2016年高教社杯全国大学生数学建模竞赛题目A.B

合集下载

高教社杯全国大学生数学建模竞赛题目(四套ABCD)

高教社杯全国大学生数学建模竞赛题目(四套ABCD)

高教社杯全国大学生数学建模竞赛题目(四套ABCD)当我第一遍读一本好书的时候,我仿佛觉得找到了一个朋友;当我再一次读这本书的时候,仿佛又和老朋友重逢。

我们要把读书当作一种乐趣,并自觉把读书和学习结合起来,做到博览、精思、熟读,更好地指导自己的学习,让自己不断成长。

让我们一起到店铺一起学习吧!2017年高教社杯全国大学生数学建模竞赛题目A题 CT系统参数标定及成像CT(Computed T omography)可以在不破坏样品的情况下,利用样品对射线能量的吸收特性对生物组织和工程材料的样品进行断层成像,由此获取样品内部的结构信息。

一种典型的二维CT系统如图1所示,平行入射的X射线垂直于探测器平面,每个探测器单元看成一个接收点,且等距排列。

X射线的发射器和探测器相对位置固定不变,整个发射-接收系统绕某固定的旋转中心逆时针旋转180次。

对每一个X射线方向,在具有512个等距单元的探测器上测量经位置固定不动的二维待检测介质吸收衰减后的射线能量,并经过增益等处理后得到180组接收信息。

CT系统安装时往往存在误差,从而影响成像质量,因此需要对安装好的CT系统进行参数标定,即借助于已知结构的样品(称为模板)标定CT系统的参数,并据此对未知结构的样品进行成像。

请建立相应的数学模型和算法,解决以下问题:(1) 在正方形托盘上放置两个均匀固体介质组成的标定模板,模板的几何信息如图2所示,相应的数据文件见附件1,其中每一点的数值反映了该点的吸收强度,这里称为“吸收率”。

对应于该模板的接收信息见附件2。

请根据这一模板及其接收信息,确定CT系统旋转中心在正方形托盘中的位置、探测器单元之间的距离以及该CT系统使用的X射线的180个方向。

(2) 附件3是利用上述CT系统得到的某未知介质的接收信息。

利用(1)中得到的标定参数,确定该未知介质在正方形托盘中的位置、几何形状和吸收率等信息。

另外,请具体给出图3所给的10个位置处的吸收率,相应的数据文件见附件4。

2016全国大学生数学建模竞赛获奖名单

2016全国大学生数学建模竞赛获奖名单

2016高教社杯全国大学生数学建模竞赛获奖名单(初稿)(异议期:2016年11月7日-2016年11月20日)
本科组高教社杯获得者:张滕翔、夏智康、郑安琪(东南大学)
专科组高教社杯获得者:吴伟龙、杨婷、段玲(湖南化工职业技术学院)
本科组MATLAB创新奖获得者:王毅然、纪昀红、张伟(中国人民大学)
专科组MATLAB创新奖获得者:刘苏生、祝王缘、王柏熙(海军蚌埠士官学校)
[注]以下每一获奖等级内,按赛区顺序排列(同一赛区内,按学校笔画顺序排列)。

本科组一等奖(共294名)
本科组二等奖(共1621名)
曹小
专科组一等奖(共60名)。

2016全国大学生数学建模竞赛获奖名单

2016全国大学生数学建模竞赛获奖名单

2016高教社杯全国大学生数学建模竞赛获奖名单(初稿)(异议期:2016年11月7日-2016年11月20日)
本科组高教社杯获得者:张滕翔、夏智康、郑安琪(东南大学)
专科组高教社杯获得者:吴伟龙、杨婷、段玲(湖南化工职业技术学院)
本科组MATLAB创新奖获得者:王毅然、纪昀红、张伟(中国人民大学)
专科组MATLAB创新奖获得者:刘苏生、祝王缘、王柏熙(海军蚌埠士官学校)
[注]以下每一获奖等级内,按赛区顺序排列(同一赛区内,按学校笔画顺序排列)。

本科组一等奖(共294名)
本科组二等奖(共1621名)
曹小
专科组一等奖(共60名)。

2016年全国大学生数学建模竞赛题

2016年全国大学生数学建模竞赛题

2001高教社杯全国大学生数学建模竞赛题目(请先阅读“对论文格式的统一要求”)C题基金使用计划某校基金会有一笔数额为M元的基金,打算将其存入银行或购买国库券。

当前银行存款及各期国库券的利率见下表。

假设国库券每年至少发行一次,发行时间不定。

取款政策参考银行的现行政策。

校基金会计划在n年内每年用部分本息奖励优秀师生,要求每年的奖金额大致相同,且在n年末仍保留原基金数额。

校基金会希望获得最佳的基金使用计划,以提高每年的奖金额。

请你帮助校基金会在如下情况下设计基金使用方案,并对M=5000万元,n=10年给出具体结果:1.只存款不购国库券;2.可存款也可购国库券。

3.学校在基金到位后的第3年要举行百年校庆,基金会希望这一年的奖金比其它年度多摘要:运用基金M分成n份(M1,M2,…,Mn),M1存一年,M2存2年,…,Mn存n 年.这样,对前面的(n-1)年,第i年终时M1到期,将Mi及其利息均取出来作为当年的奖金发放;而第n年,则用除去M元所剩下的钱作为第n年的奖金发放的基本思想,解决了基金的最佳使用方案问题.关键词:超限归纳法;排除定理;仓恩定理1问题重述某校基金会有一笔数额为M元的基金,欲将其存入银行或购买国库券.当前银行存款及各期国库券的利率见表1.假设国库券每年至少发行一次,发行时间不定.取款政策参考银行的现行政策.表1 存款年利率表校基金会计在n年内每年用部分本息奖励优秀师生,要求每年的奖金额大致相同,且在n年末仍保留原基金数额.校基金会希望获得最佳的基金使用计划,以提高每年的奖金额.需帮助校基金会在如下情况下设计基金使用方案,并对M=5 000万元,n=10年给出具体结果:①只存款不购国库券;②可存款也可购国库券.③学校在基金到位后的第3年要举行百年校庆,基金会希望这一年的奖金比其它年度多20%.2模型的分析、假设与建立2.1模型假设①每年发放的奖金额相同;②取款按现行银行政策;③不考虑通货膨胀及国家政策对利息结算的影响;④基金在年初到位,学校当年奖金在下一年年初发放;⑤国库券若提前支取,则按满年限的同期银行利率结算,且需交纳一定数额的手续费;⑥到期国库券回收资金不能用于购买当年发行的国库券.2.2符号约定K——发放的奖金数;ri——存i年的年利率,(i=1/2,1,2,3,5);Mi——支付第i年奖金,第1年开始所存的数额(i=1,2,…,10);U——半年活期的年利率;2.3模型的建立和求解2.3.1情况一:只存款不购国库券(1)分析令:支付各年奖金和本金存款方案———Mij (i =1,…,10,i ;j 属于N ). 将各方案ij M 看成元素,构成集合A则ij M 属于A1,210;I =所以A 按I 取值分10行根据仓恩定理:分行集中,任何一单行有上界,则必包含一个极大元素。

【免费阅读】2016全国大学生数学建模竞赛A题题目及参考答案

【免费阅读】2016全国大学生数学建模竞赛A题题目及参考答案

2011高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A 题 城市表层土壤重金属污染分析随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。

对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。

按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、……、5类区,不同的区域环境受人类活动影响的程度不同。

现对某城市城区土壤地质环境进行调查。

为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10 厘米深度)进行取样、编号,并用GPS 记录采样点的位置。

应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。

另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。

附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。

现要求你们通过数学建模来完成以下任务:(1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。

(2) 通过数据分析,说明重金属污染的主要原因。

(3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。

(4) 分析你所建立模型的优缺点,为更好地研究城市地质环境的演变模式,还应收集什么信息?有了这些信息,如何建立模型解决问题?分分工会舒服的规划法规f x c f 是否撒的发生的发生fx c f 是否撒的发生的发生f x c f 是否撒的发生的发生fx c f 是否撒的发生的发生fx c f 是否撒的发生的发生f x c f 是否撒的发生的阿斯顿发斯蒂芬斯蒂芬题 目 A 题 城市表层土壤重金属污染分析摘 要:本文研究的是某城区警车配置及巡逻方案的制定问题,建立了求解警车巡逻方案的模型,并在满足D1的条件下给出了巡逻效果最好的方案。

全国数学建模竞赛题目A,B

全国数学建模竞赛题目A,B

2018高教社杯全国大学生数学建模竞赛题目<请先阅读“全国大学生数学建模竞赛论文格式规范”)A题车道被占用对城市道路通行能力地影响车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低地现象.因为城市道路具有交通流密度大、连续性强等特点,一条车道被占用,也可能降低路段所有车道地通行能力,即使时间短,也可能引起车辆排队,出现交通阻塞.如处理不当,甚至出现区域性拥堵.车道被占用地情况种类繁多、复杂,正确估算车道被占用对城市道路通行能力地影响程度,将为交通管理部门正确引导车辆行驶、审批占道施工、设计道路渠化方案、设置路边停车位和设置非港湾式公交车站等提供理论依据.视频1<附件1)和视频2<附件2)中地两个交通事故处于同一路段地同一横断面,且完全占用两条车道.请研究以下问题:1.根据视频1<附件1),描述视频中交通事故发生至撤离期间,事故所处横断面实际通行能力地变化过程.根据问题1所得结论,结合视频2<附件2),分析说明同一横断面交通事故所占车道不同对该横断面实际通行能力影响地差异.构建数学模型,分析视频1<附件1)中交通事故所影响地路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间地关系.假如视频1<附件1)中地交通事故所处横断面距离上游路口变为140M,路段下游方向需求不变,路段上游车流量为1500pcu/h,事故发生时车辆初始排队长度为零,且事故持续不撤离.请估算,从事故发生开始,经过多长时间,车辆排队长度将到达上游路口.附件1:视频1附件2:视频2附件3:视频1中交通事故位置示意图附件4:上游路口交通组织方案图附件5:上游路口信号配时方案图注:只考虑四轮及以上机动车、电瓶车地交通流量,且换算成标准车当量数.附件3视频1中交通事故位置示意图附件4附件5上游路口信号配时方案本题附件1、2地数据量较大,请竞赛开始后从竞赛合作网站“中国大学生在线”网站下载:试卷专题页面:试卷下载地址:2018高教社杯全国大学生数学建模竞赛题目<请先阅读“全国大学生数学建模竞赛论文格式规范”)B题碎纸片地拼接复原破碎文件地拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要地应用.传统上,拼接复原工作需由人工完成,准确率较高,但效率很低.特别是当碎片数量巨大,人工拼接很难在短时间内完成任务.随着计算机技术地发展,人们试图开发碎纸片地自动拼接技术,以提高拼接复原效率.请讨论以下问题:1. 对于给定地来自同一页印刷文字文件地碎纸机破碎纸片<仅纵切),建立碎纸片拼接复原模型和算法,并针对附件1、附件2给出地中、英文各一页文件地碎片数据进行拼接复原.如果复原过程需要人工干预,请写出干预方式及干预地时间节点.复原结果以图片形式及表格形式表达<见【结果表达格式说明】).2. 对于碎纸机既纵切又横切地情形,请设计碎纸片拼接复原模型和算法,并针对附件3、附件4给出地中、英文各一页文件地碎片数据进行拼接复原.如果复原过程需要人工干预,请写出干预方式及干预地时间节点.复原结果表达要求同上.3. 上述所给碎片数据均为单面打印文件,从现实情形出发,还可能有双面打印文件地碎纸片拼接复原问题需要解决.附件5给出地是一页英文印刷文字双面打印文件地碎片数据.请尝试设计相应地碎纸片拼接复原模型与算法,并就附件5地碎片数据给出拼接复原结果,结果表达要求同上.【数据文件说明】(1)每一附件为同一页纸地碎片数据.(2)附件1、附件2为纵切碎片数据,每页纸被切为19条碎片.(3)附件3、附件4为纵横切碎片数据,每页纸被切为11×19个碎片.附件5为纵横切碎片数据,每页纸被切为11×19个碎片,每个碎片有正反两面.该附件中每一碎片对应两个文件,共有2×11×19个文件,例如,第一个碎片地两面分别对应文件000a、000b.【结果表达格式说明】复原图片放入附录中,表格表达格式如下:(1)附件1、附件2地结果:将碎片序号按复原后顺序填入1×19地表格;(2)附件3、附件4地结果:将碎片序号按复原后顺序填入11×19地表格;(3)附件5地结果:将碎片序号按复原后顺序填入两个11×19地表格;(4)不能确定复原位置地碎片,可不填入上述表格,单独列表.。

高教社杯全国大学生数学建模竞赛题目 穿越沙漠

高教社杯全国大学生数学建模竞赛题目 穿越沙漠

高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)B 题 穿越沙漠考虑如下的小游戏:玩家凭借一张地图,利用初始资金购买一定数量的水和食物(包括食品和其他日常用品),从起点出发,在沙漠中行走。

途中会遇到不同的天气,也可在矿山、村庄补充资金或资源,目标是在规定时间内到达终点,并保留尽可能多的资金。

游戏的基本规则如下:(1)以天为基本时间单位,游戏的开始时间为第0天,玩家位于起点。

玩家必须在截止日期或之前到达终点,到达终点后该玩家的游戏结束。

(2)穿越沙漠需水和食物两种资源,它们的最小计量单位均为箱。

每天玩家拥有的水和食物质量之和不能超过负重上限。

若未到达终点而水或食物已耗尽,视为游戏失败。

(3)每天的天气为“晴朗”、“高温”、“沙暴”三种状况之一,沙漠中所有区域的天气相同。

(4)每天玩家可从地图中的某个区域到达与之相邻的另一个区域,也可在原地停留。

沙暴日必须在原地停留。

(5)玩家在原地停留一天消耗的资源数量称为基础消耗量,行走一天消耗的资源数量为基础消耗量的2倍。

(6)玩家第0天可在起点处用初始资金以基准价格购买水和食物。

玩家可在起点停留或回到起点,但不能多次在起点购买资源。

玩家到达终点后可退回剩余的水和食物,每箱退回价格为基准价格的一半。

(7)玩家在矿山停留时,可通过挖矿获得资金,挖矿一天获得的资金量称为基础收益。

如果挖矿,消耗的资源数量为基础消耗量的3倍;如果不挖矿,消耗的资源数量为基础消耗量。

到达矿山当天不能挖矿。

沙暴日也可挖矿。

(8)玩家经过或在村庄停留时可用剩余的初始资金或挖矿获得的资金随时购买水和食物,每箱价格为基准价格的2倍。

请根据游戏的不同设定,建立数学模型,解决以下问题。

1. 假设只有一名玩家,在整个游戏时段内每天天气状况事先全部已知,试给出一般情况下玩家的最优策略。

求解附件中的“第一关”和“第二关”,并将相应结果分别填入Result.xlsx 。

2016数学建模国赛B题

2016数学建模国赛B题

用方格因子影响模型探究小区开放对道路通行的影响摘要目前我国人口增长,各种大型小区增多,各小区家庭拥有小汽车量也在增多,根据我国的道路交通设计和城市规划设计,我国的道路交通存在着严重问题,所以对交通的通行能力有着较大需求,本题将要分析的是,如果常规的封闭性小区开放,那周边道路通行会出现怎样的变化。

关于第一问,本文选取五个交通参数,道路通行能力、道路网的饱和度、车道交通流量比、车辆的延误时间、饱和流量;可以由各个指标来衡量小区开放以后对周围道路的交通状况的影响。

关于第二问,先将城市交通道路网格化,再建立方形小区内点对之间的最优路径寻模型,通过分析交通网格化下的封闭性小区开放之后,小区内的各个点对之间的各个路径中,最优路径是否存在,同时可以计算得出小区的面积及位置对点对间交通便捷度影响因子的影响,通过因子分析法来计算并寻找最优路径,从而判断周边道路的交通状态,是否会因为小区的开放而得到缓解。

关于第三问,分析其开放前后小区对周边道路的交通通行带来的影响;从参考资料中选取一个城市小区,通过对小区结构以及道路结构对其道路通行能力的分析。

同时构建一个方形小区,通过假设其开放前和开放后的各类数据,进行一个辅助比较,通过这两种类型的小区,并应用第一问与第二问中的模型,发现打破一个封闭小区,可以使得周边道路上车辆的通行能力增加,即使得交通状况有所改善。

第四问要求从交通通行的角度提出建议,通过以上三问对开放性小区评价指标、周边道路交通体系、长沙市某具体小区与构建的虚拟小区等的研究结果,向相关部门提出了对小区开放的合理建议。

关键字:小区开放;道路通行能力;最优路径;饱和流量;交通便捷度影响因子一、问题重述近几年,我国经济飞速发展,在GDP上升的同时,封闭型的小区也越来越多,政府、开发商、居民等也越来越多的居住于封闭型小区,同时私家车在我国城市居民家庭中的数量越来越多,逐步普及。

这给各个道路的交通,以及小区周边的道路交通造成了巨大压力,可以说城市道路交通拥堵的问题变得不容忽视。

2016全国大学生数学建模A题

2016全国大学生数学建模A题

2016年高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题系泊系统的设计近浅海观测网的传输节点由浮标系统、系泊系统和水声通讯系统组成(如图1所示)。

某型传输节点的浮标系统可简化为底面直径2m、高2m的圆柱体,浮标的质量为1000kg。

系泊系统由钢管、钢桶、重物球、电焊锚链和特制的抗拖移锚组成。

锚的质量为600kg,锚链选用无档普通链环,近浅海观测网的常用型号及其参数在附表中列出。

钢管共4节,每节长度1m,直径为50mm,每节钢管的质量为10kg。

要求锚链末端与锚的链接处的切线方向与海床的夹角不超过16度错误!未找到引用源。

,否则锚会被拖行,致使节点移位丢失。

水声通讯系统安装在一个长1m、外径30cm的密封圆柱形钢桶内,设备和钢桶总质量为100kg。

钢桶上接第4节钢管,下接电焊锚链。

钢桶竖直时,水声通讯设备的工作效果最佳。

若钢桶倾斜,则影响设备的工作效果。

钢桶的倾斜角度(钢桶与竖直线的夹角)超过5度时,设备的工作效果较差。

为了控制钢桶的倾斜角度,钢桶与电焊锚链链接处可悬挂重物球。

图1 传输节点示意图(仅为结构模块示意图,未考虑尺寸比例)系泊系统的设计问题就是确定锚链的型号、长度和重物球的质量,使得浮标的吃水深度和游动区域及钢桶的倾斜角度尽可能小。

问题1某型传输节点选用II型电焊锚链22.05m,选用的重物球的质量为1200kg。

现将该型传输节点布放在水深18m、海床平坦、海水密度为1.025×103kg/m3的海域。

若海水静止,分别计算海面风速为12m/s和24m/s时钢桶和各节钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。

问题2在问题1的假设下,计算海面风速为36m/s时钢桶和各节钢管的倾斜角度、锚链形状和浮标的游动区域。

请调节重物球的质量,使得钢桶的倾斜角度不超过5度,锚链在锚点与海床的夹角不超过16度。

问题3 由于潮汐等因素的影响,布放海域的实测水深介于16m~20m之间。

高教杯全国大学生数学建模竞赛B题

高教杯全国大学生数学建模竞赛B题

2017年高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)B题“拍照赚钱”的任务定价“拍照赚钱”是移动互联网下的一种自助式服务模式。

用户下载APP,注册成为APP的会员,然后从APP上领取需要拍照的任务(比如上超市去检查某种商品的上架情况),赚取APP对任务所标定的酬金。

这种基于移动互联网的自助式劳务众包平台,为企业提供各种商业检查和信息搜集,相比传统的市场调查方式可以大大节省调查成本,而且有效地保证了调查数据真实性,缩短了调查的周期。

因此APP成为该平台运行的核心,而APP中的任务定价又是其核心要素。

如果定价不合理,有的任务就会无人问津,而导致商品检查的失败。

附件一是一个已结束项目的任务数据,包含了每个任务的位置、定价和完成情况(“1”表示完成,“0”表示未完成);附件二是会员信息数据,包含了会员的位置、信誉值、参考其信誉给出的任务开始预订时间和预订限额,原则上会员信誉越高,越优先开始挑选任务,其配额也就越大(任务分配时实际上是根据预订限额所占比例进行配发);附件三是一个新的检查项目任务数据,只有任务的位置信息。

请完成下面的问题:1.研究附件一中项目的任务定价规律,分析任务未完成的原因。

(2个问题分开讨论。

先找出原因,层次分析之类)2.为附件一中的项目设计新的任务定价方案,并和原方案进行比较。

(优化)3.实际情况下,多个任务可能因为位置比较集中,导致用户会争相选择,一种考虑是将这些任务联合在一起打包发布。

在这种考虑下,如何修改前面的定价模型,对最终的任务完成情况又有什么影响?4.对附件三中的新项目给出你的任务定价方案,并评价该方案的实施效果。

附件一:已结束项目任务数据附件二:会员信息数据附件三:新项目任务数据。

2016年高教社杯全国大学生数学建模竞赛题目 .doc

2016年高教社杯全国大学生数学建模竞赛题目 .doc

2016年高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题系泊系统的设计近浅海观测网的传输节点由浮标系统、系泊系统和水声通讯系统组成(如图1所示)。

某型传输节点的浮标系统可简化为底面直径2m、高2m的圆柱体,浮标的质量为1000kg。

系泊系统由钢管、钢桶、重物球、电焊锚链和特制的抗拖移锚组成。

锚的质量为600kg,锚链选用无档普通链环,近浅海观测网的常用型号及其参数在附表中列出。

钢管共4节,每节长度1m,直径为50mm,每节钢管的质量为10kg。

要求锚链末端与锚的链接处的切线方向与海床的夹角不超过16度,否则锚会被拖行,致使节点移位丢失。

水声通讯系统安装在一个长1m、外径30cm的密封圆柱形钢桶内,设备和钢桶总质量为100kg。

钢桶上接第4节钢管,下接电焊锚链。

钢桶竖直时,水声通讯设备的工作效果最佳。

若钢桶倾斜,则影响设备的工作效果。

钢桶的倾斜角度(钢桶与竖直线的夹角)超过5度时,设备的工作效果较差。

为了控制钢桶的倾斜角度,钢桶与电焊锚链链接处可悬挂重物球。

图1 传输节点示意图(仅为结构模块示意图,未考虑尺寸比例)系泊系统的设计问题就是确定锚链的型号、长度和重物球的质量,使得浮标的吃水深度和游动区域及钢桶的倾斜角度尽可能小。

问题1某型传输节点选用II型电焊锚链22.05m,选用的重物球的质量为1200kg。

现将该型传输节点布放在水深18m、海床平坦、海水密度为1.025×103kg/m3的海域。

若海水静止,分别计算海面风速为12m/s和24m/s时钢桶和各节钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。

问题2在问题1的假设下,计算海面风速为36m/s时钢桶和各节钢管的倾斜角度、锚链形状和浮标的游动区域。

请调节重物球的质量,使得钢桶的倾斜角度不超过5度,锚链在锚点与海床的夹角不超过16度。

问题3 由于潮汐等因素的影响,布放海域的实测水深介于16m~20m之间。

全国大学生数学建模竞赛A、B题评阅要点

全国大学生数学建模竞赛A、B题评阅要点

全国大学生数学建模竞赛A题评阅要点1、目标函数的构成成分主要包括销售额表达式(注意如果作者利用了附录数据说明中的假设,则赢利与销售额等价),可以以课程为单位,也可以以学科为单位;包括由市场信息产生的对于不同课程的调控因子(竞争力系数);由于数据说明中的提示,也应该包括每个课程的申报需求量的“计划准确性因子”(学生用词会不同)。

当然,前两点更重要些。

2、约束条件构成对于出版社来说,所谓产能主要是人力资源,即策划、编辑和版面设计人员的分布形成主要约束;此外,书号总量(500)也应该作为约束条件;同时,在数据说明中指出的“满足申请书号量的一半”也应该以约束方式表达。

3、规划变量可以以每个课程的书号数量,也可以以学科的书号数作为变量,但是得到的结果会有所不同。

实现以上三点,对于问题的理解是比较全面的,应该得到基本分值。

进一步提高的分值来源于实现上述三点的具体模型的考虑和建模水平。

1)如果注意到数据说明中提示的,同一课程的教材在价格和销售量的同一性,销售额表达式是比较容易表示的:构造每个课程的、用书号数表达的销售额,然后将所有书号的销售额的表达式累加,形成总社的销售额的基本表达式,这是目标函数的主体部分。

2)市场信息产生的对于不同课程的调控因子(也称竞争力系数)的表示,是一个信息不足情况下的决策模型。

主要是满意度和市场占有率的恰当表示和计算(由附件2),以及两个指标的联合形成竞争力系数问题,这里既可以使用拟合模型,也可以使用各种多因素分析模型等等,方法不同。

对这个问题解决的优劣,可以导致明显的评分差别。

其中应该特别注意需求信息是否重复使用的问题,也就是说,如果在构造销售额表达式时已经使用了课程的销售数据,则不同课程的支持强度的不同,主。

2016年全国大学生数学建模竞赛A题

2016年全国大学生数学建模竞赛A题

2016年全国大学生数学建模竞赛A题2016年高教社杯全国大学生数学建模竞赛题目 ,请先阅读“全国大学生数学建模竞赛论文格式规范”,A题系泊系统的设计近浅海观测网的传输节点由浮标系统、系泊系统和水声通讯系统组成(如图1所示)。

某型传输节点的浮标系统可简化为底面直径2m、高2m的圆柱体,浮标的质量为1000kg。

系泊系统由钢管、钢桶、重物球、电焊锚链和特制的抗拖移锚组成。

锚的质量为600kg,锚链选用无档普通链环,近浅海观测网的常用型号及其参数在附表中列出。

钢管共4节,每节长度1m,直径为50mm,每节钢管的质量为10kg。

要求锚链末端与锚的链接处的切线方向与海床的夹角不超过16度,否则锚会被拖行,致使节点移位丢失。

水声通讯系统安装在一个长1m、外00kg。

钢桶上接第4节钢径30cm的密封圆柱形钢桶内,设备和钢桶总质量为1 管,下接电焊锚链。

钢桶竖直时,水声通讯设备的工作效果最佳。

若钢桶倾斜,则影响设备的工作效果。

钢桶的倾斜角度(钢桶与竖直线的夹角)超过5度时,设备的工作效果较差。

为了控制钢桶的倾斜角度,钢桶与电焊锚链链接处可悬挂重物球。

图1 传输节点示意图(仅为结构模块示意图,未考虑尺寸比例)系泊系统的设计问题就是确定锚链的型号、长度和重物球的质量,使得浮标的吃水深度和游动区域及钢桶的倾斜角度尽可能小。

问题1 某型传输节点选用II型电焊锚链22.05m,选用的重物球的质量为1200kg。

现将该型传输节点布放在水深18m、海床平坦、海水密度为1.025×103kg/m3的海域。

若海水静止,分别计算海面风速为12m/s和24m/s时钢桶和各节钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。

问题2 在问题1的假设下,计算海面风速为36m/s时钢桶和各节钢管的倾斜角度、锚链形状和浮标的游动区域。

请调节重物球的质量,使得钢桶的倾斜角度不超过5度,锚链在锚点与海床的夹角不超过16度。

问题3 由于潮汐等因素的影响,布放海域的实测水深介于16m~20m之间。

2016年全国数学建模竞赛A题国家一等奖

2016年全国数学建模竞赛A题国家一等奖
针对问题一我们采用集中质量法将系统中的各个物体视为一个质点,对各个 物体建立静力平衡方程,在水深 18m 时给定浮标在海水中所受浮力,从而根据我 们建立的平衡方程求出各物体的倾斜角度,再根据几何关系求出海域的模拟深度, 通过不断修正浮标的浮力使得海域的模拟深度等于 18m,最终求得风速分别为
12m/s 和 24m/s 时浮标的吃水深度 h0 为 0.7397m 和 0.74883m,同时给出不同风
深度无法计算得出,需要给定浮力初始值 F0 ,从而得到T0 和1 。
钢管受力分析 将钢管看作一个质点,对每节钢管一一受力分析,如图 2 所示,由于每节钢
管规格一致,即质量、长度和直径相同,所有每节钢管重力和所受浮力相等。每
节钢管受到的力有钢管自身重力 Ggg 、浮力 Fgg 、上一节钢管拉力Ti,i1 和下一节钢
成负相关,即重物球质量越大, 和 越小,故在 5o, 16o, h0 2 条件下,
可以通过不断调节重物球的质量,找到重物球的最小质量和最大质量。 问题三的分析:
对问题三第一个子问题的分析: 系泊系统的设计问题就是要确定锚链的型号、长度和重物球的质量,使得浮 标的吃水深度和游动区域及钢桶的倾斜角度尽可能小。 沿用问题一的算法,增加一个与风力方向相同的水流力,近海水水流力可以
速下钢桶和各节钢管的倾斜角度及浮标的最远位置(浮标的游动区域视为一个圆 面)。考虑到锚链由 210 节链环构成,通过对每节链环进行受力分析确定了每节 链环的位置,从而给出了链环的形状图像。在求解过程中由于拉力具有不确定性, 我们通过两次角度代换使得程序可以顺利地运行。
针对问题二我们沿用了问题一的算法,求得风速为 36m/s 时钢桶和各节钢管
3.4 假设近浅海观测网的传输节点位于同一平面。 3.5 假设在海水流动情况下,仅考虑水流力对浮标、钢管和钢桶的影响,对 锚链和重物球的影响忽略不计。 3.6 假设在海水流动情况下,锚受到的水流力不影响锚链末端与锚的链接处 的切线方向与海床的夹角。 3.7 假设链环在拉力作用下形状不发生改变。

2016全国大学生数学建模竞赛获奖名单

2016全国大学生数学建模竞赛获奖名单

2016高教社杯全国大学生数学建模竞赛获奖名单(初稿)(异议期:2016年11月7日-2016年11月20日)
本科组高教社杯获得者:张滕翔、夏智康、郑安琪(东南大学)
专科组高教社杯获得者:吴伟龙、杨婷、段玲(湖南化工职业技术学院)
本科组MATLAB创新奖获得者:王毅然、纪昀红、张伟(中国人民大学)
专科组MATLAB创新奖获得者:刘苏生、祝王缘、王柏熙(海军蚌埠士官学校)
[注]以下每一获奖等级内,按赛区顺序排列(同一赛区内,按学校笔画顺序排列)。

本科组一等奖(共294名)
本科组二等奖(共1621名)
曹小
专科组一等奖(共60名)。

B题-全国大学生数学建模竞赛赛题讲评(2016B)

B题-全国大学生数学建模竞赛赛题讲评(2016B)

小区开放对道路通行的影响——CUMCM2016B国防科学技术大学 吴孟达小区开放对道路通行的影响1. 题目及命题背景2. 解题思路3. 评阅综述1. 题目及命题背景题目:小区开放对道路通行的影响2016年2月21日,国务院发布《关于进一步加强城市规划建设管理工作的若干意见》,其中第十六条关于推广街区制,原则上不再建设封闭住宅小区,已建成的住宅小区和单位大院要逐步开放等意见,引起了广泛的关注和讨论。

除了开放小区可能引发的安保等问题外,议论的焦点之一是:开放小区能否达到优化路网结构,提高道路通行能力,改善交通状况的目的,以及改善效果如何。

一种观点认为封闭式小区破坏了城市路网结构,堵塞了城市“毛细血管”,容易造成交通阻塞。

小区开放后,路网密度提高,道路面积增加,通行能力自然会有提升。

也有人认为这与小区面积、位置、外部及内部道路状况等诸多因素有关,不能一概而论。

还有人认为小区开放后,虽然可通行道路增多了,相应地,小区周边主路上进出小区的交叉路口的车辆也会增多,也可能会影响主路的通行速度。

城市规划和交通管理部门希望你们建立数学模型,就小区开放对周边道路通行的影响进行研究,为科学决策提供定量依据,为此请你们尝试解决以下问题:1. 请选取合适的评价指标体系,用以评价小区开放对周边道路通行的影响。

2. 请建立关于车辆通行的数学模型,用以研究小区开放对周边道路通行的影响。

3. 小区开放产生的效果,可能会与小区结构及周边道路结构、车流量有关,请选取或构建不同类型的小区,应用你们建立的模型,定量比较各类型小区开放前后对道路通行的影响。

4. 根据你们的研究结果,从交通通行的角度,向城市规划和交通管理部门提出你们关于小区开放的合理化建议。

命题背景Ø命题目的:通过建立数学模型,给出小区开放对道路通行影响的定量效果评价,为管理部门提供定量化的决策依据。

Ø本问题设置的四个子问题,有很强的内在逻辑关联性,其主题分别为:指标—建模—应用—建议,环环相扣。

2016年“高教社杯”全国大学生数学建模竞赛题目

2016年“高教社杯”全国大学生数学建模竞赛题目
说明近海风荷载可通过近似公式 F=0.625×Sv2(N)计算,其中,S 为物体 在 风 向 法 平 面 的 投 影 面 积(m2),v 为风速(m/s)。近海水流力可通过近似公式 F=374×Sv2(N)计 算,其 中,S 为 物 体 在 水 流 速 度法平面的投影面积(m2),v 为水流速度(m/s)。
注 :长 度 是 指 每 节 链 环 的 长 度 。
· 23 ·
·竞赛论坛·
2016 年 “高 教 社 杯 ”全 国 大 学 生 数 学 建 模 竞 赛 题 目
2016 ,国务院发布《关 于 进 一 步 加 强 城 市 规 划 建 设 管 理 工 作 的 若 干 意 见 》,其 中 第 16 条关于推广街区制,原则上不再建设封闭住宅小区,已建成的住宅小区 和 单 位 大 院 要 逐 步 开 放 等 意 见, 引起了广泛的关注和讨论。
系 泊 系 统 的 设 计 问 题 就 是 确 定 锚 链 的 型 号 、长 度 和 重 物 球 的 质 量 ,使 得 浮 标 的 吃 水 深 度 和 游 动 区 域 及钢桶的倾斜角度尽可能小。
问 题 1 某 型 传 输 节 点 选 用II型 电 焊 锚 链22.05m,选 用 的 重 物 球 的 质 量 为1 200kg。 现 将 该 型 传 输节点布放在水深18m、海床 平 坦、海 水 密 度 为 1.025×103 kg/m3 的 海 域。 若 海 水 静 止,分 别 计 算 海 面 风 速 为 12 m/s和 24 m/s时 钢 桶 和 各 节 钢 管 的 倾 斜 角 度 、锚 链 形 状 、浮 标 的 吃 水 深 度 和 游 动 区 域 。
城 市 规 划 和 交 通 管 理 部 门 希 望 你 们 建 立 数 学 模 型 ,就 小 区 开 放 对 周 边 道 路 通 行 的 影 响 进 行 研 究 ,为 科 学 决 策 提 供 定 量 依 据 ,为 此 ,请 你 们 尝 试 解 决 以 下 问 题 :
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题系泊系统的设计近浅海观测网的传输节点由浮标系统、系泊系统和水声通讯系统组成(如图1所示)。

某型传输节点的浮标系统可简化为底面直径2m、高2m的圆柱体,浮标的质量为1000kg。

系泊系统由钢管、钢桶、重物球、电焊锚链和特制的抗拖移锚组成。

锚的质量为600kg,锚链选用无档普通链环,近浅海观测网的常用型号及其参数在附表中列出。

钢管共4节,每节长度1m,直径为50mm,每节钢管的质量为10kg。

要求锚链末端与锚的链接处的切线方向与海床的夹角不超过16度,否则锚会被拖行,致使节点移位丢失。

水声通讯系统安装在一个长1m、外径30cm的密封圆柱形钢桶内,设备和钢桶总质量为100kg。

钢桶上接第4节钢管,下接电焊锚链。

钢桶竖直时,水声通讯设备的工作效果最佳。

若钢桶倾斜,则影响设备的工作效果。

钢桶的倾斜角度(钢桶与竖直线的夹角)超过5度时,设备的工作效果较差。

为了控制钢桶的倾斜角度,钢桶与电焊锚链链接处可悬挂重物球。

图1 传输节点示意图(仅为结构模块示意图,未考虑尺寸比例)系泊系统的设计问题就是确定锚链的型号、长度和重物球的质量,使得浮标的吃水深度和游动区域及钢桶的倾斜角度尽可能小。

问题1某型传输节点选用II型电焊锚链22.05m,选用的重物球的质量为1200kg。

现将该型传输节点布放在水深18m、海床平坦、海水密度为1.025×103kg/m3的海域。

若海水静止,分别计算海面风速为12m/s和24m/s时钢桶和各节钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。

问题2在问题1的假设下,计算海面风速为36m/s时钢桶和各节钢管的倾斜角度、锚链形状和浮标的游动区域。

请调节重物球的质量,使得钢桶的倾斜角度不超过5度,锚链在锚点与海床的夹角不超过16度。

问题3 由于潮汐等因素的影响,布放海域的实测水深介于16m~20m之间。

布放点的海水速度最大可达到1.5m/s、风速最大可达到36m/s。

请给出考虑风力、水流力和水深情况下的系泊系统设计,分析不同情况下钢桶、钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。

说明近海风荷载可通过近似公式F=0.625×Sv2(N)计算,其中S为物体在风向法平面的投影面积(m2),v为风速(m/s)。

近海水流力可通过近似公式F=374×Sv2(N)计算,其中S为物体在水流速度法平面的投影面积(m2),v为水流速度(m/s)。

2016高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)B题小区开放对道路通行的影响2016年2月21日,国务院发布《关于进一步加强城市规划建设管理工作的若干意见》,其中第十六条关于推广街区制,原则上不再建设封闭住宅小区,已建成的住宅小区和单位大院要逐步开放等意见,引起了广泛的关注和讨论。

除了开放小区可能引发的安保等问题外,议论的焦点之一是:开放小区能否达到优化路网结构,提高道路通行能力,改善交通状况的目的,以及改善效果如何。

一种观点认为封闭式小区破坏了城市路网结构,堵塞了城市“毛细血管”,容易造成交通阻塞。

小区开放后,路网密度提高,道路面积增加,通行能力自然会有提升。

也有人认为这与小区面积、位置、外部及内部道路状况等诸多因素有关,不能一概而论。

还有人认为小区开放后,虽然可通行道路增多了,相应地,小区周边主路上进出小区的交叉路口的车辆也会增多,也可能会影响主路的通行速度。

城市规划和交通管理部门希望你们建立数学模型,就小区开放对周边道路通行的影响进行研究,为科学决策提供定量依据,为此请你们尝试解决以下问题:1. 请选取合适的评价指标体系,用以评价小区开放对周边道路通行的影响。

2. 请建立关于车辆通行的数学模型,用以研究小区开放对周边道路通行的影响。

3. 小区开放产生的效果,可能会与小区结构及周边道路结构、车流量有关。

请选取或构建不同类型的小区,应用你们建立的模型,定量比较各类型小区开放前后对道路通行的影响。

4. 根据你们的研究结果,从交通通行的角度,向城市规划和交通管理部门提出你们关于小区开放的合理化建议。

全国大学生数学建模竞赛论文格式规范(全国大学生数学建模竞赛组委会,2016年修订稿)为了保证竞赛的公平、公正性,便于竞赛活动的标准化管理,根据评阅工作的实际需要,竞赛要求参赛队分别提交纸质版和电子版论文,特制定本规范。

一、纸质版论文格式规范第一条,论文用白色A4纸打印(单面、双面均可);上下左右各留出至少2.5厘米的页边距;从左侧装订。

第二条,论文第一页为承诺书,第二页为编号专用页,具体内容见本规范第3、4页。

第三条,论文第三页为摘要专用页(含标题和关键词,但不需要翻译成英文),从此页开始编写页码;页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。

摘要专用页必须单独一页,且篇幅不能超过一页。

第四条,从第四页开始是论文正文(不要目录,尽量控制在20页以内);正文之后是论文附录(页数不限)。

第五条,论文附录至少应包括参赛论文的所有源程序代码,如实际使用的软件名称、命令和编写的全部可运行的源程序(含EXCEL、SPSS等软件的交互命令);通常还应包括自主查阅使用的数据等资料。

赛题中提供的数据不要放在附录。

如果缺少必要的源程序或程序不能运行,可能会被取消评奖资格。

论文附录必须打印装订在论文纸质版中。

如果确实没有需要以附录形式提供的信息,论文可以没有附录。

第六条,论文正文和附录不能有任何可能显示答题人身份和所在学校及赛区的信息。

第七条,引用别人的成果或其他公开的资料(包括网上资料)必须按照科技论文写作的规范格式列出参考文献,并在正文引用处予以标注。

第八条,本规范中未作规定的,如排版格式(字号、字体、行距、颜色等)不做统一要求,可由赛区自行决定。

在不违反本规范的前提下,各赛区可以对论文增加其他要求。

二、电子版论文格式规范第九条,参赛队应按照《全国大学生数学建模竞赛报名和参赛须知》的要求命名和提交以下两个电子文件,分别对应于参赛论文和相关的支撑材料。

第十条,参赛论文的电子版不能包含承诺书和编号专用页(即电子版论文第一页为摘要页)。

除此之外,其内容及格式必须与纸质版完全一致(包括正文及附录),且必须是一个单独的文件,文件格式只能为PDF或者Word格式之一(建议使用PDF格式),不要压缩,文件大小不要超过20MB。

第十一条,支撑材料(不超过20MB)包括用于支撑论文模型、结果、结论的所有必要文件,至少应包含参赛论文的所有源程序,通常还应包含参赛论文使用的数据(赛题中提供的原始数据除外)、较大篇幅的中间结果的图形或表格、难以从公开渠道找到的相关资料等。

所有支撑材料使用WinRAR软件压缩在一个文件中(后缀为RAR);如果支撑材料与论文内容不相符,该论文可能会被取消评奖资格。

支撑材料中不能包含承诺书和编号专用页,不能有任何可能显示答题人身份和所在学校及赛区的信息。

如果确实没有需要提供的支撑材料,可以不提供支撑材料。

三、本规范的实施与解释第十二条,不符合本格式规范的论文将被视为违反竞赛规则,可能被取消评奖资格。

第十三条,本规范的解释权属于全国大学生数学建模竞赛组委会。

说明:(1)本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题。

(2)赛区可自行决定是否在竞赛结束时收集参赛论文的纸质版,但对于送全国评阅的论文,赛区必须提供符合本规范要求的纸质版论文(承诺书由赛区组委会保存,不必提交给全国组委会)。

(3)赛区评阅前将纸质版论文第一页(承诺书)取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(由各赛区自行决定是否使用)。

评阅后,赛区对送全国评阅的论文在第二页建立“送全国评阅统一编号”(编号方式由全国组委会规定),然后送全国评阅。

赛区评阅编号(由赛区组委会填写):2016年高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或资料(包括网上资料),必须按照规定的参考文献的表述方式列出,并在正文引用处予以标注。

在网上交流和下载他人的论文是严重违规违纪行为。

我们以中国大学生名誉和诚信郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号(从A/B/C/D中选择一项填写):我们的报名参赛队号(12位数字全国统一编号):参赛学校(完整的学校全称,不含院系名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):(指导教师签名意味着对参赛队的行为和论文的真实性负责)日期:年月日(请勿改动此页内容和格式。

此承诺书打印签名后作为纸质论文的封面,注意电子版论文中不得出现此页。

以上内容请仔细核对,如填写错误,论文可能被取消评奖资格。

)赛区评阅编号(由赛区组委会填写):2016年高教社杯全国大学生数学建模竞赛编号专用页送全国评阅统一编号(赛区组委会填写):全国评阅随机编号(全国组委会填写):(请勿改动此页内容和格式。

此编号专用页仅供赛区和全国评阅使用,参赛队打印后装订到纸质论文的第二页上。

注意电子版论文中不得出现此页。

)。

相关文档
最新文档