【必考题】高三数学下期中第一次模拟试卷含答案(3)

合集下载

2020-2021高三数学下期中第一次模拟试卷含答案高考模拟题

2020-2021高三数学下期中第一次模拟试卷含答案高考模拟题

A. 63
B. 61
C. 62
D. 57
3. 正项等比数列
中,
的等比中项为
,令
,则
()
A. 6
B. 16
C. 32
D. 64
4. 在 R 上定义运算 : A B A 1 B ,若不等式 x a
x a 1 对任意的
实数 x R 恒成立,则实数 a 的取值范围是 ( )
A. 1 a 1
B. 0 a 2
1
10.D
解析: D 【解析】
【详解】
试题分析:∵ a3 a5 2 a10 4 ,∴ 2 a4 2a10 4 ,∴ a4 a10 2 ,
∴ S13 13(a1 a13 ) 13(a4 a10 ) 13 ,故选 D.
2
2
考点:等差数列的通项公式、前 n 项和公式 .
11.A
解析: A 【解析】
【分析】 【详解】
x a x a 1 x2 x a2 a
Qxa
x a 1对于任意的实数 x R 恒成立 ,
x2 x a2 a 1 , 即 x2 x a 2 a 1 0 恒成立 ,
12 4 1 a2 a 1 0 ,
1a3
2
2
故选: C
【点睛】
本题考查新定义运算 ,考查一元二次不等式中的恒成立问题 , 当 x R 时 ,利用判别式是解题
3
C.
a
2
2
3
1
D.
a
2
2
5. 我国的《洛书》中记载着世界上最古老的一个幻方:将
1, 2, ... , 9 填入 3 3 的方格
内,使三行、三列、两对角线的三个数之和都等于
15 ( 如图) . 一般地,将连续的正整数

【典型题】高三数学下期中第一次模拟试题(含答案)

【典型题】高三数学下期中第一次模拟试题(含答案)

【典型题】高三数学下期中第一次模拟试题(含答案)一、选择题1.已知等比数列{}n a 的公比为正数,且239522,1a a a a ⋅==,则1a = ( )A .12B .2 CD2.已知点(),P x y 是平面区域()4{04y x y x m y ≤-≤≥-内的动点, 点()1,1,A O -为坐标原点, 设()OP OA R λλ-∈u u u r u u u r的最小值为M ,若M ≤恒成立, 则实数m 的取值范围是( )A .11,35⎡⎤-⎢⎥⎣⎦B .11,,35⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭C .1,3⎡⎫-+∞⎪⎢⎣⎭D .1,2⎡⎫-+∞⎪⎢⎣⎭3.设变量,x y 、满足约束条件236y xx y y x ≤⎧⎪+≥⎨⎪≥-⎩,则目标函数2z x y =+的最大值为( )A .2B .3C .4D .94.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,且()cos 4cos a B c b A =-,则cos2A =( ) A .78B .18C .78-D .18-5.已知数列{a n }满足331log 1log ()n n a a n N +++=∈且2469a a a ++=,则15793log ()a a a ++的值是( )A .-5B .-15C .5D .156.已知数列{}n a 的前n 项和为n S ,且()*21n n S a n N =-∈,则5a 等于( )A .16-B .16C .31D .327.数列{}n a 的前n 项和为21n S n n =++,()()1N*nn n b a n =-∈,则数列{}n b 的前50项和为( ) A .49B .50C .99D .1008.如果111A B C ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则 A .111A B C ∆和222A B C ∆都是锐角三角形 B .111A B C ∆和222A B C ∆都是钝角三角形C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形D .111A B C ∆是锐角三角形,222A B C ∆是钝角三角形 9.在ABC V 中,4ABC π∠=,AB =3BC =,则sin BAC ∠=( )ABCD10.河南洛阳的龙门石窟是中国石刻艺术宝库之一,现为世界文化遗产,龙门石窟与莫高窟、云冈石窟、麦积山石窟并称中国四大石窟.现有一石窟的某处“浮雕像”共7层,每上层的数量是下层的2倍,总共有1016个“浮雕像”,这些“浮雕像”构成一幅优美的图案,若从最下层往上“浮雕像”的数量构成一个数列{}n a ,则()235log a a ⋅的值为( ) A .8B .10C .12D .1611.已知等比数列{}n a 中,31174a a a =,数列{}n b 是等差数列,且77b a =,则59b b +=( ) A .2B .4C .16D .812.已知等比数列{}n a 的各项均为正数,若3132312log log log 12a a a ++⋯+=,则67a a =( ) A .1B .3C .6D .9二、填空题13.若log 41,a b =-则+a b 的最小值为_________.14.已知数列{}n a 满足:11a =,{}112,,,n n n a a a a a +-∈⋅⋅⋅()*n ∈N ,记数列{}n a 的前n项和为n S ,若对所有满足条件的{}n a ,10S 的最大值为M 、最小值为m ,则M m +=______.15.已知数列{}n a 中,其中199199a =,11()an n a a -=,那么99100log a =________16.设n S 是等差数列{}n a 的前n 项和,若510S =,105S =-,则公差d =(___). 17.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,2a =,且()()()2sin sin sin b A B c b C +-=-,则ABC ∆面积的最大值为______.18.已知数列{}n a 、{}n b 均为等差数列,且前n 项和分别为n S 和n T ,若321n n S n T n +=+,则44a b =_____. 19.已知实数x y ,满足2,2,03,x y x y y +≥⎧⎪-≤⎨⎪≤≤⎩则2z x y =-的最大值是____.20.设等差数列{}n a ,{}n b 的前n 项和分别为,n n S T 若对任意自然数n 都有2343n n S n T n -=-,则935784a ab b b b +++的值为_______. 三、解答题21.若0,0a b >>,且11a b+=(1)求33+a b 的最小值;(2)是否存在,a b ,使得236a b +=?并说明理由. 22.已知函数()()22f x x x a x R =++∈(1)若函数()f x 的值域为[0,)+∞,求实数a 的值;(2)若()0f x >对任意的[1,)x ∈+∞成立,求实数a 的取值范围。

【常考题】高三数学下期中第一次模拟试题含答案

【常考题】高三数学下期中第一次模拟试题含答案

【常考题】高三数学下期中第一次模拟试题含答案一、选择题1.若正项递增等比数列{}n a 满足()()()243510a a a a R λλ+-+-=∈,则89a a λ+的最小值为( ) A .94- B .94C .274D .274-2.在中,,,,则A .B .C .D .3.已知实数,x y 满足0{20x y x y -≥+-≤则2y x -的最大值是( )A .-2B .-1C .1D .24.已知实数x 、y 满足约束条件00134x y x ya a⎧⎪≥⎪≥⎨⎪⎪+≤⎩,若目标函数231x y z x ++=+的最小值为32,则正实数a 的值为( ) A .4 B .3C .2D .15.若直线()10,0x ya b a b+=>>过点(1,1),则4a b +的最小值为( ) A .6B .8C .9D .106.数列{}n a 为等比数列,若11a =,748a a =,数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则5(S = )A .3116B .158C .7D .317.在ABC ∆中,角,,A B C 的对边分别是,,a b c , 2cos 22A b c c+=,则ABC ∆的形状为 A .直角三角形 B .等腰三角形或直角三角形 C .等腰直角三角形 D .正三角形8.等比数列{}n a 中,11,28a q ==,则4a 与8a 的等比中项是( ) A .±4 B .4 C .14± D .149.数列{a n }满足a 1=1,对任意n ∈N *都有a n +1=a n +n +1,则122019111a a a ++⋯+=( ) A .20202019B .20191010C .20171010D .4037202010.已知正项数列{}n a 中,*12(1)()2n n n a a a n N ++++=∈,则数列{}n a 的通项公式为( ) A .n a n =B .2n a n =C .2n na =D .22n n a =11.已知a >0,x ,y 满足约束条件1{3(3)x x y y a x ≥+≤≥-,若z=2x+y 的最小值为1,则a=A .B .C .1D .212.若0,0x y >>,且211x y+=,227x y m m +>+恒成立,则实数m 的取值范围是( ) A .(8,1)-B .(,8)(1,)-∞-⋃+∞C .(,1)(8,)-∞-⋃+∞D .(1,8)-二、填空题13.已知lg lg 2x y +=,则11x y+的最小值是______. 14.在ABC ∆中,角,,A B C 所对的边为,,a b c ,若23sin c ab C =,则当b aa b+取最大值时,cos C __________;15.设n S 是等差数列{}n a 的前n 项和,若510S =,105S =-,则公差d =(___). 16.在等比数列中,,则__________.17.已知数列{}n a 、{}n b 均为等差数列,且前n 项和分别为n S 和n T ,若321n n S n T n +=+,则44a b =_____. 18.已知命题20001:,02p x R ax x ∃∈++≤,若命题p 是假命题,则实数a 的取值范围是________.19.在无穷等比数列{}n a 中,123,1a a ==,则()1321lim n n a a a -→∞++⋯+=______. 20.在△ABC 中,2BC =,7AC =3B π=,则AB =______;△ABC 的面积是______.三、解答题21.某厂家拟在2020年举行促销活动,经调查测算,某产品的年销售量(即该厂的年产量)m 万件与年促销费用x 万元,满足31km x =-+(k 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件,已知2020年生产该产品的固定投入为8万元,每生产1万件,该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2020年该产品的利润y (万元)表示为年促销费用x (万元)的函数; (2)该厂家2020年的促销费用投入多少万元时,厂家的利润最大? 22.在四边形ABCD 中,120BAD ︒∠=,60BCD ︒∠=,1cos 7D =-,2AD DC ==.(1) 求cos DAC ∠及AC 的长; (2) 求BC 的长.23.已知数列{}n a 是公差为2-的等差数列,若1342,,a a a +成等比数列. (1)求数列{}n a 的通项公式;(2)令12n n n b a -=-,数列{}n b 的前n 项和为n S ,求满足0n S ≥成立的n 的最小值.24.已知数列{}n a 的前n 项和为n S ,且1,n a ,n S 成等差数列. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足12n n n a b na =+,求数列{}n b 的前n 项和n T .25.各项均为整数的等差数列{}n a ,其前n 项和为n S ,11a =-,2a ,3a ,41S +成等比数列.(1)求{}n a 的通项公式;(2)求数列{(1)}nn a -•的前2n 项和2n T .26.已知函数()2sin(2)(||)2f x x πϕϕ=+<部分图象如图所示.(1)求ϕ值及图中0x 的值;(2)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,已知7,()2,c f C ==-sin B =2sin A ,求a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】设等比数列的公比为q (q >1),1+(a 2-a 4)+λ(a 3-a 5)=0,可得λ=24531a a a a +--则a 8+λa 9=a 8+666929498385888222535353111a a a a a a a a a q q q a a a a a a a q a a q q --+=++=+-=------令21t q =-,(t >0),q 2=t+1,则设f (t )=()()()()()()3232622213112111t t t t t t q f t q t t t ++-+-+=='=∴-当t >12时,f (t )递增; 当0<t <12时,f (t )递减. 可得t=12处,此时q=6,f (t )取得最小值,且为274,则a 8+λa 9的最小值为274; 故选C.2.D解析:D 【解析】 【分析】根据三角形内角和定理可知,再由正弦定理即可求出AB .【详解】 由内角和定理知,所以,即,故选D. 【点睛】本题主要考查了正弦定理,属于中档题.3.C解析:C 【解析】作出可行域,如图BAC ∠内部(含两边),作直线:20l y x -=,向上平移直线l ,2z y x =-增加,当l 过点(1,1)A 时,2111z =⨯-=是最大值.故选C .4.D解析:D 【解析】 【分析】作出不等式组所表示的可行域,根据目标函数的几何意义,利用直线斜率的几何意义以及数形结合进行求解即可. 【详解】 目标函数()12123112111x y x y y z x x x ++++++===+⨯+++, 设11y k x +=+,则k 的几何意义是区域内的点与定点(1,1)D --连线的斜率, 若目标函数231x y z x ++=+的最小值为32,即12z k =+的最小值是32, 由3122k +=,得14k =,即k 的最小值是14,作出不等式组对应的平面区域如图:由斜率的意义知过D 的直线经过()3,0B a 时,直线的斜率k 最小,此时011314k a +==+, 得314a +=,得1a =. 故选:D. 【点睛】本题考查利用线性规划中非线性目标函数的最值求参数,解题时要结合非线性目标函数的几何意义寻找最优解,考查数形结合思想的应用,属于中等题.5.C解析:C 【解析】 【详解】 因为直线()10,0x ya b a b+=>>过点()1,1,所以11+1a b = ,因此1144(4)(+)5+59b a b aa b a b a b a b+=+≥+⋅= ,当且仅当23b a ==时取等号,所以选C.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.6.A解析:A 【解析】 【分析】先求等比数列通项公式,再根据等比数列求和公式求结果. 【详解】数列{}n a 为等比数列,11a =,748a a =,638q q ∴=,解得2q =,1112n n n a a q --∴==,数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,55111111131211248161612S ⎛⎫⨯- ⎪⎝⎭∴=++++==-.故选A . 【点睛】本题考查等比数列通项公式与求和公式,考查基本分析求解能力,属基础题.7.A解析:A 【解析】 【分析】先根据二倍角公式化简,再根据正弦定理化角,最后根据角的关系判断选择. 【详解】 因为2cos22A b c c+=,所以1cosA 22b cc ++=,() ccosA b,sinCcosA sinB sin A C ,sinAcosC 0===+=,因此cosC 0C 2π==,,选A.【点睛】本题考查二倍角公式以及正弦定理,考查基本分析转化能力,属基础题.8.A解析:A 【解析】 【分析】利用等比数列{}n a 的性质可得2648a a a = ,即可得出.【详解】设4a 与8a 的等比中项是x .由等比数列{}n a 的性质可得2648a a a =,6x a ∴=± .∴4a 与8a 的等比中项561248x a =±=±⨯=±. 故选A . 【点睛】本题考查了等比中项的求法,属于基础题.9.B解析:B 【解析】 【分析】由题意可得n ≥2时,a n -a n -1=n ,再由数列的恒等式:a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1),运用等差数列的求和公式,可得a n ,求得1n a =()21n n +=2(1n -11n +),由数列的裂项相消求和,化简计算可得所求和. 【详解】解:数列{a n }满足a 1=1,对任意n ∈N *都有a n +1=a n +n +1, 即有n ≥2时,a n -a n -1=n ,可得a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =1+2+3+…+n =12n (n +1),1n =也满足上式 1n a =()21n n +=2(1n -11n +), 则122019111a a a ++⋯+=2(1-12+12-13+…+12019-12020) =2(1-12020)=20191010.故选:B . 【点睛】本题考查数列的恒等式的运用,等差数列的求和公式,以及数列的裂项相消求和,考查化简运算能力,属于中档题.10.B解析:B 【解析】 【分析】()()1122n n n n +-=-的表达式,可得出数列{}n a 的通项公式. 【详解】(1)(1),(2)22n n n n n n +-=-=≥1=,所以2,(1),n n n a n =≥= ,选B.【点睛】给出n S 与n a 的递推关系求n a ,常用思路是:一是利用1,2n n n a S S n -=-≥转化为n a 的递推关系,再求其通项公式;二是转化为n S 的递推关系,先求出n S 与n 之间的关系,再求n a . 应用关系式11,1{,2n n n S n a S S n -==-≥时,一定要注意分1,2n n =≥两种情况,在求出结果后,看看这两种情况能否整合在一起.11.B解析:B 【解析】 【分析】 【详解】画出不等式组表示的平面区域如图所示:当目标函数z=2x+y 表示的直线经过点A 时,z 取得最小值,而点A 的坐标为(1,2a -),所以221a -=,解得12a =,故选B. 【考点定位】本小题考查线性规划的基础知识,难度不大,线性规划知识在高考中一般以小题的形式出现,是高考的重点内容之一,几乎年年必考.12.A解析:A 【解析】 【分析】将代数式21x y+与2x y +相乘,展开式利用基本不等式求出2x y +的最小值8,将问题转化为解不等式()2min 72m m x y +<+,解出即可.【详解】由基本不等式得()2144224248y x y x x y x y x y x y x y ⎛⎫+=++=++≥⋅=⎪⎝⎭,当且仅当()4,0y xx y x y=>,即当2x y =时,等号成立,所以,2x y +的最小值为8. 由题意可得()2min 728m m x y +<+=,即2780m m +-<,解得81m -<<.因此,实数m 的取值范围是(8,1)-,故选A.【点睛】本题考查基本不等式的应用,考查不等式恒成立问题以及一元二次不等式的解法,对于不等式恒成立问题,常转化为最值来处理,考查计算能力,属于中等题.二、填空题13.【解析】由得:所以当且仅当时取等号故填解析:15【解析】由lg lg 2x y +=得:100xy =,所以11111111()100100505xy x y xy x y x y ⎛⎫+=+=+≥= ⎪⎝⎭,当且仅当10x y ==时,取等号,故填15. 14.【解析】【分析】由余弦定理得结合条件将式子通分化简得再由辅助角公式得出当时取得最大值从而求出结果【详解】在中由余弦定理可得所以其中当取得最大值时∴故答案为:【点睛】本题考查解三角形及三角函数辅助角公 解析:213【解析】 【分析】由余弦定理得2222cos c a b ab C =+-,结合条件23sin c ab C =,将式子b aa b+通分化简得3sin 2cos C C +,再由辅助角公式得出b aa b +()13sin C ϕ=+,当2C πϕ+=时,b aa b +取得最大值,从而求出结果. 【详解】在ABC ∆中由余弦定理可得2222cos c a b ab C =+-,所以2222cos 3sin 2cos 3sin 2cos b a a b c ab C ab C ab C C C a b ab ab ab++++====+()13sin C ϕ=+,其中213sin 13ϕ=,313cos 13ϕ=, 当b a a b +取得最大值13时,2C πϕ+=,∴213cos cos sin 213C πϕϕ⎛⎫=-== ⎪⎝⎭. 故答案为:213. 【点睛】本题考查解三角形及三角函数辅助角公式,考查逻辑思维能力和运算能力,属于常考题.15.【解析】【分析】根据两个和的关系得到公差条件解得结果【详解】由题意可知即又两式相减得【点睛】本题考查等差数列和项的性质考查基本分析求解能力属基础题解析:1-【解析】【分析】根据两个和的关系得到公差条件,解得结果.【详解】由题意可知,10551015S S -=--=-,即67891015a a a a a ++++=-,又1234510a a a a a ++++=,两式相减得2525d =-,1d =-.【点睛】本题考查等差数列和项的性质,考查基本分析求解能力,属基础题.16.64【解析】由题设可得q3=8⇒q=3则a7=a1q6=8×8=64应填答案64 解析:【解析】由题设可得,则,应填答案。

【好题】高三数学下期中一模试卷附答案

【好题】高三数学下期中一模试卷附答案

【好题】高三数学下期中一模试卷附答案一、选择题1.在ABC ∆中,2AC =,22BC =,135ACB ∠=o ,过C 作CD AB ⊥交AB 于D ,则CD =( ) A .255B .2C .3D .52.在R 上定义运算:A()1B A B =-,若不等式()x a -()1x a +<对任意的实数x ∈R 恒成立,则实数a 的取值范围是( ) A .11a -<<B .02a <<C .1322a -<< D .3122a -<< 3.已知实数x 、y 满足约束条件00134x y x ya a⎧⎪≥⎪≥⎨⎪⎪+≤⎩,若目标函数231x y z x ++=+的最小值为32,则正实数a 的值为( ) A .4B .3C .2D .14.已知函数1()2xf x ⎛⎫= ⎪⎝⎭,则不等式()24(3)f a f a ->的解集为( )A .(4,1)-B .(1,4)-C .(1,4)D .(0,4)5.已知数列{a n }满足331log 1log ()n n a a n N +++=∈且2469a a a ++=,则15793log ()a a a ++的值是( )A .-5B .-15C .5D .156.已知变量x , y 满足约束条件13230x x y x y ≥⎧⎪+≤⎨⎪--≤⎩,则2z x y =+的最小值为( )A .1B .2C .3D .67.在数列{}n a 中,12a =,11ln(1)n n a a n +=++,则n a =A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++8.已知等差数列{}n a 的前n 项为n S ,且1514a a +=-,927S =-,则使得n S 取最小值时的n 为( ). A .1 B .6C .7D .6或7 9.设函数是定义在上的单调函数,且对于任意正数有,已知,若一个各项均为正数的数列满足,其中是数列的前项和,则数列中第18项( )A .B .9C .18D .3610.已知:0x >,0y >,且211x y+=,若222x y m m +>+恒成立,则实数m 的取值范围是( ) A .()4,2- B .(][),42,-∞-+∞U C .()2,4-D .(][),24,-∞-⋃+∞11.若x ,y 满足20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则2z y x =-的最大值为( ).A .8-B .4-C .1D .212.若0,0x y >>,且211x y+=,227x y m m +>+恒成立,则实数m 的取值范围是( ) A .(8,1)-B .(,8)(1,)-∞-⋃+∞C .(,1)(8,)-∞-⋃+∞D .(1,8)-二、填空题13.已知向量()()1,,,2a x b x y ==-r r ,其中0x >,若a r 与b r 共线,则y x的最小值为__________.14.计算:23lim 123n n nn→+∞-=++++L ________15.已知x ,y 满足3010510x y x y x y +-≤⎧⎪-+≥⎨⎪-+≤⎩,则2z x y =+的最大值为______.16.在ABC ∆中,,,a b c 分别为内角,,A B C 的对边,若32sin sin sin ,cos 5B AC B =+=,且6ABC S ∆=,则b =__________. 17.已知的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.18.已知等差数列{}n a 的前n 项n S 有最大值,且871a a <-,则当0n S <时n 的最小值为________.19.已知在△ABC 中,角,,A B C 的对边分别为,,a b c ,若2a b c +=,则C ∠的取值范围为________ 20.若直线1(00)x ya b a b+=>,>过点(1,2),则2a+b 的最小值为______. 三、解答题21.某厂家拟在2020年举行促销活动,经调查测算,某产品的年销售量(即该厂的年产量)m 万件与年促销费用x 万元,满足31km x =-+(k 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件,已知2020年生产该产品的固定投入为8万元,每生产1万件,该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2020年该产品的利润y (万元)表示为年促销费用x (万元)的函数; (2)该厂家2020年的促销费用投入多少万元时,厂家的利润最大? 22.已知函数f(x)=x 2-2ax -1+a ,a∈R. (1)若a =2,试求函数y =()f x x(x>0)的最小值; (2)对于任意的x∈[0,2],不等式f(x)≤a 成立,试求a 的取值范围. 23.数列{}n a 中,11a =,121n n a a n +=++. (1)求{}n a 的通项公式; (2)设141n n b a =-,求出数列{}n b 的前n 项和.24.若n S 是公差不为0的等差数列{}n a 的前n 项和,且124,,S S S 成等比数列,24S =. (1)求数列{}n a 的通项公式;(2)设13,n n n n b T a a +=是数列{}n b 的前n 项和,求使得20n m T <对所有n N +∈都成立的最小正整数m .25.已知n S 是数列{}n a 的前n 项之和,*111,2,n n a S na n N +==∈.(1)求数列{}n a 的通项公式; (2)设211(1)n n n n a b a a ++=-⋅⋅,数列{}n b 的前n 项和n T ,若112019n T +<,求正整数n 的最小值.26.已知点(1,2)是函数()(0,1)xf x a a a =>≠的图象上一点,数列{}n a 的前n 项和是()1n S f n =-.(1)求数列{}n a 的通项公式;(2)若1log n a n b a +=,求数列{}n n a b •的前n 项和n T【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】先由余弦定理得到AB 边的长度,再由等面积法可得到结果. 【详解】根据余弦定理得到2222.22AC BC AB AC BC +-=-⨯⨯将2AC =,22BC =,代入等式得到AB=25, 再由等面积法得到11225252222225CD CD ⨯⨯=⨯⨯⨯⇒=故答案为A. 【点睛】这个题目考查了解三角形的应用问题,涉及正余弦定理,面积公式的应用,在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.2.C解析:C 【解析】 【分析】根据新运算的定义, ()x a -()x a +22x x a a =-++-,即求221x x a a -++-<恒成立,整理后利用判别式求出a 范围即可【详解】Q A()1B A B =-∴()x a -()x a +()()()()22=11x a x a x a x a x x a a --+=--+-=-++-⎡⎤⎣⎦Q ()x a -()1x a +<对于任意的实数x ∈R 恒成立,221x x a a ∴-++-<,即2210x x a a -++--<恒成立,()()2214110a a ∴∆=-⨯-⨯--<,1322a ∴-<<故选:C 【点睛】本题考查新定义运算,考查一元二次不等式中的恒成立问题, 当x ∈R 时,利用判别式是解题关键3.D解析:D 【解析】 【分析】作出不等式组所表示的可行域,根据目标函数的几何意义,利用直线斜率的几何意义以及数形结合进行求解即可. 【详解】 目标函数()12123112111x y x y y z x x x ++++++===+⨯+++, 设11y k x +=+,则k 的几何意义是区域内的点与定点(1,1)D --连线的斜率, 若目标函数231x y z x ++=+的最小值为32,即12z k =+的最小值是32, 由3122k +=,得14k =,即k 的最小值是14,作出不等式组对应的平面区域如图:由斜率的意义知过D 的直线经过()3,0B a 时,直线的斜率k 最小,此时011314k a +==+, 得314a +=,得1a =. 故选:D. 【点睛】本题考查利用线性规划中非线性目标函数的最值求参数,解题时要结合非线性目标函数的几何意义寻找最优解,考查数形结合思想的应用,属于中等题.4.B解析:B 【解析】 【分析】先判断函数1()2xf x ⎛⎫= ⎪⎝⎭的单调性,把()24(3)f a f a ->转化为自变量的不等式求解.【详解】可知函数()f x 为减函数,由2(4)(3)f a f a ->,可得243a a -<, 整理得2340a a --<,解得14a -<<,所以不等式的解集为(1,4)-. 故选B. 【点睛】本题考查函数不等式,通常根据函数的单调性转化求解,一般不代入解析式.5.A解析:A 【解析】试题分析:331313log 1log log log 1n n n n a a a a +++=∴-=Q 即13log 1n n a a +=13n naa +∴= ∴数列{}n a 是公比为3的等比数列335579246()393a a a q a a a ∴++=++=⨯=15793log ()5a a a ∴++=-.考点:1.等比数列的定义及基本量的计算;2.对数的运算性质.6.A解析:A 【解析】 【分析】画出可行域,平移基准直线20x y +=到可行域边界的点()1,1C -处,由此求得z 的最小值. 【详解】画出可行域如下图所示,平移基准直线20x y +=到可行域边界的点()1,1C -处,此时z 取得最小值为()2111⨯+-=. 故选:A.【点睛】本小题主要考查线性规划问题,考查数形结合的数学思想方法,属于基础题.7.A解析:A 【解析】 【分析】 【详解】试题分析:在数列{}n a 中,11ln 1n n a a n +⎛⎫-=+⎪⎝⎭112211()()()n n n n n a a a a a a a a ---∴=-+-+⋅⋅⋅⋅⋅⋅+-+12lnln ln 2121n n n n -=++⋅⋅⋅⋅⋅⋅++-- 12ln()2121n n n n -=⋅⋅⋅⋅⋅⋅⋅⋅+-- ln 2n =+8.B解析:B 【解析】试题分析:由等差数列的性质,可得,又,所以,所以数列的通项公式为,令,解得,所以数列的前六项为负数,从第七项开始为正数,所以使得取最小值时的为,故选B .考点:等差数列的性质.9.C解析:C 【解析】∵f (S n )=f (a n )+f (a n +1)-1=f[a n (a n +1)]∵函数f (x )是定义域在(0,+∞)上的单调函数,数列{a n }各项为正数∴S n =a n (a n +1)①当n=1时,可得a 1=1;当n≥2时,S n-1=a n-1(a n-1+1)②,①-②可得a n = a n (a n +1)-a n-1(a n-1+1)∴(a n +a n-1)(a n -a n-1-1)=0∵a n >0,∴a n -a n-1-1=0即a n -a n-1=1∴数列{a n }为等差数列,a 1=1,d=1;∴a n =1+(n-1)×1=n 即a n =n 所以故选C10.A解析:A 【解析】 【分析】若222x y m m +>+恒成立,则2x y +的最小值大于22m m +,利用均值定理及“1”的代换求得2x y +的最小值,进而求解即可. 【详解】 由题,因为211x y+=,0x >,0y >, 所以()214422242448x y x yx y x y y x y x ⎛⎫++=+++≥+⋅=+=⎪⎝⎭,当且仅当4x y y x =,即4x =,2y =时等号成立,因为222x y m m +>+恒成立,则228m m +<,即2280m m +-<,解得42m -<<, 故选:A本题考查均值不等式中“1”的代换的应用,考查利用均值定理求最值,考查不等式恒成立问题.11.D解析:D 【解析】作出不等式组20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,所表示的平面区域,如图所示,当0x ≥时,可行域为四边形OBCD 内部,目标函数可化为2z y x =-,即2y x z =+,平移直线2y x =可知当直线经过点(0,2)D 时,直线的截距最大,从而z 最大,此时,max 2z =,当0x <时,可行域为三角形AOD ,目标函数可化为2z y x =+,即2y x z =-+,平移直线2y x =-可知当直线经过点(0,2)D 时,直线的截距最大,从而z 最大,max 2z =, 综上,2z y x =-的最大值为2. 故选D .点睛:利用线性规划求最值的步骤: (1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y b x a++型)和距离型(()()22x a y b +++型). (3)确定最优解:根据目标函数的类型,并结合可行域确定最优解. (4)求最值:将最优解代入目标函数即可求出最大值或最小值. 注意解答本题时不要忽视斜率不存在的情形.12.A解析:A 【解析】 【分析】将代数式21x y+与2x y +相乘,展开式利用基本不等式求出2x y +的最小值8,将问题转化为解不等式()2min 72m m x y +<+,解出即可. 【详解】由基本不等式得()21422448y x x y x y x y x y ⎛⎫+=++=++≥= ⎪⎝⎭,当且仅当()4,0y xx y x y=>,即当2x y =时,等号成立,所以,2x y +的最小值为8. 由题意可得()2min 728m m x y +<+=,即2780m m +-<,解得81m -<<. 因此,实数m 的取值范围是(8,1)-,故选A. 【点睛】本题考查基本不等式的应用,考查不等式恒成立问题以及一元二次不等式的解法,对于不等式恒成立问题,常转化为最值来处理,考查计算能力,属于中等题.二、填空题13.【解析】【分析】根据两个向量平行的充要条件写出向量的坐标之间的关系之后得出利用基本不等式求得其最小值得到结果【详解】∵其中且与共线∴即∴当且仅当即时取等号∴的最小值为【点睛】该题考查的是有关向量共线解析:【解析】 【分析】根据两个向量平行的充要条件,写出向量的坐标之间的关系,之后得出2y x x x=+,利用基本不等式求得其最小值,得到结果. 【详解】∵()1,a x =r , (),2b x y =-r ,其中0x >,且a r 与b r共线∴()12y x x ⨯-=⋅,即22y x =+∴222y x x x x x+==+≥,当且仅当2x x =即x =时取等号∴yx的最小值为 【点睛】该题考查的是有关向量共线的条件,涉及到的知识点有向量共线坐标所满足的条件,利用基本不等式求最值,属于简单题目.14.【解析】【详解】结合等差数列前n 项和公式有:则: 解析:6【详解】结合等差数列前n项和公式有:()1 1232nnn+++++=L,则:()()226231362lim lim lim lim61123111n n n nn nn n n nn n n nn→+∞→+∞→+∞→+∞----====+++++++L.15.5【解析】【分析】画出不等式表示的可行域利用目标函数的几何意义当截距最小时取z取得最大值求解即可【详解】画出不等式组表示的平面区域(如图阴影所示)化直线为当直线平移过点A时z取得最大值联立直线得A(解析:5【解析】【分析】画出不等式表示的可行域,利用目标函数的几何意义当截距最小时取z取得最大值求解即可【详解】画出不等式组表示的平面区域(如图阴影所示),化直线2z x y=+为122zy x=-+当直线平移过点A时,z取得最大值,联立直线3010x yx y+-=⎧⎨-+=⎩得A(1,2),故max145z=+=故答案为:5【点睛】本题考查画不等式组表示的平面区域、考查数形结合求函数的最值,是基础题16.4【解析】已知等式利用正弦定理化简得:可得可解得余弦定理可得可解得解析:4 【解析】已知等式2sin sin B A sinC =+,利用正弦定理化简得:2b a c =+,3cos ,5B =∴Q 可得4sin 5B ==,114sin 6225ABC S ac B ac ∆∴==⨯=,可解得15ac =,∴余弦定理可得,2222cos b a c ac B =+-()()221cos a c ac B =+-+=23421515b ⎛⎫-⨯⨯+ ⎪⎝⎭,∴可解得4b =,故答案为4.17.【解析】【分析】利用余弦定理得到进而得到结合正弦定理得到结果【详解】由正弦定理得【点睛】本题考查解三角形的有关知识涉及到余弦定理正弦定理及同角基本关系式考查恒等变形能力属于基础题解析:3【解析】 【分析】 利用余弦定理得到cos C ,进而得到sin C ,结合正弦定理得到结果. 【详解】925491cos ,sin 302C C +-==-=,由正弦定理得2sin 3c R R C ===. 【点睛】本题考查解三角形的有关知识,涉及到余弦定理、正弦定理及同角基本关系式,考查恒等变形能力,属于 基础题.18.14【解析】【分析】等差数列的前n 项和有最大值可知由知所以即可得出结论【详解】由等差数列的前n 项和有最大值可知再由知且又所以当时n 的最小值为14故答案为14【点睛】本题考查使的n 的最小值的求法是中档解析:14 【解析】 【分析】等差数列的前n 项和有最大值,可知0d <,由871a a <-,知1130a a +>,1150a a +<,1140a a +<,所以130S >,140S <,150S <,即可得出结论.【详解】由等差数列的前n 项和有最大值,可知0d <,再由871a a <-,知70a >,80a <,且780a a +<, 又711320a a a =+>,811520a a a =+<,781140a a a a +=+<, 所以130S >,140S <,150S <, 当<0n S 时n 的最小值为14, 故答案为14. 【点睛】本题考查使0n S <的n 的最小值的求法,是中档题,解题时要认真审题,注意等差数列的性质的合理运用.19.【解析】【分析】将已知条件平方后结合余弦定理及基本不等式求解出的范围得出角的范围【详解】解:在中即当且仅当是取等号由余弦定理知故答案为:【点睛】考查余弦定理与基本不等式三角函数范围问题切入点较难故属解析:(0,]3π【解析】 【分析】将已知条件平方后,结合余弦定理,及基本不等式求解出cos C 的范围.得出角C 的范围. 【详解】解:在ABC V 中,2a b c +=Q ,22()4a b c ∴+=,222422a b c ab ab ∴+=-≥,即2c ab ≥,当且仅当a b =是,取等号, 由余弦定理知,222223231cos 12222a b c c ab c C ab ab ab +--===-≥,03C π∴<≤.故答案为:(0,]3π.【点睛】考查余弦定理与基本不等式,三角函数范围问题,切入点较难,故属于中档题.20.【解析】当且仅当时取等号点睛:在利用基本不等式求最值时要特别注意拆拼凑等技巧使其满足基本不等式中正(即条件要求中字母为正数)定(不等式的另一边必须为定值)等(等号取得的条件)的条件才能应用否则会出现 解析:8【解析】1212412(2)()448b a a b a b a b a b a b +=∴+=++=++≥+=Q,当且仅当2b a = 时取等号.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.三、解答题21.(1)1628(0)1y x x x =--+≥+;(2)厂家2020年的促销费用投入3万元时,厂家的利润最大,为21万元. 【解析】 【分析】(1)由不搞促销活动,则该产品的年销售量只能是1万件,可求k 的值,再求出每件产品销售价格的代数式,则利润y (万元)表示为年促销费用x (万元)的函数可求. (2)由(1)得16281y x x =--++,再根据均值不等式可解.注意取等号. 【详解】(1)由题意知,当0x =时,1,m = 所以213,2,31k k m x =-==-+, 每件产品的销售价格为8161.5mm+⨯元. 所以2020年的利润816161.581628(0)1m y m m x x x m x +=⨯---=--+≥+; (2)由(1)知,161628(1)292111y x x x x =--+=--++≤++, 当且仅当16(1)1x x =++,即3x =时取等号, 该厂家2020年的促销费用投入3万元时,厂家的利润最大,为21万元. 【点睛】考查均值不等式的应用以及给定值求函数的参数及解析式.题目较易,考查的均值不等式,要注意取等号.22.(1)2-;(2)3,4⎡⎫+∞⎪⎢⎣⎭【解析】 【分析】(1)根据基本不等式求最值,注意等号取法,(2)先化简不等式,再根据二次函数图像确定满足条件的不等式,解不等式得结果. 【详解】(1)依题意得y=()f x x =2-41x x x +=x+1x -4. 因为x>0,所以x+1x ≥2.当且仅当x=1x时, 即x=1时,等号成立.所以y≥-2.所以当x=1时,y=()f x x的最小值为-2. (2)因为f(x)-a=x 2-2ax-1,所以要使得“对任意的x∈[0,2],不等式f(x)≤a 成立”只要“x 2-2ax-1≤0在[0,2]恒成立”.不妨设g(x)=x 2-2ax-1,则只要g(x)≤0在[0,2]上恒成立即可. 所以(0)0,(2)0,g g ≤⎧⎨≤⎩ 即0-0-10,4-4-10,a ≤⎧⎨≤⎩解得a≥34,则a 的取值范围为3,4∞⎡⎫+⎪⎢⎣⎭. 【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.23.(1)2n a n =;(2)21nn +. 【解析】 【分析】(1)直接根据累加法即可求得数列{}n a 的通项公式; (2)利用裂项相加即可得出数列{}n b 的前n 项和。

高三数学下期中第一次模拟试卷(附答案)(3)

高三数学下期中第一次模拟试卷(附答案)(3)

高三数学下期中第一次模拟试卷(附答案)(3)一、选择题1.已知点(),M a b 与点()0,1N -在直线3450x y -+=的两侧,给出以下结论:①3450a b -+>;②当0a >时,+a b 有最小值,无最大值;③221a b +>;④当0a >且1a ≠时,11b a +-的取值范围是93,,44⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,正确的个数是( ) A .1B .2C .3D .42.设,x y 满足约束条件 202300x y x y x y --≤⎧⎪-+≥⎨⎪+≤⎩,则46y x ++的取值范围是A .3[3,]7- B .[3,1]- C .[4,1]-D .(,3][1,)-∞-⋃+∞3.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,6B π=,4C π=,则ABC ∆的面积为( ) A.2+B1C.2D14.若直线()100,0ax by a b ++=>>把圆()()224116x y +++=分成面积相等的两部分,则122a b+的最小值为( ) A .10B .8C .5D .45.已知x ,y 满足2303301x y x y y +-≤⎧⎪+-≥⎨⎪≤⎩,z =2x +y 的最大值为m ,若正数a ,b 满足a +b =m ,则14a b+的最小值为( ) A .3B .32C .2D .526.设2z x y =+,其中,x y 满足2000x y x y y k +≥⎧⎪-≤⎨⎪≤≤⎩,若z 的最小值是12-,则z 的最大值为( ) A .9-B .12C .12-D .97.设ABC ∆的三个内角, , A B C 成等差数列,sin A 、sin B 、sin C 成等比数列,则这个三角形的形状是 ( )A .直角三角形B .等边三角形C .等腰直角三角形D .钝角三角形 8.设函数是定义在上的单调函数,且对于任意正数有,已知,若一个各项均为正数的数列满足,其中是数列的前项和,则数列中第18项( )A .B .9C .18D .369.设{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,则{}n a 的前n 项和n S =( )A .2744n n +B .2533n n+C .2324n n+D .2n n +10.等比数列{}n a 中,11,28a q ==,则4a 与8a 的等比中项是( ) A .±4B .4C .14± D .1411.,x y 满足约束条件362000x y x y x y -≤⎧⎪-+≥⎪⎨≥⎪⎪≥⎩,若目标函数(0,0)z ax by a b =+>>的最大值为12,则23a b+的最小值为 ( ) A .256B .25C .253D .512.如图,有四座城市A 、B 、C 、D ,其中B 在A 的正东方向,且与A 相距120km ,D 在A 的北偏东30°方向,且与A 相距60km ;C 在B 的北偏东30°方向,且与B 相距6013km ,一架飞机从城市D 出发以360/km h 的速度向城市C 飞行,飞行了15min ,接到命令改变航向,飞向城市B ,此时飞机距离城市B 有( )A .120kmB .606kmC .605kmD .3km二、填空题13.已知lg lg 2x y +=,则11x y+的最小值是______.14.已知向量()()1,,,2a x b x y ==-r r ,其中0x >,若a r 与b r 共线,则yx的最小值为__________.15.ABC ∆内角A 、B 、C 的对边分别是a ,b ,c ,且2cos (32)cos b C a c B =-.当b =2ac =,ABC ∆的面积为______.16.若正数,a b 满足3ab a b =++,则+a b 的取值范围_______________。

【必考题】高三数学下期中一模试卷带答案

【必考题】高三数学下期中一模试卷带答案

【必考题】高三数学下期中一模试卷带答案一、选择题1.下列结论正确的是( ) A .若a b >,则22ac bc > B .若22a b >,则a b > C .若,0a b c ><,则a c b c +<+D .若a b <,则a b <2.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,6B π=,4C π=,则ABC ∆的面积为( ) A .223+B .31+C .232-D .31-3.若n S 是等差数列{}n a 的前n 项和,其首项10a >,991000a a +>,991000a a ⋅< ,则使0n S >成立的最大自然数n 是( ) A .198B .199C .200D .2014.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .235.已知数列{}n a 满足112,0,2121,1,2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩若135a =,则数列的第2018项为 ( )A .15B .25C .35D .456.如图,为了测量山坡上灯塔CD 的高度,某人从高为=40h 的楼AB 的底部A 处和楼顶B 处分别测得仰角为=60βo,=30αo ,若山坡高为=35a ,则灯塔高度是( )A .15B .25C .40D .607.设ABC ∆的三个内角, , A B C 成等差数列,sin A 、sin B 、sin C 成等比数列,则这个三角形的形状是 ( ) A .直角三角形B .等边三角形C .等腰直角三角形D .钝角三角形8.已知数列{}n a 满足11a =,12nn n a a +=+,则10a =( )A .1024B .2048C .1023D .20479.若ABC V 的对边分别为,,a b c ,且1a =,45B ∠=o ,2ABC S =V ,则b =( )A .5B .25C .41D .5210.20,{0,0x y z x y x y x y y k+≥=+-≤≤≤设其中实数、满足若z 的最大值为6,z 的最小值为( )A .0B .-1C .-2D .-311.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,S 表示ABC V 的面积,若cos cos sin ,c B b C a A += ()22234S b a c =+-,则B ∠=A .90︒B .60︒C .45︒D .30︒12.已知等比数列{}n a 的前n 项和为n S ,11a =,且满足21,,n n n S S S ++成等差数列,则3a 等于( ) A .12B .12-C .14D .14-二、填空题13.已知lg lg 2x y +=,则11x y+的最小值是______. 14.已知x y ,满足20030x y y x y -≥⎧⎪≥⎨⎪+-≤⎩,,,,则222x y y ++的取值范围是__________.15.设,,若,则的最小值为_____________.16.已知数列{}n a 满足51()1,62,6n n a n n a a n -⎧-+<⎪=⎨⎪≥⎩,若对任意*n N ∈都有1n n a a +>,则实数a 的取值范围是_________.17.若数列{}n a 通项公式是12,123,3n n n n a n --⎧≤≤=⎨≥⎩,前n 项和为n S ,则lim n n S →∞=______. 18.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是__________.19.点D 在ABC V 的边AC 上,且3CD AD =,2BD =,3sin23ABC ∠=,则3AB BC +的最大值为______.20.若已知数列的前四项是2112+、2124+、2136+、2148+,则数列前n 项和为______.三、解答题21.等差数列{}n a 中,71994,2a a a ==.(1)求{}n a 的通项公式; (2)设1n nb na =,求数列{}n b 的前n 项和n S . 22.设ABC V 的内角A ,B ,C 的对边分别为a ,b ,c .若2cos cos cos c C a B b A =+. (1)求角C .(2)若ABC V 的面积为S ,且224()S b a c =--,2a =,求S .23.已知{}n a 为等差数列,且36a =-,60a =. (1)求{}n a 的通项公式;(2)若等比数列{}n b 满足18b =-,2123b a a a =++,求数列{}n b 的前n 项和公式. 24.如图,A ,B 是海面上位于东西方向相距()533+海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即即前往营救,其航行速度为30海里/小时,该救援船到达D 点需要多长时间?25.数列{}n a 中,11a = ,当2n ≥时,其前n 项和n S 满足21()2n n n S a S =⋅-.(1)求n S 的表达式; (2)设n b =21nS n +,求数列{}n b 的前n 项和n T . 26.首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为21200800002y x x =-+,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】选项A 中,当c=0时不符,所以A 错.选项B 中,当2,1a b =-=-时,符合22a b >,不满足a b >,B 错.选项C 中, a c b c +>+,所以C 错.选项D 中,因为0a ≤<b ,由不等式的平方法则,()()22a b <,即a b <.选D.2.B解析:B 【解析】试题分析:根据正弦定理,,解得,,并且,所以考点:1.正弦定理;2.面积公式.3.A解析:A 【解析】 【分析】先根据10a >,991000a a +>,991000a a ⋅<判断出991000,0a a ><;然后再根据等差数列前n 项和公式和等差中项的性质,即可求出结果. 【详解】∵991000a a ⋅<, ∴99a 和100a 异号; ∵1991000,0a a a >+>,991000,0a a ∴><, 有等差数列的性质可知,等差数列{}n a 的公差0d <, 当99,*n n N ≤∈时,0n a >;当100,*n n N ≥∈时,0n a <; 又()()119899100198198198022a a a a S +⨯+⨯==> ,()119919910019919902a a S a+⨯==<,由等差数列的前n 项和的性质可知,使前n 项和0n S >成立的最大自然数n 是198. 故选:A . 【点睛】本题主要考查了等差数列的性质.考查了学生的推理能力和运算能力.4.C解析:C 【解析】试题分析:∵24354{10a a a a +=+=,∴1122{35a d a d +=+=,∴14{3a d =-=,∴1011091040135952S a d ⨯=+⨯=-+=. 考点:等差数列的通项公式和前n 项和公式.5.A解析:A 【解析】 【分析】利用数列递推式求出前几项,可得数列{}n a 是以4为周期的周期数列,即可得出答案. 【详解】1112,0321521,12n n n n n a a a a a a +⎧≤<⎪⎪==⎨⎪-≤<⎪⎩Q , 211215a a =-=,32225a a ==,43425a a ==,5413215a a a =-== ∴数列{}n a 是以4为周期的周期数列,则201845042215a a a ⨯+===. 故选A . 【点睛】本题考查数列的递推公式和周期数列的应用,考查学生分析解决问题的能力,属于中档题.6.B解析:B 【解析】 【分析】过点B 作BE DC ⊥于点E ,过点A 作AF DC ⊥于点F ,在ABD ∆中由正弦定理求得AD ,在Rt ADF ∆中求得DF ,从而求得灯塔CD 的高度. 【详解】过点B 作BE DC ⊥于点E ,过点A 作AF DC ⊥于点F ,如图所示,在ABD ∆中,由正弦定理得,sin sin AB ADADB ABD=∠∠,即sin[90(90)]sin(90)h ADαβα=︒--︒-︒+,cos sin()h AD αβα∴=-,在Rt ADF ∆中,cos sin sin sin()h DF AD αβββα==-,又山高为a ,则灯塔CD 的高度是3340cos sin 22356035251sin()2h CD DF EF a αββα⨯⨯=-=-=-=-=-. 故选B .【点睛】本题考查了解三角形的应用和正弦定理,考查了转化思想,属中档题.7.B解析:B 【解析】 【分析】先由ABC ∆的三个内角, , A B C 成等差数列,得出2,33B AC ππ=+=,又因为sin A 、sin B 、sin C 成等比数列,所以23sin sin sin 4B AC =⋅=,整理计算即可得出答案.【详解】因为ABC ∆的三个内角, , A B C 成等差数列,所以2,33B AC ππ=+=, 又因为sin A 、sin B 、sin C 成等比数列, 所以23sin sin sin 4B AC =⋅= 所以222sin sin sin sin cos sin cos333A A A A A πππ⎛⎫⎛⎫⋅-=⋅-⎪ ⎪⎝⎭⎝⎭2313111132sin 2cos 2sin 2424442344A A A A A π⎛⎫=+=-+=-+= ⎪⎝⎭ 即sin 213A π⎛⎫-= ⎪⎝⎭又因为203A π<<所以3A π=故选B【点睛】本题考查数列与三角函数的综合,关键在于求得2,33B AC ππ=+=,再利用三角公式转化,属于中档题.8.C解析:C 【解析】 【分析】 根据叠加法求结果. 【详解】因为12n n n a a +=+,所以12nn n a a +-=,因此10981010921198122221102312a a a a a a a a -=-+-++-+=++++==-L L ,选C.【点睛】本题考查叠加法求通项以及等比数列求和,考查基本分析求解能力,属基础题.9.A解析:A 【解析】在ABC ∆中,1a =,045B ∠=,可得114522ABC S csin ∆=⨯⨯︒=,解得c =.由余弦定理可得:5b ===. 10.D解析:D 【解析】作出不等式对应的平面区域, 由z=x+y,得y=−x+z,平移直线y=−x+z ,由图象可知当直线y=−x+z 经过点A 时,直线y=−x+z 的截距最大, 此时z 最大为6.即x+y=6.经过点B 时,直线y=−x+z 的截距最小,此时z 最小. 由6{x y x y +=-=得A(3,3),∵直线y=k 过A , ∴k=3. 由3{20y k x y ==+=,解得B(−6,3).此时z 的最小值为z=−6+3=−3, 本题选择D 选项.点睛:求二元一次函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:b zy x a b =-+,通过求直线的截距z b的最值间接求出z 的最值.最优解在顶点或边界取得.11.D解析:D 【解析】 【分析】由正弦定理,两角和的正弦函数公式化简已知等式可得sin A =1,即A =900,由余弦定理、三角形面积公式可求角C ,从而得到B 的值. 【详解】由正弦定理及cos cos sin ,c B b C a A +=得2sin cos sin cos sin ,C B B C A +=()2sin sin sin 1C B A A ⇒+=⇒=,因为000180A <<,所以090A =;由余弦定理、三角形面积公式及)2223S b a c =+-,得13sin 2cos 2ab C ab C =, 整理得tan 3C =,又00090C <<,所以060C =,故030B =. 故选D 【点睛】本题考查正、余弦定理、两角和的正弦公式、三角形面积公式在解三角形中的综合应用,考查计算能力和转化思想,属于中档题.12.C解析:C 【解析】试题分析:由21,,n n n S S S ++成等差数列可得,212n n n n S S S S +++-=-,即122n n n a a a ++++=-,也就是2112n n a a ++=-,所以等比数列{}n a 的公比12q =-,从而2231111()24a a q ==⨯-=,故选C.考点:1.等差数列的定义;2.等比数列的通项公式及其前n 项和.二、填空题13.【解析】由得:所以当且仅当时取等号故填解析:15【解析】由lg lg 2x y +=得:100xy =,所以11111111()100100505xy x y xy x y x y ⎛⎫+=+=+≥= ⎪⎝⎭,当且仅当10x y ==时,取等号,故填15. 14.;【解析】【分析】利用表示的几何意义画出不等式组表示的平面区域求出点到点的距离的最值即可求解的取值范围【详解】表示点到点的距离则三角形为等腰三角形则点到点的距离的最小值为:1最大值为所以的最小值为:解析:[]0,9; 【解析】 【分析】 利用()()2201x y -++表示的几何意义,画出不等式组表示的平面区域,求出点(0,1)A -到点(,)x y 的距离的最值,即可求解222x y y ++的取值范围.【详解】()()22222011x y y x y ++=-++-()()2201x y -++表示点(0,1)A -到点(,)x y 的距离1AO =,1910,9110AD AC =+==+=ACD 为等腰三角形则点(0,1)A -到点(,)x y 的距离的最小值为:1,最大值为10 所以222x y y ++的最小值为:2110-=,最大值为:101=9-故222x y y ++的取值范围为[]09,故答案为:[]09,【点睛】本题主要考查了求平方和型目标函数的最值,属于中档题.15.3+22【解析】【分析】由已知可得a-1+b=1从而有2a-1+1b=(2a-1+1b)(a-1+b)展开后利用基本不等式即可求解【详解】由题意因为a>1b>2满足a+b=2所以a-1+b=1且a- 解析:【解析】 【分析】 由已知可得,从而有,展开后利用基本不等式,即可求解. 【详解】 由题意,因为满足, 所以,且,则,当且仅当且,即时取得最小值.【点睛】本题主要考查了利用基本不等式求最值问题的应用,其中解答中根据题意配凑基本不等式的使用条件,合理利用基本不等式求得最值是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.16.【解析】【分析】由题若对于任意的都有可得解出即可得出【详解】∵若对任意都有∴∴解得故答案为【点睛】本题考查了数列与函数的单调性不等式的解法考查了推理能力与计算能力属于中档题解析:17,212⎛⎫⎪⎝⎭【解析】 【分析】由题若对于任意的*n N ∈都有1n n a a +>,可得5610012a a a a -<,>,<<. 解出即可得出.∵511,62,6n n a n n a a n -⎧⎛⎫-+<⎪ ⎪=⎝⎭⎨⎪≥⎩,若对任意*n N ∈都有1n n a a +>, ∴5610012a a a a -<,>,<<.. ∴11 0()510122a a a a --⨯+<,>,<< , 解得17 212a <<. 故答案为17,212⎛⎫⎪⎝⎭. 【点睛】本题考查了数列与函数的单调性、不等式的解法,考查了推理能力与计算能力,属于中档题. 17.【解析】【分析】利用无穷等比数列的求和公式即可得出结论【详解】数列通项公式是前项和为当时数列是等比数列故答案为:【点睛】本题主要考查的是数列极限求出数列的和是关键考查等比数列前项和公式的应用是基础题 解析:5518. 【解析】【分析】 利用无穷等比数列的求和公式,即可得出结论.【详解】Q 数列{}n a 通项公式是12,123,3n n n n a n --⎧≤≤=⎨≥⎩,前n 项和为n S , 当3n ≥时,数列{}n a 是等比数列,331112731115531123118183182313n n n n S --⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎛⎫⎛⎫⎝⎭=++=+-=- ⎪ ⎪⎝⎭⎝⎭-, 5531lim 5518218l m 3i n n n n S →∞→∞⎡⎤⎛⎫-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=. 故答案为:5518. 【点睛】本题主要考查的是数列极限,求出数列的和是关键,考查等比数列前n 项和公式的应用,18.【解析】【详解】总费用为当且仅当即时等号成立故答案为30点睛:在利用基本不等式求最值时要特别注意拆拼凑等技巧使其满足基本不等式中正(即条件要求中字母为正数)定(不等式的另一边必须为定值)等(等号取得解析:30【解析】【详解】 总费用为600900464()42900240x x x x +⨯=+≥⨯=,当且仅当900x x=,即30x =时等号成立.故答案为30. 点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误. 19.【解析】【分析】根据条件可得利用余弦定理即可得到的关系再利用基本不等式即可得解【详解】设三角形的边为由由余弦定理得所以①又所以化简得②①②相除化简得故当且仅当成立所以所以的最大值为故答案为:【点睛】 解析:43【解析】【分析】根据条件可得1cos 3ABC ∠=, cos cos 0ADB BDC ∠+∠=,利用余弦定理即可得到AB 、AC 的关系,再利用基本不等式即可得解.【详解】设AD x =,3CD x =,三角形ABC 的边为a ,b ,c ,由21cos 12sin 23ABC ABC ∠∠=-=, 由余弦定理得222161cos 23a c x ABC ac +-∠==, 所以2222163x a c ac =+-, ① 又cos cos 0ADB BDC ∠+∠=, 22222262x x=2221238x c a =+-, ②①②相除化简得2232296ac a c ac -=+≥,故4ac ≤,当且仅当3a c =成立,所以()()2222339632448AB BC c a c a ac ac +=+=++=+≤,所以3AB BC +的最大值为故答案为:【点睛】本题考查了余弦定理和基本不等式的应用,考查了方程思想和运算能力,属于中档题. 20.【解析】【分析】观察得到再利用裂项相消法计算前项和得到答案【详解】观察知故数列的前项和故答案为:【点睛】本题考查了数列的通项公式裂项相消求和意在考查学生对于数列公式方法的灵活运用 解析:()()3234212n n n +-++ 【解析】【分析】 观察得到21111222n a n n n n ⎛⎫==- ⎪++⎝⎭,再利用裂项相消法计算前n 项和得到答案. 【详解】 观察知()2111112222n a n n n n n n ⎛⎫===- ⎪+++⎝⎭. 故数列的前n 项和11111113111...232422212n S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-- ⎪ ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ()()3234212n n n +=-++. 故答案为:()()3234212n n n +-++. 【点睛】本题考查了数列的通项公式,裂项相消求和,意在考查学生对于数列公式方法的灵活运用.三、解答题21.(1)12n n a +=(2)2222222()()()122311n n S n n n =-+-++-=++L 【解析】【分析】【详解】(1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d.因为71994{2a a a =,=,所以11164{1828a d a d a d +++=,=(). 解得a 1=1,d =12.所以{a n }的通项公式为a n =12n +. (2)b n =1n na =22211n n n n -++=(), 所以S n =2222222()122311n n n n ⎛⎫⎛⎫++⋯+ ⎪ ⎪+⎝⎭⎝⎭---=+ 22.(1)3C π=;(2)S =【解析】【分析】 (1)利用正弦定理与两角和正弦公式可得到结果;(2)由题意及三角形面积公式可得2cos 22sin ac B ac ac B -+=,结合特殊角的三角函数值得到2B π=,从而得到结果. 【详解】(1)由正弦定理得2sin cos sin cos sin cos C C A B B A =+,∴2sin cos sin()sin C C A B C =+=, ∴1cos 2C =,∵(0,)C π∈, ∴3C π=.(2)222224()22sin S b a c b a c ac ac B =--=--+=,∴由余弦定理得2cos 22sin ac B ac ac B -+=,∴sin cos 1B B +=,∴sin 4B π⎛⎫+= ⎪⎝⎭, ∵20,3B π⎛⎫∈ ⎪⎝⎭,∴2B π=,∴S =【点睛】本题考查了正弦、余弦定理,三角形的面积公式,以及三角恒等变换,考查计算能力与推理能力,属于中档题.23.(1)212n a n =-;(2)4(13)n n S =-.【解析】【分析】【详解】本试题主要是考查了等差数列的通项公式的求解和数列的前n 项和的综合运用.、 (1)设{}n a 公差为d ,由已知得1126{50a d a d +=-+=解得110{2a d =-=, 212n a n =-(2)21232324b a a a a =++==-Q ,∴等比数列{}n b 的公比212438b q b -===- 利用公式得到和8(13)4(13)13n n n S -⨯-==--. 24.救援船到达D 点需要1小时.【解析】【分析】【详解】5(33)906030,45,105sin sin •sin 5(33)?sin 455(33)?sin 45sin AB DBA DAB ADB DB AB DAB DAB ADBAB DAB DB ADB =+∠=︒-︒=︒∠=︒∴∠=︒∆=∠∠∠+︒+︒∴===∠解:由题意知海里,在中,由正弦定理得 海里又海里 中,由余弦定理得, 海里,则需要的时间答:救援船到达D 点需要1小时25.(1)1()21n S n N n =∈-;(2)21n n +。

2019年高三数学下期中一模试卷含答案(3)

2019年高三数学下期中一模试卷含答案(3)

2019年高三数学下期中一模试卷含答案(3)一、选择题1.已知实数x 、y 满足约束条件00134x y x ya a⎧⎪≥⎪≥⎨⎪⎪+≤⎩,若目标函数231x y z x ++=+的最小值为32,则正实数a 的值为( ) A .4B .3C .2D .12.数列{}{},n n a b 为等差数列,前n 项和分别为,n n S T ,若3n 22n n S T n +=,则77a b =( ) A .4126B .2314C .117 D .1163.若直线()10,0x ya b a b+=>>过点(1,1),则4a b +的最小值为( ) A .6B .8C .9D .104.设实数,x y 满足242210x y x y x -≤⎧⎪+≤⎨⎪-≥⎩,则1y x +的最大值是( )A .-1B .12C .1D .325.设数列{}n a 是等差数列,且26a =-,86a =,n S 是数列{}n a 的前n 项和,则( ). A .45S S <B .45S S =C .65S S <D .65S S =6.已知等比数列{}n a 的各项均为正数,前n 项和为n S ,若26442,S 6a S a =-=,则5a = A .4B .10C .16D .327.已知关于x 的不等式()224300x ax a a -+<<的解集为()12,x x ,则1212a x x x x ++的最大值是( ) ABCD. 8.《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,问芒种日影长为( ) A .一尺五寸B .二尺五寸C .三尺五寸D .四尺五寸9.设等差数列{}n a 的前n 项和为n S ,且()*11n n nS S n N n +>∈+.若870a a +<,则( ) A .n S 的最大值是8S B .n S 的最小值是8S C .n S 的最大值是7SD .n S 的最小值是7S10.若正数,x y 满足20x y xy +-=,则32x y+的最大值为( ) A .13B .38C .37D .111.已知等比数列{}n a 的各项均为正数,若3132312log log log 12a a a ++⋯+=,则67a a =( ) A .1B .3C .6D .912.已知等比数列{}n a 的前n 项和为n S ,11a =,且满足21,,n n n S S S ++成等差数列,则3a 等于( ) A .12B .12-C .14D .14-二、填空题13.已知0,0x y >>,1221x y +=+,则2x y +的最小值为 . 14.已知数列{}n a 的首项12a =,且满足()*12n n n a a n N +=∈,则20a =________. 15.已知函数()2xf x =,等差数列{}n a 的公差为2,若()2468104f a a a a a ++++=,则()()()()212310log f a f a f a f a ⋅⋅⋅⋅=⎡⎤⎣⎦L ___________.16.已知0a >,0b >,且31a b +=,则43a b+的最小值是_______. 17.已知等差数列{}n a 的前n 项n S 有最大值,且871a a <-,则当0n S <时n 的最小值为________.18.在平面内,已知直线12l l P ,点A 是12,l l 之间的定点,点A 到12,l l 的距离分别为和,点是2l 上的一个动点,若AC AB ⊥,且AC 与1l 交于点C ,则ABC ∆面积的最小值为____. 19.已知三角形中,边上的高与边长相等,则的最大值是__________.20.设2a b +=,0b >,则当a =_____时,1||2||a a b+取得最小值. 三、解答题21.已知等差数列{}n a 的所有项和为150,且该数列前10项和为10,最后10项的和为50.(1)求数列{}n a 的项数; (2)求212230a a a ++⋅⋅⋅+的值.22.ABC △的内角,,A B C 的对边分别为,,a b c,且cos )()cos a B C c b A -=-.(1)求A ; (2)若b =D 在BC 边上,2CD =,3ADC π∠=,求ABC △的面积.23.已知数列{}n a 中,11a =,其前n 项的和为n S ,且当2n ≥时,满足21nn n S a S =-.(1)求证:数列1n S ⎧⎫⎨⎬⎩⎭是等差数列; (2)证明:2221274n S S S +++<L . 24.在等比数列{}n b 中,公比为()01q q <<,13511111,,,,,,50322082b b b ∈⎧⎫⎨⎬⎩⎭. (1)求数列{}n b 的通项公式;(2)设()31n n c n b =-,求数列{}n c 的前n 项和n T .25.已知数列{}n a 的前n 项和()2*,,n S pn qn p q n =+∈∈R N ,且143,24.a S ==(1)求数列{}n a 的通项公式;(2)设2n an b =,求数列{}n b 的前n 项和n T .26.已知等差数列{}n a 的前n 项和为n S ,且1250,15a a S +==,数列{}n b 满足:12b a =,且131(2).n n n n n nb a b a b ++++=(1)求数列{}n a 和{}n b 的通项公式;(2)若211(5)log n n n c a b +=+⋅,求数列{}n c 的 前n 项和.n T【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D【分析】作出不等式组所表示的可行域,根据目标函数的几何意义,利用直线斜率的几何意义以及数形结合进行求解即可.【详解】目标函数()121 23112111x yx y yzx x x++++++===+⨯+++,设11ykx+=+,则k的几何意义是区域内的点与定点(1,1)D--连线的斜率,若目标函数231x yzx++=+的最小值为32,即12z k=+的最小值是32,由3122k+=,得14k=,即k的最小值是14,作出不等式组对应的平面区域如图:由斜率的意义知过D的直线经过()3,0B a时,直线的斜率k最小,此时011314ka+==+,得314a+=,得1a=.故选:D.【点睛】本题考查利用线性规划中非线性目标函数的最值求参数,解题时要结合非线性目标函数的几何意义寻找最优解,考查数形结合思想的应用,属于中等题.2.A解析:A【解析】依题意,113713113713132412226132a aa Sb bb T+⋅===+⋅.3.C【解析】 【详解】 因为直线()10,0x y a ba b+=>>过点()1,1,所以11+1a b = ,因此1144(4)(+)5+529b a b aa b a b a b a b+=+≥+⋅= ,当且仅当23b a ==时取等号,所以选C.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.4.D解析:D 【解析】 【分析】由约束条件确定可行域,由1y x+的几何意义,即可行域内的动点与定点P (0,-1)连线的斜率求得答案. 【详解】由约束条件242210x y x y x -≤⎧⎪+≤⎨⎪-≥⎩,作出可行域如图,联立10220x x y -=⎧⎨+-=⎩,解得A (112,),1y x+的几何意义为可行域内的动点与定点P (0,-1)连线的斜率,由图可知,113212PAk +==最大. 故答案为32. 【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,属于中档题型.5.B解析:B 【解析】分析:由等差数列的性质,即2852a a a +=,得5=0a ,又由545S S a =+,得54S S =. 详解:Q 数列{}n a 为等差数列, 2852a a a ∴+= 又286,6a a =-=Q ,5=0a ∴由数列前n 项和的定义545S S a =+,54S S ∴= 故选B.点睛:本题考查等差数列的性质与前n 项和计算的应用,解题时要认真审题,注意灵活运用数列的基本概念与性质.6.C解析:C 【解析】由64S S -=6546a a a +=得,()22460,60q q a q q +-=+-=,解得2q =,从而3522=28=16a a =⋅⨯,故选C.7.D解析:D 【解析】:不等式x 2-4ax +3a 2<0(a <0)的解集为(x 1,x 2),根据韦达定理,可得:2123x x a =,x 1+x 2=4a ,那么:1212a x x x x ++=4a +13a. ∵a <0, ∴-(4a +13a ),即4a +13a ≤故1212a x x x x ++的最大值为3-. 故选D .点睛:本题主要考查基本不等式,其难点主要在于利用三角形的一边及这条边上的高表示内接正方形的边长.在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.8.B解析:B 【解析】 【分析】从冬至日起各节气日影长设为{}n a ,可得{}n a 为等差数列,根据已知结合前n 项和公式和等差中项关系,求出通项公式,即可求解. 【详解】由题知各节气日影长依次成等差数列,设为{}n a ,n S 是其前n 项和,则()19959985.52a a S a +===尺,所以59.5a =尺,由题知1474331.5a a a a ++==, 所以410.5a =,所以公差541d a a =-=-, 所以1257 2.5a a d =+=尺。

2020-2021高三数学下期中第一次模拟试题(附答案)

2020-2021高三数学下期中第一次模拟试题(附答案)

2020-2021高三数学下期中第一次模拟试题(附答案)一、选择题1.数列{}n a 满足()11nn n a a n ++=-⋅,则数列{}n a 的前20项的和为( )A .100B .-100C .-110D .1102.设,x y 满足约束条件3002x y x y x -+≥⎧⎪+≥⎨⎪≤⎩, 则3z x y =+的最小值是 A .5-B .4C .3-D .113.已知实数x 、y 满足约束条件00134x y x ya a⎧⎪≥⎪≥⎨⎪⎪+≤⎩,若目标函数231x y z x ++=+的最小值为32,则正实数a 的值为( ) A .4B .3C .2D .14.数列{}{},n n a b 为等差数列,前n 项和分别为,n n S T ,若3n 22n n S T n +=,则77a b =( ) A .4126B .2314C .117 D .1165.若直线()10,0x ya b a b+=>>过点(1,1),则4a b +的最小值为( ) A .6B .8C .9D .106.若直线2y x =上存在点(,)x y 满足30,230,,x y x y x m +-≤⎧⎪--≥⎨⎪≥⎩则实数m 的最大值为A .2-B .1-C .1D .37.已知函数22()()()n n f n n n 为奇数时为偶数时⎧=⎨-⎩,若()(1)n a f n f n =++,则123100a a a a ++++=LA .0B .100C .100-D .102008.已知关于x 的不等式()224300x ax a a -+<<的解集为()12,x x ,则1212a x x x x ++的最大值是( )A .6 B .23C .43D .43-9.若函数1()(2)2f x x x x =+>-在x a =处取最小值,则a 等于( ) A .3B .13+C .12+D .410.已知等比数列{}n a 中,31174a a a =,数列{}n b 是等差数列,且77b a =,则59b b +=( ) A .2B .4C .16D .811.若a ,b ,c ,d∈R,则下列说法正确的是( ) A .若a >b ,c >d ,则ac >bd B .若a >b ,c >d ,则a+c >b+d C .若a >b >0,c >d >0,则c d a b> D .若a >b ,c >d ,则a ﹣c >b ﹣d12.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,S 表示ABC V 的面积,若cos cos sin ,c B b C a A += ()2223S b a c =+-,则B ∠=A .90︒B .60︒C .45︒D .30︒二、填空题13.设函数2()1f x x =-,对任意2,3x ⎡⎫∈+∞⎪⎢⎣⎭,24()(1)4()x f m f x f x f m m ⎛⎫-≤-+⎪⎝⎭恒成立,则实数m 的取值范围是 . 14.若为等比数列的前n 项的和,,则=___________15.已知数列{}n a 为正项的递增等比数列,1582a a +=,2481a a =g ,记数列2n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则使不等式112020|1|13n nT a -->成立的最大正整数n 的值是__________.16.在数列{}n a 中,11a =,且{}n a 是公比为13的等比数列.设13521T n n a a a a L -=++++,则lim n n T →∞=__________.(*n ∈N ) 17.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,已知274sincos 222A B C +-=,且5,7a b c +==,则ab 为 .18.某校数学课外小组在坐标纸上为学校的一块空地设计植树方案为:第K 棵树种植在点(),k k k P x y 处,其中11x =,11y =,当2K ≥时,111215551255k k k k k k x x T T k k y y T T --⎧⎡⎤--⎛⎫⎛⎫=+--⎪ ⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎨--⎛⎫⎛⎫⎪=+- ⎪ ⎪⎪⎝⎭⎝⎭⎩()T a 表示非负实数a 的整数部分,例如()2.62T =,()0.20T =.按此方案第2016棵树种植点的坐标应为_____________.19.设{}n a 是等差数列,且13a =,2536a a +=,则{}n a 的通项公式为__________. 20.在△ABC 中,2BC =,AC =3B π=,则AB =______;△ABC 的面积是______.三、解答题21.在ABC ∆中,,,a b c 分别是角,,A B C 所对的边,且2sin 3tan c B a A =.(1)求222b c a+的值; (2)若2a =,求ABC ∆面积的最大值.22.已知ABC ∆的内角,,A B C 所对的边分别为,,a b c ,且2a =. (1)若b =30A =︒,求角B 的值;(2)若ABC ∆的面积3ABC S ∆=,cos 45B =,求,b c 的值. 23.ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC V 的外接圆半径为R,且sin sin cos 0A B b A --=.(1)求A ∠;(2)若tan 2tan A B =,求sin 2sin 2sin b Ca b B c C+-的值.24.在ABC ∆中,角A 、B 、C 的对边分别是a 、b 、c ,如果A 、B 、C 成等差数列且b =(1)当4A π=时,求ABC ∆的面积S ;(2)若ABC ∆的面积为S ,求S 的最大值.25.设等差数列{}n a 的前n 项和为n S ,225+=-a S ,515=-S . (1)求数列{}n a 的通项公式; (2)求12231111+++⋯+n n a a a a a a . 26.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,14cos a C a+=,1b =. (1)若90A ∠=︒,求ABC V 的面积;(2)若ABC V 的面积为32,求a ,c .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】数列{a n }满足1(1)nn n a a n ++=-⋅,可得a 2k ﹣1+a 2k =﹣(2k ﹣1).即可得出.【详解】∵数列{a n }满足1(1)nn n a a n ++=-⋅,∴a 2k ﹣1+a 2k =﹣(2k ﹣1).则数列{a n }的前20项的和=﹣(1+3+……+19)()101192⨯+=-=-100.故选:B . 【点睛】本题考查了数列递推关系、数列分组求和方法,考查了推理能力与计算能力,属于中档题.2.C解析:C 【解析】画出不等式组表示的可行域如图阴影部分所示.由3z x y =+可得3y x z =-+.平移直线3y x z =-+,结合图形可得,当直线3y x z =-+经过可行域内的点A 时,直线在y 轴上的截距最小,此时z 也取得最小值.由30x yx y-+=⎧⎨+=⎩,解得3232xy⎧=-⎪⎪⎨⎪=⎪⎩,故点A的坐标为33(,)22-.∴min333()322z=⨯-+=-.选C.3.D解析:D【解析】【分析】作出不等式组所表示的可行域,根据目标函数的几何意义,利用直线斜率的几何意义以及数形结合进行求解即可.【详解】目标函数()12123112111x yx y yzx x x++++++===+⨯+++,设11ykx+=+,则k的几何意义是区域内的点与定点(1,1)D--连线的斜率,若目标函数231x yzx++=+的最小值为32,即12z k=+的最小值是32,由3122k+=,得14k=,即k的最小值是14,作出不等式组对应的平面区域如图:由斜率的意义知过D的直线经过()3,0B a时,直线的斜率k最小,此时011314ka+==+,得314a+=,得1a=.故选:D.【点睛】本题考查利用线性规划中非线性目标函数的最值求参数,解题时要结合非线性目标函数的几何意义寻找最优解,考查数形结合思想的应用,属于中等题.4.A解析:A 【解析】依题意,113713113713132412226132a a a S b b b T +⋅===+⋅.5.C解析:C 【解析】 【详解】 因为直线()10,0x ya b a b+=>>过点()1,1,所以11+1a b = ,因此114(4)(+)5+59b a a b a b a b +=+≥+= ,当且仅当23b a ==时取等号,所以选C.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.6.B解析:B 【解析】 【分析】首先画出可行域,然后结合交点坐标平移直线即可确定实数m 的最大值. 【详解】不等式组表示的平面区域如下图所示,由2230y x x y =⎧⎨--=⎩,得:12x y =-⎧⎨=-⎩,即C 点坐标为(-1,-2),平移直线x =m ,移到C 点或C 点的左边时,直线2y x =上存在点(,)x y 在平面区域内, 所以,m ≤-1, 即实数m 的最大值为-1.【点睛】本题主要考查线性规划及其应用,属于中等题.7.B解析:B 【解析】试题分析:由题意可得,当n 为奇数时,()22()(1)121;n a f n f n n n n =++=-+=--当n 为偶数时,()22()(1)121;n a f n f n n n n =++=-++=+所以()1231001399a a a a a a a ++++=+++L L ()()()2410021359999224610099100a a a ++++=-++++-++++++=L L L ,故选B.考点:数列的递推公式与数列求和.【方法点晴】本题主要考查了数列的递推公式与数列求和问题,考查了考生的数据处理与运算能力,属于中档题.本题解答的关键是根据给出的函数()22(){()n n f n n n =-当为奇数时当为偶数时及()(1)n a f n f n =++分别写出n 为奇数和偶数时数列{}n a 的通项公式,然后再通过分组求和的方法得到数列{}n a 前100项的和.8.D解析:D 【解析】:不等式x 2-4ax +3a 2<0(a <0)的解集为(x 1,x 2),根据韦达定理,可得:2123x x a =,x 1+x 2=4a ,那么:1212a x x x x ++=4a +13a. ∵a <0, ∴-(4a +13a )143a a ⨯43,即4a +13a ≤43故1212a x x x x ++的最大值为3-. 故选D .点睛:本题主要考查基本不等式,其难点主要在于利用三角形的一边及这条边上的高表示内接正方形的边长.在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.9.A解析:A 【解析】 【分析】将函数()y f x =的解析式配凑为()()1222f x x x =-++-,再利用基本不等式求出该函数的最小值,利用等号成立得出相应的x 值,可得出a 的值.【详解】当2x >时,20x ->,则()()1122222f x x x x x =+=-++≥-- 4=, 当且仅当()1222x x x -=>-时,即当3x =时,等号成立,因此,3a =,故选A. 【点睛】本题考查基本不等式等号成立的条件,利用基本不等式要对代数式进行配凑,注意“一正、二定、三相等”这三个条件的应用,考查计算能力,属于中等题.10.D解析:D 【解析】 【分析】利用等比数列性质求出a 7,然后利用等差数列的性质求解即可. 【详解】等比数列{a n }中,a 3a 11=4a 7, 可得a 72=4a 7,解得a 7=4,且b 7=a 7, ∴b 7=4,数列{b n }是等差数列,则b 5+b 9=2b 7=8. 故选D . 【点睛】本题考查等差数列以及等比数列的通项公式以及简单性质的应用,考查计算能力.11.B解析:B【分析】利用不等式的性质和通过举反例否定一个命题即可得出结果. 【详解】A 项,虽然41,12>->-,但是42->-不成立,所以不正确;B 项,利用不等式的同向可加性得知,其正确,所以成立,即B 正确;C 项,虽然320,210>>>>,但是3221>不成立,所以C 不正确; D 项,虽然41,23>>-,但是24>不成立,所以D 不正确; 故选B. 【点睛】该题考查的是有关正确命题的选择问题,涉及到的知识点有不等式的性质,对应的解题的方法是不正确的举出反例即可,属于简单题目.12.D解析:D 【解析】 【分析】由正弦定理,两角和的正弦函数公式化简已知等式可得sin A =1,即A =900,由余弦定理、三角形面积公式可求角C ,从而得到B 的值. 【详解】由正弦定理及cos cos sin ,c B b C a A +=得2sin cos sin cos sin ,C B B C A +=()2sin sin sin 1C B A A ⇒+=⇒=,因为000180A <<,所以090A =;由余弦定理、三角形面积公式及)2224S b a c =+-,得1sin 2cos 24ab C ab C =,整理得tan C =,又00090C <<,所以060C =,故030B =. 故选D 【点睛】本题考查正、余弦定理、两角和的正弦公式、三角形面积公式在解三角形中的综合应用,考查计算能力和转化思想,属于中档题.二、填空题13.【解析】【分析】【详解】根据题意由于函数对任意恒成立分离参数的思想可知递增最小值为即可知满足即可成立故答案为解析:,22⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎦⎣⎭【解析】 【分析】根据题意,由于函数2()1f x x =-,对任意2,3x ⎡⎫∈+∞⎪⎢⎣⎭,24()(1)4()x f m f x f x f m m ⎛⎫-≤-+ ⎪⎝⎭恒成立,22222()4(1)(1)11xm x x m m--≤--+-,分离参数的思想可知,,递增,最小值为53,即可知满足33,,22⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢ ⎪⎝⎦⎣⎭即可成立故答案为33,,⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢ ⎪⎝⎦⎣⎭. 14.-7【解析】设公比为q 则8a1q=-a1q4所以q3=-8S6S3=q6-1q3-1=q3+1=-8+1=-7解析:-7 【解析】 设公比为,则,所以..15.8【解析】【分析】根据求得再求出带入不等式解不等式即可【详解】因为数列为正项的递增等比数列由解得则整理得:使不等式成立的最大整数为故答案为:【点睛】本题主要考查了等比数列的性质和等比数列的求和同时考解析:8 【解析】 【分析】根据1524158281a a a a a a +=⎧⎨==⎩,求得15181a a =⎧⎨=⎩,13-=n n a .再求出13(1)3n n T =-,带入不等式112020|1|13n nT a -->,解不等式即可.【详解】因为数列{}n a 为正项的递增等比数列,由1524158281a a a a a a +=⎧⎨==⎩,解得15181a a =⎧⎨=⎩.则3q =,13-=n n a .1(1)1323(1)1313n n n T -=⨯=--. 112020|1|13n n T a -->⇒1112020|11|133n n ---->. 整理得:38080n <.使不等式成立的最大整数n 为8.故答案为:8【点睛】本题主要考查了等比数列的性质和等比数列的求和,同时考查了学生的计算能力,属于中档题.16.【解析】【分析】构造新数列计算前n 项和计算极限即可【详解】构造新数列该数列首项为1公比为则而故【点睛】本道题考查了极限计算方法和等比数列前n 项和属于中等难度的题目 解析:9lim 8n n T →∞= 【解析】【分析】构造新数列{}21n a -,计算前n 项和,计算极限,即可。

高三数学下期中一模试卷带答案

高三数学下期中一模试卷带答案

高三数学下期中一模试卷带答案一、选择题1.在ABC ∆中,2AC =,BC =135ACB ∠=o ,过C 作CD AB ⊥交AB 于D ,则CD =( ) ABCD2.若ABC ∆的三个内角满足sin :sin :sin 5:11:13A B C =,则ABC ∆( ) A .一定是锐角三角形 B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形3.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,且()cos 4cos a B c b A =-,则cos2A =( ) A .78B .18C .78-D .18-4.若直线2y x =上存在点(,)x y 满足30,230,,x y x y x m +-≤⎧⎪--≥⎨⎪≥⎩则实数m 的最大值为A .2-B .1-C .1D .35.已知正项等比数列{}n a 的公比为3,若229m n a a a =,则212m n+的最小值等于( ) A .1B .12C .34 D .326.“0x >”是“12x x+≥”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件7.已知等比数列{}n a 的各项均为正数,且564718a a a a +=,则313233310log log log log a a a a +++⋅⋅⋅+=( )A .10B .12C .31log 5+D .32log 5+8.设等差数列{}n a 的前n 项和为n S ,且()*11n n nS S n N n +>∈+.若870a a +<,则( ) A .n S 的最大值是8S B .n S 的最小值是8S C .n S 的最大值是7SD .n S 的最小值是7S9.在斜ABC ∆中,设角,,A B C 的对边分别为,,a b c ,已知sin sin sin 4sin cos a A b B c C b B C +-=,CD 是角C 的内角平分线,且CD b =,则cos C = ( )A .18B.34C.23D.1610.设函数是定义在上的单调函数,且对于任意正数有,已知,若一个各项均为正数的数列满足,其中是数列的前项和,则数列中第18项()A.B.9C.18D.3611.若不等式1221mx x≤+-在()0,1x∈时恒成立,则实数m的最大值为()A.9B.92C.5D.5212.两个等差数列{}n a和{}n b,其前n项和分别为n S,n T,且723nnS nT n+=+,则220715a ab b+=+()A.49B.378C.7914D.14924二、填空题13.如图,在ABCV中,,43C BCπ==时,点D在边AC上,AD DB=,DE AB⊥,E为垂足若22DE=,则cos A=__________14.在平面直角坐标系中,设点()0,0O,(3A,点(),P x y的坐标满足30320x yxy-≤+≥⎨⎪≥⎪⎩,则OAu u u v在OPuuu v上的投影的取值范围是__________15.设n S是等差数列{}n a的前n项和,若510S=,105S=-,则公差d=(___).16.若ABC∆的三个内角45A=︒,75B=︒,60C=︒,且面积623S=+形的外接圆半径是______17.已知数列{}n a 、{}n b 均为等差数列,且前n 项和分别为n S 和n T ,若321n n S n T n +=+,则44a b =_____. 18.已知关于x 的一元二次不等式ax 2+2x+b >0的解集为{x|x≠c},则227a b a c+++(其中a+c≠0)的取值范围为_____.19.已知数列{}n a 的前n 项和为n S ,11a =,且1n n S a λ=-(λ为常数).若数列{}n b 满足2n n a b n =-920n +-,且1n n b b +<,则满足条件的n 的取值集合为________.20.在锐角ΔABC 中,内角,,A B C 的对边分别为,,a b c ,已知24,sin 4sin 6sin sin a b a A b B a B C +=+=,则ABC n 的面积取最小值时有2c =__________.三、解答题21.在()f x 中,角,,A B C 的对边分别为,,a b c ,满足(2)cos cos b c A a C -=. (1)求角A 的大小(2)若3a =,求ABC △的周长最大值. 22.已知数列{}n a 的首项1122,,1,2,3, (31)n n n a a a n a +===+. (1)证明: 数列11n a ⎧⎫-⎨⎬⎩⎭是等比数列; (2)数列n n a ⎧⎫⎨⎬⎩⎭的前n 项和n S . 23.已知数列{}n a 的前n 项和n S 满足231n n S a =-,其中n *∈N . (1)求数列{}n a 的通项公式;(2)设23nn n a b n n=+,求数列{}n b 的前n 项和为n T .24.设数列的前项和为,且. (1)求数列的通项公式; (2)设,求数列的前项和.25.如图,Rt ABC V 中,,1,32B AB BC π===点,M N 分别在边AB 和AC 上,将AMN V 沿MN 翻折,使AMN V 变为A MN '△,且顶点'A 落在边BC 上,设AMN θ∠=(1)用θ表示线段AM 的长度,并写出θ的取值范围; (2)求线段CN 长度的最大值以及此时A MN '△的面积, 26.等差数列{}n a 中,24a =,4715a a +=. (1)求数列{}n a 的通项公式; (2)设22n a n b n -=+,求12310b b b b +++⋅⋅⋅+的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】先由余弦定理得到AB 边的长度,再由等面积法可得到结果. 【详解】根据余弦定理得到222222AC BC AB AC BC +-=-⨯⨯将2AC =,22BC =,代入等式得到AB=5 再由等面积法得到1122525222222CD CD ⨯=⨯⨯⇒=故答案为A. 【点睛】这个题目考查了解三角形的应用问题,涉及正余弦定理,面积公式的应用,在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.2.C解析:C 【解析】 【分析】由sin :sin :sin 5:11:13A B C =,得出::5:11:13a b c =,可得出角C 为最大角,并利用余弦定理计算出cos C ,根据该余弦值的正负判断出该三角形的形状. 【详解】由sin :sin :sin 5:11:13A B C =,可得出::5:11:13a b c =, 设()50a t t =>,则11b t =,13c t =,则角C 为最大角,由余弦定理得2222222512116923cos 022511110a b c t t t C ab t t +-+-===-<⨯⨯,则角C 为钝角,因此,ABC ∆为钝角三角形,故选C. 【点睛】本题考查利用余弦定理判断三角形的形状,只需得出最大角的属性即可,但需结合大边对大角定理进行判断,考查推理能力与计算能力,属于中等题.3.C解析:C 【解析】 【分析】根据题目条件结合三角形的正弦定理以及三角形内角和定理可得sin A ,进而利用二倍角余弦公式得到结果. 【详解】∵()cos 4cos a B c b A =-. ∴sin A cos B =4sin C cos A ﹣sin B cos A 即sin A cos B +sin B cos A =4cos A sin C ∴sin C =4cos A sin C ∵0<C <π,sin C ≠0. ∴1=4cos A ,即cos A 14=, 那么27cos2218A cos A =-=-. 故选C 【点睛】本题考查了正弦定理及二倍角余弦公式的灵活运用,考查计算能力,属于基础题.4.B解析:B 【解析】首先画出可行域,然后结合交点坐标平移直线即可确定实数m 的最大值. 【详解】不等式组表示的平面区域如下图所示, 由2230y x x y =⎧⎨--=⎩,得:12x y =-⎧⎨=-⎩,即C 点坐标为(-1,-2),平移直线x =m ,移到C 点或C 点的左边时,直线2y x =上存在点(,)x y 在平面区域内, 所以,m ≤-1, 即实数m 的最大值为-1.【点睛】本题主要考查线性规划及其应用,属于中等题.5.C解析:C 【解析】∵正项等比数列{}n a 的公比为3,且229m n a a a =∴2224222223339m n m n a a a a --+-⋅⋅⋅=⋅=∴6m n +=∴121121153()()(2)(2)62622624m n m n m n n m ⨯++=⨯+++≥⨯+=,当且仅当24m n ==时取等号. 故选C.点睛:利用基本不等式解题的注意点:(1)首先要判断是否具备了应用基本不等式的条件,即“一正、二正、三相等”,且这三个条件必须同时成立.(2)若不直接满足基本不等式的条件,需要通过配凑、进行恒等变形,构造成满足条件的形式,常用的方法有:“1”的代换作用,对不等式进行分拆、组合、添加系数等. (3)多次使用基本不等式求最值时,要注意只有同时满足等号成立的条件才能取得等号.6.C【解析】先考虑充分性,当x>0时,12x x +≥=,当且仅当x=1时取等.所以充分条件成立. 再考虑必要性,当12x x+≥时,如果x>0时,22210(1)0x x x -+≥∴-≥成立,当x=1时取等.当x<0时,不等式不成立. 所以x>0. 故选C.7.A解析:A 【解析】 【分析】利用对数运算合并,再利用等比数列{}n a 的性质求解。

高三数学下期中一模试卷含答案

高三数学下期中一模试卷含答案

高三数学下期中一模试卷含答案一、选择题1.已知正数x 、y 满足1x y +=,且2211x y m y x +≥++,则m 的最大值为( ) A .163B .13C .2D .42.已知在中,,,分别为角,,的对边,为最小角,且,,,则的面积等于( ) A .B .C .D .3.在R 上定义运算:A()1B A B =-,若不等式()x a -()1x a +<对任意的实数x ∈R 恒成立,则实数a 的取值范围是( ) A .11a -<<B .02a <<C .1322a -<< D .3122a -<< 4.数列{}{},n n a b 为等差数列,前n 项和分别为,n n S T ,若3n 22n n S T n +=,则77a b =( ) A .4126B .2314C .117 D .1165.设数列{}n a 是等差数列,且26a =-,86a =,n S 是数列{}n a 的前n 项和,则( ). A .45S S <B .45S S =C .65S S <D .65S S =6.已知数列{}n a 满足112,0,2121,1,2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩若135a =,则数列的第2018项为 ( )A .15B .25C .35D .457.已知等比数列{}n a ,11a =,418a =,且12231n n a a a a a a k +++⋅⋅⋅+<,则k 的取值范围是( ) A .12,23⎡⎤⎢⎥⎣⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .12,23⎡⎫⎪⎢⎣⎭D .2,3⎡⎫+∞⎪⎢⎣⎭8.已知等比数列{}n a 的前n 项和为n S ,且满足122n n S λ+=+,则λ的值是( )A .4B .2C .2-D .4-9.已知等差数列{}n a 的前n 项和为n S ,19a =,95495S S -=-,则n S 取最大值时的n 为A .4B .5C .6D .4或510.已知{}n a 是等比数列,22a =,514a =,则12231n n a a a a a a +++⋅⋅⋅+=( ) A .()1614n--B .()1612n--C .()32123n -- D .()32143n -- 11.某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为和,第一排和最后一排的距离为56米(如图所示),旗杆底部与第一排在同一个水平面上.若国歌长度约为秒,要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为()(米 /秒)A .110B .310C .12D .71012.如果等差数列{}n a 中,3a +4a +5a =12,那么1a +2a +…+7a =( ) A .14B .21C .28D .35二、填空题13.如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N ,那么称该数列为N 型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型标准数列的个数为______.14.在平面直角坐标系中,设点()0,0O ,(3A ,点(),P x y 的坐标满足303200x y x y -≤+≥⎨⎪≥⎪⎩,则OA u u u v 在OP uuu v 上的投影的取值范围是__________ 15.若变量,x y 满足约束条件{241y x y x y ≤+≥-≤,则3z x y =+的最小值为_____.16.数列{}n a 满足10a =,且()1*11211n nn N a a +-=∈--,则通项公式n a =_______.17.已知二次函数22()42(2)21f x x p x p p =----+,若在区间[1,1]-内至少存在一个实数x 使()0f x >,则实数p 的取值范围是__________.18.已知数列{}n a 的前n 项和为n S ,11a =,且1n n S a λ=-(λ为常数).若数列{}n b 满足2n n a b n =-920n +-,且1n n b b +<,则满足条件的n 的取值集合为________.19.已知数列是各项均不为的等差数列,为其前项和,且满足()221n n a S n *-=∈N.若不等式()()11181nn n n a nλ++-+⋅-≤对任意的n *∈N 恒成立,则实数的取值范围是 .20.我国古代数学名著《九章算术》里有问题:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢,问:__________日相逢?三、解答题21.已知在等比数列{}n a 中, 11a =,且2a 是1a 和31a -的等差中项. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足()*21n n b n a n N =-+∈,求{}nb 的前n 项和nS.22.若0,0a b >>,且11ab a b+= (1)求33+a b 的最小值;(2)是否存在,a b ,使得236a b +=?并说明理由. 23.已知在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,sin tan cos sin tan cos b B C b B a A C a A -=-. (1)求证:A B =;(2)若3c =,3cos 4C =,求ABC ∆的周长.24.在平面四边形ABCD 中,已知34ABC π∠=,AB AD ⊥,1AB =.(1)若5AC =ABC ∆的面积;(2)若5sin 5CAD ∠=,4=AD ,求CD 的长. 25.如图,游客从某旅游景区的景点A 处下上至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50/minm.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C,假设缆车匀速直线运动的速度为130/minm,山路AC长为1260m,经测量12 cos13A=,3cos5C=.(1)求索道AB的长;(2)问:乙出发多少min后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3min,乙步行的速度应控制在什么范围内?26.已知向量113,sin222x xa⎛⎫+⎝=⎪⎪⎭v与()1,b y=v共线,设函数()y f x=.(1)求函数()f x的最小正周期及最大值.(2)已知锐角ABC∆的三个内角分别为,,A B C,若有33f Aπ⎛⎫-=⎪⎝⎭,边217,sinBC B==,求ABC∆的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】由已知条件得()()113x y+++=,对代数式2211x yy x+++变形,然后利用基本不等式求出2211x yy x+++的最小值,即可得出实数m的最大值.【详解】正数x、y满足1x y+=,则()()113x y+++=,()()()()()()222222221212111111111111y x y x y x x y y x y x y x y x +-+-⎡⎤⎡⎤----⎣⎦⎣⎦+=+=+=+++++++++444444141465111111y x x y y x x y x y =+-+++-+=+++-=+-++++++()()14441111525311311y x x y x y x y ⎛⎫⎛⎫++=++++-=++-⎡⎤ ⎪ ⎪⎣⎦++++⎝⎭⎝⎭41112253113x y y x ⎛⎫++≥⨯+⋅-= ⎪ ⎪++⎝⎭, 当且仅当12x y ==时,等号成立,即2211x y y x +++的最小值为13,则13m ≤. 因此,实数m 的最大值为13. 故选:B. 【点睛】本题考查利用基本不等式恒成立求参数,对代数式合理变形是解答的关键,考查计算能力,属于中等题.2.C解析:C 【解析】 【分析】根据同角三角函数求出;利用余弦定理构造关于的方程解出,再根据三角形面积公式求得结果. 【详解】由余弦定理得:,即解得:或为最小角本题正确选项: 【点睛】本题考查余弦定理解三角形、三角形面积公式的应用、同角三角函数关系,关键是能够利用余弦定理构造关于边角关系的方程,从而求得边长.3.C解析:C 【解析】【分析】根据新运算的定义, ()x a -()x a +22x x a a =-++-,即求221x x a a -++-<恒成立,整理后利用判别式求出a 范围即可【详解】Q A()1B A B =-∴()x a -()x a +()()()()22=11x a x a x a x a x x a a --+=--+-=-++-⎡⎤⎣⎦Q ()x a -()1x a +<对于任意的实数x ∈R 恒成立,221x x a a ∴-++-<,即2210x x a a -++--<恒成立,()()2214110a a ∴∆=-⨯-⨯--<,1322a ∴-<<故选:C 【点睛】本题考查新定义运算,考查一元二次不等式中的恒成立问题, 当x ∈R 时,利用判别式是解题关键4.A解析:A 【解析】依题意,113713113713132412226132a a a S b b b T +⋅===+⋅. 5.B解析:B 【解析】分析:由等差数列的性质,即2852a a a +=,得5=0a ,又由545S S a =+,得54S S =. 详解:Q 数列{}n a 为等差数列, 2852a a a ∴+= 又286,6a a =-=Q ,5=0a ∴由数列前n 项和的定义545S S a =+,54S S ∴= 故选B.点睛:本题考查等差数列的性质与前n 项和计算的应用,解题时要认真审题,注意灵活运用数列的基本概念与性质.6.A解析:A 【解析】 【分析】利用数列递推式求出前几项,可得数列{}n a 是以4为周期的周期数列,即可得出答案. 【详解】1112,0321521,12n n n n n a a a a a a +⎧≤<⎪⎪==⎨⎪-≤<⎪⎩Q ,211215a a =-=,32225a a ==,43425a a ==,5413215a a a =-== ∴数列{}n a 是以4为周期的周期数列,则201845042215a a a ⨯+===. 故选A . 【点睛】本题考查数列的递推公式和周期数列的应用,考查学生分析解决问题的能力,属于中档题.7.D解析:D 【解析】设等比数列{}n a 的公比为q ,则34118a q a ==,解得12q =, ∴112n n a -=, ∴1121111222n n n n n a a +--=⨯=, ∴数列1{}n n a a +是首项为12,公比为14的等比数列,∴1223111(1)21224(1)134314n n n n a a a a a a +-++⋅⋅⋅+==-<-, ∴23k ≥.故k 的取值范围是2[,)3+∞.选D .8.C解析:C 【解析】 【分析】利用n S 先求出n a ,然后计算出结果. 【详解】根据题意,当1n =时,11224S a λ==+,142a λ+∴=,故当2n ≥时,112n n n n a S S --=-=,Q 数列{}n a 是等比数列,则11a =,故412λ+=, 解得2λ=-, 故选C . 【点睛】本题主要考查了等比数列前n 项和n S 的表达形式,只要求出数列中的项即可得到结果,较为基础.9.B解析:B 【解析】由{}n a 为等差数列,所以95532495S S a a d -=-==-,即2d =-, 由19a =,所以211n a n =-+, 令2110n a n =-+<,即112n >, 所以n S 取最大值时的n 为5, 故选B .10.D解析:D 【解析】 【分析】 先求出31()2n n a -=,再求出2511()2n n n a a -+=,即得解.【详解】由题得35211,82a q q a ==∴=. 所以2232112()()22n n n n a a q---==⨯=,所以32251111()()()222n n n n n a a ---+=⋅=. 所以1114n n n n a a a a +-=,所以数列1{}n n a a +是一个等比数列. 所以12231n n a a a a a a +++⋅⋅⋅+=18[1()]4114n --=()32143n --.故选:D 【点睛】本题主要考查等比数列通项的求法和前n 项和的计算,意在考查学生对这些知识的理解掌握水平.11.B解析:B 【解析】试题分析: 如下图:由已知,在ABC ∆中,105,45,56ABC ACB BC ∠=∠==o o ,从而可得:30BAC ∠=o 由正弦定理,得:56sin 45AB =o 103AB ∴=那么在Rt ADB ∆中,60ABD o ∠=,3sin 6010315AD AB ∴===o , 即旗杆高度为15米,由3155010÷=,知:升旗手升旗的速度应为310(米 /秒). 故选B .考点:解三角形在实际问题中的应用.12.C解析:C 【解析】试题分析:等差数列{}n a 中,34544123124a a a a a ++=⇒=∴=,则()()174127477272822a a a a a a a +⨯+++====L考点:等差数列的前n 项和二、填空题13.6【解析】【分析】由题意公差d=1na1+=2668∴n (2a1+n-1)=5336=23×23×29得出满足题意的组数即可得出结论【详解】由题意公差d=1na1+=2668∴n (2a1+n-1)=解析:6 【解析】 【分析】由题意,公差d=1,na 1+()12n n -=2668,∴n (2a 1+n-1)=5336=23×23×29,得出满足题意的组数,即可得出结论. 【详解】由题意,公差d=1,na 1+()12n n -=2668,∴n (2a 1+n-1)=5336=23×23×29, ∵n <2a 1+n-1,且二者一奇一偶,∴(n ,2a 1+n-1)=(8,667),(23,232),(29,184)共三组; 同理d=-1时,也有三组. 综上所述,共6组. 故答案为6. 【点睛】本题考查组合知识的运用,考查等差数列的求和公式,属于中档题.14.【解析】【分析】根据不等式组画出可行域可知;根据向量投影公式可知所求投影为利用的范围可求得的范围代入求得所求的结果【详解】由不等式组可得可行域如下图阴影部分所示:由题意可知:在上的投影为:本题正确结 解析:[]3,3-【解析】 【分析】根据不等式组画出可行域,可知5,66AOP ππ⎡⎤∠∈⎢⎥⎣⎦;根据向量投影公式可知所求投影为cos OA AOP ∠u u u v,利用AOP ∠的范围可求得cos AOP ∠的范围,代入求得所求的结果.【详解】由不等式组可得可行域如下图阴影部分所示:由题意可知:6AOB π∠=,56AOC π∠=OA u u u v 在OP uuu v上的投影为:cos 93cos 23cos OA AOP AOP AOP ∠=+∠=∠u u u vAOB AOP AOC ∠≤∠≤∠Q 5,66AOP ππ⎡⎤∴∠∈⎢⎥⎣⎦33cos ,22AOP ⎡⎤∴∠∈-⎢⎥⎣⎦[]cos 3,3OA AOP ∴∠∈-u u u v本题正确结果:[]3,3- 【点睛】本题考查线性规划中的求解取值范围类问题,涉及到平面向量投影公式的应用;关键是能够根据可行域确定向量夹角的取值范围,从而利用三角函数知识来求解.15.8【解析】【分析】【详解】作出不等式组表示的平面区域得到如图的△A BC 及其内部其中A (22)B ()C (32)设z=F (xy )=3x+y 将直线l :z=3x+y 进行平移当l 经过点A (22)时目标函数z 达解析:8 【解析】 【分析】 【详解】作出不等式组 表示的平面区域,得到如图的△ABC 及其内部,其中A (2,2),B (53,22),C (3,2)设z =F (x ,y )=3x +y ,将直线l :z =3x +y 进行平移, 当l 经过点A (2,2)时,目标函数z 达到最小值 ∴z 最小值=F (2,2)=8 故选:C16.【解析】【分析】构造数列得到数列是首项为1公差为2的等差数列得到【详解】设则数列是首项为1公差为2的等差数列故答案为【点睛】本题考查了数列的通项公式的求法构造数列是解题的关键意在考查学生对于数列通项解析:2221n n -- 【解析】 【分析】构造数列11n nb a =-,得到数列n b 是首项为1公差为2的等差数列21n b n =-,得到2221n n a n -=-. 【详解】 设11n n b a =-,则12n n b b +-=,11111b a ==- 数列n b 是首项为1公差为2的等差数列1222121121n n n b n n a n n a -=⇒=--⇒--= 故答案为2221n n -- 【点睛】本题考查了数列的通项公式的求法,构造数列11n nb a =-是解题的关键,意在考查学生对于数列通项公式的记忆,理解和应用.17.【解析】试题分析:因为二次函数在区间内至少存在一个实数使的否定是:函数在区间内任意实数使所以即整理得解得或所以二次函数在区间内至少存在一个实数使的实数的取值范围是考点:一元二次方程的根与系数的关系【解析:3(3,)2-【解析】试题分析:因为二次函数()f x 在区间[1,1]-内至少存在一个实数x ,使()0f x >的否定是:“函数()f x 在区间[1,1]-内任意实数x ,使()0f x ≤”,所以(1)0{(1)0f f ≤-≤,即2242(2)210{42(2)210p p p p p p ----+≤+---+≤,整理得222390{210p p p p +-≥--≥,解得32p ≥或3p ≤-,所以二次函数在区间[1,1]-内至少存在一个实数x ,使()0f x >的实数p 的取值范围是3(3,)2-.考点:一元二次方程的根与系数的关系.【方法点晴】本题主要考查了一元二次方程的根的分布与系数的关系,其中解答中涉及到一元二次函数的图象与性质、不等式组的求解、命题的转化等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,其中根据二次函数的图象是开口方向朝上的抛物线,得到对于区间[1,1]-内的任意一个x 都有()0f x >时,得到不等式组是解答的关键,属于中档试题.18.【解析】【分析】利用可求得;利用可证得数列为等比数列从而得到进而得到;利用可得到关于的不等式解不等式求得的取值范围根据求得结果【详解】当时解得:当且时即:数列是以为首项为公比的等比数列解得:又或满足 解析:{5,6}【解析】 【分析】利用11a S =可求得2λ=;利用1n n n a S S -=-可证得数列{}n a 为等比数列,从而得到12n n a -=,进而得到n b ;利用10n n b b +-<可得到关于n 的不等式,解不等式求得n 的取值范围,根据n *∈N 求得结果. 【详解】当1n =时,1111a S a λ==- 11λ∴-=,解得:2λ=21n n S a ∴=-当2n ≥且n *∈N 时,1121n n S a --=-1122n n n n n a S S a a --\=-=-,即:12n n a a -=∴数列{}n a 是以1为首项,2为公比的等比数列 12n n a -\=2920n n a b n n =-+-Q 219202n n n n b --+-∴= ()()222111912092011280222n n n n nn n n n n n b b +--+++--+--+∴-=-=< 20n >Q ()()21128470n n n n ∴-+=--<,解得:47n <<又n *∈N 5n ∴=或6∴满足条件的n 的取值集合为{}5,6本题正确结果:{}5,6 【点睛】本题考查数列知识的综合应用,涉及到利用n a 与n S 的关系求解通项公式、等比数列通项公式的求解、根据数列的单调性求解参数范围等知识;关键是能够得到n b 的通项公式,进而根据单调性可构造出关于n 的不等式,从而求得结果.19.【解析】试题分析:由题意则当为偶数时由不等式得即是增函数当时取得最小值所以当为奇数时函数当时取得最小值为即所以综上的取值范围是考点:数列的通项公式数列与不等式恒成立的综合问题解析:77,153⎡⎤--⎢⎥⎣⎦【解析】试题分析:由题意,则,当为偶数时由不等式()()11181nn n n a nλ++-+⋅-≤得821n n n λ-≤+,即(8)(21)n n nλ-+≤, (8)(21)8215n n y n n n-+==--是增函数,当2n =时取得最小值15-,所以15;λ≤-当为奇数时,(8)(21)8217n n n n n λ++-≤=++,函数8217y n n=++,当3n =时取得最小值为773,即77,3λ-≤所以773λ≥-,综上, 的取值范围是77,153⎡⎤--⎢⎥⎣⎦. 考点:数列的通项公式,数列与不等式恒成立的综合问题.20.9【解析】解:由题意可知:良马与驽马第天跑的路程都是等差数列设路程为由题意有:故:满足题意时数列的前n 项和为由等差数列前n 项和公式可得:解得:即二马相逢需9日相逢点睛:本题考查数列的实际应用题(1)解析:9 【解析】解:由题意可知:良马与驽马第n 天跑的路程都是等差数列,设路程为{}{},n n a b , 由题意有:()()1111031131390,97197222n n a n n b n n ⎛⎫=+-⨯=+=+-⨯-=-+ ⎪⎝⎭, 故:111871222n n n c a b n =+=+ , 满足题意时,数列{}n c 的前n 项和为112522250n S =⨯= ,由等差数列前n 项和公式可得:11111871218712222222502n n ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭⨯= ,解得:9n = .即二马相逢,需9日相逢点睛:本题考查数列的实际应用题. (1)解决数列应用题的基本步骤是:①根据实际问题的要求,识别是等差数列还是等比数列,用数列表示问题的已知; ②根据等差数列和等比数列的知识以及实际问题的要求建立数学模型; ③求出数学模型,根据求解结果对实际问题作出结论. (2)数列应用题常见模型:①等差模型:如果增加(或减少)的量是一个固定量,该模型是等差数列模型,增加(或减少)的量就是公差;②等比模型:如果后一个量与前一个量的比是一个固定的数,该模型是等比数列模型,这个固定的数就是公比;③递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化时,应考虑是a n 与a n -1的递推关系,或前n 项和S n 与S n -1之间的递推关系.三、解答题21.(1) 12n n a -=(2) n S 221n n =+-【解析】 【分析】(1)由题意结合等差数列的性质得到关于公比的方程,解方程求得公比的值,然后结合首项求解数列的通项公式即可.(2)结合(1)的结果首先确定数列{}n b 的通项公式,然后分组求和即可求得数列{}n b 的前n 项和n S . 【详解】(1)设等比数列{}n a 的公比为q ,则2a q =,23a q =,∵2a 是1a 和31a -的等差中项, ∴()21321a a a =+-, 即()2211q q =+-, 解得2q =,∴12n n a -=.(2) 121212n n n b n a n -=-+=-+,则()()11321122n n S n -⎡⎤=+++-++++⎣⎦L L()12112212n n n ⎡⎤+--⎣⎦=+-. 221n n =+-.【点睛】数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.22.(1);(2)不存在. 【解析】 【分析】(1)由已知11a b+=,利用基本不等式的和积转化可求2ab ≥,利用基本不等式可将33+a b 转化为ab ,由不等式的传递性,可求33+a b 的最小值;(2)由基本不等式可求23a b +的最小值为6>,故不存在.【详解】(111a b =+≥,得2ab ≥,且当a b ==故33+a b ≥≥a b ==所以33+a b 的最小值为(2)由(1)知,23a b +≥≥由于6>,从而不存在,a b ,使得236a b +=成立. 【考点定位】 基本不等式.23.(1)证明见解析;(2). 【解析】 【分析】(1)利用三角函数恒等变换的应用化简已知等式可求in 0()s A B -=,可得()A B k k Z π-=∈,结合范围A ,(0,)B π∈,即可得证A B =.(2)由(1)可得a b =,进而根据余弦定理可求a b ==ABC ∆的周长.【详解】(1)sin tan cos sin tan cos b B C b B a A C a A -=-Q ,∴sin sin sin sin cos cos cos cos b B C a A C b B a A C C-=-,sin sin cos cos sin sin cos cos b B C b B C a A C a A C ∴-=-, cos()cos()a A C b B C ∴+=+,又A B C π++=Q ,cos cos a B b A ∴-=-,sin cos sin cos A B B A ∴-=-, sin()0A B ∴-=,()A B k k Z π∴-=∈,又A Q ,(0,)B π∈,A B ∴=. (2)Q 由(1)可知A B =,可得a b =,又c =Q 3cos 4C =,∴2232342a a-==,226a b ∴==,可得a b ==ABC ∆∴的周长a b c ++=【点睛】本题考查三角函数恒等变换的应用、余弦定理在解三角形中的综合应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意三角函数求值时,要先写出角的范围.24.(1)12;(2 【解析】 【分析】(1)在ΔABC 中,由余弦定理,求得BC =进而利用三角形的面积公式,即可求解;(2)利用三角函数的诱导公式化和恒等变换的公式,求解sin BCA 10∠=,再在ΔABC 中,利用正弦定理和余弦定理,即可求解. 【详解】(1)在ΔABC 中,222AC AB BC 2AB BC COS ABC ∠=+-⋅⋅即251BC BC =++ 2BC 40⇒+-=,解得BC =.所以ΔABC 111S AB BC sin ABC 12222∠=⋅⋅=⨯=.(2)因为0BAD 90,sin CAD ∠∠==,所以cos BAC ∠=,sin BAC 5∠=, πsin BCA sin BAC 4所以∠∠⎛⎫=- ⎪⎝⎭ )cos BAC sin BAC ∠∠=-2==⎝⎭.在ΔABC 中,AC AB sin ABC sin BCA ∠∠=, AB sin ABCAC sin BCA∠∠⋅∴==222CD AC AD 2AC AD cos CAD ∠=+-⋅⋅所以 5162413=+-=所以CD = 【点睛】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理,着重考查了运算与求解能力,属于基础题. 25.(1)=1040AB m (2)3537(3)1250625[,]4314(单位:m/min ) 【解析】 【分析】 【详解】(1)在ABC ∆中,因为12cos 13A =,3cos 5C =,所以5sin 13A =,4sin 5C =, 从而[]sin sin ()B A C π=-+sin()A C =+5312463sin cos sin cos 13513565A C C A =+=⨯+⨯=.由正弦定理sin sin AB AC C B=,得12604sin 104063sin 565AC AB C B =⨯=⨯=(m ). (2)假设乙出发min t 后,甲、乙两游客距离为d ,此时,甲行走了(10050)m t +,乙距离A 处130t m , 所以由余弦定理得22212(10050)(130)2130(10050)13d t t t t =++-⨯⨯+⨯2200(377050)t t =-+, 由于10400130t ≤≤,即08t ≤≤, 故当35min 37t =时,甲、乙两游客距离最短. (3)由正弦定理sin sin BC ACA B=, 得12605sin 50063sin 1365AC BC A B=⨯=⨯=(m ). 乙从B 出发时,甲已走了50(281)550⨯++=(m ),还需走710m 才能到达C . 设乙步行的速度为/min vm ,由题意得5007103350v -≤-≤,解得12506254314v ≤≤, 所以为使两位游客在C 处互相等待的时间不超过3min ,乙步行的速度应控制在1250625,4314⎡⎤⎢⎥⎣⎦(单位:/min m )范围内. 考点:正弦、余弦定理在实际问题中的应用. 【方法点睛】本题主要考查了正弦、余弦定理在实际问题中的应用,考查了考生分析问题和利用所学知识解决问题的能力,属于中档题.解答应用问题,首先要读懂题意,设出变量建立题目中的各个量与变量的关系,建立函数关系和不等关系求解.本题解得时,利用正余弦定理建立各边长的关系,通过二次函数和解不等式求解,充分体现了数学在实际问题中的应用. 26.(1) 2,T π=当2,6x k k Z ππ=+∈时,()max 2f x =(2) 2ABC S ∆= 【解析】【分析】 【详解】(1)因为a r与b r共线,所以11(sin )0222y x x -+= 则()2sin 3y f x x π⎛⎫==+ ⎪⎝⎭,所以()f x 的周期2T π= 当26x k ππ=+,k Z ∈,max 2f =(2)∵3f A π⎛⎫-= ⎪⎝⎭∴2sin 33A ππ⎛⎫-+= ⎪⎝⎭∴sin 2A = ∵02A π<<∴3A π=由正弦定理得sin sin BC ACA B=又sin B =∴sin 2sin BC B AC A ==,且sin C =∴1sin 2ABC S AC BC C ∆==。

【典型题】高三数学下期中一模试卷(带答案)

【典型题】高三数学下期中一模试卷(带答案)

【典型题】高三数学下期中一模试卷(带答案)一、选择题1.在ABC ∆中,,,a b c 分别为角,,A B C 的对边,若,1,3A b π==ABC ∆则a 的值为( ) A .2BC.2D .12.一个递增的等差数列{}n a ,前三项的和12312a a a ++=,且234,,1a a a +成等比数列,则数列{}n a 的公差为 ( ) A .2±B .3C .2D .13.已知数列{}n a 的前n 项和为n S ,点(,3)n n S +*()n N ∈在函数32xy =⨯的图象上,等比数列{}n b 满足1n n n b b a ++=*()n N ∈,其前n 项和为n T ,则下列结论正确的是( )A .2n n S T =B .21n n T b =+C .n n T a >D .1n n T b +<4.已知点(),P x y 是平面区域()4{04y x y x m y ≤-≤≥-内的动点, 点()1,1,A O -为坐标原点, 设()OP OA R λλ-∈的最小值为M ,若M ≤恒成立, 则实数m 的取值范围是( )A .11,35⎡⎤-⎢⎥⎣⎦B .11,,35⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭C .1,3⎡⎫-+∞⎪⎢⎣⎭D .1,2⎡⎫-+∞⎪⎢⎣⎭5.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,且()cos 4cos a B c b A =-,则cos2A =( )A .78B .18C .78-D .18-6.已知数列{a n }满足331log 1log ()n n a a n N +++=∈且2469a a a ++=,则15793log ()a a a ++的值是( )A .-5B .-15C .5D .157.朱载堉(1536~1611),是中国明代一位杰出的音乐家、数学家和天文历算家,他的著作《律学新说》中制成了最早的“十二平均律”.十二平均律是目前世界上通用的把一组音(八度)分成十二个半音音程的律制,各相邻两律之间的频率之比完全相等,亦称“十二等程律”.即一个八度13个音,相邻两个音之间的频率之比相等,且最后一个音是最初那个音的频率的2倍.设第三个音的频率为1f ,第七个音的频率为2f ,则21f f = A.BCD8.若函数1()(2)2f x x x x =+>-在x a =处取最小值,则a 等于( ) A .3B.1C.1+D .49.已知A 、B 两地的距离为10 km,B 、C 两地的距离为20 km,现测得∠ABC=120°,则A 、C 两地的距离为 ( ) A .10 kmBkmC.D.10.在等差数列{}n a 中,351024a a a ++=,则此数列的前13项的和等于( ) A .16B .26C .8D .1311.20,{0,0x y z x y x y x y y k+≥=+-≤≤≤设其中实数、满足若z 的最大值为6,z 的最小值为( )A .0B .-1C .-2D .-312.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<二、填空题13.已知数列{}n a 中,45n a n =-+,等比数列{}n b 的公比q 满足1(2)n n q a a n -=-≥,且12b a =,则12n b b b +++=__________.14.若正数,a b 满足3ab a b =++,则+a b 的取值范围_______________。

2020-2021高三数学下期中第一次模拟试卷含答案

2020-2021高三数学下期中第一次模拟试卷含答案

2020-2021高三数学下期中第一次模拟试卷含答案一、选择题1.已知数列121,,,4a a 成等差数列,1231,,,,4b b b 成等比数列,则212a ab -的值是( ) A .12B .12-C .12或12- D .142.已知数列{}n a 中,()111,21,n n na a a n N S *+==+∈为其前n 项和,5S的值为( )A .63B .61C .62D .573.正项等比数列中,的等比中项为,令,则( ) A .6B .16C .32D .644.在R 上定义运算:A()1B A B =-,若不等式()x a -()1x a +<对任意的实数x ∈R 恒成立,则实数a 的取值范围是( ) A .11a -<<B .02a <<C .1322a -<< D .3122a -<< 5.我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,...,9填入33⨯的方格内,使三行、三列、两对角线的三个数之和都等于15 (如图).一般地,将连续的正整数1,2,3,…,2n 填入n n ⨯的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方.记n 阶幻方的一条对角线上数的和为n N (如:在3阶幻方中,315N =),则10N =( )A .1020B .1010C .510D .5056.设n S 为等差数列{}n a 的前n 项和,1(1)()n n n S nS n N *++∈<.若871a a <-,则( ) A .n S 的最大值为8S B .n S 的最小值为8S C .n S 的最大值为7S D .n S 的最小值为7S 7.已知等差数列{}n a 的前n 项为n S ,且1514a a +=-,927S =-,则使得n S 取最小值时的n 为( ). A .1B .6C .7D .6或78.已知0,0x y >>,且91x y +=,则11x y+的最小值是A .10B .12?C .14D .169.已知等比数列{}n a 中,31174a a a =,数列{}n b 是等差数列,且77b a =,则59b b +=( ) A .2B .4C .16D .8 10.在等差数列{}n a 中,351024a a a ++=,则此数列的前13项的和等于( ) A .16B .26C .8D .1311.设{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,则{}n a 的前n 项和n S =( )A .2744n n+B .2533n n+C .2324n n+D .2n n +12.已知等比数列{}n a 的各项均为正数,若3132312log log log 12a a a ++⋯+=,则67a a =( ) A .1B .3C .6D .9二、填空题13.在平面直角坐标系中,设点()0,0O,(A ,点(),P x y的坐标满足200y x y -≤+≥⎨⎪≥⎪⎩,则OA u u u v 在OP uuu v 上的投影的取值范围是__________ 14.若正项数列{}n a 满足11n n a a +-<,则称数列{}n a 为D 型数列,以下4个正项数列{}n a 满足的递推关系分别为:①2211n n a a +-= ②1111n na a +-= ③121n n n a a a +=+④2121n n a a +-=,则D 型数列{}n a 的序号为_______.15.设无穷等比数列{}n a 的公比为q ,若1345a a a a =+++…,则q =__________________.16.设122012(1)(1)(1)n nn x x x a a x a x a x ++++++=++++L L ,其中n *∈N ,且2n ≥,若0121022n a a a a ++++=L ,则n =_____17.已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于 .18.定义在R 上的函数()f x 满足()()f x f x -=,且当0x ≥21,01,()22,1,xx x f x x ⎧-+≤<=⎨-≥⎩ 若任意的[],1x m m ∈+,不等式(1)()f x f x m -≤+恒成立,则实数m 的最大值是 ____________19.已知等比数列{}n a 的首项为1a ,前n 项和为n S ,若数列{}12n S a -为等比数列,则32a a =____. 20.设{}n a 是等差数列,且13a =,2536a a +=,则{}n a 的通项公式为__________.三、解答题21.设{}n a 是等比数列,公比不为1.已知113a =,且1a ,22a ,33a 成等差数列. (1)求{}n a 的通项公式; (2)设数列n n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求n T . 22.在ABC ∆sin cos C c A =. (Ⅰ)求角A 的大小;(Ⅱ)若ABC S ∆,2b c +=+a 的值.23.设递增等比数列{a n }的前n 项和为S n ,且a 2=3,S 3=13,数列{b n }满足b 1=a 1,点P (b n ,b n +1)在直线x ﹣y +2=0上,n ∈N *. (1)求数列{a n },{b n }的通项公式; (2)设c n nnb a =,求数列{c n }的前n 项和T n . 24.设a ,b ,c 均为正数,且a+b+c=1,证明: (Ⅰ)ab+bc+ac ≤13; (Ⅱ)2221a b c b c a++≥.25.已知在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,且sin cos 0a B b A -=.(1)求角A 的大小:(2)若a =2b =.求ABC V 的面积. 26.已知数列{}n a 满足:1=1a ,()*11,2,n n n a n a n N a n ++⎧=∈⎨⎩为奇数为偶数设21n n b a -=. (1)证明:数列{}2n b +为等比数列; (2)求数列3+2n n b ⎧⎫⎨⎬⎩⎭的前n 项和n S .【参考答案】***试卷处理标记,请不要删除1.A 解析:A 【解析】由题意可知:数列1,a 1,a 2,4成等差数列,设公差为d , 则4=1+3d ,解得d =1, ∴a 1=1+2=2,a 2=1+2d =3.∵数列1,b 1,b 2,b 3,4成等比数列,设公比为q , 则4=q 4,解得q 2=2, ∴b 2=q 2=2. 则21221122a ab --==. 本题选择A 选项.2.D解析:D 【解析】解:由数列的递推关系可得:()11121,12n n a a a ++=++= , 据此可得:数列{}1n a + 是首项为2 ,公比为2 的等比数列,则:1122,21n n n n a a -+=⨯⇒=- ,分组求和有:()5521255712S ⨯-=-=- .本题选择D 选项.3.D解析:D 【解析】因为,即,又,所以.本题选择D 选项.4.C解析:C 【解析】 【分析】根据新运算的定义, ()x a -()x a +22x x a a =-++-,即求221x x a a -++-<恒成立,整理后利用判别式求出a 范围即可Q A()1B A B =-∴()x a -()x a +()()()()22=11x a x a x a x a x x a a --+=--+-=-++-⎡⎤⎣⎦Q ()x a -()1x a +<对于任意的实数x ∈R 恒成立,221x x a a ∴-++-<,即2210x x a a -++--<恒成立,()()2214110a a ∴∆=-⨯-⨯--<, 1322a ∴-<<故选:C 【点睛】本题考查新定义运算,考查一元二次不等式中的恒成立问题, 当x ∈R 时,利用判别式是解题关键5.D解析:D 【解析】n 阶幻方共有2n 个数,其和为()222112...,2n n n n ++++=Q 阶幻方共有n 行,∴每行的和为()()2221122n n n n n++=,即()()2210110101,50522n n n N N+⨯+=∴==,故选D.6.C解析:C 【解析】 【分析】由已知条件推导出(n 2﹣n )d <2n 2d ,从而得到d >0,所以a 7<0,a 8>0,由此求出数列{S n }中最小值是S 7. 【详解】∵(n +1)S n <nS n +1, ∴S n <nS n +1﹣nS n =na n +1 即na 1()12n n d-+<na 1+n 2d ,整理得(n 2﹣n )d <2n 2d ∵n 2﹣n ﹣2n 2=﹣n 2﹣n <0 ∴d >0∵87a a -<1<0∴a 7<0,a 8>0 数列的前7项为负, 故数列{S n }中最小值是S 7 故选C . 【点睛】本题考查等差数列中前n 项和最小值的求法,是中档题,解题时要认真审题,注意等差数列的性质的灵活运用.7.B解析:B 【解析】试题分析:由等差数列的性质,可得,又,所以,所以数列的通项公式为,令,解得,所以数列的前六项为负数,从第七项开始为正数,所以使得取最小值时的为,故选B .考点:等差数列的性质.8.D解析:D 【解析】 【分析】通过常数代换后,应用基本不等式求最值. 【详解】∵x >0,y >0,且9x+y=1, ∴()11119999110216y x y xx y x y x y x y x y ⎛⎫+=+⋅+=+++≥+⋅= ⎪⎝⎭当且仅当9y x x y =时成立,即11,124x y ==时取等号. 故选D. 【点睛】本题考查了应用基本不等式求最值;关键是注意“1”的整体代换和几个“=”必须保证同时成立.9.D解析:D 【解析】 【分析】利用等比数列性质求出a 7,然后利用等差数列的性质求解即可.【详解】等比数列{a n }中,a 3a 11=4a 7, 可得a 72=4a 7,解得a 7=4,且b 7=a 7, ∴b 7=4,数列{b n }是等差数列,则b 5+b 9=2b 7=8. 故选D . 【点睛】本题考查等差数列以及等比数列的通项公式以及简单性质的应用,考查计算能力.10.D解析:D 【解析】 【详解】试题分析:∵351024a a a ++=,∴410224a a +=,∴4102a a +=,∴1134101313()13()1322a a a a S ++===,故选D. 考点:等差数列的通项公式、前n 项和公式.11.A解析:A 【解析】 【分析】 【详解】 设公差为d 则解得,故选A.12.D解析:D 【解析】 【分析】首先根据对数运算法则,可知()31212log ...12a a a =,再根据等比数列的性质可知()6121267.....a a a a a =,最后计算67a a 的值.【详解】由3132312log log log 12a a a +++=L ,可得31212log 12a a a =L ,进而可得()6121212673a a a a a ==L ,679a a ∴= .【点睛】本题考查了对数运算法则和等比数列性质,属于中档题型,意在考查转化与化归和计算能力.二、填空题13.【解析】【分析】根据不等式组画出可行域可知;根据向量投影公式可知所求投影为利用的范围可求得的范围代入求得所求的结果【详解】由不等式组可得可行域如下图阴影部分所示:由题意可知:在上的投影为:本题正确结 解析:[]3,3-【解析】 【分析】根据不等式组画出可行域,可知5,66AOP ππ⎡⎤∠∈⎢⎥⎣⎦;根据向量投影公式可知所求投影为cos OA AOP ∠u u u v,利用AOP ∠的范围可求得cos AOP ∠的范围,代入求得所求的结果.【详解】由不等式组可得可行域如下图阴影部分所示:由题意可知:6AOB π∠=,56AOC π∠=OA u u u v 在OP uuu v上的投影为:cos 9323OA AOP AOP AOP ∠=+∠=∠u u u vAOB AOP AOC ∠≤∠≤∠Q 5,66AOP ππ⎡⎤∴∠∈⎢⎥⎣⎦33cos ,22AOP ⎡∴∠∈-⎢⎣⎦[]cos 3,3OA AOP ∴∠∈-u u u v本题正确结果:[]3,3- 【点睛】本题考查线性规划中的求解取值范围类问题,涉及到平面向量投影公式的应用;关键是能够根据可行域确定向量夹角的取值范围,从而利用三角函数知识来求解.14.①②③④【解析】【分析】根据D 型数列的定义逐个判断正项数列是否满足即可【详解】对①因为且正项数列故故所以成立对②故成立对③成立对④故成立综上①②③④均正确故答案为:①②③④【点睛】本题主要考查了新定解析:①②③④ 【解析】 【分析】根据D 型数列的定义,逐个判断正项数列{}n a 是否满足11n n a a +-<即可. 【详解】对①,因为2211n n a a +-=,且正项数列{}n a .故()222211211n n n n n a a a a a +=+<++=+,故11n n a a +<+.所以11n n a a +-<成立. 对②,1111111111n n n n n n n a a a a a a a +++-=?=Þ++, 故22101111n n n n nn n n n n n a a a a a a a a a a a +--=---++==<<+成立. 对③, 112221101111n nn n n n n n n n a a a a a a a a a a ++⎛⎫=⇒-=-=-<< ⎪+++⎝⎭成立 对④, ()2222112121211n n n n n n n a a a a a a a ++-=⇒=+<++=+.故11n n a a +<+,11n n a a +-<成立. 综上, ①②③④均正确. 故答案为:①②③④ 【点睛】本题主要考查了新定义的问题,需要根据递推公式证明11n n a a +-<.属于中等题型.15.【解析】【分析】由可知算出用表示的极限再利用性质计算得出即可【详解】显然公比不为1所以公比为的等比数列求和公式且故此时当时求和极限为所以故所以故又故故答案为:【点睛】本题主要考查等比数列求和公式当时【解析】 【分析】由1345a a a a =+++…可知1q <,算出345a a a +++…用1a 表示的极限,再利用性质计算得出q 即可. 【详解】显然公比不为1,所以公比为q 的等比数列{}n a 求和公式1(1)1-=-n n a q S q,且1345a a a a =+++…,故01q <<.此时1(1)1-=-n n a q S q 当n →∞时,求和极限为11a q -,所以3345...1a a a a q +++=-,故2311345...=11a a q a a a a q q =+++=--, 所以2211101a q a q q q =⇒+-=-,故q =,又01q <<,故q =故答案为:12. 【点睛】本题主要考查等比数列求和公式1(1)1-=-n n a q S q,当01q <<时1lim 1n n a S q →∞=-. 16.9【解析】【分析】记函数利用等比数列求和公式即可求解【详解】由题:记函数即故答案为:9【点睛】此题考查多项式系数之和问题常用赋值法整体代入求解体现出转化与化归思想解析:9 【解析】 【分析】记函数122012()(1)(1)(1)n nn f x x x x a a x a x a x =++++++=++++L L ,012222(1)2n n f a a a a =+++=++++L L ,利用等比数列求和公式即可求解.【详解】由题:记函数212012()(1)(1)(1)n nn f x a a x a x a x x x x =++++=++++++L L ,021222(12)(21)212n nn f a a a a -=++++++=-=+L L , 即1221022n +-=,121024,9n n +==故答案为:9 【点睛】此题考查多项式系数之和问题,常用赋值法整体代入求解,体现出转化与化归思想.17.【解析】【分析】【详解】由题意解得或者而数列是递增的等比数列所以即所以因而数列的前项和故答案为考点:1等比数列的性质;2等比数列的前项和公式 解析:21n -【解析】 【分析】 【详解】由题意,14231498a a a a a a +=⎧⎨⋅=⋅=⎩,解得141,8a a ==或者148,1a a ==,而数列{}n a 是递增的等比数列,所以141,8a a ==, 即3418a q a ==,所以2q =, 因而数列{}n a 的前n 项和1(1)1221112n nn n a q S q --===---,故答案为21n -. 考点:1.等比数列的性质;2.等比数列的前n 项和公式.18.【解析】【分析】先根据解析式以及偶函数性质确定函数单调性再化简不等式分类讨论分离不等式最后根据函数最值求m 取值范围即得结果【详解】因为当时为单调递减函数又所以函数为偶函数因此不等式恒成立等价于不等式解析:13-【解析】 【分析】先根据解析式以及偶函数性质确定函数单调性,再化简不等式()()1f x f x m -≤+,分类讨论分离不等式,最后根据函数最值求m 取值范围,即得结果. 【详解】因为当0x ≥时 ()21,01,22,1,xx x f x x ⎧-+≤<=⎨-≥⎩为单调递减函数,又()()f x f x -=,所以函数()f x 为偶函数,因此不等式()()1f x f x m -≤+恒成立,等价于不等式()()1f x f x m -≤+恒成立,即1x x m -≥+,平方化简得()2211m x m +≤-,当10m +=时,x R ∈; 当10m +>时,12mx -≤对[],1x m m ∈+恒成立,11111233m m m m -+≤∴≤-∴-<≤-; 当10m +<时,12m x -≥对[],1x m m ∈+恒成立,1123m m m -≥∴≥(舍); 综上113m -≤≤-,因此实数m 的最大值是13-. 【点睛】解函数不等式:首先根据函数的性质把不等式转化为()()()()f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内.19.【解析】【分析】设等比数列的公比为由数列为等比数列得出求出的值即可得出的值【详解】设等比数列的公比为由于数列为等比数列整理得即化简得解得因此故答案为:【点睛】本题考查等比数列基本量的计算同时也考查了 解析:12【解析】 【分析】设等比数列{}n a 的公比为q ,由数列{}12n S a -为等比数列,得出()()()2211131222S a S a S a -=--,求出q 的值,即可得出32aa 的值.【详解】设等比数列{}n a 的公比为q ,由于数列{}12n S a -为等比数列,()()()2211131222S a S a S a ∴-=--,整理得()()2211321a a a a a a -=-⋅+-,即()()2211q q q -=-+-,化简得220q q -=,0q ≠Q ,解得12q =,因此,3212a q a ==. 故答案为:12. 【点睛】本题考查等比数列基本量的计算,同时也考查了等比中项的应用,考查运算求解能力,属于中等题.20.【解析】【分析】先根据条件列关于公差的方程求出公差后代入等差数列通项公式即可【详解】设等差数列的公差为【点睛】在解决等差等比数列的运算问题时有两个处理思路一是利用基本量将多元问题简化为首项与公差(公 解析:63n a n =-【解析】 【分析】先根据条件列关于公差的方程,求出公差后,代入等差数列通项公式即可. 【详解】设等差数列{}n a 的公差为d ,13334366a d d d =∴+++=∴=Q ,,,36(1)6 3.n a n n ∴=+-=-【点睛】在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为首项与公差(公比)问题,虽有一定量的运算,但思路简洁,目标明确:二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.三、解答题21.(1)13nn a ⎛⎫= ⎪⎝⎭; (2)13(21)34n n n T ++-⋅=【解析】 【分析】(1)由等差中项可得21343a a a =+,设数列{}n a 的公比为()1q q ≠,则211143a q a a q ⋅=+⋅,可解得q ,即可求得通项公式;(2)由(1)可得3n nnn a =⋅,再利用错位相减法求解即可. 【详解】解:(1)设数列{}n a 的公比为()1q q ≠,且1a ,22a ,33a 成等差数列,所以21343a a a =+,即211143a q a a q ⋅=+⋅,解得13q =, 因为113a =,所以13nn a ⎛⎫= ⎪⎝⎭(2)由(1)知,13nn a ⎛⎫= ⎪⎝⎭,所以3n nn n a =⋅, 所以1231323333nn T n =⨯+⨯+⨯++⋅L ,则234131323333n n T n +=⨯+⨯+⨯++⋅L ,作差可得,1231233333n n n T n +-=++++-⋅L则()+13312331n n nT n --=-⋅-,即1132322n n T n +⎛⎫-=-⋅- ⎪⎝⎭,所以()132134n n n T ++-⋅=【点睛】本题考查等差中项的应用,考查等比数列的通项公式,考查错位相减法求数列的和. 22.(1) 6A π=;(2) 2a =.【解析】试题分析:(1sin sin cos A C C A ⋅=⋅.消去公因式得到所以tan A =. 进而得到角A ;(2)结合三角形的面积公式,和余弦定理得到2b c +=+式得到2a =.解析:(I sin cos C c A =,所以cos 0A ≠, 由正弦定理sin sin sin a b c A B C==,sin sin cos A C C A ⋅=⋅. 又因为 ()0,C π∈,sin 0C ≠,所以 tan A =. 又因为 ()0,A π∈, 所以 6A π=.(II )由11sin 24ABC S bc A bc ∆===bc =, 由余弦定理2222cos a b c bc A =+-, 得2222cos6a b c bc π=+-,即()()222212a b c bc b c =+-=+-,因为2b c +=+ 解得 24a =. 因为 0a >, 所以 2a =.23.(1)a n =3n ﹣1,b n =2n ﹣1(2)T n =3﹣(n +1)•(13)n ﹣1【解析】 【分析】(1)利用基本量法求解n a ,再代入()1,n n P b b +到直线20x y -+=可得{}n b 为等差数列,再进行通项公式求解即可. (2)利用错位相减求和即可. 【详解】(1)递增等比数列{a n }的公比设为q ,前n 项和为S n ,且a 2=3,S 3=13, 可得a 1q =3,a 1+a 1q +a 1q 2=13,解得q =3或q 13=, 由等比数列递增,可得q =3,a 1=1,则13-=n n a ; P (b n ,b n +1)在直线x ﹣y +2=0上,可得b n +1﹣b n =2, 且b 1=a 1=1,则b n =1+2(n ﹣1)=2n ﹣1;(2)c n nn b a ==(2n ﹣1)•(13)n ﹣1, 前n 项和T n =1•1+3•13+5•19++L (2n ﹣1)•(13)n ﹣1, 13T n =1•13+3•19+5•127++L (2n ﹣1)•(13)n , 相减可得23T n =1+2(1139+++L (13)n ﹣1)﹣(2n ﹣1)•(13)n=1+2•111133113n -⎛⎫- ⎪⎝⎭--(2n ﹣1)•(13)n , 化简可得T n =3﹣(n +1)•(13)n ﹣1.【点睛】本题主要考查了等比等差数列的通项公式求解以及错位相减的求和方法,属于中档题. 24.(Ⅰ)证明见解析;(II )证明见解析. 【解析】 【分析】 【详解】(Ⅰ)由222a b ab +≥,222c b bc +≥,222a c ac +≥得:222a b c ab bc ca ++≥++,由题设得,即2222221a b c ab bc ca +++++=, 所以3()1ab bc ca ++≤,即13ab bc ca ++≤. (Ⅱ)因为22a b a b +≥,22b c b c +≥,22c a c a +≥,所以222()2()a b c a b c a b c b c a+++++≥++,即222a b c a b c b c a++≥++, 所以2221a b c b c a++≥.本题第(Ⅰ)(Ⅱ)两问,都可以由均值不等式,相加即得到.在应用均值不等式时,注意等号成立的条件:“一正二定三相等”. 【考点定位】本小题主要考查不等式的证明,熟练基础知识是解答好本类题目的关键.25.(1)4A π=(2)4【解析】分析:(1)利用正弦定理化简已知等式,整理后根据sin 0B ≠求出sin cos 0A A -=,即可确定出A 的度数;(2)利用余弦定理列出关系式,把a ,b ,cosA 的值代入求出c 的值,再由b ,sinA 的值,利用三角形面积公式求出即可.详解:在ABC V 中,由正弦定理得sin sin sin cos 0A B B A -=. 即()sin sin cos 0B A A -=,又角B 为三角形内角,sin 0B ≠, 所以sin cos 0A A -=04A π⎛⎫-= ⎪⎝⎭, 又因为()0,A π∈,所以4A π=.(2)在ABC V 中,由余弦定理得:2222cos a b c bc A =+-⋅,则220442c c ⎛=+-⋅ ⎝⎭.即2160c -=.解得c =-c =所以1242S =⨯⨯=.·点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.26.(1)见解析(2)1242n n n S -+=- 【解析】 【分析】(1)根据数列{}n a 的递推公式及21n n b a -=,可表示出1n b +与n b 的等量关系,再将等式变形即可证明数列{}2n b +为等比数列;(2)由(1)可求得数列{}n b 的通项公式,代入后可得3+2n n b ⎧⎫⎨⎬⎩⎭的通项公式,结合错位相减法即可求得前n 项和n S . 【详解】(1)()121221212212222n n n n n n b a a a a b ++--===+=+=+,所以()1222n n b b ++=+,即1222n n b b ++=+, 又因为112230b a +=+=≠,所以数列{}2n b +是以3为首项以2为公比的等比数列.(2)由(1)得,1232n n b -+=⋅,11332322n n n n n nb --==+⋅, 所以02111222n n n n n S ---=+++L 0222222n n n S -=+++L 则1021122222n n n n n n S S S --⎛⎫=-=-+++ ⎪⎝⎭L 11111221212n n n --⎛⎫⋅- ⎪⎝⎭=-+- 1242n n -+=-. 【点睛】 本题考查了由递推公式证明数列为等比数列,错位相减法的求和应用,属于中档题.。

【必考题】高三数学下期中第一次模拟试题(及答案)

【必考题】高三数学下期中第一次模拟试题(及答案)

【必考题】高三数学下期中第一次模拟试题(及答案)一、选择题1.在ABC ∆中,,,a b c 分别为角,,A B C 所对的边,若 2?a bcos C =,则此三角形一定是( ) A .等腰直角三角形 B .直角三角形C .等腰三角形D .等腰三角形或直角三角形2.设x y ,满足约束条件10102x y x y y -+≤⎧⎪+-⎨⎪≤⎩>,则yx 的取值范围是( )A .()[),22,-∞-+∞B .(]2,2-C .(][),22,-∞-+∞D .[]22-,3.若ABC ∆的三个内角满足sin :sin :sin 5:11:13A B C =,则ABC ∆( ) A .一定是锐角三角形 B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形4.已知,,a b R +∈且115a b a b+++=,则+a b 的取值范围是( ) A .[1,4]B .[)2,+∞C .(2,4)D .(4,)+∞5.设数列{}n a 是等差数列,且26a =-,86a =,n S 是数列{}n a 的前n 项和,则( ). A .45S S <B .45S S =C .65S S <D .65S S =6.已知数列{a n }满足331log 1log ()n n a a n N +++=∈且2469a a a ++=,则15793log ()a a a ++的值是( )A .-5B .-15C .5D .157.已知等比数列{}n a ,11a =,418a =,且12231n n a a a a a a k +++⋅⋅⋅+<,则k 的取值范围是( ) A .12,23⎡⎤⎢⎥⎣⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .12,23⎡⎫⎪⎢⎣⎭D .2,3⎡⎫+∞⎪⎢⎣⎭8.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,若(){}nf a 仍是比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,-∞⋃+∞上的如下函数: ①()3f x x =;②()xf x e =;③()f x x =;④()ln f x x =则其中是“保等比数列函数”的()f x 的序号为( ) A .①②B .③④C .①③D .②④9.已知AB AC ⊥,1AB t=,AC t =,若P 点是ABC 所在平面内一点,且4AB AC AP ABAC=+,则·PB PC 的最大值等于( ). A .13B .15C .19D .2110.在等差数列{}n a 中,如果123440,60a a a a +=+=,那么78a a +=( ) A .95B .100C .135D .8011.若关于x 的不等式220x ax +->在区间[]1,5上有解,则a 的取值范围是( ) A .23,5⎛⎫-+∞ ⎪⎝⎭B .23,15⎡⎤-⎢⎥⎣⎦C .()1,+∞D .23,5⎛⎤-∞ ⎥⎝⎦12.数列{a n }满足a 1=1,对任意n ∈N *都有a n +1=a n +n +1,则122019111a a a ++⋯+=( ) A .20202019B .20191010C .20171010D .40372020二、填空题13.若x ,y 满足约束条件1300x y x y x y -≥-⎧⎪+≤⎪⎨≥⎪⎪≥⎩,则2z x y =-的最大值是__________.14.已知是数列的前项和,若,则_____.15.已知0,0a b >>,且20a b +=,则lg lg a b +的最大值为_____. 16.设(32()lg 1f x x x x =++,则对任意实数,a b ,“0a b +≥”是“()()0f a f b +≥”的_________条件.(填“充分不必要”.“必要不充分”.“充要”.“既不充分又不必要”之一) 17.设数列{a n }的首项a 1=32,前n 项和为S n ,且满足2a n +1+S n =3(n ∈N *),则满足2188177n n S S <<的所有n 的和为________.18.数列{}n b 中,121,5b b ==且*21()n n n b b b n N ++=-∈,则2016b =___________.19.设a ∈R ,若x >0时均有[(a -1)x -1]( x 2-ax -1)≥0,则a =__________. 20.设等差数列{}na 的前n 项和为n S .若35a =,且1S ,5S ,7S 成等差数列,则数列{}n a 的通项公式n a =____.三、解答题21.设函数()112f x x =++|x |(x ∈R)的最小值为a . (1)求a ;(2)已知两个正数m ,n 满足m 2+n 2=a ,求11m n+的最小值. 22.已知函数()()22f x x x a x R =++∈(1)若函数()f x 的值域为[0,)+∞,求实数a 的值;(2)若()0f x >对任意的[1,)x ∈+∞成立,求实数a 的取值范围。

高三数学下期中一模试题带答案

高三数学下期中一模试题带答案

高三数学下期中一模试题带答案一、选择题1.下列结论正确的是( ) A .若a b >,则22ac bc > B .若22a b >,则a b > C .若,0a b c ><,则a c b c +<+ D<a b <2.若正实数x ,y 满足141x y +=,且234yx a a +>-恒成立,则实数a 的取值范围为( ) A .[]1,4-B .()1,4-C .[]4,1-D .()4,1-3.已知数列{}n a 的前n 项和2n S n =,()1nn n b a =-则数列{}n b 的前n 项和n T 满足( ) A .()1nn T n =-⨯ B .n T n = C .n T n =-D .,2,.n n n T n n ⎧=⎨-⎩为偶数,为奇数4.若正项递增等比数列{}n a 满足()()()243510a a a a R λλ+-+-=∈,则89a a λ+的最小值为( ) A .94-B .94C .274D .274-5.已知数列{a n }满足331log 1log ()n n a a n N +++=∈且2469a a a ++=,则15793log ()a a a ++的值是( )A .-5B .-15C .5D .156.已知01x <<,01y <<,则)AB .CD .7.设ABC ∆的三个内角, , A B C 成等差数列,sin A 、sin B 、sin C 成等比数列,则这个三角形的形状是 ( ) A .直角三角形B .等边三角形C .等腰直角三角形D .钝角三角形8.已知数列{}n a 的首项11a =,数列{}n b 为等比数列,且1n n na b a +=.若10112b b =,则21a =( )A .92B .102C .112D .1229.已知AB AC ⊥u u u v u u u v ,1AB t=u u uv ,AC t =u u u v ,若P 点是ABC V 所在平面内一点,且4AB AC AP AB AC=+u u u v u u u v u u u v u u u v u u u v ,则·PB PC u u u v u u u v 的最大值等于( ). A .13B .15C .19D .2110.在ABC ∆中,,,a b c 分别是角,,A B C 的对边,若sin cos 0b A B -=,且2b ac =,则a cb+的值为( )A .2BC .2D .411.已知数列{an}的通项公式为an =2()3nn 则数列{an}中的最大项为( ) A .89B .23C .6481D .12524312.已知正项数列{}n a *(1)()2n n n N +=∈L ,则数列{}n a 的通项公式为( ) A .n a n =B .2n a n =C .2n na =D .22n n a =二、填空题13.如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N ,那么称该数列为N 型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型标准数列的个数为______.14.已知数列{}n a ,11a =,1(1)1n n na n a +=++,若对于任意的[2,2]a ∈-,*n ∈N ,不等式1321t n a a n +<-⋅+恒成立,则实数t 的取值范围为________ 15.设0a >,若对于任意满足8m n +=的正数m ,n ,都有1141a m n ++≤,则a 的取值范围是______.16.已知数列{}{}n n a b 、满足ln n n b a =,*n ∈N ,其中{}n b 是等差数列,且431007e a a ⋅=,则121009b b b +++=L ________.17.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞,若要测量如图所示的蓝洞的口径A ,B 两点间的距离,现在珊瑚群岛上取两点C ,D ,测得80CD =,135ADB ∠=︒,15BDC DCA ∠∠==︒,120ACB ∠=︒,则A ,B 两点的距离为________.18.若a>0,b>0,a+b=2,则下列不等式对一切满足条件的a ,b 恒成立的是 (写出所有正确命题的编号).①ab≤1; ②a +b ≤2; ③a 2+b 2≥2;④a 3+b 3≥3;112a b+≥⑤. 19.设0x >,则231x x x +++的最小值为______.20.数列{}n a 满足1(1)21nn n a a n ++-=-,则{}n a 的前60项和为_____.三、解答题21.在四边形ABCD 中,120BAD ︒∠=,60BCD ︒∠=,1cos 7D =-,2AD DC ==.(1) 求cos DAC ∠及AC 的长; (2) 求BC 的长.22.已知数列{}n a 的前n 项和为n S ,且221n n n S na a =+-. (1)求数列{}n a 的通项公式; (2)若数列21n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,证明:4nT <. 23.已知各项均为正数的等比数列{}n a 的首项为12,且()3122123a a a -=+。

新高三数学下期中第一次模拟试题(含答案)

新高三数学下期中第一次模拟试题(含答案)

新高三数学下期中第一次模拟试题(含答案)一、选择题1.已知数列121,,,4a a 成等差数列,1231,,,,4b b b 成等比数列,则212a ab -的值是 ( ) A .12B .12- C .12或12- D .142.在R 上定义运算:A()1B A B =-,若不等式()x a -()1x a +<对任意的实数x ∈R 恒成立,则实数a 的取值范围是( ) A .11a -<<B .02a <<C .1322a -<< D .3122a -<< 3.若a 、b 、c >0且a (a +b +c )+bc =4-3,则2a +b +c 的最小值为( ) A . 31 B . 31 C .3+2D .324.已知等差数列{}n a ,前n 项和为n S ,5628a a +=,则10S =( ) A .140B .280C .168D .565.在直角梯形ABCD 中,//AB CD ,90ABC ∠=o ,22AB BC CD ==,则cos DAC ∠=( )A 25B 5C 310D 106.变量,x y 满足条件1011x y y x -+≤⎧⎪≤⎨⎪>-⎩,则22(2)x y -+的最小值为( ) A .322B 5C .5D .927.已知等比数列{}n a 的各项均为正数,且564718a a a a +=,则313233310log log log log a a a a +++⋅⋅⋅+=( )A .10B .12C .31log 5+D .32log 5+8.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为( )A .0B .1C .2D .39.等差数列{}n a 满足120182019201820190,0,0a a a a a >+>⋅<,则使前n 项和0n S >成立的最大正整数n 是( ) A .2018B .2019C .4036D .403710.已知ABC ∆中,A ,B ,C 的对边分别是a ,b ,c ,且3b =,33c =,30B =︒,则AB 边上的中线的长为( )A .37B .34 C .32或37D .34或37 11.已知a >0,x ,y 满足约束条件1{3(3)x x y y a x ≥+≤≥-,若z=2x+y 的最小值为1,则a=A .B .C .1D .212.“中国剩余定理”又称“孙子定理”1852年英国来华传教士伟烈亚力将《孙子算经》中“物不知数问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1至2019中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{}n a ,则此数列的项数为( ) A .134B .135C .136D .137二、填空题13.已知0a >,0b >,当()214a b ab++取得最小值时,b =__________. 14.已知数列{}n a 的首项12a =,且满足()*12n n n a a n N +=∈,则20a =________. 15.已知递增等比数列{}n a 的前n 项和为n S ,且满足:11a =,45234a a a a +=+,则144S S a +=______. 16.已知0a >,0b >,且31a b +=,则43a b+的最小值是_______. 17.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++等于______.18.设不等式组30,{230,1x y x y x +-<--≤≥表示的平面区域为1Ω,平面区域2Ω与1Ω关于直线20x y +=对称,对于任意的12,C D ∈Ω∈Ω,则CD 的最小值为__________.19.已知ABC ∆的内角,,A B C 的对边分别为,,a b c .若1c =,ABC ∆的面积为2214a b +-,则ABC ∆面积的最大值为_____.20.(理)设函数2()1f x x =-,对任意3,2x ⎡⎫∈+∞⎪⎢⎣⎭,2()4()(1)4()xf m f x f x f m m-≤-+恒成立,则实数m 的取值范围是______. 三、解答题21.如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D . 现测得BCD α∠=,BDC β∠=,CD s =,并在点C 测得塔顶A 的仰角为θ,求塔高AB .22.已知等差数列{}n a 的前n 项和为254,12,16n S a a S +==. (1)求{}n a 的通项公式; (2)数列{}n b 满足141n n n b T S =-,为数列{}n b 的前n 项和,是否存在正整数m ,()1k m k <<,使得23k m T T =?若存在,求出m ,k 的值;若不存在,请说明理由. 23.已知实数x 、y 满足6003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,若z ax y =+的最大值为39a +,最小值为33a -,求实数a 的取值范围.24.已知数列{}n a 是等差数列,数列{}n b 是公比大于零的等比数列,且112a b ==,338a b ==.(1)求数列{}n a 和{}n b 的通项公式; (2)记n n b c a =,求数列{}n c 的前n 项和n S .25.设数列{}n a 满足113,23nn n a a a +=-=⋅.(Ⅰ)求数列{}n a 的通项公式n a ;(Ⅱ)若n n b na =,求数列{}n b 的前n 项和n S . 26.数列{}n a 对任意*n ∈N ,满足131,2n n a a a +=+=.(1)求数列{}n a 通项公式;(2)若13na nb n ⎛⎫=+ ⎪⎝⎭,求{}n b 的通项公式及前n 项和.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】由题意可知:数列1,a 1,a 2,4成等差数列,设公差为d , 则4=1+3d ,解得d =1, ∴a 1=1+2=2,a 2=1+2d =3.∵数列1,b 1,b 2,b 3,4成等比数列,设公比为q , 则4=q 4,解得q 2=2, ∴b 2=q 2=2. 则21221122a ab --==. 本题选择A 选项.2.C解析:C 【解析】 【分析】根据新运算的定义, ()x a -()x a +22x x a a =-++-,即求221x x a a -++-<恒成立,整理后利用判别式求出a 范围即可【详解】Q A()1B A B =-∴()x a -()x a +()()()()22=11x a x a x a x a x x a a --+=--+-=-++-⎡⎤⎣⎦Q ()x a -()1x a +<对于任意的实数x ∈R 恒成立,221x x a a ∴-++-<,即2210x x a a -++--<恒成立,()()2214110a a ∴∆=-⨯-⨯--<, 1322a ∴-<<故选:C【点睛】本题考查新定义运算,考查一元二次不等式中的恒成立问题, 当x ∈R 时,利用判别式是解题关键3.D解析:D 【解析】由a (a +b +c )+bc =4-,得(a +c )·(a +b )=4- ∵a 、b 、c >0.∴(a +c )·(a +b )≤22b c 2a ++⎛⎫ ⎪⎝⎭(当且仅当a +c =b +a ,即b =c 时取“=”),∴2a +b +c =1)=-2. 故选:D点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误4.A解析:A 【解析】由等差数列的性质得,5611028a a a a +==+,∴其前10项之和为()11010102814022a a +⨯==,故选A. 5.C解析:C 【解析】 【分析】设1BC CD ==,计算出ACD ∆的三条边长,然后利用余弦定理计算出cos DAC ∠. 【详解】如下图所示,不妨设1BC CD ==,则2AB =,过点D 作DE AB ⊥,垂足为点D , 易知四边形BCDE 是正方形,则1BE CD ==,1AE AB BE ∴=-=,在Rt ADE ∆中,AD ==AC在ACD ∆中,由余弦定理得2222cos2AC AD CD DAC AC AD +-∠===⋅, 故选C .【点睛】本题考查余弦定理求角,在利用余弦定理求角时,首先应将三角形的边长求出来,结合余弦定理来求角,考查计算能力,属于中等题.6.C解析:C 【解析】由约束条件画出可行域,如下图,可知当过A(0,1)点时,目标函数取最小值5,选C.7.A解析:A 【解析】 【分析】利用对数运算合并,再利用等比数列{}n a 的性质求解。

高三数学下期中第一次模拟试题带答案(3)

高三数学下期中第一次模拟试题带答案(3)

高三数学下期中第一次模拟试题带答案(3)一、选择题1.已知正数x 、y 满足1x y +=,且2211x y m y x +≥++,则m 的最大值为( ) A .163B .13C .2D .42.在R 上定义运算:A()1B A B =-,若不等式()x a -()1x a +<对任意的实数x ∈R 恒成立,则实数a 的取值范围是( ) A .11a -<<B .02a <<C .1322a -<< D .3122a -<< 3.若变量x ,y 满足约束条件1358x y x x y ≥-⎧⎪≥⎨⎪+≤⎩,,,则2yz x =-的取值范围是( ) A .113⎡⎤-⎢⎥⎣⎦,B .11115⎡⎤--⎢⎥⎣⎦,C .111153⎡⎤-⎢⎥⎣⎦, D .3153⎡⎤-⎢⎥⎣⎦,4.我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,...,9填入33⨯的方格内,使三行、三列、两对角线的三个数之和都等于15 (如图).一般地,将连续的正整数1,2,3,…,2n 填入n n ⨯的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方.记n 阶幻方的一条对角线上数的和为n N (如:在3阶幻方中,315N =),则10N =( )A .1020B .1010C .510D .5055.已知数列{}n a 的前n 项和为n S ,且()*21n n S a n N =-∈,则5a 等于( )A .16-B .16C .31D .326.如图,为了测量山坡上灯塔CD 的高度,某人从高为=40h 的楼AB 的底部A 处和楼顶B 处分别测得仰角为=60βo,=30αo ,若山坡高为=35a ,则灯塔高度是( )A .15B .25C .40D .607.已知首项为正数的等差数列{}n a 的前n 项和为n S ,若1008a 和1009a 是方程2201720180x x --=的两根,则使0n S >成立的正整数n 的最大值是( )A .1008B .1009C .2016D .20178.已知{}n a 为等差数列,若20191<-a a ,且数列{}n a 的前n 项和n S 有最大值,则n S 的最小正值为( ) A .1SB .19SC .20SD .37S9.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,若(){}nf a 仍是比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,-∞⋃+∞上的如下函数: ①()3f x x =;②()xf x e =;③()f x x =④()ln f x x =则其中是“保等比数列函数”的()f x 的序号为( ) A .①②B .③④C .①③D .②④10.若0,0x y >>,且211x y+=,227x y m m +>+恒成立,则实数m 的取值范围是( ) A .(8,1)-B .(,8)(1,)-∞-⋃+∞C .(,1)(8,)-∞-⋃+∞D .(1,8)-11.已知x ,y 满足条件0{20x y xx y k ≥≤++≤(k 为常数),若目标函数z =x +3y 的最大值为8,则k =( ) A .-16B .-6C .-83D .612.若不等式1221m x x≤+-在()0,1x ∈时恒成立,则实数m 的最大值为( ) A .9B .92C .5D .52二、填空题13.数列{}n a 满足11,a =前n 项和为n S ,且*2(2,)n n S a n n N =≥∈,则{}n a 的通项公式n a =____;14.在ABC ∆中,内角A ,B ,C 所对应的边长分别为a ,b ,c ,且22cos 3C =,cos cos 2b A a B +=,则ABC ∆的外接圆面积为__________.15.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,若三角形的面积2223()4S a b c =+-,则角C =__________. 16.设,,若,则的最小值为_____________.17.已知实数x y ,满足2,2,03,x y x y y +≥⎧⎪-≤⎨⎪≤≤⎩则2z x y =-的最大值是____.18.已知120,0,2a b a b>>+=,2+a b 的最小值为_______________. 19.已知函数()3af x x x=++,*x ∈N ,在5x =时取到最小值,则实数a 的所有取值的集合为______.20.定义11222n n n a a a H n-+++=L 为数列{}n a 的均值,已知数列{}n b 的均值12n n H +=,记数列{}n b kn -的前n 项和是n S ,若5n S S ≤对于任意的正整数n 恒成立,则实数k 的取值范围是________.三、解答题21.已知ABC ∆的内角,,A B C 所对的边分别为,,a b c ,且2a =. (1)若23b =30A =︒,求角B 的值; (2)若ABC ∆的面积3ABC S ∆=,cos 45B =,求,b c 的值. 22.在△ABC 中,已知AC =4,BC =3,cosB =-14. (1)求sin A 的值; (2)求·BA BC u u u v u u u v的值.23.ABC △的内角,,A B C 的对边分别为,,a b c ,且cos )()cos a B C c b A -=-.(1)求A ;(2)若b =D 在BC 边上,2CD =,3ADC π∠=,求ABC △的面积.24.在ABC ∆中,内角、、A B C 的对边分别为a b c ,,,()cos cos 0C a B b A c ++=.(Ⅰ)求角C 的大小;(Ⅱ)若2a b ==,求()sin 2B C -的值.25.在△ABC 中,a , b , c 分别为内角A , B , C 的对边,且2sin (2)sin (2)sin .a A b c B c b C =+++(Ⅰ)求A 的大小; (Ⅱ)求sin sin B C +的最大值.26.已知等比数列{}n a 的各项均为正数,234848a a a =+=,.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设4log .n n b a =证明:{}n b 为等差数列,并求{}n b 的前n 项和n S .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】由已知条件得()()113x y +++=,对代数式2211x y y x +++变形,然后利用基本不等式求出2211x y y x +++的最小值,即可得出实数m 的最大值. 【详解】正数x 、y 满足1x y +=,则()()113x y +++=,()()()()()()222222221212111111111111y x y x y x x y y x y x y x y x +-+-⎡⎤⎡⎤----⎣⎦⎣⎦+=+=+=+++++++++444444141465111111y x x y y x x y x y =+-+++-+=+++-=+-++++++()()14441111525311311y x x y x y x y ⎛⎫⎛⎫++=++++-=++-⎡⎤ ⎪ ⎪⎣⎦++++⎝⎭⎝⎭41112253113x y y x ⎛⎫++≥⨯+⋅-= ⎪ ⎪++⎝⎭, 当且仅当12x y ==时,等号成立,即2211x y y x +++的最小值为13,则13m ≤. 因此,实数m 的最大值为13. 故选:B. 【点睛】本题考查利用基本不等式恒成立求参数,对代数式合理变形是解答的关键,考查计算能力,属于中等题.2.C解析:C 【解析】 【分析】根据新运算的定义, ()x a -()x a +22x x a a =-++-,即求221x x a a -++-<恒成立,整理后利用判别式求出a 范围即可【详解】Q A()1B A B =-∴()x a -()x a +()()()()22=11x a x a x a x a x x a a --+=--+-=-++-⎡⎤⎣⎦Q ()x a -()1x a +<对于任意的实数x ∈R 恒成立,221x x a a ∴-++-<,即2210x x a a -++--<恒成立,()()2214110a a ∴∆=-⨯-⨯--<,1322a ∴-<<故选:C 【点睛】本题考查新定义运算,考查一元二次不等式中的恒成立问题, 当x ∈R 时,利用判别式是解题关键3.A解析:A 【解析】 【分析】画出满足条件的平面区域,求出角点的坐标,结合2yz x =-的几何意义求出其范围,即可得到答案. 【详解】由题意,画出满足条件的平面区域,如图所示:由358y x x y =⎧⎨+=⎩,解得11A (,),由1x y x=-⎧⎨=⎩,解得(11)B --,, 而2yzx =-的几何意义表示过平面区域内的点与0(2)C ,的直线斜率, 结合图象,可得1AC k =-,13BC k =, 所以2y z x =-的取值范围为113⎡⎤-⎢⎥⎣⎦,, 故选:A.【点睛】本题主要考查了简单的线性规划问题,其中解答中作出约束条件所表示的平面区域,结合图象确定出目标函数的最优解是解答的关键,着重考查了数形结合思想,以及计算能力,属于基础题.4.D解析:D 【解析】n 阶幻方共有2n 个数,其和为()222112...,2n n n n ++++=Q 阶幻方共有n 行,∴每行的和为()()2221122n n n n n++=,即()()2210110101,50522n n n N N+⨯+=∴==,故选D.5.B解析:B 【解析】 【分析】令1n =,由11a S =可求出1a 的值,再令2n ≥,由21n n S a =-得出1121n n S a --=-,两式相减可得出数列{}n a 为等比数列,确定出该数列的公比,利用等比数列的通项公式可求出5a 的值. 【详解】当1n =时,1121S a =-,即1121a a =-,解得11a =;当2n ≥时,由21n n S a =-,得1121n n S a --=-,两式相减得122n n n a a a -=-,得12n n a a -=.所以,数列{}n a 是以1为首项,以2为公比的等比数列,则451216a =⨯=,故选:B. 【点睛】本题考查利用n S 来求通项n a ,一般利用公式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,同时也要注意等差数列和等比数列定义的应用,考查运算求解能力,属于中等题.6.B解析:B 【解析】 【分析】过点B 作BE DC ⊥于点E ,过点A 作AF DC ⊥于点F ,在ABD ∆中由正弦定理求得AD ,在Rt ADF ∆中求得DF ,从而求得灯塔CD 的高度.【详解】过点B 作BE DC ⊥于点E ,过点A 作AF DC ⊥于点F ,如图所示,在ABD ∆中,由正弦定理得,sin sin AB ADADB ABD=∠∠,即sin[90(90)]sin(90)h ADαβα=︒--︒-︒+,cos sin()h AD αβα∴=-,在Rt ADF ∆中,cos sin sin sin()h DF AD αβββα==-,又山高为a ,则灯塔CD 的高度是40cos sin 22356035251sin()2h CD DF EF a αββα=-=-=-=-=-. 故选B .【点睛】本题考查了解三角形的应用和正弦定理,考查了转化思想,属中档题.7.C解析:C 【解析】依题意知100810091008100920170,20180a a a a +=>=-<,Q 数列的首项为正数,()()1201610081009100810092016201620160,0,022a a a a a a S +⨯+⨯∴>∴==,()12017201710092017201702a a S a+⨯==⨯<,∴使0n S >成立的正整数n 的最大值是2016,故选C.8.D解析:D 【解析】 【分析】由已知条件判断出公差0d <,对20191<-a a 进行化简,运用等差数列的性质进行判断,求出结果. 【详解】已知{}n a 为等差数列,若20191<-a a ,则2019190a a a +<, 由数列{}n a 的前n 项和n S 有最大值,可得0d <,19193712029000,,0,370a a a a a S <=∴+<>>, 31208190a a a a ∴+=+<,380S <,则n S 的最小正值为37S 故选D 【点睛】本题考查了等差数列的性质运用,需要掌握等差数列的各公式并能熟练运用等差数列的性质进行解题,本题属于中档题,需要掌握解题方法.9.C解析:C 【解析】 【分析】设等比数列{}n a 的公比为q ,验证()()1n n f a f a +是否为非零常数,由此可得出正确选项. 【详解】设等比数列{}n a 的公比为q ,则1n na q a +=. 对于①中的函数()3f x x =,()()3313112n n n n n n f a a a q f a a a +++⎛⎫=== ⎪⎝⎭,该函数为“保等比数列函数”;对于②中的函数()xf x e =,()()111n n n n a a a n a n f a e e f a e++-+==不是非零常数,该函数不是“保等比数列函数”; 对于③中的函数()f x =()()1n n f a f a +===,该函数为“保等比数列函数”;对于④中的函数()ln f x x =,()()11ln ln n n n na f a f a a ++=不是常数,该函数不是“保等比数列函数”.故选:C. 【点睛】本题考查等比数列的定义,着重考查对题中定义的理解,考查分析问题和解决问题的能力,属于中等题.10.A解析:A 【解析】 【分析】 将代数式21x y+与2x y +相乘,展开式利用基本不等式求出2x y +的最小值8,将问题转化为解不等式()2min 72m m x y +<+,解出即可. 【详解】由基本不等式得()21422448y x x y x y x y x y ⎛⎫+=++=++≥= ⎪⎝⎭,当且仅当()4,0y xx y x y=>,即当2x y =时,等号成立,所以,2x y +的最小值为8.由题意可得()2min 728m m x y +<+=,即2780m m +-<,解得81m -<<.因此,实数m 的取值范围是(8,1)-,故选A. 【点睛】本题考查基本不等式的应用,考查不等式恒成立问题以及一元二次不等式的解法,对于不等式恒成立问题,常转化为最值来处理,考查计算能力,属于中等题.11.B解析:B 【解析】 【分析】 【详解】由z =x +3y 得y =-13x +3z,先作出0{x y x ≥≤的图象,如图所示,因为目标函数z =x +3y 的最大值为8,所以x +3y =8与直线y =x 的交点为C ,解得C (2,2),代入直线2x +y +k =0,得k =-6.12.B解析:B 【解析】 【分析】设f (x )1221x x=+-,根据形式将其化为f (x )()1152221x x x x-=++-.利用基本不等式求最值,可得当且仅当x 13=时()11221x x x x-+-的最小值为2,得到f (x )的最小值为f(13)92=,再由题中不等式恒成立可知m ≤(1221x x+-)min ,由此可得实数m 的最大值. 【详解】解:设f (x )11222211x x x x=+=+--(0<x <1)而1221x x+=-[x +(1﹣x )](1221x x +-)()1152221x x x x -=++- ∵x ∈(0,1),得x >0且1﹣x >0∴()11221x x x x -+≥-=2, 当且仅当()112211x x x x -==-,即x 13=时()11221x x x x -+-的最小值为2 ∴f (x )1221x x =+-的最小值为f (13)92= 而不等式m 1221x x ≤+-当x ∈(0,1)时恒成立,即m ≤(1221x x+-)min 因此,可得实数m 的最大值为92故选:B . 【点睛】本题给出关于x 的不等式恒成立,求参数m 的取值范围.着重考查了利用基本不等式求函数的最值和不等式恒成立问题的处理等知识,属于中档题.二、填空题13.【解析】【分析】根据递推关系式可得两式相减得:即可知从第二项起数列是等比数列即可写出通项公式【详解】因为所以两式相减得:即所以从第二项起是等比数列又所以故又所以【点睛】本题主要考查了数列的递推关系式解析:21,12,2n n n a n -=⎧=⎨≥⎩ 【解析】 【分析】根据递推关系式()*22,n n S a n n N=≥∈可得()*1123,n n Sa n n N --=≥∈,两式相减得:122(3,)n n n a a a n n N *-=-≥∈,即12(3,)nn a n n N a *-=≥∈,可知从第二项起数列是等比数列,即可写出通项公式. 【详解】因为()*22,n n S a n n N=≥∈所以()*1123,n n S a n n N--=≥∈两式相减得:122(3,)n n n a a a n n N *-=-≥∈即12(3,)nn a n n N a *-=≥∈ 所以{}n a 从第二项起是等比数列, 又22221+S a a ==,所以21a =故22(2,n n a n -=≥ *)n N ∈,又11a =所以21,12,2n n n a n -=⎧=⎨≥⎩. 【点睛】本题主要考查了数列的递推关系式,等比数列,数列的通项公式,属于中档题.14.【解析】【分析】根据正弦定理得到再根据计算得到答案【详解】由正弦定理知:即即故故答案为【点睛】本题考查了正弦定理外接圆面积意在考查学生的计算能力 解析:9π【解析】 【分析】根据正弦定理得到()1sin sin A B C R +==,再根据cos 3C =计算1sin 3C =得到答案. 【详解】由正弦定理知:cos cos 2sin cos 2sin cos 2b A a B R B A R A B +=⋅⋅+⋅=, 即()1sin sin A B C R +==,cos 3C =,1sin 3C =, 即3R =.故29S R ππ==. 故答案为9π 【点睛】本题考查了正弦定理,外接圆面积,意在考查学生的计算能力.15.【解析】分析:利用面积公式和余弦定理结合可得详解:由余弦定理:可得:∴∵∴故答案为:点睛:在解三角形时有许多公式到底选用哪个公式要根据已知条件根据待求式子灵活选用象本题出现因此联想余弦定理由于要求角解析:π3. 【解析】分析:利用面积公式in 12s S ab C =和余弦定理结合可得.详解:由()2221sin 42S a b c ab C =+-=. 余弦定理:2222cos a b c ab C +-=,可得:312cos sin 42ab C ab C ⨯=, ∴tan 3C =, ∵0πC <<, ∴π3C =. 故答案为:π3. 点睛:在解三角形时,有许多公式,到底选用哪个公式,要根据已知条件,根据待求式子灵活选用,象本题出现222a b c +-,因此联想余弦定理2222cos a b c ab C +-=,由于要求C 角,因此面积公式自然而然 选用in 12s S ab C =.许多问题可能比本题要更复杂,目标更隐蔽,需要我们不断探索,不断弃取才能得出正确结论,而这也要求我们首先要熟记公式.16.3+22【解析】【分析】由已知可得a-1+b=1从而有2a-1+1b=(2a-1+1b)(a-1+b)展开后利用基本不等式即可求解【详解】由题意因为a>1b>2满足a+b=2所以a-1+b=1且a- 解析:【解析】 【分析】 由已知可得,从而有,展开后利用基本不等式,即可求解. 【详解】 由题意,因为满足, 所以,且,则,当且仅当且,即时取得最小值.【点睛】本题主要考查了利用基本不等式求最值问题的应用,其中解答中根据题意配凑基本不等式的使用条件,合理利用基本不等式求得最值是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.17.7【解析】试题分析:根据约束条件画出可行域得到△ABC 及其内部其中A (53)B (﹣13)C (20)然后利用直线平移法可得当x=5y=3时z=2x ﹣y 有最大值并且可以得到这个最大值详解:根据约束条件画解析:7【解析】试题分析:根据约束条件画出可行域,得到△ABC及其内部,其中A(5,3),B(﹣1,3),C(2,0).然后利用直线平移法,可得当x=5,y=3时,z=2x﹣y有最大值,并且可以得到这个最大值.详解:根据约束条件2,2,03,x yx yy+≥⎧⎪-≤⎨⎪≤≤⎩画出可行域如图,得到△ABC及其内部,其中A(5,3),B(﹣1,3),C(2,0)平移直线l:z=2x﹣y,得当l经过点A(5,3)时,∴Z最大为2×5﹣3=7.故答案为7.点睛:在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.18.【解析】【分析】先化简再利用基本不等式求最小值【详解】由题得当且仅当时取等故答案为:【点睛】本题主要考查基本不等式求最值意在考查学生对这些知识的掌握水平和分析推理能力解题的关键是常量代换解析:9 2【解析】【分析】先化简11122(2)2(2)()22a b a b a ba b+=⋅+⋅=⋅+⋅+,再利用基本不等式求最小值.【详解】由题得1112122 2(2)2(2)()(5) 222a b a b a b a ba b b a +=⋅+⋅=⋅+⋅+=++19(522≥+=. 当且仅当221223222a b a ba b ⎧+=⎪==⎨⎪=⎩即时取等. 故答案为:92【点睛】本题主要考查基本不等式求最值,意在考查学生对这些知识的掌握水平和分析推理能力.解题的关键是常量代换.19.【解析】【分析】先求导判断函数的单调性得到函数的最小值由题意可得取离最近的正整数使达到最小得到解得即可【详解】∵∴当时恒成立则为增函数最小值为不满足题意当时令解得当时即函数在区间上单调递减当时即函数 解析:[]20,30【解析】 【分析】先求导,判断函数的单调性得到函数的最小值,由题意可得x()f x 达到最小,得到()()56f f ≤,()()54f f ≤,解得即可.【详解】 ∵()3af x x x=++,*x ∈N , ∴()2221a x af x x x-'=-=, 当0a ≤时,()0f x '≥恒成立,则()f x 为增函数, 最小值为()()min 14f x f a ==+,不满足题意, 当0a >时,令()0f x '=,解得x =当0x <<()0f x '<,函数()f x在区间(上单调递减,当x ()0f x '>,函数()f x在区间)+∞上单调递增,∴当x =()f x 取最小值,又*x ∈N ,∴x()f x 达到最小, 又由题意知,5x =时取到最小值,∴56<<或45<≤,∴()()56f f ≤且()()54f f ≤,即536356a a ++≤++且534354a a++≤++,解得2030a ≤≤.故实数a 的所有取值的集合为[]20,30. 故答案为:[]20,30. 【点睛】本题考查了导数和函数的单调性关系,以及参数的取值范围,属于中档题.20.【解析】【分析】因为从而求出可得数列为等差数列记数列为从而将对任意的恒成立化为即可求得答案【详解】故则对也成立则数列为等差数列记数列为故对任意的恒成立可化为:;即解得故答案为:【点睛】本题考查了根据解析:712[,]35【解析】 【分析】因为1112222n n n b b b n -+++⋯+=⋅,2121()2212n nn b b b n --++⋯+=-⋅,从而求出2(1)n b n =+,可得数列{}n b kn -为等差数列,记数列{}n b kn -为{}n c ,从而将5n S S ≤对任意的*(N )n n ∈恒成立化为50c ≥,60c ≤,即可求得答案. 【详解】Q 1112222n n n n b b b H n-++++==L ,∴ 1112222n n n b b b n -++++=⋅L ,故2121()(22212)n nn b b n b n --⋅++=-≥+L ,∴112212()n n n n b n n -+=⋅--⋅1()2n n =+⋅,则2(1)n b n =+,对1b 也成立,∴2(1)n b n =+,则()22n b kn k n -=-+,∴数列{}n b kn -为等差数列,记数列{}n b kn -为{}n c .故5n S S ≤对任意的*N ()n n ∈恒成立,可化为:50c ≥,60c ≤;即5(2)206(2)20k k -+≥⎧⎨-+≤⎩,解得,71235k ≤≤,故答案为:712[,]35. 【点睛】本题考查了根据递推公式求数列通项公式和数列的单调性,掌握判断数列前n 项和最大值的方法是解题关键,考查了分析能力和计算能力,属于中档题.三、解答题21.(1)60B =︒或120︒. (2) b =【解析】 【分析】(1)根据正弦定理,求得sin B =,进而可求解角B 的大小; (2)根据三角函数的基本关系式,求得3sin 5B =,利用三角形的面积公式和余弦定理,即可求解。

高三数学下期中第一次模拟试卷及答案

高三数学下期中第一次模拟试卷及答案

高三数学下期中第一次模拟试卷及答案一、选择题1.在ABC ∆中,,,a b c 分别为角,,A B C 所对的边,若 2?a bcos C =,则此三角形一定是( ) A .等腰直角三角形 B .直角三角形C .等腰三角形D .等腰三角形或直角三角形2.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为( ) A .65B .184C .183D .1763.一个递增的等差数列{}n a ,前三项的和12312a a a ++=,且234,,1a a a +成等比数列,则数列{}n a 的公差为 ( ) A .2±B .3C .2D .14.设等比数列{}n a 的前n 项和为n S ,若633S S =, 则96S S =( ) A .2B .73C .83 D .35.在等差数列{}n a 中,若1091a a <-,且它的前n 项和n S 有最大值,则使0n S >成立的正整数n 的最大值是( ) A .15B .16C .17D .146.设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和,若124,,S S S 成等比数列,则1a =( ) A .2B .-2C .12D .12-7.已知锐角三角形的边长分别为1,3,a ,则a 的取值范围是( ) A .()8,10B.(C.()D.)8.已知AB AC ⊥u u u v u u u v ,1AB t=u u uv ,AC t =u u u v ,若P 点是ABC V 所在平面内一点,且4AB AC AP AB AC=+u u u v u u u v u u u v u u u v u u u v ,则·PB PC u u u v u u u v 的最大值等于( ). A .13B .15C .19D .219.等差数列{}n a 满足120182019201820190,0,0a a a a a >+>⋅<,则使前n 项和0n S >成立的最大正整数n 是( )A .2018B .2019C .4036D .403710.已知等差数列{}n a 的前n 项和为n S ,若341118a a a ++=则11S =( ) A .9B .22C .36D .6611.如图,为了测量山坡上灯塔CD 的高度,某人从高为=40h 的楼AB 的底部A 处和楼顶B 处分别测得仰角为=60βo,=30αo ,若山坡高为=35a ,则灯塔高度是( )A .15B .25C .40D .6012.两个等差数列{}n a 和{}n b ,其前n 项和分别为n S ,n T ,且723n n S n T n +=+,则220715a ab b +=+( )A .49B .378C .7914D .14924二、填空题13.已知lg lg 2x y +=,则11x y+的最小值是______. 14.设0a >,若对于任意满足8m n +=的正数m ,n ,都有1141a m n ++≤,则a 的取值范围是______.15.若x ,y 满足约束条件1300x y x y x y -≥-⎧⎪+≤⎪⎨≥⎪⎪≥⎩,则2z x y =-的最大值是__________.16.已知等比数列{}n a 满足232,1a a ==,则12231lim ()n n n a a a a a a +→+∞+++=L ________________.17.如图,无人机在离地面高200m 的A 处,观测到山顶M 处的仰角为15°、山脚C 处的俯角为45°,已知∠MCN=60°,则山的高度MN 为_________m.18.已知,x y 满足条件20220220x y x y x y +-≤⎧⎪--≤⎨⎪-+≥⎩,若目标函数=+z -ax y 取得最大值的最优解不唯一,则实数a 的值为__________.19.对一切实数x ,不等式2||10x a x ++≥恒成立,则实数a 的取值范围是_______ 20.已知数列{}n a 的前n 项和为n S ,11a =,且1n n S a λ=-(λ为常数).若数列{}n b 满足2n n a b n =-920n +-,且1n n b b +<,则满足条件的n 的取值集合为________.三、解答题21.已知数列中,,. (1)求证:是等比数列,并求的通项公式; (2)数列满足,求数列的前项和.22.设}{n a 是等差数列,公差为d ,前n 项和为n S . (1)设140a =,638a =,求n S 的最大值.(2)设11a =,*2()na nb n N =∈,数列}{n b 的前n 项和为n T ,且对任意的*n N ∈,都有20n T ≤,求d 的取值范围.23.已知角A ,B ,C 为等腰ABC ∆的内角,设向量(2sin sin ,sin )m A C B =-r,(cos ,cos )n C B =r ,且//m n r r,7BC =(1)求角B ;(2)在ABC ∆的外接圆的劣弧»AC 上取一点D ,使得1AD =,求sin DAC ∠及四边形ABCD 的面积.24.已知数列{}n a 是一个公差为()0d d ≠的等差数列,前n 项和为245,,,n S a a a 成等比数列,且515=-S .(1)求数列{}n a 的通项公式; (2)求数列{nS n}的前10项和. 25.在ABC V 中,3B π∠=,7b =,________________,求BC 边上的高.从①sin 7A =, ②sin 3sin A C =, ③2a c -=这三个条件中任选一个,补充在上面问题中并作答.26.等差数列{}n a 中,24a =,4715a a +=. (1)求数列{}n a 的通项公式; (2)设22n a n b n -=+,求12310b b b b +++⋅⋅⋅+的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】在ABC ∆中,222222cos ,2cos 222a b c a b c C a b C b ab abQ +-+-=∴==⋅,2222a a b c ∴=+-,,b c ∴=∴此三角形一定是等腰三角形,故选C.【方法点睛】本题主要考查利用余弦定理判断三角形形状,属于中档题.判断三角形状的常见方法是:(1)通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断;(2)利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出边与边之间的关系进行判断;(3)根据余弦定理确定一个内角为钝角进而知其为钝角三角形.2.B解析:B 【解析】分析:将原问题转化为等差数列的问题,然后结合等差数列相关公式整理计算即可求得最终结果.详解:由题意可得,8个孩子所得的棉花构成公差为17的等差数列,且前8项和为996, 设首项为1a ,结合等差数列前n 项和公式有:811878828179962S a d a ⨯=+=+⨯=, 解得:165a =,则81765717184a a d =+=+⨯=. 即第八个孩子分得斤数为184. 本题选择B 选项.点睛:本题主要考查等差数列前n 项和公式,等差数列的应用,等差数列的通项公式等知识,意在考查学生的转化能力和计算求解能力.3.C【解析】 【分析】 【详解】解:∵234,,1a a a +成等比数列, ∴,∵数列{}n a 为递增的等差数列,设公差为d , ∴,即,又数列{}n a 前三项的和,∴,即,即d =2或d =−2(舍去), 则公差d =2. 故选:C .4.B解析:B 【解析】 【分析】首先由等比数列前n 项和公式列方程,并解得3q ,然后再次利用等比数列前n 项和公式,则求得答案. 【详解】设公比为q ,则616363313(1)1113(1)11a q S q q q a q S qq---===+=---, ∴32q =,∴93962611271123S q S q --===--. 故选:B . 【点睛】本题考查等比数列前n 项和公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时也可以利用连续等长片断的和序列仍然成等比数列,进行求解.解析:C 【解析】 【分析】由题意可得90a >,100a <,且9100a a +<,由等差数列的性质和求和公式可得结论. 【详解】∵等差数列{}n a 的前n 项和有最大值, ∴等差数列{}n a 为递减数列,又1091a a <-, ∴90a >,100a <, ∴9100a a +<, 又()118181802a a S +=<,()117179171702a a S a +==>,∴0n S >成立的正整数n 的最大值是17, 故选C . 【点睛】本题考查等差数列的性质,涉及等差数列的求和公式,属中档题.6.D解析:D 【解析】 【分析】把已知2214S S S =用数列的首项1a 和公差d 表示出来后就可解得1a .,【详解】因为124S S S ,,成等比数列,所以2214S S S =,即211111(21)(46).2a a a a -=-=-,故选D. 【点睛】本题考查等差数列的前n 项和,考查等比数列的性质,解题方法是基本量法.本题属于基础题.7.B解析:B 【解析】 【分析】根据大边对大角定理知边长为1所对的角不是最大角,只需对其他两条边所对的利用余弦定理,即这两角的余弦值为正,可求出a 的取值范围. 【详解】由题意知,边长为1所对的角不是最大角,则边长为3或a 所对的角为最大角,只需这两个角为锐角即可,则这两个角的余弦值为正数,于此得到2222221313a a ⎧+>⎨+>⎩, 由于0a >,解得2210a <<,故选C . 【点睛】本题考查余弦定理的应用,在考查三角形是锐角三角形、直角三角形还是钝角三角形,一般由最大角来决定,并利用余弦定理结合余弦值的符号来进行转化,其关系如下:A 为锐角cos 0A ⇔>;A 为直角cos 0A ⇔=;A 为钝角cos 0A ⇔<.8.A 解析:A 【解析】以A 为坐标原点,建立平面直角坐标系,如图所示,则1(,0)B t,(0,)C t ,10)4(0,1)(1,4)AP =+=u u u r (,,即14)P (,,所以114)PB t=--u u u r (,,14)PC t =--u u u r (,,因此PB PC ⋅u u u r u u u r11416t t =--+117(4)t t =-+,因为114244t t t t+≥⋅=,所以PB PC ⋅u u u r u u u r 的最大值等于13,当14t t =,即12t =时取等号.考点:1、平面向量数量积;2、基本不等式.9.C解析:C 【解析】 【分析】根据等差数列前n 项和公式,结合已知条件列不等式组,进而求得使前n 项和0n S >成立的最大正整数n . 【详解】由于等差数列{}n a 满足120182019201820190,0,0a a a a a >+>⋅<,所以0d <,且2018201900a a >⎧⎨<⎩,所以()1403640362018201914037201940374036201802240374037022a a S a a a a a S +⎧=⨯=+⨯>⎪⎪⎨+⎪=⨯=⨯<⎪⎩,所以使前n 项和0n S >成立的最大正整数n 是4036.故选:C 【点睛】本小题主要考查等差数列前n 项和公式,考查等差数列的性质,属于基础题.10.D解析:D 【解析】分析:由341118a a a ++=,可得156a d +=,则化简11S =()1115a d +,即可得结果. 详解:因为341118a a a ++=, 所以可得113151856a d a d +=⇒+=, 所以11S =()111511666a d +=⨯=,故选D.点睛:本题主要考查等差数列的通项公式与等差数列的求和公式, 意在考查等差数列基本量运算,解答过程注意避免计算错误.11.B解析:B 【解析】 【分析】过点B 作BE DC ⊥于点E ,过点A 作AF DC ⊥于点F ,在ABD ∆中由正弦定理求得AD ,在Rt ADF ∆中求得DF ,从而求得灯塔CD 的高度.【详解】过点B 作BE DC ⊥于点E ,过点A 作AF DC ⊥于点F ,如图所示,在ABD ∆中,由正弦定理得,sin sin AB ADADB ABD=∠∠,即sin[90(90)]sin(90)h ADαβα=︒--︒-︒+,cos sin()h AD αβα∴=-,在Rt ADF ∆中,cos sin sin sin()h DF AD αβββα==-,又山高为a ,则灯塔CD 的高度是3340cossin 22356035251sin()2h CD DF EF a αββα⨯⨯=-=-=-=-=-. 故选B .【点睛】本题考查了解三角形的应用和正弦定理,考查了转化思想,属中档题.12.D解析:D 【解析】 【分析】根据等差数列的性质前n 项和的性质进行求解即可. 【详解】因为等差数列{}n a 和{}n b ,所以2201111715111122a a a a b b b b +==+,又211121S a =,211121T b =, 故令21n =有2121721214921324S T ⨯+==+,即1111211492124a b =,所以111114924a b = 故选:D. 【点睛】本题主要考查等差数列的等和性质:若{}n a 是等差数列,且(,,,*)m n p q m n p q N +=+∈,则m n p q a a a a +=+ 与等差数列{}n a 前n 项和n S 的性质*21(21),()n n S n a n N -=-∈二、填空题13.【解析】由得:所以当且仅当时取等号故填解析:15【解析】由lg lg 2x y +=得:100xy =,所以1111111()1001005xy x y x y x y ⎛⎫+=+=+≥ ⎪⎝⎭,当且仅当10x y ==时,取等号,故填15. 14.【解析】【分析】由题意结合均值不等式首先求得的最小值然后结合恒成立的条件得到关于a 的不等式求解不等式即可确定实数a 的取值范围【详解】由可得故:当且仅当即时等号成立故只需又则即则的取值范围是【点睛】在 解析:[)1,+∞【解析】 【分析】由题意结合均值不等式首先求得141m n ++的最小值,然后结合恒成立的条件得到关于a 的不等式,求解不等式即可确定实数a 的取值范围. 【详解】由8m n +=可得19m n ++=,故:()1411411411419191n m m n m n m n m n +⎛⎫⎛⎫+=+++=+++ ⎪ ⎪+++⎝⎭⎝⎭11419⎛⨯++= ⎝≥, 当且仅当12141n mn m mn +=⎧⎪+⎨=⎪+⎩,即3m =,5n =时等号成立,故只需11a≤,又0a >,则1a ≥. 即则a 的取值范围是[)1,+∞. 【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.15.﹣33【解析】分析:由约束条件作出可行域化目标函数为直线方程的斜截式数形结合得到最优解联立方程组求出最优解的坐标代入目标函数得答案详解:由约束条件作出可行域如图:联立解得化目标函数为直线方程的斜截式解析:[﹣3,3] 【解析】分析:由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案. 详解:由约束条件作出可行域如图:联立13x y x y -=-+=,解得12x y ==,()1,2B ,化目标函数2z x y =-为直线方程的斜截式22x zy =-. 由图可知,当直线22x zy =-过()1,2B ,直线在y 轴上的截距最大,z 最小,最小值为1223-⨯=-;当直线22x zy =-过()3,0A 时,直线在y 轴上的截距最小,z 最大,最大值为3203-⨯=. ∴2z x y =-的取值范围为[﹣3,3].故答案为:[﹣3,3].点睛:利用线性规划求最值,一般用图解法求解,其步骤是 (1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解. (4)求最值:将最优解代入目标函数即可求出最大值或最小值.16.【解析】【分析】求出数列的公比并得出等比数列的公比与首项然后利用等比数列求和公式求出即可计算出所求极限值【详解】由已知所以数列是首项为公比为的等比数列故答案为【点睛】本题考查等比数列基本量的计算同时解析:323【解析】 【分析】求出数列{}n a 的公比,并得出等比数列{}1n n a a +的公比与首项,然后利用等比数列求和公式求出12231n n a a a a a a ++++L ,即可计算出所求极限值. 【详解】 由已知3212a q a ==,23112()()22n n n a --=⨯=,3225211111()()()2()2224n n n n n n a a ----+=⋅==⋅,所以数列{}1n n a a +是首项为128a a =,公比为1'4q =的等比数列, 11223118[(1()]3214[1()]13414n n n n a a a a a a -+-+++==--L ,1223132132lim ()lim [1()]343n n n n n a a a a a a +→+∞→∞+++=-=L . 故答案为323. 【点睛】本题考查等比数列基本量的计算,同时也考查了利用定义判定等比数列、等比数列求和以及数列极限的计算,考查推理能力与计算能力,属于中等题.17.300【解析】试题分析:由条件所以所以这样在中在中解得中故填:300考点:解斜三角形【思路点睛】考察了解三角形的实际问题属于基础题型首先要弄清楚两个概念仰角和俯角都指视线与水平线的夹角将问题所涉及的解析:300 【解析】试题分析:由条件,,所以,,,所以,,这样在中,,在中,,解得,中,,故填:300.考点:解斜三角形【思路点睛】考察了解三角形的实际问题,属于基础题型,首先要弄清楚两个概念,仰角和俯角,都指视线与水平线的夹角,将问题所涉及的边和角在不同的三角形内转化,最后用正弦定理解决高度.18.或【解析】【分析】先画出不等式组所代表的平面区域解释目标函数为直线在轴上的截距由目标函数取得最大值的最优解不唯一得直线应与直线或平行从而解出的值【详解】解:画出不等式组对应的平面区域如图中阴影所示将解析:2或1-. 【解析】 【分析】先画出不等式组所代表的平面区域,解释目标函数为直线=+y ax z 在y 轴上的截距,由目标函数=+z ax y -取得最大值的最优解不唯一,得直线=+y ax z 应与直线20x y +-=或220x y -+=平行,从而解出a 的值.【详解】解:画出不等式组20220220x y x y x y +-≤⎧⎪--≤⎨⎪-+≥⎩对应的平面区域如图中阴影所示将=+z ax y -转化为=+y ax z ,所以目标函数z 代表直线=+y ax z 在y 轴上的截距 若目标函数=+z ax y -取得最大值的最优解不唯一则直线=+y ax z 应与直线20x y +-=或220x y -+=平行,如图中虚线所示 又直线20x y +-=和220x y -+=的斜率分别为1-和2 所以2a =或1a =- 故答案为:2或1-.【点睛】本题考查了简单线性规划,线性规划最优解不唯一,说明目标函数所代表的直线与不等式组某条边界线平行,注意区分最大值最优解和最小值最优解.19.-2+)【解析】【分析】根据题意分x=0与x≠0两种情况讨论①x=0时易得原不等式恒成立②x≠0时原式可变形为a≥-(|x|+)由基本不等式的性质易得a 的范围综合两种情况可得答案【详解】根据题意分两 解析:[-2,+∞)【解析】 【分析】根据题意,分x=0与x≠0两种情况讨论,①x=0时,易得原不等式恒成立,②x≠0时,原式可变形为a≥-(|x|+ 1x),由基本不等式的性质,易得a 的范围,综合两种情况可得答案. 【详解】根据题意,分两种情况讨论;①x=0时,原式为1≥0,恒成立,则a∈R;②x≠0时,原式可化为a|x|≥-(x 2+1),即a≥-(|x|+ 1x),又由|x|+1x ≥2,则-(|x|+1x)≤-2;要使不等式x 2+a|x|+1≥0恒成立,需有a≥-2即可; 综上可得,a 的取值范围是[-2,+∞); 故答案为[-2,+∞). 【点睛】本题考查不等式恒成立问题的解法,运用分类讨论和参数分离、基本不等式求最值是解题的关键,属于中档题.20.【解析】【分析】利用可求得;利用可证得数列为等比数列从而得到进而得到;利用可得到关于的不等式解不等式求得的取值范围根据求得结果【详解】当时解得:当且时即:数列是以为首项为公比的等比数列解得:又或满足 解析:{5,6}【解析】 【分析】利用11a S =可求得2λ=;利用1n n n a S S -=-可证得数列{}n a 为等比数列,从而得到12n n a -=,进而得到n b ;利用10n n b b +-<可得到关于n 的不等式,解不等式求得n 的取值范围,根据n *∈N 求得结果. 【详解】当1n =时,1111a S a λ==- 11λ∴-=,解得:2λ=21n n S a ∴=-当2n ≥且n *∈N 时,1121n n S a --=-1122n n n n n a S S a a --\=-=-,即:12n n a a -=∴数列{}n a 是以1为首项,2为公比的等比数列 12n n a -\=2920n n a b n n =-+-Q 219202n n n n b --+-∴=()()222111912092011280222n n n n nn n n n n n b b +--+++--+--+∴-=-=< 20n >Q ()()21128470n n n n ∴-+=--<,解得:47n <<又n *∈N 5n ∴=或6∴满足条件的n 的取值集合为{}5,6本题正确结果:{}5,6 【点睛】本题考查数列知识的综合应用,涉及到利用n a 与n S 的关系求解通项公式、等比数列通项公式的求解、根据数列的单调性求解参数范围等知识;关键是能够得到n b 的通项公式,进而根据单调性可构造出关于n的不等式,从而求得结果.三、解答题21.(1)答案见解析;(2).【解析】试题分析:⑴根据数列的递推关系,结合等比数列的定义即可证明是等比数列,并求的通项公式,⑵利用错位相减法即可求得答案;解析:(1)∵∴∴,∵,,∴是以为首项,以4为公比的等比数列∴,∴,∴,(2),∴①②①-②得∴. 22.(1)2020(2)29-,log 10⎛⎤∞ ⎥⎝⎦【解析】 【分析】(1)运用等差数列的通项公式可得公差d ,再由等差数列的求和公式,结合配方法和二次函数的最值求法,可得最大值;(2)由题意可得数列{b n }为首项为2,公比为2d 的等比数列,讨论d =0,d >0,d <0,判断数列{b n }的单调性和求和公式,及范围,结合不等式恒成立问题解法,解不等式可得所求范围. 【详解】(1)a 1=40,a 6=38,可得d 61255a a -==-, 可得S n =40n 12-n (n ﹣1)2155=-(n 2012-)2220120+,由n 为正整数,可得n =100或101时,S n 取得最大值2020;(2)设()*112na n ab n N ==∈,,数列{b n}的前n 项和为T n,可得a n =1+(n ﹣1)d ,数列{b n }为首项为2,公比为2d 的等比数列, 若d =0,可得b n =2;d >0,可得{b n }为递增数列,无最大值; 当d <0时,T n ()21221212dn dd-=--<,对任意的n ∈N *,都有T n ≤20,可得20212d≥-,且d <0, 解得d ≤29log 10. 【点睛】本题考查等差数列和等比数列的通项公式和求和公式的运用,考查数列不等式恒成立问题解法,注意运用转化思想,考查化简运算能力,属于中档题. 23.(1)3B π=(293【解析】 【分析】(1)利用向量共线的条件,结合诱导公式,求得角B 的余弦值,即可得答案; (2)求出CD ,23ADC ∠=π,由正弦定理可得sin DAC ∠,即可求出四边形ABCD 的面积.【详解】(1)Q 向量(2sin sin ,sin )m A C B =-r ,(cos ,cos )n C B =r,且//m n r r,(2sin sin )cos sin cos A C B B C ∴-=,2sin cos sin()A B B C ∴=+,2sin cos sin A B A ∴=,1cos 2B ∴=,0B Q π<<,3B π∴=;(2)根据题意及(1)可得ABC ∆是等边三角形,23ADC ∠=π, ADC ∆中,由余弦定理可得22222cos3AC AD CD AD CD π=+-⋅⋅, 260CD CD ∴+-=,2CD ∴=,由正弦定理可得sin sin 7CD ADC DAC AC ∠∠==,∴四边形ABCD 的面积.111224S DAC ABC =⨯∠+∠=. 【点睛】本题考查向量共线条件的运用、诱导公式、余弦定理、正弦定理的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意将四边形的面积分割成两个三角形的面积和. 24.(1)6n a n =-;(2)552-. 【解析】 【分析】(1)利用已知条件列出方程,求出公差,然后求解通项公式. (2)推出112n S n n -=,令n n Sc n =,得到{c n }是首项为-5,公差为12的等差数列,然后求解数列的和即可. 【详解】(1)由a 2、a 4、a 5成等比数列得:()()2111(3)4a d a d a d +=++,即5d 2=-a 1d ,又∵d ≠0,可得a 1=-5d ;而51545152S a d ⨯=+=-,解得d =1,所以a n =a 1+(n -1)d =n -6, 即数列{a n }的通项公式为a n =n -6.(2)因为()2111122n n n n nS na d ⋅--=+=,所以112n S n n -=, 令nn S c n =,则112n n c c +-=为常数,∴{c n }是首项为-5,公差为12的等差数列, 所以n S n ⎧⎫⎨⎬⎩⎭的前10项和为109155510222⨯-⨯+⨯=-. 【点睛】本题主要考查了等差数列以及等比数列的综合应用,以及等差数列求和公式的应用,其中解答中熟记等差、等比数列的通项公式,以及利用等差数列的求和公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题. 25.选择①,h =;选择②,h =;选择③,h =【解析】 【分析】 (1)选择①sin A =,可由sin sin a b A B =解得2a =,再由2222cos b a c ac B =+-解得3c =,最后由sin h c B =可得解;(2)选择②sin 3sin A C =,由sin sin()3sin A B C C =+=得5sin C C =,结合22sin cos 1C C +=得sin 14C =,最后由sin h b C =可得解. (3)选择③2a c -=,由2222cos b a c ac B =+-可得:227a c ac +-=,结合2a c -=解得1c =,最后由sin h c B =可得解. 【详解】(1)选择①sin 7A =,解答如下: 在ABC V ,由正弦定理得:sin sin a b A B=,=2a =, 由余弦定理得2222cos b a c ac B =+-,2212222c c =+-⨯⨯,解得1c =-(舍去)或3c =,则BC边上的高sin h c B = (2)选择②sin 3sin A C =,解答如下:在ABC V 中,[]sin sin ()sin()A B C B C π=-+=+,由sin 3sin A C =可得:sin()3sin 3C C π+=,整理得5sin C C =┄①, 又22sin cos 1C C +=┄②,由①②得sin C =, 则BC边上的高sin h b C ===. (3)选择③2a c -=,解答如下:在ABC V 中,由余弦定理得:2222cos b a c ac B =+-,3B π∠=Q,b =227a c ac ∴+-=┄①,又2a c -=┄②, 由①②解得1c =, 则BC边上的高sin h c B =. 【点睛】本题考查了正余弦定理解三角形,考查了计算能力,属于中档题. 26.(1)3(1)12n a n n =+-⨯=+;(2)2101 【解析】(Ⅰ)设等差数列{}n a 的公差为d .由已知得()()1114{3615a d a d a d +=+++=,解得13{1a d ==. 所以()112n a a n d n =+-=+. (Ⅱ)由(Ⅰ)可得2nn b n =+.所以()()()()231012310212223210b b b b +++⋅⋅⋅+=++++++⋅⋅⋅++()()2310222212310=+++⋅⋅⋅+++++⋅⋅⋅+()()1021211010122-+⨯=+-()112255=-+ 112532101=+=.考点:1、等差数列通项公式;2、分组求和法.。

【好题】高三数学下期中第一次模拟试卷含答案(3)

【好题】高三数学下期中第一次模拟试卷含答案(3)

【好题】高三数学下期中第一次模拟试卷含答案(3)一、选择题1.若函数y =f (x )满足:集合A ={f (n )|n ∈N *}中至少有三个不同的数成等差数列,则称函数f (x )是“等差源函数”,则下列四个函数中,“等差源函数”的个数是( ) ①y =2x +1;②y =log 2x ;③y =2x+1;④y =sin44x ππ+()A .1B .2C .3D .42.若,x y 满足1010330x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则2z x y =+的最大值为( )A .8B .7C .2D .13.已知数列{}n a 的通项公式是221sin2n n a n π+=(),则12310a a a a ++++=A .110B .100C .55D .04.在ABC ∆中,a ,b ,c 分别是角A ,B ,C 的对边,若2b c =,a =7cos 8A =,则ABC ∆的面积为( ) AB .3CD.25.已知正项等比数列{}n a 的公比为3,若229m n a a a =,则212m n+的最小值等于( ) A .1B .12C .34 D .326.已知数列{}n a 的前n 项和为n S ,且()*21n n S a n N =-∈,则5a 等于( )A .16-B .16C .31D .327.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,若(){}nf a 仍是比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,-∞⋃+∞上的如下函数: ①()3f x x =;②()xf x e =;③()f x =④()ln f x x =则其中是“保等比数列函数”的()f x 的序号为( ) A .①②B .③④C .①③D .②④8.已知实数x ,y 满足521802030x y x y x y +-≤⎧⎪-≥⎨⎪+-≥⎩,若直线10kx y -+=经过该可行域,则实数k的最大值是( ) A .1B .32C .2D .39.设等差数列{}n a 的前n 项和为n S ,且()*11n n nS S n N n +>∈+.若870a a +<,则( ) A .n S 的最大值是8S B .n S 的最小值是8S C .n S 的最大值是7SD .n S 的最小值是7S10.已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( ) A .7B .5C .5-D .7-11.已知等比数列{}n a 的各项均为正数,若3132312log log log 12a a a ++⋯+=,则67a a =( ) A .1 B .3C .6D .912.若ln 2ln 3ln 5,,235a b c ===,则 A .a b c << B .c a b << C .c b a <<D .b a c <<二、填空题13.已知变数,x y 满足约束条件340{210,380x y x y x y -+≥+-≥+-≤目标函数(0)z x ay a =+≥仅在点(2,2)处取得最大值,则a 的取值范围为_____________. 14.设,,若,则的最小值为_____________.15.若x ,y 满足约束条件1300x y x y x y -≥-⎧⎪+≤⎪⎨≥⎪⎪≥⎩,则2z x y =-的最大值是__________.16.设正项数列{}n a 的前n 项和是n S ,若{}n a 和{}nS 都是等差数列,且公差相等,则1a =_______.17.已知等差数列{}n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列.令114(1)n n n n nb a a -+=-,则数列{}n b 的前100的项和为______. 18.设数列{}n a 中,112,1n n a a a n +==++,则通项n a =___________.19.已知ABC ∆的内角,,A B C 的对边分别为,,a b c .若1c =,ABC ∆的面积为2214a b +-,则ABC ∆面积的最大值为_____. 20.如图所示,位于A 处的信息中心获悉:在其正东方向40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30,相距20海里的C 处的乙船,现乙船朝北偏东θ的方向即沿直线CB 前往B 处救援,则cos θ=______________.三、解答题21.在△ABC 中,角,,A B C 所对的边分别为,,,a b c 向量()233m a b c =,向量s )(co ,n B cosC =,且//m n .(1)求角C 的大小; (2)求3()3y sinA sin B π=-的最大值.22.在等差数列{}n a 中,2723a a +=-,3829a a +=-. (1)求数列{}n a 的通项公式.(2)若数列{}n n a b +的首项为1,公比为q 的等比数列,求{}n b 的前n 项和n S . 23.在ABC △中,,,A B C 对应的边为,,a b c .已知1cos 2a C cb +=. (Ⅰ)求A ;(Ⅱ)若4,6b c ==,求cos B 和()cos 2A B +的值.24.设各项均为正数的数列{a n }的前n 项和为S n ,满足:对任意的n ∈N *,都有a n +1+S n +1=1,又a 112=. (1)求数列{a n }的通项公式; (2)令b n =log 2a n ,求12231111n n b b b b b b ++++(n ∈N *) 25.已知等差数列{}n a 的前n 项和为n S ,且211a =,7161S =. (1)求数列{}n a 的通项公式; (2)若11n n n b a a +=,求数列{}n b 的前n 项和n T . 26.在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c ,已知cos2A ﹣3cos (B+C )=1. (1)求角A 的大小;(2)若△ABC 的面积S=5,b=5,求sinBsinC 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】①y =2x +1,n ∈N *,是等差源函数;②因为log 21,log 22,log 24构成等差数列,所以y =log 2x 是等差源函数;③y =2x +1不是等差源函数,因为若是,则2(2p +1)=(2m +1)+(2n +1),则2p +1=2m +2n ,所以2p +1-n =2m -n +1,左边是偶数,右边是奇数,故y =2x +1不是等差源函数; ④y =sin 44x ππ⎛⎫+⎪⎝⎭是周期函数,显然是等差源函数.答案:C.2.B解析:B 【解析】试题分析:作出题设约束条件可行域,如图ABC ∆内部(含边界),作直线:20l x y +=,把直线l 向上平移,z 增加,当l 过点(3,2)B 时,3227z =+⨯=为最大值.故选B .考点:简单的线性规划问题.3.C解析:C 【解析】 【分析】由已知条件得a n =n 2sin (2n 12+π)=22,,n n n n ⎧-⎨⎩是奇数是偶数,所以a 1+a 2+a 3+…+a 10=22﹣12+42﹣32+…+102﹣92,由此能求出结果. 【详解】∵2n 12+π =n π+2π,n ∈N *,∴a n =n 2sin (2n 12+π)=22,,n n n n ⎧-⎨⎩是奇数是偶数, ∴a 1+a 2+a 3+…+a 10=22﹣12+42﹣32+…+102﹣92=1+2+3+…+10=()101+10=552故选C . 【点睛】本题考查了等差数列的通项公式与求和公式、分类讨论方法、三角函数的周期性,属于中档题.4.D解析:D 【解析】 【分析】三角形的面积公式为1sin 2ABC S bc A ∆=,故需要求出边b 与c ,由余弦定理可以解得b 与c . 【详解】解:在ABC ∆中,2227cos 28b c a A bc +-==将2b c =,a =22246748c c c +-=,解得:2c =由7cos 8A =得sin 8A ==所以,11sin 2422ABC S bc A ∆==⨯⨯=故选D. 【点睛】三角形的面积公式常见形式有两种:一是12(底⨯高),二是1sin 2bc A .借助12(底⨯高)时,需要将斜三角形的高与相应的底求出来;借助1sin 2bc A 时,需要求出三角形两边及其夹角的正弦值.5.C解析:C【解析】∵正项等比数列{}n a 的公比为3,且229m n a a a =∴2224222223339m n m n a a a a --+-⋅⋅⋅=⋅=∴6m n +=∴121121153()()(2)(2)62622624m n m n m n n m ⨯++=⨯+++≥⨯+=,当且仅当24m n ==时取等号. 故选C.点睛:利用基本不等式解题的注意点:(1)首先要判断是否具备了应用基本不等式的条件,即“一正、二正、三相等”,且这三个条件必须同时成立.(2)若不直接满足基本不等式的条件,需要通过配凑、进行恒等变形,构造成满足条件的形式,常用的方法有:“1”的代换作用,对不等式进行分拆、组合、添加系数等. (3)多次使用基本不等式求最值时,要注意只有同时满足等号成立的条件才能取得等号.6.B解析:B 【解析】 【分析】令1n =,由11a S =可求出1a 的值,再令2n ≥,由21n n S a =-得出1121n n S a --=-,两式相减可得出数列{}n a 为等比数列,确定出该数列的公比,利用等比数列的通项公式可求出5a 的值. 【详解】当1n =时,1121S a =-,即1121a a =-,解得11a =;当2n ≥时,由21n n S a =-,得1121n n S a --=-,两式相减得122n n n a a a -=-,得12n n a a -=.所以,数列{}n a 是以1为首项,以2为公比的等比数列,则451216a =⨯=,故选:B. 【点睛】本题考查利用n S 来求通项n a ,一般利用公式11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,同时也要注意等差数列和等比数列定义的应用,考查运算求解能力,属于中等题.7.C解析:C 【解析】 【分析】设等比数列{}n a 的公比为q ,验证()()1n n f a f a +是否为非零常数,由此可得出正确选项. 【详解】设等比数列{}n a 的公比为q ,则1n na q a +=. 对于①中的函数()3f x x =,()()3313112n n n n n n f a a a q f a a a +++⎛⎫=== ⎪⎝⎭,该函数为“保等比数列函数”;对于②中的函数()xf x e =,()()111n n n n a a a n a n f a e e f a e++-+==不是非零常数,该函数不是“保等比数列函数”; 对于③中的函数()f x =()()1n n f a f a +===,该函数为“保等比数列函数”;对于④中的函数()ln f x x =,()()11ln ln n n n na f a f a a ++=不是常数,该函数不是“保等比数列函数”.故选:C. 【点睛】本题考查等比数列的定义,着重考查对题中定义的理解,考查分析问题和解决问题的能力,属于中等题.8.B解析:B 【解析】 【分析】先根据约束条件画出可行域,再利用直线20kx y -+=过定点()0,1,再利用k 的几何意义,只需求出直线10kx y -+=过点()2,4B 时,k 值即可. 【详解】直线20kx y -+=过定点()0,1, 作可行域如图所示,,由5218020x y x y +-=⎧⎨-=⎩,得()2,4B .当定点()0,1和B 点连接时,斜率最大,此时413202k -==-, 则k 的最大值为:32故选:B . 【点睛】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.9.D解析:D 【解析】 【分析】将所给条件式变形,结合等差数列前n 项和公式即可证明数列的单调性,从而由870a a +<可得7a 和8a 的符号,即可判断n S 的最小值.【详解】由已知,得()11n n n S nS ++<, 所以11n n S S n n +<+, 所以()()()()1111221n n n a a n a a n n ++++<+, 所以1n n a a +<,所以等差数列{}n a 为递增数列. 又870a a +<,即871a a <-, 所以80a >,70a <,即数列{}n a 前7项均小于0,第8项大于零, 所以n S 的最小值为7S , 故选D. 【点睛】本题考查了等差数列前n 项和公式的简单应用,等差数列单调性的证明和应用,前n 项和最值的判断,属于中档题.10.D解析:D 【解析】 【分析】由条件可得47a a ,的值,进而由27104a a a =和2417a a a =可得解.【详解】56474747822,4a a a a a a a a ==-+=∴=-=或474,2a a ==-.由等比数列性质可知2274101478,1a a a a a a ==-==或2274101471,8a a a a a a ====-1107a a ∴+=-故选D. 【点睛】本题主要考查了等比数列的下标的性质,属于中档题.11.D解析:D 【解析】 【分析】首先根据对数运算法则,可知()31212log ...12a a a =,再根据等比数列的性质可知()6121267.....a a a a a =,最后计算67a a 的值.【详解】由3132312log log log 12a a a +++= ,可得31212log 12a a a =,进而可得()6121212673a a a a a == ,679a a ∴= .【点睛】本题考查了对数运算法则和等比数列性质,属于中档题型,意在考查转化与化归和计算能力.12.B解析:B 【解析】 试题分析:因为ln 2ln 3ln8ln 9ln 2ln 30,23623--=<<,ln 2ln 5ln 32ln 25ln 2ln 50,251025--=>>,故选B. 考点:比较大小.二、填空题13.【解析】【分析】【详解】试题分析:由题意知满足条件的线性区域如图所示:点而目标函数仅在点处取得最大值所以考点:线性规划最值问题解析:1(,)3+∞【解析】 【分析】 【详解】试题分析:由题意知满足条件的线性区域如图所示:,点(22)A ,,而目标函数(0)z x ay a =+≥仅在点(2,2)处取得最大值,所以1133AB k a a ->=-∴> 考点:线性规划、最值问题.14.3+22【解析】【分析】由已知可得a-1+b=1从而有2a-1+1b=(2a-1+1b)(a-1+b)展开后利用基本不等式即可求解【详解】由题意因为a>1b>2满足a+b=2所以a-1+b=1且a- 解析:【解析】 【分析】 由已知可得,从而有,展开后利用基本不等式,即可求解. 【详解】 由题意,因为满足, 所以,且,则,当且仅当且,即时取得最小值.【点睛】本题主要考查了利用基本不等式求最值问题的应用,其中解答中根据题意配凑基本不等式的使用条件,合理利用基本不等式求得最值是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.15.﹣33【解析】分析:由约束条件作出可行域化目标函数为直线方程的斜截式数形结合得到最优解联立方程组求出最优解的坐标代入目标函数得答案详解:由约束条件作出可行域如图:联立解得化目标函数为直线方程的斜截式解析:[﹣3,3] 【解析】分析:由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案. 详解:由约束条件作出可行域如图:联立13x y x y -=-+=,解得12x y ==,()1,2B ,化目标函数2z x y =-为直线方程的斜截式22x zy =-. 由图可知,当直线22x zy =-过()1,2B ,直线在y 轴上的截距最大,z 最小,最小值为1223-⨯=-;当直线22x zy =-过()3,0A 时,直线在y 轴上的截距最小,z 最大,最大值为3203-⨯=. ∴2z x y =-的取值范围为[﹣3,3].故答案为:[﹣3,3].点睛:利用线性规划求最值,一般用图解法求解,其步骤是 (1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解. (4)求最值:将最优解代入目标函数即可求出最大值或最小值.16.【解析】分析:设公差为d 首项利用等差中项的性质通过两次平方运算即可求得答案详解:设公差为d 首项和都是等差数列且公差相等即两边同时平方得:两边再平方得:又两数列公差相等即解得:或为正项数列故答案为:点 解析:14【解析】分析:设公差为d ,首项1a ,利用等差中项的性质,通过两次平方运算即可求得答案. 详解:设公差为d ,首项1a ,{}n a 和都是等差数列,且公差相等,∴=,即=,两边同时平方得:()1114233a d a a d +=+++14a d +=两边再平方得:()221111168433a a d d a a d ++=+,∴2211440a a d d -+=,12d a =,又两数列公差相等,2112a a d a =-==,12a =, 解得:114a =或10a =, {}n a 为正项数列,∴114a =.故答案为:14. 点睛:本题考查等差数列的性质,考查等差中项的性质,考查化归与方程思想.17.【解析】【分析】首项利用已知条件求出数列的通项公式进一步利用裂项相消法求出数列的和【详解】解:设等差数列的首项为公差为2前n 项和为且成等比数列则:解得:所以:所以:所以:故答案为:【点睛】本题考查的 解析:200201【解析】首项利用已知条件求出数列的通项公式,进一步利用裂项相消法求出数列的和. 【详解】解:设等差数列{}n a 的首项为1a ,公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列.则:()2111(22)412a a a +=+,解得:11a =,所以:()12121n a n n =+-=-,所以:111411(1)(1)2121n n n n n n b a a n n --+⎛⎫=-=-⋅+ ⎪-+⎝⎭, 所以:100111111335199201S ⎛⎫⎛⎫⎛⎫=+-++⋯-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,12001201201=-=, 故答案为:200201【点睛】本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用,主要考查学生的运算能力和转化能力,属于基础题型.18.【解析】∵∴将以上各式相加得:故应填;【考点】:此题重点考察由数列的递推公式求数列的通项公式;【突破】:重视递推公式的特征与解法的选择;抓住中系数相同是找到方法的突破口;此题可用累和法迭代法等; 解析:()112n n ++【解析】∵112,1n n a a a n +==++∴()111n n a a n -=+-+,()1221n n a a n --=+-+,()2331n n a a n --=+-+,⋯,3221a a =++,2111a a =++,1211a ==+将以上各式相加得:()()()123211n a n n n n ⎡⎤=-+-+-+++++⎣⎦()()()()11111111222n n n n n n n n ⎡⎤--+-+⎣⎦=++=++=+故应填()112n n ++;【考点】:此题重点考察由数列的递推公式求数列的通项公式;【突破】:重视递推公式的特征与解法的选择;抓住11n n a a n +=++中1,n n a a +系数相同是找到方法的突破口;此题可用累和法,迭代法等;19.【解析】【分析】结合已知条件结合余弦定理求得然后利用基本不等式求得的最大值进而求得三角形面积的最大值【详解】由于三角形面积①由余弦定理得②由①②得由于所以故化简得故化简得所以三角形面积故答案为【点睛解析:14【解析】结合已知条件,结合余弦定理求得π4C =,然后利用基本不等式求得ab 的最大值,进而求得三角形ABC 面积的最大值. 【详解】由于三角形面积2211sin 24a b S ab C +-==①,由余弦定理得221cos 2a b C ab +-=②,由①②得sin cos C C =,由于()0,πC ∈,所以π4C =.故221cos 22a b C ab +-==,化简221a b =+-22121a b ab =+-≥-,化简得22ab +≤所以三角形面积1121sin 22224S ab C =≤⨯=.故答案为14. 【点睛】本小题主要考查余弦定理解三角形,考查三角形的面积公式,考查基本不等式求最值的方法,属于中档题.20.【解析】【分析】在中由余弦定理求得再由正弦定理求得最后利用两角和的余弦公式即可求解的值【详解】在中海里海里由余弦定理可得所以海里由正弦定理可得因为可知为锐角所以所以【点睛】本题主要考查了解三角形实际解析:14【解析】 【分析】在ABC ∆中,由余弦定理,求得BC ,再由正弦定理,求得sin ,sin ACB BAC ∠∠,最后利用两角和的余弦公式,即可求解cos θ的值. 【详解】在ABC ∆中,40AB =海里,20AC =海里,120BAC ∠=, 由余弦定理可得2222cos1202800BC AB AC AB AC =+-⋅=,所以BC =,由正弦定理可得sin sin 7AB ACB BAC BC ∠=⋅∠=,因为120BAC ∠=,可知ACB ∠为锐角,所以cos 7ACB ∠=所以21cos cos(30)cos cos30sin sin 30ACB ACB ACB θ=∠+=∠-∠=.本题主要考查了解三角形实际问题,解答中需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,合理使用正、余弦定理是解答的关键,其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向;第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化;第三步:列方程,求结果.三、解答题21.(1)6π(2)2 【解析】 【分析】(1)转化条件得()2sin cos A C B C =+,进而可得cos C =,即可得解; (2)由56A B π+=化简可得2sin 3y A π+=⎛⎫ ⎪⎝⎭,由50,6A π⎛⎫∈ ⎪⎝⎭结合三角函数的性质即可得解. 【详解】(1)//m n ,∴()2cos cos a C B ,由正弦定理得2sin cos cos cos A C B C C B ,∴)2sin cos sin cos sin cos A C B C C B =+即()2sin cos A C B C =+,又 B C A +=π-,∴2sin cos A C A ,又 ()0,A π∈,∴sin 0A ≠,∴cos C =, 由()0,C π∈可得6C π=.(2)由(1)可得56A B π+=,∴56B A π=-,∴5()()3632()y sinA B sinA A sinA A ππππ=-+=---=2sin 3sinA A A π⎛⎫=+ ⎪⎝⎭=,50,6A π⎛⎫∈ ⎪⎝⎭,∴7,336A πππ⎛⎫+∈ ⎪⎝⎭,∴(]2sin 1,23A π⎛⎫+∈- ⎪⎝⎭,∴()3y sinA B π=-的最大值为2.【点睛】本题考查了平面向量平行、正弦定理以及三角恒等变换的应用,考查了三角函数的性质,22.(1)32n a n =-+;(2)见解析 【解析】试题分析:(1)设等差数列{}n a 的公差为d .利用通项公式即可得出.(Ⅱ)由数列{}n n a b +是首项为1,公比为q 的等比数列,可得n b .再利用等差数列与等比数列的通项公式与求和公式即可得出. 试题解析:(1)设等差数列{}n a 的公差为d ,∵27382329a a a a +=-⎧⎨+=-⎩,∴1127232929a d a d +=-⎧⎨+=-⎩,解得113a d =-⎧⎨=-⎩,∴数列{}n a 的通项公式为32n a n =-+.(2)由数列{}n n a b +是首项为1,公比为q 的等比数列得1n n n a b q -+=,即132n n n b q --++=,∴132n n b n q -=-+,∴()()21147321n n S n q q q -⎡⎤=++++-+++++⎣⎦()()213112n n n q q q --=+++++. ∴当1q =时,()231322n n n n nS n -+=+=; 当1q ≠时,()31121nn n n q S q--=+-. 23.(Ⅰ)π3A =(Ⅱ)1114- 【解析】 【分析】(Ⅰ)先根据正弦定理化边为角,再根据两角和正弦公式化简得结果,(Ⅱ)根据余弦定理求a,代入条件求得sin B =,解得cos B =,最后根据两角和余弦定理得结果.【详解】(Ⅰ)解:由条件1cos 2a C c b +=,得1sin sin sin sin 2A C CB +=,又由()sin sin B AC =+,得1sin cos sin sin cos cos sin 2A C C A C A C +=+.由sin 0C ≠,得1cos 2A =,故π3A =.(Ⅱ)解:在ABC 中,由余弦定理及π4,6,3b c A ===, 有2222cos a b c bc A =+-,故a = 由sin sin b A a B =得sin B =,因为b a <,故cos B =.因此sin22sin cos B B B ==,21cos22cos 17B B =-=.所以()11cos 2cos cos2sin sin214A B A B A B +=-=-. 【点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的. 24.(1) a n 12n=;(2) 1nn +. 【解析】 【分析】(1)利用公式1n n n a S S -=-化简得到112n n a a +=,计算112a =,得到答案. (2)计算得到nb n =-,()1111111n n b b n n n n +==-++,利用裂项求和计算得到答案. 【详解】(1)根据题意,由a n +1+S n +1=1,①,则有a n +S n =1,②,(n ≥2) ①﹣②得:2a n +1=a n ,即a n +112=a n ,又由a 112=, 当n =1时,有a 2+S 2=1,即a 2+(a 1+a 2)=1,解可得a 214=, 则所以数列{a n }是首项和公比都为12的等比数列,故a n 12n =; (2)由(1)的结论,a n 12n =,则b n =log 2a n =﹣n ,则()()()()()()()122311111111111223112231n n b b b b b b n n n n ++++=+++=+++-⨯--⨯--⨯--⨯⨯⨯+=(112-)+(1231-)+……+(111n n -+)=1111nn n -=++.【点睛】本题考查了求通项公式,裂项求和法计算前n 项和,意在考查学生对于数列公式的综合应用.25.(1)61n a n =-;(2)1116565n T n ⎛⎫=- ⎪+⎝⎭【解析】 【分析】(1)根据等差数列通项公式及前n 项和公式求得首项和公差,即可得到数列{}n a 的通项公式;(2)将n b 化简后利用列项求和法即可求得数列{}n b 的前n 项和n T . 【详解】(1)(方法一)由题意得217111721161a a d S a d =+=⎧⎨=+=⎩,解得156a d =⎧⎨=⎩, 故61n a n =-.(方法二)由747161S a ==得423a =, 因为42642a a d -==-,从而15a =, 故61n a n =-. (2)因为111111(61)(65)66165n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭, 所以121111111651111176165n n T b b b n n ⎛⎫=+++=-+-++- ⎪-+⎝⎭1116565n ⎛⎫=- ⎪+⎝⎭. 【点睛】本题主要考查的是数列的通项公式的基本量求法,以及等差数列通项公式、前n 项和公式的求法,同时考查的是裂项求和,是中档题. 26.(1)(2)57【解析】试题分析:(1)根据二倍角公式,三角形内角和,所以,整理为关于的二次方程,解得角的大小;(2)根据三角形的面积公式和上一问角,代入后解得边,这样就知道,然后根据余弦定理再求,最后根据证得定理分别求得和.试题解析:(1)由cos 2A -3cos(B +C)=1,得2cos 2A +3cos A -2=0, 即(2cos A -1)(cos A +2)=0, 解得cos A =或cos A =-2(舍去).因为0<A<π,所以A=.(2)由S=bcsin A=bc×=bc=5,得bc=20,又b=5,知c=4.由余弦定理得a2=b2+c2-2bccos A=25+16-20=21,故a=.从而由正弦定理得sin B sin C=sin A×sin A=sin2A=×=.考点:1.二倍角公式;2.正余弦定理;3.三角形面积公式.【方法点睛】本题涉及到解三角形问题,所以有关三角问题的公式都有涉及,当出现时,就要考虑一个条件,,,这样就做到了有效的消元,涉及三角形的面积问题,就要考虑公式,灵活使用其中的一个.。

【易错题】高三数学下期中第一次模拟试卷附答案(3)

【易错题】高三数学下期中第一次模拟试卷附答案(3)

【易错题】高三数学下期中第一次模拟试卷附答案(3)一、选择题1.若正实数x ,y 满足141x y +=,且234yx a a +>-恒成立,则实数a 的取值范围为( ) A .[]1,4-B .()1,4-C .[]4,1-D .()4,1-2.已知正数x 、y 满足1x y +=,且2211x y m y x +≥++,则m 的最大值为( ) A .163B .13C .2D .43.已知x ,y 满足2303301x y x y y +-≤⎧⎪+-≥⎨⎪≤⎩,z =2x +y 的最大值为m ,若正数a ,b 满足a +b =m ,则14a b+的最小值为( ) A .3B .32C .2D .524.ABC ∆中有:①若A B >,则sin sin A>B ;②若22sin A sin B =,则ABC ∆—定为等腰三角形;③若cos acosB b A c -=,则ABC ∆—定为直角三角形.以上结论中正确的个数有( ) A .0B .1C .2D .35.已知正项等比数列{}n a 的公比为3,若229m n a a a =,则212m n+的最小值等于( ) A .1B .12C .34 D .326.已知数列{}n a 的前n 项和为n S ,且()*21n n S a n N =-∈,则5a 等于( )A .16-B .16C .31D .327.已知首项为正数的等差数列{}n a 的前n 项和为n S ,若1008a 和1009a 是方程2201720180x x --=的两根,则使0n S >成立的正整数n 的最大值是( )A .1008B .1009C .2016D .20178.两个等差数列{}n a 和{}n b ,其前n 项和分别为n S ,n T ,且723n n S n T n +=+,则220715a ab b +=+( )A .49B .378C .7914D .149249.关于x 的不等式()210x a x a -++<的解集中,恰有3个整数,则a 的取值范围是( )A .[)(]3,24,5--⋃B .()()3,24,5--⋃C .(]4,5D .(4,5)10.20,{0,0x y z x y x y x y y k+≥=+-≤≤≤设其中实数、满足若z 的最大值为6,z 的最小值为( )A .0B .-1C .-2D .-311.等比数列{}n a 中,11,28a q ==,则4a 与8a 的等比中项是( ) A .±4B .4C .14± D .1412.,x y 满足约束条件362000x y x y x y -≤⎧⎪-+≥⎪⎨≥⎪⎪≥⎩,若目标函数(0,0)z ax by a b =+>>的最大值为12,则23a b+的最小值为 ( ) A .256B .25C .253D .5二、填空题13.若为等比数列的前n 项的和,,则=___________14.已知是数列的前项和,若,则_____.15.已知等比数列{}n a 的公比为2,前n 项和为n S ,则42S a =______. 16.设等比数列{}n a 满足a 1 + a 2 = –1, a 1 – a 3 = –3,则a 4 = ___________. 17.已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于 .18.已知在△ABC 中,角,,A B C 的对边分别为,,a b c ,若2a b c +=,则C ∠的取值范围为________19.已知无穷等比数列{}n a 的各项和为4,则首项1a 的取值范围是__________. 20.设等差数列{}na 的前n 项和为n S .若35a =,且1S ,5S ,7S 成等差数列,则数列{}n a 的通项公式n a =____.三、解答题21.设数列{}n a 满足()*164n n n a a n a +-=∈-N ,其中11a =. (Ⅰ)证明:32n n a a ⎧⎫-⎨⎬-⎩⎭是等比数列; (Ⅱ)令112n n b a =--,设数列{}(21)n n b -⋅的前n 项和为n S ,求使2019n S <成立的最大自然数n 的值.22.在△ABC 中,已知AC =4,BC =3,cosB =-14. (1)求sin A 的值; (2)求·BA BC u u u v u u u v的值.23.已知函数()2sin(2)(||)2f x x πϕϕ=+<部分图象如图所示.(1)求ϕ值及图中0x 的值;(2)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,已知7,()2,c f C ==-sin B =2sin A ,求a 的值.24.已知ABC ∆中,角,,A B C 的对边分别为,,,2cos (cos cos )0.a b c C a C c A b ++=, (1)求角C 的大小;(2)若2,23,b c ==,求ABC ∆的面积. 25.在等比数列{}n b 中,公比为()01q q <<,13511111,,,,,,50322082b b b ∈⎧⎫⎨⎬⎩⎭. (1)求数列{}n b 的通项公式;(2)设()31n n c n b =-,求数列{}n c 的前n 项和n T .26.已知数列{}n a 满足111,221n n n a a a a +==+. (1)证明数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,并求{}n a 的通项公式;(2)若数列{}n b 满足12n nnb a =g ,求数列{}n b 的前n 项和n S .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】 根据1444y y x x x y ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭,结合基本不等式可求得44yx +≥,从而得到关于a 的不等式,解不等式求得结果. 【详解】 由题意知:1442444y y x yx x x y y x⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭ 0x Q >,0y > 40x y ∴>,04yx>424x y y x ∴+≥=(当且仅当44x y y x =,即4x y =时取等号) 44yx ∴+≥ 234a a ∴-<,解得:()1,4a ∈- 本题正确选项:B 【点睛】本题考查利用基本不等式求解和的最小值问题,关键是配凑出符合基本不等式的形式,从而求得最值.2.B解析:B 【解析】 【分析】由已知条件得()()113x y +++=,对代数式2211x y y x +++变形,然后利用基本不等式求出2211x y y x +++的最小值,即可得出实数m 的最大值. 【详解】正数x 、y 满足1x y +=,则()()113x y +++=,()()()()()()222222221212111111111111y x y x y x x y y x y x y x y x +-+-⎡⎤⎡⎤----⎣⎦⎣⎦+=+=+=+++++++++444444141465111111y x x y y x x y x y =+-+++-+=+++-=+-++++++()()14441111525311311y x x y x y x y ⎛⎫⎛⎫++=++++-=++-⎡⎤ ⎪ ⎪⎣⎦++++⎝⎭⎝⎭41112253113x y y x ⎛⎫++≥⨯+⋅-= ⎪ ⎪++⎝⎭, 当且仅当12x y ==时,等号成立,即2211x y y x +++的最小值为13,则13m ≤. 因此,实数m 的最大值为13. 故选:B. 【点睛】本题考查利用基本不等式恒成立求参数,对代数式合理变形是解答的关键,考查计算能力,属于中等题.3.B解析:B 【解析】 【分析】作出可行域,求出m ,然后用“1”的代换配凑出基本不等式的定值,从而用基本不等式求得最小值. 【详解】作出可行域,如图ABC ∆内部(含边界),作直线:20l x y +=,平移该直线,当直线l 过点(3,0)A 时,2x y +取得最大值6,所以6m =.1411414143()()(5)(5)6662b a b a a b a b a b a b a b +=++=++≥+⨯=,当且仅当4b a a b =,即12,33a b ==时等号成立,即14a b +的最小值为32. 故选:B. 【点睛】本题考查简单的线性规划,考查用基本不等式求最值,解题关键是用“1”的代换凑配出基本不等式的定值,从而用基本不等式求得最小值.解析:C 【解析】 【分析】①根据正弦定理可得到结果;②根据A B =或,2A B π+=可得到结论不正确;③可由余弦定理推得222a b c =+,三角形为直角三角形. 【详解】①根据大角对大边得到a>b,再由正弦定理sin sin a b A B =知sinA sinB >,①正确;②22sin A sin B =,则A B =或,2A B π+=ABC ∆是直角三角形或等腰三角形;所以②错误;③由已知及余弦定理可得22222222a c b b c a a b c ac bc+-+--=,化简得222a b c =+,所以③正确. 故选C. 【点睛】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据,解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.5.C解析:C 【解析】∵正项等比数列{}n a 的公比为3,且229m n a a a =∴2224222223339m n m n a a a a --+-⋅⋅⋅=⋅=∴6m n +=∴121121153()()(2)(2)62622624m n m n m n n m ⨯++=⨯+++≥⨯+=,当且仅当24m n ==时取等号. 故选C.点睛:利用基本不等式解题的注意点:(1)首先要判断是否具备了应用基本不等式的条件,即“一正、二正、三相等”,且这三个条件必须同时成立.(2)若不直接满足基本不等式的条件,需要通过配凑、进行恒等变形,构造成满足条件的形式,常用的方法有:“1”的代换作用,对不等式进行分拆、组合、添加系数等. (3)多次使用基本不等式求最值时,要注意只有同时满足等号成立的条件才能取得等号.解析:B 【解析】 【分析】令1n =,由11a S =可求出1a 的值,再令2n ≥,由21n n S a =-得出1121n n S a --=-,两式相减可得出数列{}n a 为等比数列,确定出该数列的公比,利用等比数列的通项公式可求出5a 的值. 【详解】当1n =时,1121S a =-,即1121a a =-,解得11a =;当2n ≥时,由21n n S a =-,得1121n n S a --=-,两式相减得122n n n a a a -=-,得12n n a a -=.所以,数列{}n a 是以1为首项,以2为公比的等比数列,则451216a =⨯=,故选:B. 【点睛】本题考查利用n S 来求通项n a ,一般利用公式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,同时也要注意等差数列和等比数列定义的应用,考查运算求解能力,属于中等题.7.C解析:C 【解析】依题意知100810091008100920170,20180a a a a +=>=-<,Q 数列的首项为正数,()()1201610081009100810092016201620160,0,022a a a a a a S +⨯+⨯∴>∴==,()12017201710092017201702a a S a+⨯==⨯<,∴使0n S >成立的正整数n 的最大值是2016,故选C.8.D解析:D 【解析】 【分析】根据等差数列的性质前n 项和的性质进行求解即可. 【详解】因为等差数列{}n a 和{}n b ,所以2201111715111122a a a a b b b b +==+,又211121S a =,211121T b =,故令21n =有2121721214921324S T ⨯+==+,即1111211492124a b =,所以111114924a b = 故选:D. 【点睛】本题主要考查等差数列的等和性质:若{}n a 是等差数列,且(,,,*)m n p q m n p q N +=+∈,则m n p q a a a a +=+ 与等差数列{}n a 前n 项和n S 的性质*21(21),()n n S n a n N -=-∈9.A解析:A 【解析】 【分析】不等式等价转化为(1)()0x x a --<,当1a >时,得1x a <<,当1a <时,得1<<a x ,由此根据解集中恰有3个整数解,能求出a 的取值范围。

【典型题】高三数学下期中第一次模拟试题(附答案)(3)

【典型题】高三数学下期中第一次模拟试题(附答案)(3)

【典型题】高三数学下期中第一次模拟试题(附答案)(3)一、选择题1.下列结论正确的是( ) A .若a b >,则22ac bc > B .若22a b >,则a b > C .若,0a b c ><,则a c b c +<+ D .若a b <,则a b <2.已知在中,,,分别为角,,的对边,为最小角,且,,,则的面积等于( ) A .B .C .D .3.等比数列{}n a 的前n 项和为n S ,若36=2S =18S ,,则105S S 等于( )A .-3B .5C .33D .-314.已知函数1()2xf x ⎛⎫= ⎪⎝⎭,则不等式()24(3)f a f a ->的解集为( )A .(4,1)-B .(1,4)-C .(1,4)D .(0,4)5.已知ABC ∆的三个内角、、A B C 所对的边为a b c 、、,面积为S ,且223tan 2S B =+,则A 等于( )A .6π B .4π C .3π D .2π 6.已知数列{a n }满足331log 1log ()n n a a n N +++=∈且2469a a a ++=,则15793log ()a a a ++的值是( )A .-5B .-15C .5D .157.已知等差数列{}n a 中,10103a =,20172017S =,则2018S =( ) A .2018B .2018-C .4036-D .40368.已知等比数列{}n a 中,31174a a a =,数列{}n b 是等差数列,且77b a =,则59b b +=( ) A .2 B .4C .16D .89.已知锐角三角形的边长分别为1,3,a ,则a 的取值范围是( )A .()8,10B .()22,10 C .()22,10D .()10,810.设函数是定义在上的单调函数,且对于任意正数有,已知,若一个各项均为正数的数列满足,其中是数列的前项和,则数列中第18项( )A .B .9C .18D .3611.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a << D .c a b <<12.若不等式1221m x x≤+-在()0,1x ∈时恒成立,则实数m 的最大值为( ) A .9B .92C .5D .52二、填空题13.若,a b ∈R ,0ab >,则4441a b ab++的最小值为___________.14.等比数列{}n a 的首项为1a ,公比为q ,1lim 2n n S →∞=,则首项1a 的取值范围是____________. 15.关于x 的不等式a 34≤x 2﹣3x +4≤b 的解集为[a ,b ],则b -a =________. 16.在钝角ABC 中,已知7,1AB AC ==,若ABC 6BC 的长为______.17.已知对满足4454x y xy ++=的任意正实数x ,y ,都有22210x xy y ax ay ++--+≥,则实数a 的取值范围为______.18.已知等比数列{}n a 的首项为2,公比为2,则112n na a a a a a a a +=⋅⋅⋅_______________.19.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是__________. 20.设2a b +=,0b >,则当a =_____时,1||2||a a b+取得最小值. 三、解答题21.在()f x 中,角,,A B C 的对边分别为,,a b c ,满足(2)cos cos b c A a C -=. (1)求角A 的大小(2)若3a =,求ABC △的周长最大值.22.设数列{}n a 的前n 项和n S 满足:2(1)n n S na n n =--,等比数列{}n b 的前n 项和为n T ,公比为1a ,且5352T T b =+.(1)求数列{}n a 的通项公式; (2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n M ,求证:1154nM ≤<. 23.在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin cos 6b A a B π⎛⎫=- ⎪⎝⎭. (1)求角B 的大小;(2)设a =2,c =3,求b 和()sin 2A B -的值.24.等差数列{}n a 的各项均为正数,11a =,前n 项和为n S .等比数列{}n b 中,11b =,且226b S =,238b S +=.(1)求数列{}n a 与{}n b 的通项公式;(2)求12111nS S S ++⋯+. 25.已知数列为等差数列,且12a =,12312a a a ++=. (1) 求数列的通项公式; (2) 令,求证:数列是等比数列.(3)令11n n n c a a +=,求数列{}n c 的前n 项和n S . 26.设ABC ∆的内角A B C ,,所对的边分别为a b c ,,,已知cos (2)cos a B c b A =-.(Ⅰ)求角A 的大小;(Ⅱ)若4a =,BC 边上的中线22AM =ABC ∆的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】选项A 中,当c=0时不符,所以A 错.选项B 中,当2,1a b =-=-时,符合22a b >,不满足a b >,B 错.选项C 中, a c b c +>+,所以C 错.选项D 中,因为0a ≤<b ,由不等式的平方法则,22a b <,即a b <.选D.2.C解析:C【解析】 【分析】根据同角三角函数求出;利用余弦定理构造关于的方程解出,再根据三角形面积公式求得结果. 【详解】由余弦定理得:,即解得:或为最小角本题正确选项: 【点睛】本题考查余弦定理解三角形、三角形面积公式的应用、同角三角函数关系,关键是能够利用余弦定理构造关于边角关系的方程,从而求得边长.3.C解析:C 【解析】 【分析】由等比数列的求和公式结合条件求出公比,再利用等比数列求和公式可求出105S S . 【详解】设等比数列{}n a 的公比为q (公比显然不为1),则()()61636333111119111a q S q q q S qa q q---===+=---,得2q ,因此,()()101105510555111111233111a q S q q q S q a qq---===+=+=---,故选C. 【点睛】本题考查等比数列基本量计算,利用等比数列求和公式求出其公比,是解本题的关键,一般在求解等比数列问题时,有如下两种方法:(1)基本量法:利用首项和公比列方程组解出这两个基本量,然后利用等比数列的通项公式或求和公式来进行计算;(2)性质法:利用等比数列下标有关的性质进行转化,能起到简化计算的作用.4.B解析:B 【解析】 【分析】先判断函数1()2xf x ⎛⎫= ⎪⎝⎭的单调性,把()24(3)f a f a ->转化为自变量的不等式求解.【详解】可知函数()f x 为减函数,由2(4)(3)f a f a ->,可得243a a -<, 整理得2340a a --<,解得14a -<<,所以不等式的解集为(1,4)-. 故选B. 【点睛】本题考查函数不等式,通常根据函数的单调性转化求解,一般不代入解析式.5.C解析:C 【解析】 【分析】利用三角形面积公式可得2tan 1acsinB 2bc c B +=,结合正弦定理及三角恒等变换知识cosA 1-=,从而得到角A. 【详解】∵2tan bc c B S +=∴2tan 1acsinB 2bc c B +=即c tan asinB a b B +==()B sinAcosB sinB sinC sinB sin A B +=+=++ cosA 1-=∴1sin 62A π⎛⎫-= ⎪⎝⎭, ∴5666A 或πππ-=(舍) ∴3A π=【点睛】此题考查了正弦定理、三角形面积公式,以及三角恒等变换,熟练掌握边角的转化是解本题的关键.6.A解析:A 【解析】试题分析:331313log 1log log log 1n n n n a a a a +++=∴-=即13log 1n n a a +=13n naa +∴= ∴数列{}n a 是公比为3的等比数列335579246()393a a a q a a a ∴++=++=⨯=15793log ()5a a a ∴++=-.考点:1.等比数列的定义及基本量的计算;2.对数的运算性质.7.D解析:D 【解析】分析:由题意首先求得10091a =,然后结合等差数列前n 项和公式求解前n 项和即可求得最终结果.详解:由等差数列前n 项和公式结合等差数列的性质可得:120171009201710092201720172017201722a a aS a +=⨯=⨯==, 则10091a =,据此可得:()12018201710091010201810091009440362a a S a a +=⨯=+=⨯=. 本题选择D 选项. 点睛:本题主要考查等差数列的性质,等差数列的前n 项和公式等知识,意在考查学生的转化能力和计算求解能力.8.D解析:D 【解析】 【分析】利用等比数列性质求出a 7,然后利用等差数列的性质求解即可. 【详解】等比数列{a n }中,a 3a 11=4a 7, 可得a 72=4a 7,解得a 7=4,且b 7=a 7, ∴b 7=4,数列{b n }是等差数列,则b 5+b 9=2b 7=8. 故选D .本题考查等差数列以及等比数列的通项公式以及简单性质的应用,考查计算能力.9.B解析:B 【解析】 【分析】根据大边对大角定理知边长为1所对的角不是最大角,只需对其他两条边所对的利用余弦定理,即这两角的余弦值为正,可求出a 的取值范围. 【详解】由题意知,边长为1所对的角不是最大角,则边长为3或a 所对的角为最大角,只需这两个角为锐角即可,则这两个角的余弦值为正数,于此得到2222221313a a ⎧+>⎨+>⎩, 由于0a >,解得2210a <<,故选C . 【点睛】本题考查余弦定理的应用,在考查三角形是锐角三角形、直角三角形还是钝角三角形,一般由最大角来决定,并利用余弦定理结合余弦值的符号来进行转化,其关系如下:A 为锐角cos 0A ⇔>;A 为直角cos 0A ⇔=;A 为钝角cos 0A ⇔<.10.C 解析:C 【解析】∵f (S n )=f (a n )+f (a n +1)-1=f[a n (a n +1)]∵函数f (x )是定义域在(0,+∞)上的单调函数,数列{a n }各项为正数∴S n =a n (a n +1)①当n=1时,可得a 1=1;当n≥2时,S n-1=a n-1(a n-1+1)②,①-②可得a n = a n (a n +1)-a n-1(a n-1+1)∴(a n +a n-1)(a n -a n-1-1)=0∵a n >0,∴a n -a n-1-1=0即a n -a n-1=1∴数列{a n }为等差数列,a 1=1,d=1;∴a n =1+(n-1)×1=n 即a n =n 所以故选C11.A解析:A 【解析】 【分析】 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.12.B解析:B【解析】【分析】设f(x)1221x x=+-,根据形式将其化为f(x)()1152221x xx x-=++-.利用基本不等式求最值,可得当且仅当x13=时()11221x xx x-+-的最小值为2,得到f(x)的最小值为f(13)92=,再由题中不等式恒成立可知m≤(1221x x+-)min,由此可得实数m的最大值.【详解】解:设f(x)11222211x x x x=+=+--(0<x<1)而1221x x+=-[x+(1﹣x)](1221x x+-)()1152221x xx x-=++-∵x∈(0,1),得x>0且1﹣x>0∴()11221x xx x-+≥-=2,当且仅当()112211x xx x-==-,即x13=时()11221x xx x-+-的最小值为2∴f(x)1221x x=+-的最小值为f(13)92=而不等式m1221x x≤+-当x∈(0,1)时恒成立,即m≤(1221x x+-)min因此,可得实数m的最大值为9 2故选:B.【点睛】本题给出关于x的不等式恒成立,求参数m的取值范围.着重考查了利用基本不等式求函数的最值和不等式恒成立问题的处理等知识,属于中档题.二、填空题13.4【解析】(前一个等号成立条件是后一个等号成立的条件是两个等号可以同时取得则当且仅当时取等号)【考点】均值不等式【名师点睛】利用均指不等式求最值要灵活运用两个公式(1)当且仅当时取等号;(2)当且仅解析:4 【解析】44224141144a b a b ab ab ab ab +++≥=+≥= ,(前一个等号成立条件是222a b =,后一个等号成立的条件是12ab =,两个等号可以同时取得,则当且仅当22a b ==时取等号). 【考点】均值不等式【名师点睛】利用均指不等式求最值要灵活运用两个公式,(1)22,,2a b a b ab ∈+≥R ,当且仅当a b =时取等号;(2),a b R +∈ ,a b +≥ ,当且仅当a b =时取等号;首先要注意公式的使用范围,其次还要注意等号成立的条件;另外有时也考查利用“等转不等”“作乘法”“1的妙用”求最值.14.【解析】【分析】由题得利用即可得解【详解】由题意知可得又因为所以可求得故答案为:【点睛】本题考查了等比数列的通项公式其前n 项和公式数列极限的运算法则考查了推理能力与计算能力属于中档题解析:110,,122⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭【解析】 【分析】 由题得11(1)2a q =-,利用(1,0)(0,1)q ∈-⋃即可得解 【详解】 由题意知,1112a q =-,可得11(1)2a q =-,又因为(1,0)(0,1)q ∈-⋃,所以可求得1110,,122a ⎛⎫⎛⎫∈ ⎪⎪⎝⎭⎝⎭. 故答案为:110,,122⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭【点睛】本题考查了等比数列的通项公式其前n 项和公式、数列极限的运算法则,考查了推理能力与计算能力,属于中档题.15.4【解析】【分析】设f (x )x2﹣3x+4其函数图象是抛物线画两条与x 轴平行的直线y=a和y=b如果两直线与抛物线有两个交点得到解集应该是两个区间;此不等式的解集为一个区间所以两直线与抛物线不可能有解析:4【解析】【分析】设f(x)3 4 =x2﹣3x+4,其函数图象是抛物线,画两条与x轴平行的直线y=a和y=b,如果两直线与抛物线有两个交点,得到解集应该是两个区间;此不等式的解集为一个区间,所以两直线与抛物线不可能有两个交点,所以直线y=a应该与抛物线只有一个或没有交点,所以a小于或等于抛物线的最小值且a与b所对应的函数值相等且都等于b,利用f (b)=b求出b的值,由抛物线的对称轴求出a的值,从而求出结果.【详解】解:画出函数f(x)=34x2﹣3x+4=34(x-2)2+1的图象,如图,可得f(x)min=f(2)=1,由图象可知,若a>1,则不等式a≤34x2-3x+4≤b的解集分两段区域,不符合已知条件,因此a≤1,此时a≤x2-3x+4恒成立.又不等式a≤34x2-3x+4≤b的解集为[a,b],所以a≤1<b,f(a)=f(b)=b,可得2233443344a a bb b b⎧-+=⎪⎪⎨⎪-+=⎪⎩由34b2-3b+4=b,化为3b2-16b+16=0,解得b=43或b=4.当b=43时,由34a2-3a+4-43=0,解得a=43或a=83,不符合题意,舍去,所以b=4,此时a=0,所以b-a=4.故答案为:4【点睛】本题考查了二次函数的图象与性质的应用问题,解题时应灵活应用函数的思想解决实际问题,是中档题.16.【解析】【分析】利用面积公式可求得再用余弦定理求解即可【详解】由题意得又钝角当为锐角时则即不满足钝角三角形故为钝角此时故即故答案为:【点睛】本题主要考查了解三角形中面积公式与余弦定理的运用属于中等题【解析】 【分析】利用面积公式可求得A ,再用余弦定理求解BC 即可. 【详解】由题意得,11sin sin 22A A =⨯⇒=又钝角ABC ,当A 为锐角时,cos A ==则2717BC =+-=,即BC =.故A 为钝角.此时cos A ==故27110BC =++=.即BC =【点睛】本题主要考查了解三角形中面积公式与余弦定理的运用,属于中等题型.17.(﹣∞【解析】【分析】由正实数xy 满足可求得x+y≥5由x2+2xy+y2﹣ax ﹣ay+1≥0恒成立可求得a≤x+y+恒成立利用对勾函数的性质即可求得实数a 的取值范围【详解】因为正实数xy 满足而4x解析:(﹣∞,265] 【解析】 【分析】由正实数x ,y 满足4454x y xy ++=,可求得x +y≥5,由x 2+2xy+y 2﹣ax ﹣ay+1≥0恒成立可求得a ≤x+y+1x y+恒成立,利用对勾函数的性质即可求得实数a 的取值范围. 【详解】因为正实数x ,y 满足4454x y xy ++=,而4xy ≤(x+y )2,代入原式得(x +y )2﹣4(x+y )﹣5≥0,解得x +y≥5或x +y≤﹣1(舍去), 由x 2+2xy+y 2﹣ax ﹣ay+1≥0可得a (x +y )≤(x+y )2+1,即a ≤x+y+1x y+,令t=x +y ∈[5,+∞), 则问题转化为a ≤t+1t,因为函数y=t +1t在[5,+∞)递增, 所以y min =5+15=265, 所以a ≤265, 故答案为(﹣∞,265] 【点睛】本题考查基本不等式,考查对勾函数的单调性质,求得x +y≥5是关键,考查综合分析与运算的能力,属于中档题.18.【解析】【分析】根据等比数列通项公式求出计算即可得解【详解】由题故答案为:4【点睛】此题考查等比数列通项公式的应用涉及等比数列求和关键在于熟练掌握等比数列的通项公式和求和公式准确进行指数幂的运算化简解析:【解析】 【分析】根据等比数列通项公式,求出()()12112122212n n n n aa a a ++--++=--+=,计算()22111111222222n n n n nn a a a a a a a a a a a a a a a a +++-+++==⋅⋅⋅⋅⋅⋅即可得解.【详解】由题2nn a =, ()()12112122212n n n n a a a a ++--++=--+=()22111111222222n n n n nn a a a a a a a a a a a a a a a a +++-+++==⋅⋅⋅⋅⋅⋅()2112224n n aa a a +-+++===.故答案为:4 【点睛】此题考查等比数列通项公式的应用,涉及等比数列求和,关键在于熟练掌握等比数列的通项公式和求和公式,准确进行指数幂的运算化简.19.【解析】【详解】总费用为当且仅当即时等号成立故答案为30点睛:在利用基本不等式求最值时要特别注意拆拼凑等技巧使其满足基本不等式中正(即条件要求中字母为正数)定(不等式的另一边必须为定值)等(等号取得 解析:30【解析】 【详解】总费用为600900464()4240x x x x +⨯=+≥⨯=,当且仅当900x x=,即30x =时等号成立.故答案为30.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.20.【解析】【分析】利用代入所求式子得再对分并结合基本不等式求最小值【详解】因为所以又因为所以因此当时的最小值是;当时的最小值是故的最小值为此时即故答案为:【点睛】本题考查基本不等式求最值考查转化与化归 解析:2-【解析】 【分析】利用2a b +=代入所求式子得||4||4||a b a a a b++,再对a 分0a >,0a <并结合基本不等式求最小值. 【详解】 因为2a b +=, 所以1||||||2||4||4||4||a a b a a b a a b a b a a b++=+=++, 又因为0b >,||0a >, 所以||214||4||b a b a b a +⋅=, 因此当0a >时,1||2||a a b +的最小值是15144+=; 当0a <时,1||2||a a b +的最小值是13144-+=. 故1||2||a a b +的最小值为34,此时,42,0,ab a ba b a ⎧=⎪⎪⎪+=⎨⎪<⎪⎪⎩即2a =-. 故答案为:2-. 【点睛】本题考查基本不等式求最值,考查转化与化归思想、分类讨论思想,考查逻辑推理能力和运算求解能力,求解时注意对a 的分类讨论及基本不等式求最值时,要验证等号成立的条件.三、解答题21.(1)3A π= (2)9【解析】试题分析:(1)由()2cos cos b c A a C -=,根据正弦定理,得2sin cos sin B A B =, 可得1cos 2A =,进而可得A 的值;(2)由(1)及正弦定理,得;b B c C ==,可得ABC ∆的周长,33636l B B sin B ππ⎛⎫⎛⎫=+++=++ ⎪ ⎪⎝⎭⎝⎭,结合范围20,3B π⎛⎫∈ ⎪⎝⎭,即可求ABC ∆的最大值.试题解析:(1)由()2cos cos b c A a C -=及正弦定理,得()2sin sin cos sin cos B C A A C -=2sin cos sin cos sin cos B A C A A C ∴=+ ()2sin cos sin sin B A C A B ∴=+= ()0,B π∈ sin 0B ∴≠ ()0,A π∈1cos 2A =3A π∴=(2)解:由(I )得3A π∴=,由正弦定理得sin sin sin b c a B C A ====所以;b B c C ==ABC ∆的周长33l B π⎛⎫=+++ ⎪⎝⎭3sinBcos sin 33cosB ππ⎫=+++⎪⎭33cosB =++36sin 6B π⎛⎫=++ ⎪⎝⎭20,3B π⎛⎫∈ ⎪⎝⎭当3B π=时,ABC ∆的周长取得最大值为9.22.(1) 43n a n =-;(2)证明见解析. 【解析】 【分析】 【详解】(1)∵2(1)n n S na n n =--①, ∴11(1)2(1)n n S n a n n ++=+-+②, ②-①,11(1)4n n n a n a na n ++=+--,∴14n n a a +-=,又∵等比数列{}n b ,5352T T b =+, ∴535452T T b b b -=⇐=,1q =,∴11a =,∴数列{}n a 是1为首项,4为公差的等差数列, ∴14(1)43n a n n =+-=-;(2)由(1)可得111111()(43)(41)44341n n a a n n n n +==--+-+, ∴11111111(1)(1)45594341441n M n n n =-+-+⋅⋅⋅+-=--++,∴111(1)454n M -≤<, 即1154n M ≤<. 考点:1.等差等比数列的运算;2.列项相消法求数列的和. 23.(Ⅰ)3π;(Ⅱ)b =14. 【解析】分析:(Ⅰ)由题意结合正弦定理边化角结合同角三角函数基本关系可得tanB =,则B =π3. (Ⅱ)在△ABC 中,由余弦定理可得b.结合二倍角公式和两角差的正弦公式可得()2sin A B -=详解:(Ⅰ)在△ABC 中,由正弦定理a b sinA sinB=,可得bsinA asinB =, 又由π6bsinA acos B ⎛⎫=- ⎪⎝⎭,得π6asinB acos B ⎛⎫=- ⎪⎝⎭,即π6sinB cos B ⎛⎫=-⎪⎝⎭,可得tanB = 又因为()0πB ∈,,可得B =π3. (Ⅱ)在△ABC 中,由余弦定理及a =2,c =3,B =π3, 有22227b a c accosB =+-=,故b由π6bsinA acos B ⎛⎫=-⎪⎝⎭,可得sinA =a <c,故cosA =.因此22sin A sinAcosA ==,212217cos A cos A =-=. 所以,()222sin A B sin AcosB cos AsinB -=-=11727214-⨯= 点睛:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.24.(1)n a n =,12n n b -=;(2)21nn + 【解析】 【分析】(1)由题意,要求数列{}n a 与{}n b 的通项公式,只需求公差,公比,因此可将公差,公比分别设为d ,q ,然后根据等差数列的前项和公式,代入226b S =,238b S +=,求出d ,q 即可写出数列{}n a 与{}n b 的通项公式.(2)由(1)可得()11212n S n n n =++⋯+=+,即()121n s n n =+,而要求12111n S S S ++⋯+,故结合1n s 的特征可变形为11121n s n n ⎛⎫=- ⎪+⎝⎭,代入化简即可. 【详解】(1)设等差数列{}n a 的公差为d ,d >0,{}n b 的等比为q则1(1)n a n d =+- ,1n n b q -=,依题意有()26338q d q d ⎧+=⎨++=⎩,解得12d q =⎧⎨=⎩或439d q ⎧=-⎪⎨⎪=⎩(舍去)故1,2n n n a n b -==,(2)由(1)可得()11212n S n n n =++⋯+=+∴11121n s n n ⎛⎫=- ⎪+⎝⎭∴1211111111212231n S S S n n ⎡⎤⎛⎫⎛⎫⎛⎫++⋯+=-+-+⋯+- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦ =122111nn n ⎛⎫-=⎪++⎝⎭. 【点睛】本题第一问主要考查了求数列的通项公式,较简单,只要能写出n S 的表达式,然后代入题中的条件正确计算即可得解,但要注意d >0.第二问考查了求数列的前n 项和,关键是要分析数列通项的特征,将()121n s n n =+等价变形为11121n s n n ⎛⎫=- ⎪+⎝⎭,然后代入计算,这也是求数列前n 项和的一种常用方法--裂项相消法! 25.解: (1)∵数列为等差数列,设公差为, 由,得,,∴,.(2)∵,∴∴数列是首项为9,公比为9的等比数列 .(3)∵11n n n c a a +=,2n a n =, ∴1111()22(1)41n c n n n n ==-⋅++∴11111(1)()42423n S =-+-+…111()41n n +-+11(1)41n =-+ 【解析】试题分析:(1)∵数列为等差数列,设公差为, …………………… 1分由,得,,∴, …………………… 3分. …………………… 4分(2)∵, …………………… 5分 ∴, …………………… 6分∴数列是首项为9,公比为9的等比数列 . …………………… 8分(3)∵11n n n c a a +=,2n a n =, ∴1111()22(1)41n c n n n n ==-⋅++………………… 10分∴11111(1)()42423n S =-+-+…111()41n n +-+11(1)41n =-+……… 12分 考点:等差数列的性质;等比数列的性质和定义;数列前n 项和的求法.点评:裂项法是求前n 项和常用的方法之一.常见的裂项有:,,,,,26.(Ⅰ)3A π=(Ⅱ)S 23=【解析】 【分析】(Ⅰ)由正弦定理化简得到答案. (Ⅱ)1()2AM AB AC =+,平方,代入公式利用余弦定理得到答案. 【详解】(Ⅰ)因为()acos 2cos B c b A =-,由正弦定理得()sin cos cos 2sin sin A B A C B =-,即sin cos cos sin 2sin cos A B A B C A +=,所以()sin 2sinccos A B A +=, 因为()sin sin 0A B C +=≠,所以1cos 2A =, 又因为(0,)A π∈,所以3A π=.(Ⅱ)由M 是BC 中点,得1()2AM AB AC =+, 即2221(2)4AM AB AC AB AC =++⋅, 所以2232c b bc ++=,①又根据余弦定理,有2222222cos 416a b c bc A b c bc =+-=+-==,② 联立①②,得8bc =.所以ABC ∆的面积1S bcsinA 2== 【点睛】本题考查了正弦定理,余弦定理,面积公式,向量加减,综合性强,意在考查学生的综合应用能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【必考题】高三数学下期中第一次模拟试卷含答案(3)一、选择题1.设,x y 满足约束条件3002x y x y x -+≥⎧⎪+≥⎨⎪≤⎩, 则3z x y =+的最小值是 A .5-B .4C .3-D .112.已知数列{}n a 的通项公式是221sin2n n a n π+=(),则12310a a a a ++++=A .110B .100C .55D .03.在等差数列 {}n a 中, n S 表示 {}n a 的前 n 项和,若 363a a += ,则 8S 的值为( )A .3B .8C .12D .244.已知集合2A {t |t 40}=-≤,对于满足集合A 的所有实数t ,使不等式2x tx t 2x 1+->-恒成立的x 的取值范围为( )A .()(),13,∞∞-⋃+B .()(),13,∞∞--⋃+C .(),1∞--D .()3,∞+5.已知数列{a n }满足331log 1log ()n n a a n N +++=∈且2469a a a ++=,则15793log ()a a a ++的值是( )A .-5B .-15C .5D .156.在直角梯形ABCD 中,//AB CD ,90ABC ∠=,22AB BC CD ==,则cos DAC ∠=( )A 25B 5C 310D .10107.已知等差数列{}n a 中,10103a =,20172017S =,则2018S =( ) A .2018B .2018-C .4036-D .40368.若不等式组0220y x y x y x y a⎧⎪+⎪⎨-⎪⎪+⎩表示的平面区域是一个三角形,则实数a 的取值范围是( )A .4,3⎡⎫+∞⎪⎢⎣⎭B .(]0,1C .41,3⎡⎤⎢⎥⎣⎦D .(]40,1,3⎡⎫+∞⎪⎢⎣⎭9.已知{}n a 为等差数列,若20191<-a a ,且数列{}n a 的前n 项和n S 有最大值,则n S 的最小正值为( ) A .1SB .19SC .20SD .37S10.已知数列{}n a 的首项11a =,数列{}n b 为等比数列,且1n n na b a +=.若10112b b =,则21a =( )A .92B .102C .112D .12211.若a ,b ,c ,d∈R,则下列说法正确的是( ) A .若a >b ,c >d ,则ac >bd B .若a >b ,c >d ,则a+c >b+d C .若a >b >0,c >d >0,则c d a b> D .若a >b ,c >d ,则a ﹣c >b ﹣d12.等比数列{}n a 的前三项和313S =,若123,2,a a a +成等差数列,则公比q =( ) A .3或13- B .-3或13C .3或13D .-3或13-二、填空题13.关于x 的不等式a 34≤x 2﹣3x +4≤b 的解集为[a ,b ],则b -a =________. 14.在ABC ∆中,内角A ,B ,C 所对应的边长分别为a ,b ,c ,且cos 3C =,cos cos 2b A a B +=,则ABC ∆的外接圆面积为__________.15.已知数列{}n a 的前n 项和为2*()2n S n n n N =+∈,则数列{}n a 的通项公式n a =______.16.若无穷等比数列{}n a 的各项和为2,则首项1a 的取值范围为______.17.设等差数列{}n a 的前n 项和为n S ,12m S -=-,0m S =,13m S +=.其中*m N ∈且2m ≥,则m =______.18.已知关于x 的一元二次不等式ax 2+2x+b >0的解集为{x|x≠c},则227a b a c+++(其中a+c≠0)的取值范围为_____.19.不等式211x x --<的解集是 . 20.设2a b +=,0b >,则当a =_____时,1||2||a a b+取得最小值.三、解答题21.已知ABC ∆的内角,,A B C 所对的边分别为,,a b c ,且2a =. (1)若23b =,角30A =︒,求角B 的值;(2)若ABC ∆的面积3ABC S ∆=,cos 45B =,求,b c 的值. 22.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,设平面向量()()sin cos ,sin ,cos sin ,sin p A B A q B A B =+=-,且2cos p q C ⋅=(Ⅰ)求C ; (Ⅱ)若3,23c a b =+=,求ABC ∆中边上的高h .23.△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,向量=(2sinB,2-cos2B),=(2sin 2(),-1),.(1)求角B 的大小; (2)若a =,b =1,求c 的值.24.若n S 是公差不为0的等差数列{}n a 的前n 项和,且124,,S S S 成等比数列,24S =. (1)求数列{}n a 的通项公式;(2)设13,n n n n b T a a +=是数列{}n b 的前n 项和,求使得20n m T <对所有n N +∈都成立的最小正整数m .25.在ABC ∆中,角A 、B 、C 的对边分别是a 、b 、c ,如果A 、B 、C 成等差数列且3b =(1)当4A π=时,求ABC ∆的面积S ;(2)若ABC ∆的面积为S ,求S 的最大值.26.已知在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且sin cos 0a B b A -=. (1)求角A 的大小:(2)若5a =2b =.求ABC 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C画出不等式组表示的可行域如图阴影部分所示.由3z x y =+可得3y x z =-+.平移直线3y x z =-+,结合图形可得,当直线3y x z =-+经过可行域内的点A 时,直线在y 轴上的截距最小,此时z 也取得最小值.由300x y x y -+=⎧⎨+=⎩,解得3232x y ⎧=-⎪⎪⎨⎪=⎪⎩,故点A 的坐标为33(,)22-.∴min 333()322z =⨯-+=-.选C . 2.C解析:C 【解析】 【分析】由已知条件得a n =n 2sin (2n 12+π)=22,,n n n n ⎧-⎨⎩是奇数是偶数,所以a 1+a 2+a 3+…+a 10=22﹣12+42﹣32+…+102﹣92,由此能求出结果. 【详解】∵2n 12+π =n π+2π,n ∈N *,∴a n =n 2sin (2n 12+π)=22,,n n n n ⎧-⎨⎩是奇数是偶数, ∴a 1+a 2+a 3+…+a 10=22﹣12+42﹣32+…+102﹣92=1+2+3+…+10=()101+10=552故选C . 【点睛】本题考查了等差数列的通项公式与求和公式、分类讨论方法、三角函数的周期性,属于中档题.3.C解析:C 【解析】由题意可知,利用等差数列的性质,得18363a a a a +=+=,在利用等差数列的前n 项和公式,即可求解,得到答案。

【详解】由题意可知,数列{}n a 为等差数列,所以18363a a a a +=+=, ∴由等差数列的求和公式可得1888()831222a a S +⨯=== ,故选C 。

【点睛】本题主要考查了等差数列的性质,及前n 项和公式的应用,其中解答中数列等差数列的性质和等差数列的前n 项和公式是解答的关键,着重考查了推理与运算能力,属于基础题。

4.B解析:B 【解析】 【分析】由条件求出t 的范围,不等式221x tx t x +->-变形为2210x tx t x +--+>恒成立,即不等式()()110x t x +-->恒成立,再由不等式的左边两个因式同为正或同为负处理. 【详解】由240t -≤得,22t -≤≤,113t ∴-≤-≤不等式221x tx t x +->-恒成立,即不等式2210x tx t x +--+>恒成立,即不等式()()110x t x +-->恒成立,∴只需{1010x t x +->->或{1010x t x +-<-<恒成立, ∴只需{11x tx >->或{11x tx <-<恒成立,113t -≤-≤只需3x >或1x <-即可. 故选:B . 【点睛】本题考查了一元二次不等式的解法问题,难度较大,充分利用恒成立的思想解题是关键.5.A解析:A 【解析】 试题分析:331313log 1log log log 1n n n n a a a a +++=∴-=即13log 1n n a a +=13n naa +∴= ∴数列{}n a 是公比为3的等比数列335579246()393a a a q a a a ∴++=++=⨯=15793log ()5a a a ∴++=-.考点:1.等比数列的定义及基本量的计算;2.对数的运算性质.6.C解析:C 【解析】 【分析】设1BC CD ==,计算出ACD ∆的三条边长,然后利用余弦定理计算出cos DAC ∠. 【详解】如下图所示,不妨设1BC CD ==,则2AB =,过点D 作DE AB ⊥,垂足为点D , 易知四边形BCDE 是正方形,则1BE CD ==,1AE AB BE ∴=-=, 在Rt ADE ∆中,222AD AE DE =+=,同理可得225AC AB BC =+=,在ACD ∆中,由余弦定理得2222310cos 2252AC AD CD DAC AC AD +-∠===⋅⨯⨯, 故选C .【点睛】本题考查余弦定理求角,在利用余弦定理求角时,首先应将三角形的边长求出来,结合余弦定理来求角,考查计算能力,属于中等题.7.D解析:D 【解析】分析:由题意首先求得10091a =,然后结合等差数列前n 项和公式求解前n 项和即可求得最终结果.详解:由等差数列前n 项和公式结合等差数列的性质可得:120171009201710092201720172017201722a a aS a +=⨯=⨯==, 则10091a =,据此可得:()12018201710091010201810091009440362a a S a a +=⨯=+=⨯=. 本题选择D 选项. 点睛:本题主要考查等差数列的性质,等差数列的前n 项和公式等知识,意在考查学生的转化能力和计算求解能力.8.D解析:D【分析】要确定不等式组0220y x y x y x y a⎧⎪+⎪⎨-⎪⎪+⎩表示的平面区域是否一个三角形,我们可以先画出220y x y x y ⎧⎪+⎨⎪-⎩,再对a 值进行分类讨论,找出满足条件的实数a 的取值范围. 【详解】不等式组0220y x y x y ⎧⎪+⎨⎪-⎩表示的平面区域如图中阴影部分所示.由22x y x y =⎧⎨+=⎩得22,33A ⎛⎫ ⎪⎝⎭,由022y x y =⎧⎨+=⎩得()10B ,. 若原不等式组0220y x y x y x y a⎧⎪+⎪⎨-⎪⎪+⎩表示的平面区域是一个三角形,则直线x y a +=中a 的取值范围是(]40,1,3a ⎡⎫∈+∞⎪⎢⎣⎭故选:D 【点睛】平面区域的形状问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,然后结合分类讨论的思想,针对图象分析满足条件的参数的取值范围.9.D解析:D【分析】由已知条件判断出公差0d <,对20191<-a a 进行化简,运用等差数列的性质进行判断,求出结果. 【详解】已知{}n a 为等差数列,若20191<-a a ,则2019190a a a +<, 由数列{}n a 的前n 项和n S 有最大值,可得0d <,19193712029000,,0,370a a a a a S <=∴+<>>, 31208190a a a a ∴+=+<,380S <,则n S 的最小正值为37S 故选D 【点睛】本题考查了等差数列的性质运用,需要掌握等差数列的各公式并能熟练运用等差数列的性质进行解题,本题属于中档题,需要掌握解题方法.10.B解析:B 【解析】 【分析】由已知条件推导出a n =b 1b 2…b n-1,由此利用b 10b 11=2,根据等比数列的性质能求出a 21. 【详解】数列{a n }的首项a 1=1,数列{b n }为等比数列,且1n n na b a +=, ∴3212212a a b a b a a ==,=4312341233aa b b b a b b b a ∴=∴=,,=,, …101211011211220120219101122n n a b b b b b a b b b b b b b b b -=⋯=∴=⋯=⨯⨯⋯⨯=,,()()() . 故选B . 【点睛】本题考查数列的第21项的求法,是中档题,解题时要认真审题,注意递公式和等比数列的性质的合理运用.11.B解析:B 【解析】 【分析】利用不等式的性质和通过举反例否定一个命题即可得出结果. 【详解】A 项,虽然41,12>->-,但是42->-不成立,所以不正确;B 项,利用不等式的同向可加性得知,其正确,所以成立,即B 正确;C 项,虽然320,210>>>>,但是3221>不成立,所以C 不正确; D 项,虽然41,23>>-,但是24>不成立,所以D 不正确; 故选B. 【点睛】该题考查的是有关正确命题的选择问题,涉及到的知识点有不等式的性质,对应的解题的方法是不正确的举出反例即可,属于简单题目.12.C解析:C 【解析】很明显等比数列的公比1q ≠,由题意可得:()231113S a q q =++=,①且:()21322a a a +=+,即()211122a q a a q +=+,②①②联立可得:113a q =⎧⎨=⎩或1913a q =⎧⎪⎨=⎪⎩,综上可得:公比q =3或13. 本题选择C 选项.二、填空题13.4【解析】【分析】设f (x )x2﹣3x+4其函数图象是抛物线画两条与x 轴平行的直线y =a 和y =b 如果两直线与抛物线有两个交点得到解集应该是两个区间;此不等式的解集为一个区间所以两直线与抛物线不可能有解析:4 【解析】 【分析】 设f (x )34=x 2﹣3x +4,其函数图象是抛物线,画两条与x 轴平行的直线y =a 和y =b ,如果两直线与抛物线有两个交点,得到解集应该是两个区间;此不等式的解集为一个区间,所以两直线与抛物线不可能有两个交点,所以直线y =a 应该与抛物线只有一个或没有交点,所以a 小于或等于抛物线的最小值且a 与b 所对应的函数值相等且都等于b ,利用f (b )=b 求出b 的值,由抛物线的对称轴求出a 的值,从而求出结果. 【详解】解:画出函数f (x )=34x 2﹣3x +4=34(x -2)2+1的图象,如图,可得f (x )min =f (2)=1,由图象可知,若a >1,则不等式a ≤34x 2-3x +4≤b 的解集分两段区域,不符合已知条件, 因此a ≤1,此时a ≤x 2-3x +4恒成立.又不等式a ≤34x 2-3x +4≤b 的解集为[a ,b ], 所以a ≤1<b ,f (a )=f (b )=b ,可得2233443344a ab b b b ⎧-+=⎪⎪⎨⎪-+=⎪⎩由34b 2-3b +4=b ,化为3b 2-16b +16=0, 解得b =43或b =4. 当b =43时,由34a 2-3a +4-43=0,解得a =43或a =83, 不符合题意,舍去, 所以b =4,此时a =0, 所以b -a =4. 故答案为:4 【点睛】本题考查了二次函数的图象与性质的应用问题,解题时应灵活应用函数的思想解决实际问题,是中档题.14.【解析】【分析】根据正弦定理得到再根据计算得到答案【详解】由正弦定理知:即即故故答案为【点睛】本题考查了正弦定理外接圆面积意在考查学生的计算能力 解析:9π【解析】 【分析】根据正弦定理得到()1sin sin A B C R +==,再根据22cos 3C =计算1sin 3C =得到答案. 【详解】由正弦定理知:cos cos 2sin cos 2sin cos 2b A a B R B A R A B +=⋅⋅+⋅=,即()1sin sin A B C R +==,cos 3C =,1sin 3C =, 即3R =.故29S R ππ==.故答案为9π【点睛】本题考查了正弦定理,外接圆面积,意在考查学生的计算能力.15.【解析】【分析】由当n =1时a1=S1=3当n≥2时an =Sn ﹣Sn ﹣1即可得出【详解】当且时又满足此通项公式则数列的通项公式故答案为:【点睛】本题考查求数列通项公式考查了推理能力与计算能力注意检验解析:*2)1(n n N +∈【解析】【分析】由2*2n S n n n N =+∈,,当n =1时,a 1=S 1=3.当n ≥2时,a n =S n ﹣S n ﹣1,即可得出.【详解】当2n ≥,且*n N ∈时,()()()2212121n n n a S S n n n n -⎡⎤=-=+--+-⎣⎦ ()2222122n n n n n =+--++- 21n =+,又211123S a ==+=,满足此通项公式,则数列{}n a 的通项公式()*21n a n n N=+∈. 故答案为:()*21n n N+∈【点睛】 本题考查求数列通项公式,考查了推理能力与计算能力,注意检验n=1是否符合,属于中档题.16.【解析】【分析】首先根据无穷等比数列的各项和为2可以确定其公比满足利用等比数列各项和的公式得到得到分和两种情况求得的取值范围得到结果【详解】因为无穷等比数列的各项和为2所以其公比满足且所以当时当时所 解析:(0,2)(2,4).【解析】【分析】首先根据无穷等比数列{}n a 的各项和为2,可以确定其公比满足01q <<,利用等比数列各项和的公式得到121a q=-,得到122a q =-,分01q <<和10q -<<两种情况求得1a 的取值范围,得到结果.【详解】因为无穷等比数列{}n a 的各项和为2,所以其公比q 满足01q <<,且121a q =-, 所以122a q =-,当01q <<时,1(0,2)a ∈,当10q -<<时,1(2,4)a ∈,所以首项1a 的取值范围为(0,2)(2,4), 故答案是:(0,2)(2,4).【点睛】该题考查的是有关等比数列各项和的问题,涉及到的知识点有等比数列存在各项和的条件,各项和的公式,注意分类讨论,属于简单题目. 17.5【解析】【分析】设等差数列的再由列出关于的方程组从而得到【详解】因为所以设因为所以故答案为:【点睛】本题考查等差数列前项和公式的灵活运用考查从函数的角度认识数列问题求解时要充分利用等差数列的前前项 解析:5【解析】【分析】设等差数列的()n An n m S =-,再由12m S -=-,13m S +=,列出关于m 的方程组,从而得到m .【详解】因为0m S =,所以设()n An n m S =-,因为12m S -=-,13m S +=, 所以(1)(1)2,125(1)13,13A m m m A m m -⋅-=-⎧-⇒=⇒=⎨+⋅=+⎩. 故答案为:5.【点睛】本题考查等差数列前n 项和公式的灵活运用,考查从函数的角度认识数列问题,求解时要充分利用等差数列的前前n 项和公式必过原点这一隐含条件,从而使问题的计算量大大减少.18.(﹣∞﹣6∪6+∞)【解析】【分析】由条件利用二次函数的性质可得ac=﹣1ab=1即c=-b 将转为(a ﹣b )+利用基本不等式求得它的范围【详解】因为一元二次不等式ax2+2x+b >0的解集为{x|x解析:(﹣∞,﹣6]∪[6,+∞)【解析】【分析】由条件利用二次函数的性质可得ac=﹣1,ab=1, 即c=-b 将227a b a c +++转为(a ﹣b )+9a b-,利用基本不等式求得它的范围. 【详解】 因为一元二次不等式ax 2+2x+b >0的解集为{x|x≠c},由二次函数图像的性质可得a >0,二次函数的对称轴为x=1a-=c ,△=4﹣4ab=0, ∴ac=﹣1,ab=1,∴c=1a -,b=1a ,即c=-b, 则227a b a c +++=()29a b a b-+-=(a ﹣b )+9a b -, 当a ﹣b >0时,由基本不等式求得(a ﹣b )+9a b-≥6, 当a ﹣b <0时,由基本不等式求得﹣(a ﹣b )﹣9a b -≥6,即(a ﹣b )+9a b -≤﹣6, 故227a b a c+++(其中a+c≠0)的取值范围为:(﹣∞,﹣6]∪[6,+∞), 故答案为(﹣∞,﹣6]∪[6,+∞).【点睛】本题主要考查二次函数图像的性质,考查利用基本不等式求最值.19.【解析】【分析】【详解】由条件可得解析:{}|02x x <<【解析】【分析】【详解】由条件可得20.【解析】【分析】利用代入所求式子得再对分并结合基本不等式求最小值【详解】因为所以又因为所以因此当时的最小值是;当时的最小值是故的最小值为此时即故答案为:【点睛】本题考查基本不等式求最值考查转化与化归 解析:2-【解析】【分析】利用2a b +=代入所求式子得||4||4||a b a a a b++,再对a 分0a >,0a <并结合基本不等式求最小值.【详解】因为2a b +=, 所以1||||||2||4||4||4||a a b a a b a a b a b a a b++=+=++, 又因为0b >,||0a >, 所以||214||4||b a b a b a +⋅=, 因此当0a >时,1||2||a a b +的最小值是15144+=; 当0a <时,1||2||a a b +的最小值是13144-+=. 故1||2||a a b +的最小值为34,此时,42,0,a b a b a b a ⎧=⎪⎪⎪+=⎨⎪<⎪⎪⎩即2a =-. 故答案为:2-.【点睛】本题考查基本不等式求最值,考查转化与化归思想、分类讨论思想,考查逻辑推理能力和运算求解能力,求解时注意对a 的分类讨论及基本不等式求最值时,要验证等号成立的条件.三、解答题21.(1)60B =︒或120︒. (2) b =【解析】【分析】(1)根据正弦定理,求得sin B =,进而可求解角B 的大小; (2)根据三角函数的基本关系式,求得3sin 5B =,利用三角形的面积公式和余弦定理,即可求解。

相关文档
最新文档