒DNA的提取(碱裂解法)实验原理:碱裂解法提取质粒利用的是共价闭合环状质粒DNA与线状的染色体DNA片段在拓扑学上的差异来分离它们。

在pH 值介于12.0-12.5这个狭窄的范围内,线状的DNA双螺旋结构解开变性,在这样的条件下,共价闭环质粒DNA的氢键虽然断裂,但两条互补链彼此依然相互盘绕而紧密地结合在一起。

当加入pH4.8的醋酸钾高盐缓冲液使pH降低后,共价闭合环状的质粒DNA的两条互补链迅速而准确地复性,而线状的染色体DNA的两条互补链彼此已完全分开,不能迅速而准确地复性,它们缠绕形成网状结构。

通过离心,染色体DNA 与不稳定的大分子RNA、蛋白质-SDS复合物等一起沉淀下来,而质粒DNA却留在上清液中。

提取步骤:1.吸取1.5mL菌液于1.5mL离心管中,4℃下12000rpm离心2min,吸干上清液,使细菌沉淀尽可能干燥2.加入100μLSolutionⅠ,枪头充分打匀,使细胞重新悬浮。

此步骤菌体一定要悬浮均匀,不能有结块,否则会降低抽提得率3.加入200μL新配制的SolutionⅡ,轻柔颠倒混匀(千万不要振荡),冰上放置至清亮(小于5min)。

这一步操作要注意两点:第一,时间不能过长,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合,不然基因组DNA也会断裂。

4.加入150μL solutionⅢ,颠倒混匀(温和振荡10秒),使溶液Ⅲ在粘稠的细菌裂解物中分散均匀冰浴10min,使杂质充分沉淀5.4℃下12000rpm离心15min,小心将上清转至新的1.5mL离心管中6.加入6μL 10μgl/μL的RaseA,混匀,37℃温浴30min。

7.等体积TriS饱和酚:氯仿:异戊醇(25:24:l)抽提1次,小心将上清吸至新的 1.5mL离心管中8.等体积氯仿:异戊醇(24:l)抽提1次,小心将上清吸至新的 1.5mL离心管中9.加入2.5倍体积的冰冻无水乙醇,冰浴0.5-1h,沉淀双链 DNA。

碱裂解法提取dna的方法

碱裂解法提取dna的方法

碱裂解法提取质粒DNA实验目的1、掌握最常用的提取质粒DNA的方法和检测方法;2、了解制备原理及各种试剂的作用。

实验原理碱裂解法是基于DNA的变性与复性差异而达到分离目的的。

碱性使质粒DNA变性,再将pH 值调至中性使其复性,复性的为质粒DNA,而染色体DNA不会复性,缠结成网状物质,通过离心除去。

细菌质粒是一类双链、闭环的DNA,大小范围从1kb至200kb以上不等。

各种质粒都是存在于细胞质中、独立于细胞染色体之外的自主复制的遗传成份,通常情况下可持续稳定地处于染色体外的游离状态,但在一定条件下也会可逆地整合到寄主染色体上,随着染色体的复制而复制,并通过细胞分裂传递到后代。

质粒已成为目前最常用的基因克隆的载体分子,重要的条件是可获得大量纯化的质粒DNA 分子。

目前已有许多方法可用于质粒DNA的提取,本实验采用碱裂解法提取质粒DNA。

碱裂解法是一种应用最为广泛的制备质粒DNA的方法,碱变性抽提质粒DNA是基于染色体DNA与质粒DNA的变性与复性的差异而达到分离目的。

在pH值高达12.6的碱性条件下,染色体DNA的氢键断裂,双螺旋结构解开而变性。

质粒DNA的大部分氢键也断裂,但超螺旋共价闭合环状的两条互补链不会完全分离,当以pH4.8的NaAc/KAc高盐缓冲液去调节其pH值至中性时,变性的质粒DNA又恢复原来的构型,保存在溶液中,而染色体DNA不能复性而形成缠连的网状结构,通过离心,染色体DNA与不稳定的大分子RNA、蛋白质-SDS 复合物等一起沉淀下来而被除去。

一、材料含pUC19质粒的大肠杆菌,1.5ml塑料离心管,离心管架,枪头及盒、卫生纸。

二、设备微量移液器(20μl,200μl,1000μl),台式高速离心机,恒温振荡摇床,高压蒸汽消毒器(灭菌锅),涡旋振荡器,恒温水浴锅,双蒸水器,冰箱等。

三、试剂准备1、LB液体培养基:称取蛋白胨(Tryptone)10 g,酵母提取物(Yeast extract) 5g,NaCl 10g,溶于800ml去离子水中,用NaOH调pH至7.5,加去离子水至总体积1升,高压下蒸气灭菌20分钟。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

碱裂解法提取质粒DNA
实验目的
1、掌握最常用的提取质粒DNA的方法和检测方法;
2、了解制备原理及各种试剂的作用。

实验原理
碱裂解法是基于DNA的变性与复性差异而达到分离目的的。

碱性使质粒DNA变性,再将pH 值调至中性使其复性,复性的为质粒DNA,而染色体DNA不会复性,缠结成网状物质,通过离心除去。

细菌质粒是一类双链、闭环的DNA,大小范围从1kb至200kb以上不等。

各种质粒都是存在于细胞质中、独立于细胞染色体之外的自主复制的遗传成份,通常情况下可持续稳定地处于染色体外的游离状态,但在一定条件下也会可逆地整合到寄主染色体上,随着染色体的复制而复制,并通过细胞分裂传递到后代。

质粒已成为目前最常用的基因克隆的载体分子,重要的条件是可获得大量纯化的质粒DNA 分子。

目前已有许多方法可用于质粒DNA的提取,本实验采用碱裂解法提取质粒DNA。

碱裂解法是一种应用最为广泛的制备质粒DNA的方法,碱变性抽提质粒DNA是基于染色体DNA与质粒DNA的变性与复性的差异而达到分离目的。

在pH值高达12.6的碱性条件下,染色体DNA的氢键断裂,双螺旋结构解开而变性。

质粒DNA的大部分氢键也断裂,但超螺旋共价闭合环状的两条互补链不会完全分离,当以pH4.8的NaAc/KAc高盐缓冲液去调节其pH值至中性时,变性的质粒DNA又恢复原来的构型,保存在溶液中,而染色体DNA不能复性而形成缠连的网状结构,通过离心,染色体DNA与不稳定的大分子RNA、蛋白质-SDS 复合物等一起沉淀下来而被除去。

一、材料
含pUC19质粒的大肠杆菌,1.5ml塑料离心管,离心管架,枪头及盒、卫生纸。

二、设备
微量移液器(20μl,200μl,1000μl),台式高速离心机,恒温振荡摇床,高压蒸汽消毒器(灭菌锅),涡旋振荡器,恒温水浴锅,双蒸水器,冰箱等。

三、试剂准备
1、LB液体培养基:称取蛋白胨(Tryptone)10 g,酵母提取物(Yeast extract) 5g,NaCl 10g,溶于800ml去离子水中,用NaOH调pH至7.5,加去离子水至总体积1升,高压下蒸气灭菌20分钟。

2. 氨苄青霉素(Ampicillin, Amp)母液:配成100mg/ml水溶液,-20℃保存备用。

3. 溶液Ⅰ:50mM葡萄糖,25mM Tris-HCl(pH 8.0),10mM EDTA(pH 8.0)。

1M Tris-HCl (pH 8.0)12.5ml,0.5M EDTA(pH 8.0)10ml,葡萄糖4.730g,加ddH2O至500ml。

在121℃高压灭菌15min ,贮存于4℃。

4. 溶液Ⅱ:0.2M NaOH,1% SDS。

2M NaOH 1ml,10%SDS 1ml,加ddH2O至10ml。

使用前临时配置。

5. 溶液Ⅲ:醋酸钾(KAc)缓冲液,pH 4.8。

5M KAc 300ml,冰醋酸57.5ml,加ddH 2O至500ml。

4℃保存备用。

6. TE:10mM Tris-HCl(pH 8.0),1mM EDTA(pH 8.0)。

1M Tris-HCl(pH 8.0)1ml,0.5M EDTA(pH 8.0)0.2ml,加ddH 2O至100ml。

121高压湿热灭菌20min,4℃保存备用。

1M Tris Cl(Tris(三羟甲基)氨基甲烷):800ml H 2O中溶解121g Tris碱,用浓盐酸调pH值,混匀后加水到1L;
0.5M EDTA(乙二胺四乙酸):700ml H 2O中溶解186.1g Na 2EDTA-2H 2O,用10M NaOH调pH8.0(需约50ml),补H 2O到1L。

7. 苯酚/氯仿/异戊醇(25:24:1)。

氯仿可使蛋白变性并有助于液相与有机相的分开,异戊醇则可起消除抽提过程中出现的泡沫。

酚和氯仿均有很强的腐蚀性,操作时应戴手套。

8. 无水乙醇;
9. 70%乙醇;
10. RNA酶A母液:将RNA酶A溶于10mmol/L Tris・Cl(pH7.5),5mmol/L NaCl中,配成10mg/ml的溶液,于100℃加热15分钟,使混有的DNA酶失活。

冷却后用1.5ml eppendorf 管分装成小份保存于-20℃。

11 灭菌双蒸水ddH 2O
四、操作步骤
1. 挑取LB固体培养基上生长的单菌落,接种于20ml LB(含Amp100ug/ml)液体培养基中,37℃、250rmp振荡培养过夜(约12-14hr)。

2. 取1.5ml培养液倒入1.5ml eppendorf管中,12000rmp离心1-2min。

弃上清,将离心管倒置于卫生纸上几分钟,使液体尽可能流尽。

3、菌体沉淀重悬浮于100μl溶液Ⅰ中(需剧烈振荡,使菌体分散混匀。

),室温下放置5-10 min。

4、加入新配制的溶液Ⅱ200μl,盖紧管口,快速温和颠倒eppendorf管数次,以混匀内容物(千万不要振荡),冰浴5 min,使细胞膜裂解(溶液Ⅱ为裂解液,故离心管中菌液逐渐变清)。

5、加入150μl预冷的溶液Ⅲ,盖紧管口,将管温和颠倒数次混匀,见白色絮状沉淀,可在冰上放置5min。

12000rmp离心10min。

溶液Ⅲ为中和溶液,此时质粒DNA复性,染色体和蛋白质不可逆变性,形成不可溶复合物,同时K+使SDS-蛋白复合物沉淀。

6、上清液移入干净eppendorf管中,加入等体积的酚/氯仿/异戊醇,振荡混匀,12000rmp离心10min。

(450μl的苯酚/氯仿/异戊醇。


7、小心移出上清于一新微量离心管中,加入2倍体积预冷的无水乙醇,混匀,室温放置2-5min,离心12000rmp×10min。

8、弃上清,将管口敞开倒置于卫生纸上使所有液体流出,加入1ml 70%乙醇洗沉淀一次,12000rmp离心5 min。

9、吸除上清液,将管倒置于卫生纸上使液体流尽,室温干燥。

10、将沉淀溶于20μl TE缓冲液(pH8.0,含20μg /ml RnaseA,约4μl)中,37℃水浴30min以降解RNA分子,储于-20℃冰箱中。

注意事项
1. 提取过程应尽量保持低温。

2. 沉淀DNA通常使用冰乙醇,在低温条件下放置时间稍长可使DNA沉淀完全。

沉淀DNA也可用异丙醇(一般使用等体积),且沉淀完全,速度快,但常把盐沉淀下来,所以多数还是用乙醇。

相关文档
最新文档