驱动桥设计外文翻译

合集下载

驱动桥外文文献

驱动桥外文文献

附录二外文资料原文Design of driving axleAs the car to safety,energy saving,the constant attention to environmental protection, vehicle after vehicle bridge as a key component,the quality of their products on the safe use of cars and car performance of a very large,so the car after Bridge Effectively optimize the design and calculation is very necessary.Drive axle powertrain at the end of their basic function is to increase the transmission came from the drive shaft or torque,and a reasonable distribution of power to the left and right wheel,in addition to acting on the road and under the frame or body legislation between the vertical,longitudinal and lateral force.General from the main drive axle reducer, differential,gear wheels and drive axle housings and other components.The design of the Drive axle:Whether the design of the drive axle directly affects the performance of the vehicle is good or bad.so that,Drive axle should be designed to meet the basic requirements are as follows:(1)Select the main reduction ratio should be able to ensure the car has the best power and fuel economy.(2)Smaller size,to ensure that the necessary ground clearance.(3)Gear and other pieces of the work of a smooth transmission,and small noise.(4)In a variety of speed and load with a high transmission efficiency.(5)In ensuring adequate strength and stiffness conditions,should strive for the quality of small,especially under the mass-spring should be as small as possible in order to improve vehicle ride comfort.(6)And suspension movement-oriented coordination of steering drive axle,but also with the coordination of steering movement.(7)The structure of simple,good processing,manufacturing,easy disassembly,to facilitate adjustment.Drive axle classificationAt non-drive axle disconnect disconnect-style-type with two broad categories.1.disconnect-type drive axleDrive the use of independent suspension bridge,that is the main reducer shell fixed on the vehicle chassis,on both sides of the axle and wheel in the horizontal plane as opposed to relative movement of the body is referred to as drive off the bridge.In order to match with independent suspension,the main reducer shell fixed at the frame (or body),the drive axle housing sub connected through the hinge,or in addition to the main reducer shell outside the shell is no longer driven to other parts of the bridge.Wheel in order to meet the needs of independent jump up and down,between the differential and the wheel axle of the above connection between the use of universal joints.2.Non-disconnect-type drive axleNon-disconnect-type drive axle also known as integrated drive axle,the axle casing and the main shaft reducer with shell shell and connected to a rigid beam,which on both sides of the axle and wheel related to swing through the flexible connected with the frame components. It consists of drive axle housing1,the main reducer,differential and axle components.The design for medium duty truck drive axle design.Due to the non disconnect type drive axle and disconnect type drive axle compared,the utility model has the advantages of simple structure,low cost,reliable work,maintenance and adjustment is also very simple,the driven wheel and the non independent suspension,so the design by non disconnect type drive axleDrive axle componentsDriven mainly by the main bridge reducer,differential,axle and drive axle housings and other components.1.Main reducer assemblyUsed to change the main drive reducer general direction,to reduce speed and increase torque,and ensure there is sufficient car drivers and the appropriate speed skin.More types of the main reducer,a single-stage,dual-class,two-speed,such as Wheel Speed Reducer.1.1single-stage main reducerReduction gear by a slowdown in the realization of the devices,called single-stage reducer.Its structure is simple,light weight,such as Dongfeng BQl090type light andmedium-sized trucks on a wide range of applications.1.2two-stage main reducerLarger number of heavy-duty trucks,require a larger reduction ratio,the main use of a single-stage reducer drive,moving from gear to be larger in diameter will affect the drive axle of the ground clearance,so the use of two slowdown.Often referred to as two-stage reducer. There are two sets of two-stage reduction gear reducer,speed the realization of the two by twisting.In order to enhance the meshing gear pair taper and strength of a smooth,slow down the first-class pair of spiral bevel gear is.Gears2is inclined gear teeth due to prop.Take the initiative to rotate bevel gear,gear driven rotary driven round silver,thus completing a slowdown.Active second stage cylindrical gear reducer and the driven bevel gear coaxial with the rotation,and drive gear driven rotating cylinder,a second-class speed. Due to the driven gear mounted on the cylindrical shell on the differential,so that when the driven gear rotating cylinder,through the differential and drive axle that is,the rotation of the wheels.2.DifferentialDifferential is designed to connect the axle around,on both sides of the wheels can rotate at different angular torque transfer at the same time.To ensure the normal scroll wheel.Some multi-bridge-driven cars,in the sub-actuator type or in the transmission through the shaft is also equipped with a differential,known as the bridge between the differential.Its role is to turn in the car or on uneven road surface,so that drive wheels before and after the differential between the role.The differential is part of the rear-axle-housing assembly,which includes the differential, rear axles,wheels,and bearings.If the car were to be driven in a straight line without having to make turns,then no differential would be necessary.However,when the car rounds a turn, the outer wheel must travel farther than the inner wheel.The differential permits the two rear wheels to rotate different amounts when the car goes around a turn,while still delivering power to both rear wheels.The rear axles are attached to the wheels and have bevel side gears on their inner ends.The differential case is assembled on the left axle but can rotate on a bearing independently of the axle.The differential case supports the differential-pinion gear on a shaft,and this gear meshes with the two bevel gears.The ring gear is attached to the differential case so that the case rotates with the ring gear when the later is driven by the drive pinion.The driving power enters the differential through the drive pinion on the end of the propeller shaft.The drive pinion is meshed with a large ring gear so that the ring gear revolves with the pinion.Attached to the ring gear(through the differential case)is a differential-pinion shaft on which are assembled two differential-pinion gears.Each rear car wheel has a separate axle, and there are two side gears splined to the inner ends of the two wheel axles.The two differential-pinion gears mesh with these two side gears.When the car is on a straight road, the two differential-pinion gears do not rotate on the pinion shaft,but they do exert pressure on the two side gears so that the side gears turn at the same speed as the ring gear,causing both rear wheels to turn at the same speed,also.The differential case is supported in the carrier by two tapered-roller side bearings.This assembly can be adjusted from side to side to provide the proper backlash between the ring gear and pinion and the required side bearing preload.This adjustment is achieved by threaded bearing adjusters on some units and the placement of selective shims and spacers on others.The differential case is supported in the carrier by two tapered-roller side bearings.This assembly can be adjusted from side to side to provide the proper backlash between the ring gear and pinion and the required side bearing preload.This adjustment is achieved by threaded bearing adjusters on some units and the placement of selective shims and spacers on others.Transaxle final drive gears provide the means for transmitting transmission output torque to the differential section of the transaxle.The differential section of the transaxle has the same components as the differential gears in a RWD axle and basically operate in the same way.The power flow in transversely mounted power trains is in line with the wheels and therefore the differential unit does not need to turn the power90degrees.When the car rounds a curve,the outer wheel must turn faster than the inner wheel.To permit this,the two pinion gears rotate on their pinion shaft,transmitting more turning movement to the outer side gear than to the inner side gear.Thus,the side gear on theouter-wheel axle turns more rapidly than the side gear on the inner-wheel axle.This permits the outer wheel to turn more rapidly while the car is rounding the curve.There are two basic types of axle:dead axles and live axle.The dead axle does not rotate;the wheel rotates on it.A common example is the axle on a horse-drawn wagon.Live axles are attached to the wheel so that both the wheel and the axle rotate together.Live axles are classified according to the manner in which they are supported:semi-floating,three-quarter-floating,and full-floating.Propeller Shaft and Universal JointThe propeller shaft is a drive shaft to carry the power from the transmission to the rear-wheel axles.It connects the transmission main,shaft carries through the propeller shaft to the differential at the rear axles.Rotary motion of the transmission main shaft carries through the propeller shaft to the differential,causing the rear wheels to rotate.The propeller-shaft design must take two facts into consideration.First,the engine and transmission are more or less rigidly attached to the car frame.Second,the rear-axle housing (with wheels and differential)is attached to the frame by springs.As the rear wheels encounter irregularities in the road,the springs compress or expand.This changes the angle of drive and the distance between the transmission and the differential,and the propeller shaft may take care of these two changes.That is to say,as the rear axle housing,with differential and wheels,moves up and down,the angel between the transmission output shaft changes. The reason the propeller shaft shortens as the angel increases is that the rear axle and differential move in a shorter arc than the propeller shaft.The center point of the axle-housing arc is the rear-spring or control-arm attachment to the frame.In order that the propeller shaft may take care of these two changes,it must incorporate two separate types of device.There must be one or more universal joints to permit variations in the angel of drive.There must also be a slip joint that permits the effective length of the propeller shaft to change.The propeller shaft may be solid or hollow,protected by an outer tube or exposed.Some applications include bearings at or near the propeller shaft center to support the shaft.The two-section propeller is supported by a center bearing and coupled together by universal joints.A universal joint is essentially a double-hinged joint consisting of two Y-shaped yokes,one on the driving shaft and the other on the driven shaft,and across-shaped member called the spider.The four arms of the spider,known as trunnions,are assembled into bearings in theends of the two shaft yokes.The driving shaft causes the spider to rotate,and the other two trunnions of the spider cause the driven shaft to rotate.When the two shafts are at an angel to each other,the bearings in the yokes permit the yokes to swing around on the trunnions with each revolution.A variety of universal joints have been used on auto mobiles,but the types now in most common use are the spider and two-yoke,the constant-velocity,and the ball-and-trunnion joints.A slip joint consists of outside splines on one shaft and matching internal splines in the mating hollow shaft,the splines cause the two shafts to rotate together but permit the two to move endwise with each other.This accommodates any effective change of length of the propeller shaft as the rear axles move toward or away from the car frame.At present,China-made cars and other types of vehicles in the basic use of symmetric ordinary differential bevel gear.Symmetric by the planetary bevel gear differential gear,axle gears,planetary gear axis(cross-axis or a direct-axis)and the differential composition of the shell and so on.At present the majority of planetary gear-type motor vehicles using differential and ordinary differential bevel gear cone by two or four planet gears,planetary gear shaft,the two cone axle differential gear,and about the composition of the shell and so on.3.Auto semi-axleAxle is the differential torque and then came to the wheels,drive wheels spin,promote the solid axle car.As a result of the installation of wheel structure,and the forces of the axle are also different.Therefore,divided into full-floating axle,semi-floating,3/4,three types of floating.3.1full-floating axleGenerally large and medium-sized used car floating the whole structure.Axle with the inner end of the spline axle with the differential gear connected to the outer end of the axle forging a flange with bolts and wheel hub to connect.Wheel away from the more distant of two tapered roller bearings for the text on the axle casing.Rear axle shell casing pressure and one pair to form the drive axle housing.Supporting the use of such forms,axle and axle housing no direct link so that only bear the drive axle torque without bearing any moment,theaxle referred to as"full-floating"axle.The so-called"floating",meaning not subject to bending load axle.Full-floating axle,the outer end flange plate for one made with the axis.But there are also a number of trucks to make a separate flange parts,and by nested spline outer end in the axle.Thus,at both ends of the axle spline,you can use for the first.3.2semi-floating axleSemi-floating axle with the inner end of the same floating,not subject to bending and torsion.Away from direct client support through a bearing in the axle of the inner shell.This approach will support the outer end axle bearing moment.Therefore,this short-sleeve in addition to transfer torque,but also to sustain the local moment,it is known as the semi-floating axle.This structure is mainly used in small passenger cars.3.33/4floating axle3/4floating axle is affected by the degree of bending between the short semi-floating and full floating between.At present the application of this type halfshaft few pickup truck only on individual applications such as Warsaw,M20vehicles.4.Automobile axle housing:4.1the overall shell-style bridgeBridge shell due to the overall strength and stiffness performance,ease of main reducer installation,adjustment and maintenance,and are widely used.Integral axle housing due to different manufacturing methods can be divided into the overall foundry type,pressed into the middle of casting steel pipe and welded steel plate,such as stamping.4.2sub-type drive axle housingSub-type axle housing will generally be divided into two sections,from two sections of a connecting bolt.Sub-type axle housing casting and processing easier.。

驱动桥汽车外文文献翻译、中英文翻译、外文翻译

驱动桥汽车外文文献翻译、中英文翻译、外文翻译

Driving Axleautomobile driving axleThe driving axle is one of cross bars supporting a vehicle, on which the driving wheels turn .The driving axle includes a housing ,an axle drive ,a differential , tow axle shafts (half axles ),and final drives (if any ) .The axle .or main, drive is a drive-line unit that increases the torque delivered by the transmission and transmits it to the driving wheels, via the differential. In automobiles, the axle drive shaft, usually called the propeller shaft.The axle drive may be a Single or a double-stage type, the former comprising a pair of gears and the latter .tow pairs of gear. Drive pinion I may be made integral with its shaft, or it may be detachable from the shaft. Driving gears and are usually made in the form of detachable gear rings that are bolted or riveted to the differential case .Alex drive bevel pinions and gears are made with helical teeth in order to reduce noise in operation.The tow-stage axle drive consists of a pair of bevel gears and a pair of spur gears. Drive bevel pinion drives bevel gear that is fixed to the flange of the intermediate shaft made integral with 2nd–stage driving spur gear .Gears meshes with driven spur gear which is fastened to the case rotates in taper roller bearings installed in the differential carrier that makes part of the driving axle housing.The differential is a drive-line unit that divides the torque applied to it between the tow axle shafts and allows one driving wheel to turn at a different speed from the other.The differential consists of case, cross or spider pinion .and side gears, also known as axle gears .the differential pinions are freely mounted on the cylindrical arms of the spider, which is held in the differential case, and remain in constant mesh with the differential side gears.When the automobile is moving down a straight and even road, both driving wheels meet with one and the same rolling resistance. In this case, axle driven gear, or differential ring gear, causes the differential case to rotate .when the differential case rotates pinions and their spider arms move around in a circle with tow differential side gears are meshed with the pinions, the side gears must rotate, causing the axle shafts and their associated driving wheels to turn. With equal resistance applied to each wheel, the differential pinions do not rotate. They apply equal torque to the side gears and therefore both driving wheels rotate at one and the same speed is unequal ,the differential pinions rotate on their spider arms as well as drive round with the differential case .supposing that one of the axle shaft is prevented from rotating ,the differential pinions would have to walk around the stationary side gear ,causing the other side gear to rotate at twice its normal speed .You can now see how the differential can allow one driving wheel to turn faster than the other .Whenever the automobile goes around a turn ,the outer driving wheel travels a greater distance than the inner drive wheel .the inner wheel speeds up proportionately ,thanks to the differential pinions that rotate on their spider arms and ,rolling around the slower side gear send more rotary motion to the outside wheel.The differential side gears are splined on to the inner ends of the axle shafts .The other ends of the shafts are attached to the driving wheel hubs by means of flanges .Trucks use full floating axle shafts .Such axle shafts are acted upon by torque only .All the other loads acting on the driving wheels are taken by the driving axle housing, because the wheel hubs are supported by bearings mounted on the housing.Driving axle of general-purpose wheeled tractorGeneral-purpose wheeled tractors are a four-wheel drive type, they have tow driving axles-front and rear .Both axles are similar in construction, expect for the housing. Each driving axle consist if a housing, an axle drive ,a differential ,and final drives .The front and rear-axles drives are interchangeable and comprise a pair of spiral bevel gears . The axle drive pinion is made integral with a shaft that issupported by tow taper roller bearings installed in axle drive pinion carrier .The latter is accommodated in differential carrier and is fixed to it by bolts. The flange of the axle drive pinion carrier is provided with threaded holes to fit puller screws that are used to remove the axle drive pinion carrier from the differential carrier .The position of the drive pinion relative to the centerline of the axle is adjust by means of a pack of shims placed under the flange of the drive pinion carrier Shims palace under the cone of the front bearing are used to adjust the preload on the drive pinion bearings. Splined to adjust the preload on the drive pinion shaft is universal-joint flange .The axle drive gear is bolted to the differential case flange.THE DIFFERENTIAL consists of case, four pinions, and tow side gears .The differential case comprise tow halves that are bolted together and supported by taper roller bearings installed in the differential carrier .Screwed in the bearings housing from the outside are nuts used to adjust the backlash between the ring gear and drive pinion teeth and the side bearing preload.Welded to the top of the driving axle housing at both its ends are spring pads .The housing of both its ends are spring axels are provided with filler ,overflow ,and drain holes closed by plugs .Both housing also have vents ,The rotating components of the driving axles are lubricated with transmission oil .As distinct from the automobiles considered in this text, all tractors include final drives in their power trains .The final drives of general-purpose wheel tractors are referred to as wheel-hub reduction gears.While transmitting power to the driving wheels, wheel-hub reduction can increase their torque .These are planetary reduction gear sets consist of sun gear ,or wheel ,three planet ,or pinion ,gears ,planet or pinion ,carrier .stationary internal ,or ring ,gear ,and housing.The sun gear is splined to the outer end of the axle shaft is splined to the differential side gear .The cylindrical planet gears are in constant mesh with both the sun gear and the ring gear and are free to rotate on roller bearings mounted on shafts that are attached to the planet carrier .The planet carrier is fasted to the reduction gear housing by means of studs and nuts .The flange of housing ,driving wheel brake drum13,and wheel hub are clamped together by bolts .The planet carrier and reduction gear housing form the driven part of the planetary gear set and rotate with the driving wheel of the tractor .The driving gear hub is supported by taper roller bearings mounted on axle shaft housing ,or axle sleeve .The axle sleeve is connected to the stationary ring gear by means of adapter hub that has internal splines and external teeth . The splines are meshed with matching splines on the axle sleeve, and the teeth are meshed with internal teeth ring gear.Wheels and its maintainModern wheeled tractors and automobiles use pneumatic-tired disc wheels. As a result of the driving wheel tires gripping the road, the rotary motion of the wheels is transformed into the translational motion of the tractor or automobile.According to their purpose, wheels are classified as driving .driven steerable, and combination types.Trucks and general-purpose wheeled tractors have all their wheels of one and the same size .Row-crop tractors have their rear wheels larger than the front wheels .The rear wheels carry the major proportion of the load due to the weight of the tractor .The front wheels are loaded lighter and this makes them easier to turn and provide good directional steering stability, which is essential for row-crop work.A TRUCK WHEEL consists of disc and flat base rim that is made integral with it, while the other flange is formed by detachable side ring that is held to the rim by split lock ring on the rim .which doubles as a side ring and a lock ring.The wheel disc is provided with holes for mounting the wheel on the wheel mounting bolts ,or wheel studs ,on the wheel hub ,where it is fixed by nuts .Both the holes and the nuts are tapered to ensure exact location of the wheel on its hub .The rear driving axles of trucks carry tow wheels at each end .The inner wheels are held to the hubs by cap nuts that are threaded both on the inside and on the outside .and the outer wheels are mounted on the cap nuts and fixed in place by taper nuts screwed on the nuts .The wheel nuts on the right side of truck have right-hand threads, whereas the nuts on the left side of the truck are threaded left-hand .The reason is to tighten the nuts, not loosen them, and thus prevent them from working loose on acceleration andbraking.An automobile pneumatic tire consists of casing, inner tube, and flap .The tire casing comprises tread, side walls, and beads .Tires for good roads use small tread patterns, while those for bad roads or cross –country service large tread patterns.The inner tube is made in the form of a hollow elastic rubber doughnut that is inflated with air after it is installed inside the tire and the tire is put on the wheel rim .The inner tube is inflated through tire valve that consists of housing 11,valve inside ,and cap .The valve housing is made of brass in the dorm of a flanged tube that is mounted in the inner tube by means of a washer and a nut and sticks out through a hole in the wheel .Some tire valve housing are of comprise construction :the upper part is made of brass and the lower part ,of rubber that is vulcanized on to the inner tube .The valve inside is a check valve that opens to let air in the inner tube when an air closed ,spring pressure and air pressure inside the tube hold the valve .When the valve is closed ,spring pressure and air pressure inside the tube hold the valve in its seat .It includes core with a rubber ring ,a plunger pin ,and a spring .The valve inside is Screwed in the tire valve housing and is closed by the cap Screwed on the housing.To the construction of the driving and steerable wheels, each wheel comprises hub , disc with rim ,and tire with inner tube .The rim is welded to the disc and the disc is bolted to the hub .The driving wheel tires are of low-pressure type and have heavy tread bars for better traction.The driving wheel hub is keyed to axle shaft and is fixed in place by means of bolted-on insert with worm whose threads mesh with the rack teeth cut in the half axle .By turning the worm one can change the position of the wheel on the axle shaft to obtain the desired track width .Before doing this ,it is necessary to jack up the rear part of the tractor to clear the wheels of the ground and loosen the bolts that hold the inserts to the wheels hubs .Should this adjustment prove insufficient ,the track width can further be increased by placing the wheels with the concaves of their discs facing inwards.On some row-crop tractors ,the rear wheel discs are bolts to lugs welded on the wheel rims .In this case ,the crack width can be changed by bolts the discs in alternative positions to the lugs .Also the concave wheel discs may be used either with the concave facing inwards or outwards.Trouble-free operation of automobiles and wheeled tractors largely depends on the condition of the tires. Therefore, during operation, one should adhere to following rules.Prevent fuel and, or oil from getting onto the tires. Cleans the tires regularly from dirt and remove all foreign articles, such as stones, form the treads. Do not apply brakes sharply, never start away form rest with a jerk, and avoid making sharp turns, for all this causes uneven wear of the tires. Do not allow excessive slipping of the driving wheels. When preparing your tractor or automobile for a long-term storage, jack up the wheels and put trestles under the axles or frame to relieve the tires.The service life of tires is expressed in terms of their mileage. For most bias (ordinary) truck tires, the guaranteed mileage amounts to 50000 km. Observing the above rules will help prolong the useful service life of tires.驱动桥汽车的驱动桥驱动桥是一个支撑车辆的十字交叉的轴,它可以驱动车轮运动。

驱动桥汽车外文文献翻译、中英文翻译、外文翻译

驱动桥汽车外文文献翻译、中英文翻译、外文翻译

驱动桥汽车外文文献翻译、中英文翻译、外文翻译The driving axle is an essential component of a ___。

It consists of several parts。

including a housing。

axle drive。

differential。

two axle shafts。

and final drives if necessary.The main purpose of the axle drive is to ___。

___.There are two types of axle drives: single and double-stage。

The single-stage type has a pair of gears。

while the double-stage type has two pairs of gears。

The drive ___ case。

To ce noise during n。

axle drive ___.In summary。

___。

It includes several components that work ___ to the wheels。

The axle drive shaft is an essential part of the axle drive。

and there are two types of axle drives。

To ce noise during n。

the driving gears are made with ___.When a car turns。

___ a greater distance than the inner ___。

thanks to the differential ns ___ around the slower side gear。

the inner ___。

汽车驱动桥设计外文文献翻译、中英文翻译、外文翻译

汽车驱动桥设计外文文献翻译、中英文翻译、外文翻译

AppendixChina in the first half of 2008 about 93 million trucks accumulative total sales of cars, vans 61 million vehicles, year-on-year growth of 20.2%, visible light car in commercial car production has a large proportion. And driving axle is very important in the vehicle driving axle is the important car auto bearing assembly, auto frame and integral by suspension of body vertical force, to lead the longitudinal forces, transverse force and torque, and impact load; Driving axle also delivers the transmission, the maximum torque reaction is under.Automobile driving axle structure and design parameters in addition to the reliability of the automobile and durability have important influence on the outside, also for the automobile driving performance such as power, economy, smooth, through sex, mobility Automobile driving axle design involves the mechanical parts and components is widely to these varieties, spare parts, components and assemblies manufacturing also almost want to design to all modern machinery manufacturing process, design a simple structure, reliable operation and low cost, can greatly reduce the drive axle of the total cost of the vehicle production, promote economic development, and car to drive through the car studying and designing practice, can better learning and mastery of the modern car design and mechanical design of the comprehensive knowledge and skills, and the overall thinking and operation skill check, drawing, is the very important link, so ontology of a structure design of fine vans axles has certain Automobile driving axle is one of the main parts car, its basic function is to enlarge the shaft or by the torque transmission spread, then torque distribution to drive wheels, and make about driving wheel has about vehicle movement required differential function; Axles in the end of powertrain system, choose proper Lord slowdown, ensure cars than with sufficient ground clearance is achieved, gear and other transmission job need to ensure smooth are the parameters, and even bear effect on the pavement drive axle and frame or carrying body vertical force, the lead between transverse and longitudinal force and torque force. Driving axle quality, performance will have a direct impact on the vehicle's safety, economy, comfort and reliability. After the car driving axle design can make the students' comprehensive by using their This thesis research aims to overall matching car by driving axle Lord finish design of gear reducer, differential component such as type of design and calculation, and complete checking and comprehensive design single main reducer, then the batch Through the design of the vehicle driving axle should also master the understanding, including each component interaction between the body and the electricalsystem, the influence and cooperate to drive axle of the process and therefore more familiar with vehicle mastery. That in the future the production and living effectly use.附录我国2008年上半年货车累计销售约93万辆,其中轻型货车61万辆,同比增长20.2%,可见轻型汽车在商用汽车生产中占有很大的比重。

驱动桥5000字外文翻译文献

驱动桥5000字外文翻译文献

As the bearing cage rotates, read the value7. indicated on the scale.Preload normally is specified as torque re-8. quired to rotate the pinion bearing cage, so take a reading only when the cage is rotating. Starting torque will give a false reading.To calculate the preload torque, measure the 9. diameter of the bearing cage where the cord was wound. Divide this dimension in half to get the radius.10. U se the following procedure to calculate thebearing preload torque:Standard.Pull (lb) 3 radius (inches) 5 preload (lb-in.)orPreload (lb-in.) 3 0.113 (a conversion constant) 5 preload (N .m)Install the yoke, flat washer, and nut. Tighten 6. the nut snugly. Tap the end of the input shaft lightly to seat the bearings.Measure the input shaft endplay again with 7. the dial indicator. If endplay is still incorrect, repeat steps 3 through 7.With the endplay correct, seal the shim pack 8. to prevent lube leakage. Then torque the i nput shaft nut and cover capscrews to the correct value.24.5 A XLE ADJUSTMENTSAND CHECKSThis section introduces the differential carrier adjust-ments, checks, and tests that the truck technician must be capable of performing; some have beenr eferred to previously in the text. For the most part, the procedures described here are general in nature. The truck technician should refer to OEM servicel iterature for specific procedures.PINION BEARING PRELOADMost differential carriers are provided with a press-fit outer bearing on the drive pinion gear. Some older rear drive axles use an outer bearing, which slips over the drive pinion. The procedures for adjusting both types follow.Press-Fit Method AdjustmentTo adjust the pinion bearing preload using the press-fit method, use the following procedure:Assemble the pinion bearing cage, bearings, 1. spacer, and spacer washer (without drive pin-ion or oil seal). Center the bearing spacer and spacer washer between the two bearing cones (Figure 24–49).When a new gear set or pinion bearings are 2. used, select a nominal size spacer based on OEM specifications. If original parts are used, use a spacer removed during disassembly of the drive.Place the drive pinion and cage assembly in a 3. press, with the gear teeth toward the bottom.Apply and hold the press load to the pinion 4. bearing. As pressure is applied, rotate the bearing cage several times so that the bear-ings make normal contact.While pressure is held against the assembly, wind 5. a cord around the bearing cage several times.Attach a spring scale to the end of the cord 6. (Figure 24–50). Pull the cord with the scale ona horizontal line.FIGURE 24–49 Assembly of the pinion bearing cage.(Courtesy of Dana Corporation)FIGURE 24–50 Cage in press to check bearingp reload.Sleeve must applymust be against the outer bearing. If the fit between the yoke or flange splines and drive pinion splines is tight, use a press to install the yoke or flange (Figure 24–51).Temporarily install the drive pinion and cage 4. assembly in the carrier (Figure 24–52). Do not install shims under the bearing cage.Install the bearing cage to the carrier cap-5. screws. Washers are not required at this time. Hand-tighten the capscrews.Fasten a yoke or flange bar to the yoke or 6. flange (Figure 24–53). The bar will hold the drive pinion in position when the nut ist ightened.Metric.Pull (kg) 3 radius (cm) 5 preload (kg-cm) orPreload (kg-cm) 3 0.098 (a conversion constant) 5 preload (N .m)Examples. We can convert the foregoing equa-tions into examples by applying some data to them:Standard7.5 lb 3 3.31 in. 5 24.8 lb-in. (preload) or24.8 lb-in. 3 0.113 5 2.8 N .m (preload)Metric3.4 kg 3 8.4 cm 5 28.6 kg-cm (preload) or28.6 kg-cm 3 0.098 5 2.8 N .m (preload)11. I f necessary, adjust the pinion bearing preloadby changing the pinion bearing spacer. A thicker spacer will decrease preload, whereas a thinner spacer will increase the preload.12. O nce the correct bearing preload has beenestablished, note the spacer size used. Select a spacer 0.001 inch (0.025 mm) larger for use in the final pinion bearing cage assembly pro-cedures. The larger spacer compensates for slight expansion of the bearing, which occurs when pressed on the pinion shank. The trial spacer pack should result in correct pinion bearing preload in three times out of four cases.Y oke Method of AdjustmentTo adjust the pinion bearing preload using the yoke or flange method, proceed as follows:Assemble the complete pinion bearing cage 1. as recommended in the press-fit method.A forward axle pinion is equipped with a heli-2. cal gear. For easier disassembly during bear-ing adjustment procedures, use a dummy yoke (if available) in place of the helical gear.Install the input yoke or flange, nut, and 3.washer on the drive pinion. The yoke or flangeFIGURE 24–51 Using a press to install the yoke orflange to the drive pinion. (Courtesy of Arvin Meritor)FIGURE 24–52 Install the pinion and cage assembly in the carrier housing. (Courtesy of Arvin Meritor)indicated on the torque wrench (see Figure 24–55). Typical value is 50 lb-ft. (68 N .m)m aximum applied to one side gear.If the torque value exceeds the specification, 5. disassemble the differential gears from the case halves.Check the case halves, spider, gears, and 6. thrust washers for the problem that caused the torque value to exceed specifications. Re-pair or replace defective parts as required. Remove any foreign debris.Check/Adjust Pinion Cage Shim PackThis procedure is used to check and adjust the thick-ness of the shim pack used in the pinion bearing cage. Use this procedure if a new drive pinion and crownTighten the nut on the drive pinion to specifi-7. cation, typically 400 to 700 lb-ft. (542 to 950 N .m).Remove the yoke or flange bar.8. Attach a torque wrench to the drive pinion 9. nut. Rotate the drive pinion and read the value indicated on the torque wrench. Preload is correct when the torque required to rotate the pinion bearing cage is from 15 to 35 lb-in. (1.7 to 4.0 N .m).To adjust the pinion bearing preload, disas-10. semble the pinion bearing cage and change the pinion bearing spacer size. A thicker spacer will decrease preload, whereas a thin-ner spacer will increase preload.Differential Rolling ResistanceA check to measure and establish differential rolling resistance follows. To perform this check, a special tool must be made. You can easily make this tool from an old axle shaft that matches the spline size of the differential side gear. Figure 24–54 illustrates the fab-rication specifications for this special tool.To check differential resistance to rotation, use the following procedure:Install soft metal covers over the vise jaws to 1. protect the ring gear (Figure 24–55).Place the differential and crown gear assem-2. bly in the vise.Install the special tool into the differential until 3. the splines of the tool and one side gear are engaged.Attach a torque wrench to the nut of the spe-4. cial tool and rotate the differential gears. As the differential gears rotate, read the valueFIGURE 24–55 Reading the torque value to check the rolling resistance. (Courtesy of Arvin Meritor)FIGURE 24–53 Using a flange bar to hold the drivepinion in position. (Courtesy of Arvin Meritor)FIGURE 24–54 Fabrication details for a tool to checkthe rolling resistance. (Courtesy of Arvin Meritor)If the new pinion cone number is a minus (–), sub-8. tract the number from the standard shim packthickness that was calculated in step 3 or 4.The value calculated in step 7 or 8 is the 9.t hickness of the new shim pack that will bei nstalled. Figure 24–59 illustrates several e xamples of determining shim pack t hickness.Install the drive pinion, bearing cage, and new10. shim pack into the differential carrier.gear set is to be installed, or if the depth of the drive pinion has to be adjusted. You are checking the rolling resistance using a torque wrench.To check/adjust the shim pack thickness (Figure 24–56), do the following:With a micrometer, measure the thickness of 1. the old shim pack removed from under the pinion cage (Figure 24–57). Record the mea-surement for later use.Look at the pinion cone (PC) variation number 2. on the drive pinion being replaced (Figure 24–58). Record this number for later use also.If the old pinion cone number is a plus (+), 3. subtract the number from the old shim pack thickness that was recorded in step 1.If the old pinion cone number is a minus (–), 4. add the number to the old shim thickness that was measured in step 1.The value calculated in step 3 or 4 is the 5.t hickness of the standard shim pack without variation.Look at the PC variation number on the new 6. drive pinion that will be installed. Record the number for later use.If the new pinion cone number is a plus (+), 7. add the number to the standard shim packthickness that was calculated in step 3 or 4.FIGURE 24–56 Drive pinion depth controlled by shimpack thickness. (Courtesy of Arvin Meritor)FIGURE 24–57 Measuring the thickness of the old shim pack. Mike each shim individually then add tocalculate total thickness. (Courtesy of Arvin Meritor)FIGURE 24–58 Location of the pinion cone (PC)v ariation number. (Courtesy of Arvin Meritor)Adjust Differential Bearing PreloadOne of two methods can be used to check and adjust the preload of the differential bearings.Method One.Attach a dial indicator onto the mounting 1. flange of the carrier and adjust the indicator so that the plunger rides on the back surface of the crown ring gear (Figure 24–60).Loosen the bearing adjusting ring that is op-2. posite the ring gear so that a small amount of endplay is indicated on the dial indicator. To turn the adjusting rings, use a T-bar wrench that engages two or more opposite notches in the ring (Figure 24–61).Move the differential and crown gear to the 3. left and right using prybars as you read the dial indicator. Use two prybars that fit be-tween the bearing adjusting rings and the ends of the differential case (Figure 24–62). You also can use two prybars between the differential case or crown gear and the carrier at locations other than those just described. In either case, the prybars must not touch the differential bearings.EXAMPLES:Inchesmm 1.Old Shim Pack Thickness Old PC Number, PC +2Standard Shim Pack Thickness New PC Number, PC +5New Shim Pack Thickness .030.76–.002–.05.028.71+.005+.13.033.842.Old Shim Pack Thickness Old PC Number, PC –2Standard Shim Pack Thickness New PC Number, PC +5New Shim Pack Thickness .030.76+.002+.05.032.81+.005+.13.037.943.Old Shim Pack Thickness Old PC Number, PC +2Standard Shim Pack Thickness New PC Number, PC –5New Shim Pack Thickness .030.76–.002–.05.028.71–.005–.13.023.584.Old Shim Pack Thickness Old PC Number, PC –2Standard Shim Pack Thickness New PC Number, PC –5New Shim Pack Thickness.030.76+.002+.05.032.81–.005–.13.027.68FIGURE 24–59 Determining shim pack thickness.(Courtesy of ArvinMeritor Inc.)FIGURE 24–60 Dial indicator attached to carrier-mounted flange. (Courtesy of Arvin Meritor)FIGURE 24–61 Turning the adjusting ring using aT-bar wrench. (Courtesy of Arvin Meritor)FIGURE 24–62 Using pry bars to adjust play in the crown gear. (Courtesy of Arvin Meritor)Tighten the same bearing adjusting ring4.so that no endplay shows on the diali ndicator.Move the differential and crown gear to the5.left and right as needed. Repeat step 3 untilzero endplay is achieved.Tighten each bearing adjusting ring one6.notch from the zero endplay measured instep 4.Method Two.A second method of checking pre-load is to measure the expansion between the bearing caps after you tighten the adjusting rings. Use the following procedure:Turn both adjusting rings hand tight against1.the differential bearings.Measure the distance X or Y between oppo-2.site surfaces of the bearing caps (Figure24–63A) using a large micrometer of thec orrect size (Figure 24–63B). Make a note ofthe m easurement.Tighten each bearing adjusting ring one3.notch.Measure the distance X or Y again. Compare4.the dimension with the distance X or Y mea-sured in step 2. The difference between thetwo dimensions is the amount that the bear-ing caps have expanded.Example: Measurements of a carrier.Distance X or Y before tightening adjusting rings5 15.315 inches (389.00 mm)Distance X or Y after tightening adjusting rings5 15.324 inches (389.23 mm)15.324 inches minus 15.315 inches5 0.009 inch (0.23 mm) differenceIf the dimension is less than specification, repeat steps 3 and 4 as needed.Crown Gear Runout CheckTo check the runout of the crown/ring gear, do the f ollowing:Attach a dial indicator on the mounting flange1.of the differential carrier (Figure 24–64).Adjust the dial indicator so that the plunger or2.pointer is against the back surface of thecrown gear.FIGURE 24–63 (A) Location of distances measured to check expansion between bearing caps aftert ightening adjusting rings; (B) measuring this distance.(Courtesy of Arvin Meritor)FIGURE 24–64 Checking crown gear runout. (Courtesy of Arvin Meritor)Pinion and Crown Tooth ContactA djustment Correct tooth contact between the pinion and crown gear cannot be overemphasized, because improper tooth contact results in noisy operation and prema-ture failure. The tooth contact pattern consists of the lengthwise bearing (along the tooth of the ring gear) and the profile bearing (up and down the tooth). F igure 24–68 shows crown gear toothn omenclature.Adjust the dial of the indicator to zero.3. Rotate the differential and crown gear when4. reading the dial indicator. The runout of the crown gear must not exceed 0.008 inch (2 mm) (a typical value; refer to the applicable OEM service literature for the specificv alues).If runout of the crown gear exceeds the speci-5. fication, remove the differential and crown gear assembly from the carrier. Check the dif-ferential components, including the carrier, for the problem causing the runout of the gear to exceed specification. Repair or replace defec-tive components.After the components are repaired or re-6. placed, install the differential and crown gear into the carrier.Repeat the preload adjustment of the 7. differential bearings. Then repeat this runout procedure.Check/Adjust Crown Gear BacklashIf the used crown and pinion gear set is installed, ad-just the backlash to the setting that was measured before the carrier was disassembled. If a new gear set is to be installed, adjust backlash to the correct speci-fication for the new gear set.To check and adjust ring gear backlash, do thef ollowing: Attach a dial indicator onto the mounting1. flange of the carrier (see Figure 24–64).Adjust the dial indicator so that the plunger is 2. against the tooth surface at a right angle.Adjust the dial of the indicator to zero, making 3. sure that the plunger is loaded through at least one revolution.Hold the drive pinion in position.4. When reading the dial indicator, rotate the5. crown gear a small amount in both directions against the teeth of the drive pinion (Figure 24–65). If the backlash reading is not within specification (typically ranging from 0.010 to 0.020 inch or 254 to 508 mm), adjust backlash as outlined in steps 6 and 7.Loosen one bearing adjusting ring one notch 6. and then tighten the opposite ring the same amount. Backlash is increased by moving the crown gear away from the drive pinion (Figure 24–66). Backlash is decreased by moving the crown gear toward the drive pin-ion (Figure 24–67).Repeat steps 2 through 5 until the backlash is 7.within specifications.FIGURE 24–65 Check crown gear backlash. ( Courtesy of Arvin Meritor)FIGURE 24–66 Adjustments to increase backlash. (Courtesy of Arvin Meritor)the pattern in an unloaded condition (such as when you are performing this test) will be approximately one-half to two-thirds of the crown gear tooth in most models and ratios.Checking Tooth Contact Pattern on a Used Gear Set. Used gearing will not usually display the square, even contact pattern found in new gear sets. The gear will normally have a pocket at the toe-end of the gear tooth (Figure 24–71) that tails into a contact line along the root of the tooth. The more use a gear has had, the more the line becomes the dominant characteristic of the pattern.Adjusting Tooth Contact Pattern. When dis-assembling, make a drawing of the gear tooth con-tact pattern so that when reassembling it is possible to replicate approximately the same pattern. A cor-rect pattern should be clear of the toe and centers evenly along the face width between the top land and the root. Otherwise, the length and shape of the pattern can be highly variable and are usually con-sidered acceptable—providing the pattern does not run off the tooth at any time. If necessary, adjust the contact pattern by moving the crown gear and drive pinion.Checking Tooth Contact Pattern on a New Gear Set. Paint 12 crown gear teeth with a marking compound (Figure 24–69) and roll the gear to obtain a tooth contact pattern. A correct pattern should be well centered on the crown gear teeth with lengthwise contact clear of the toe (Figure 24–70). The length ofFIGURE 24–67 Adjustments to decrease backlash.(Courtesy of Arvin Meritor)FIGURE 24–68 Crown gear tooth nomenclature.(Courtesy of Dana Corporation)FIGURE 24–69 Application of a marking compoundto check tooth contact. (Courtesy of Dana Corporation)FIGURE 24–70 Correct tooth contact patternfor new gearing. (Courtesy of Dana Corporation)FIGURE 24–71 Correct tooth contact pattern for used gearing. (Courtesy of Dana Corporation)making adjustments, first adjust the pinion and then the backlash. Continue this sequence until the pattern is satisfactory.Thrust Screw AdjustmentFor those differential carriers equipped with a thrust screw, perform the following procedure. (If the carrier assembly does not have a thrust block, proceed to step 4 of this procedure.)Rotate the carrier in the repair stand until the 1. back surface of the crown gear is toward the top.Put the thrust block on the back surface of 2. the ring gear. The thrust block must be in the center between the outer diameter of the gear and the differential case.Rotate the crown gear until the thrust block 3. and hole for the thrust screw, in the carrier, are aligned.Install the jam nut on the thrust screw, one-4. half the distance between both ends (Figure 24–74).Install the thrust screw into the carrier until the 5. screw stops against the crown gear or thrust block.Loosen the thrust screw one-half turn, or 180 6. degrees.Tighten the jam nut to the correct torque value 7. against the carrier (typical values range from 150 to 295 lb-ft. or 200 to 400 N .m) (Figure 24–75).Axle TrackingAxle tracking can be measured using the older tram bar method or electronic alignment equipment. The procedures for setting axle alignment and tracking areexplained in Chapter 25.FIGURE 24–72 Two incorrect patterns when adjusting pinion position. (Courtesy of Dana Corporation)Crown gear position controls the backlash setting. This adjustment also moves the contact pattern along the face width of the gear tooth (Figure 24–72). Pinion position is determined by the size of the pinion bear-ing cage shim pack. It controls contact on the tooth depth of the gear tooth (Figure 24–73).These adjustments are interrelated. As a result, they must be considered together even though thepattern is altered by two distinct operations. WhenFIGURE 24–73 Two incorrect patterns when adjusting backlash. (Courtesy of Dana Corporation)• Most differential carriers are replaced as rebuilt/exchange units, so the role of the technician is, more often than not, to diagnose the problem and then, if necessary, to replace the defective assembly as a unit.• The technician who has disassembled and reas-sembled differential carriers should find trouble-shooting procedures easier to follow.• Follow the OEM procedure when disassem-bling differential carriers. Taking a few mo-ments to measure shim packs and gear tooth contact patterns on disassembly can save considerable time when reassembling thec arrier.• A crown and pinion gear set often can ber eused when rebuilding a differential carrier. Make sure that you inspect it properly ond isassembly.• Crown and pinion gear sets are always replaced as a matched pair during a rebuild.• When setting crown and pinion backlash, it is increased by moving the crown gear away from the drive pinion and decreased by moving the crown gear toward the drive pinion.• Adhering to OEM-recommended lubrication schedules is the key to ensuring the longest service life from both drive and dead axles.• Knowing the correct procedure to check lubricant level is essential. The level is correct when lubri-cant is exactly level with the bottom of the fill hole.• Because most OEMs approve of the use of syn-thetic lubricants in final drive carriers, lubrication drain schedules have been greatly increased in recent years. Drain schedules are determined by the actual lubricant used and the type of appli-cation to which the vehicle is subjected.• Servicing of axles on heavy-duty trucks consists of routine inspection, lubrication, cleaning, and, when required, troubleshooting and component overhaul.• Failure analysis is required to prevent recurrent failures.• Drive axle carrier components usually fail for one of the following reasons: Shock load Fatigue Spinout Lubrication problemsNormal wearFIGURE 24–74 Installing the jam nut on the thrust screw. (Courtesy of Arvin Meritor)FIGURE 24–75 Tighten the jam nut to the correct torque value. (Courtesy of Arvin Meritor)SUMMARY。

中英文文献翻译-驱动桥介绍

中英文文献翻译-驱动桥介绍

附录A 英文文献Drive axleAll vehicles have some type of drive axle/differential assembly incorporated into the driveline. Whether it is front, rear or four wheel drive, differentials are necessary for the smooth application of engine power to the road.PowerflowThe drive axle must transmit power through a 90°angle. The flow of power in conventional front engine/rear wheel drive vehicles moves from the engine to the drive axle in approximately a straight line. However, at the drive axle, the power must be turned at right angles (from the line of the driveshaft) and directed to the drive wheels.This is accomplished by a pinion drive gear,which turns a circular ring gear. The ring gear is attached to a differential housing, containing a set of smaller gears that are splined to the inner end of each axle shaft. As the housing is rotated, the internal differential gears turn the axle shafts, which are also attached to the drive wheels.Fig 1 Drive axleRear-wheel driveRear-wheel-drive vehicles are mostly trucks, very large sedans and many sports car and coupe models. The typical rear wheel drive vehicle uses a front mounted engine and transmission assemblies with a driveshaft coupling the transmission to the rear drive axle. Drive in through the layout of the bridge, the bridge drive shaft arranged vertically in the same vertical plane, and not the drive axle shaft, respectively, in their own sub-actuator with a direct connection, but the actuator is located at the front or the back of the adjacent shaft of the two bridges is arranged in series. Vehicle before and after the two ends of the driving force of the drive axle, is the sub-actuator and the transmission through the middle of the bridge. The advantage is not only a reduction of the number of drive shaft, and raise the driving axle of the common parts of each other, and to simplify the structure, reduces the volume and quality.Some vehicles do not follow this typical example. Such as the older Porsche or Volkswagen vehicles which were rear engine, rear drive. These vehicles use a rear mounted transaxle with halfshafts connected to the drive wheels. Also, some vehicles were produced with a front engine, rear transaxle setup with a driveshaft connecting the engine to the transaxle, and halfshafts linking the transaxle to the drive wheels.Differential operationIn order to remove the wheel around in the kinematics due to the lack of co-ordination about the wheel diameter arising from a different or the same rolling radius of wheel travel required, inter-wheel motor vehicles are equipped with about differential, the latter to ensure that the car driver Bridge on both sides of the wheel when in range with a trip to the characteristics of rotating at different speeds to meet the requirements of the vehicle kinematics.The accompanying illustration has been provided to help understand how this occurs.1.The drive pinion, which is turned by the driveshaft, turns the ring gear.2.The ring gear, which is attached to the differential case, turns the case.3.The pinion shaft, located in a bore in the differential case, is at right angles to the axle shafts and turns with the case.4.The differential pinion (drive) gears are mounted on the pinion shaft and rotate with the shaft .5.Differential side gears (driven gears) are meshed with the pinion gears and turn with the differential housing and ring gear as a unit.6.The side gears are splined to the inner ends of the axle shafts and rotate the shafts as the housing turns.7.When both wheels have equal traction, the pinion gears do not rotate on the pinion shaft, since the input force of the pinion gears is divided equally between the two side gears.8.When it is necessary to turn a corner, the differential gearing becomes effective and allows the axle shafts to rotate at different speeds .Open-wheel differential on each general use the same amount of torque. To determine the size of the wheel torque to bear two factors: equipment and friction. In dry conditions, when a lot of friction, the wheel bearing torque by engine size and gear restrictions are hours in the friction (such as driving on ice), is restricted to a maximum torque, so that vehicles will not spin round. So even if the car can produce more torque, but also need to have sufficient traction to transfer torque to the ground. If you increase the throttle after the wheels slip, it will only make the wheels spin faster.Limited-slip and locking differential operationFig 5 Limited-slip differentialDifferential settlement of a car in the uneven road surface and steering wheel-driven speed at about the different requirements; but is followed by the existence of differential in the side car wheel skid can not be effective when the power transmission, that is, the wheel slip can not produce the driving force, rather than spin the wheel and does not have enough torque. Good non-slip differential settlement of the car wheels skid on the side of the power transmission when the issue, that is, locking differential, so that no longer serve a useful differential right and left sides of the wheel can be the same torque.Limited-slip and locking differential operation can be divided into two major categories:(1) mandatory locking type in ordinary differential locking enforcement agencies to increase, when the side of the wheel skid occurs, the driver can be electric, pneumatic or mechanical means to manipulate the locking body meshing sets of DIP Shell will be with the axle differential lock into one, thus the temporary loss of differential role. Relatively simple structure in this way, but it must be operated by the driver, and good roads to stop locking and restore the role of differential.(2) self-locking differential installed in the oil viscosity or friction clutch coupling, when the side of the wheel skid occurs when both sides of the axle speed difference there, coupling or clutch friction resistance on the automatic, to make certain the other side of the wheel drive torque and the car continued to travel. When there is no speed difference on both sides of the wheel, the frictional resistance disappeared, the role of automatic restoration of differentials. More complicated structure in this way, but do not require drivers to operate. Has been increasingly applied in the car. About non-slip differential, not only used for the differential between the wheels, but also for all-wheel drive vehicle inter-axle differential/.Gear ratioThe drive axle of a vehicle is said to have a certain axle ratio. This number (usually a whole number and a decimal fraction) is actually a comparison of the number of gear teeth on the ring gear and the pinion gear. For example, a 4.11 rear means that theoretically, there are 4.11 teeth on the ring gear for each tooth on the pinion gear or, put another way, the driveshaft must turn 4.11 times to turn the wheels once. The role of the final drive is to reduce the speed from the drive shaft, thereby increasing the torque. Lord of the reduction ratio reducer, a driving force for car performance and fuel economy have a greater impact. In general, the more reduction ratio the greater the acceleration and climbing ability, and relatively poor fuel economy. However, if it is too large, it can not play the full power of the engine to achieve the proper speed. The main reduction ratio is more Smaller ,the speed is higher, fuel economy is better, but the acceleration and climbing ability will be poor.附录B 文献翻译驱动桥所有的汽车都装有不同类型的驱动桥和差速器来驱动汽车行驶。

驱动桥毕业设计外文翻译

驱动桥毕业设计外文翻译

毕业设计/论文外文文献翻译系别自动化系专业班级机械电子工程0603班姓名评分指导教师2010 年4月29日毕业设计/论文外文文献翻译要求:1.外文文献翻译的内容应与毕业设计/论文课题相关。

2.外文文献翻译的字数:非英语专业学生应完成与毕业设计/论文课题内容相关的不少于2000汉字的外文文献翻译任务(其中,汉语言文学专业、艺术类专业不作要求),英语专业学生应完成不少于2000汉字的二外文献翻译任务。

格式按《华中科技大学武昌分校本科毕业设计/论文撰写规范》的要求撰写。

3.外文文献翻译附于开题报告之后:第一部分为译文,第二部分为外文文献原文,译文与原文均需单独编制页码(底端居中)并注明出处。

本附件为封面,封面上不得出现页码。

4.外文文献翻译原文由指导教师指定,同一指导教师指导的学生不得选用相同的外文原文。

驱动桥设计随着汽车对安全、节能、环保的不断重视,汽车后桥作为整车的一个关键部件,其产品的质量对整车的安全使用及整车性能的影响是非常大的,因而对汽车后桥进行有效的优化设计计算是非常必要的。

驱动桥处于动力传动系的末端,其基本功能是增大由传动轴或变速器传来的转矩,并将动力合理地分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直力力和横向力。

驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。

驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能,而对于载重汽车显得尤为重要。

驱动桥设计应当满足如下基本要求:1、符合现代汽车设计的一般理论。

2、外形尺寸要小,保证有必要的离地间隙。

3、合适的主减速比,以保证汽车的动力性和燃料经济性。

4、在各种转速和载荷下具有高的传动效率。

5、在保证足够的强度、刚度条件下,力求质量小,结构简单,加工工艺性好,制造容易,拆装,调整方便。

6、与悬架导向机构运动协调,对于转向驱动桥,还应与转向机构运动协调。

智能电子技术在汽车上得以推广使得汽车在安全行驶和其它功能更上一层楼。

汽车驱动桥设计外文文献翻译、中英文翻译、外文翻译

汽车驱动桥设计外文文献翻译、中英文翻译、外文翻译

AppendixChina in the first half of 2008 about 93 million trucks accumulative total sales of cars, vans 61 million vehicles, year-on-year growth of 20.2%, visible light car in commercial car production has a large proportion. And driving axle is very important in the vehicle driving axle is the important car auto bearing assembly, auto frame and integral by suspension of body vertical force, to lead the longitudinal forces, transverse force and torque, and impact load; Driving axle also delivers the transmission, the maximum torque reaction is under.Automobile driving axle structure and design parameters in addition to the reliability of the automobile and durability have important influence on the outside, also for the automobile driving performance such as power, economy, smooth, through sex, mobility Automobile driving axle design involves the mechanical parts and components is widely to these varieties, spare parts, components and assemblies manufacturing also almost want to design to all modern machinery manufacturing process, design a simple structure, reliable operation and low cost, can greatly reduce the drive axle of the total cost of the vehicle production, promote economic development, and car to drive through the car studying and designing practice, can better learning and mastery of the modern car design and mechanical design of the comprehensive knowledge and skills, and the overall thinking and operation skill check, drawing, is the very important link, so ontology of a structure design of fine vans axles has certain Automobile driving axle is one of the main parts car, its basic function is to enlarge the shaft or by the torque transmission spread, then torque distribution to drive wheels, and make about driving wheel has about vehicle movement required differential function; Axles in the end of powertrain system, choose proper Lord slowdown, ensure cars than with sufficient ground clearance is achieved, gear and other transmission job need to ensure smooth are the parameters, and even bear effect on the pavement drive axle and frame or carrying body vertical force, the lead between transverse and longitudinal force and torque force. Driving axle quality, performance will have a direct impact on the vehicle's safety, economy, comfort and reliability. After the car driving axle design can make the students' comprehensive by using their This thesis research aims to overall matching car by driving axle Lord finish design of gear reducer, differential component such as type of design and calculation, and complete checking and comprehensive design single main reducer, then the batch Through the design of the vehicle driving axle should also master the understanding, including each component interaction between the body and the electricalsystem, the influence and cooperate to drive axle of the process and therefore more familiar with vehicle mastery. That in the future the production and living effectly use.附录我国2008年上半年货车累计销售约93万辆,其中轻型货车61万辆,同比增长20.2%,可见轻型汽车在商用汽车生产中占有很大的比重。

《驱动桥外文翻译》word版

《驱动桥外文翻译》word版

附录1Drive AxleAll vehicles have some type of drive axle/differential assembly incorporated into the driveline. Whether it is front, rear or four wheel drive, differentials are necessary for the smooth application of engine power to the road.The drive axle must transmit power through a 90° angle. The flow of power in conventional front engine/rear wheel drive vehicles moves from the engine to the drive axle in approximately a straight line. However, at the drive axle, the power must be turned at right angles <from the line of the driveshaft> and directed to the drive wheels.This is accomplished by a pinion drive gear, which turns a circular ring gear. The ring gear is attached to a differential housing, containing a set of smaller gears that are splined to the inner end of each axle shaft. As the housing is rotated, the internal differential gears turn the axle shafts, which are also attached to the drive wheels.The differential is an arrangement of gears with two functions: to permit the rear wheels to turn at different speeds when cornering and to divide the power flow between both rear wheels.<1>The accompanying illustration has been provided to help understand how this occurs. The drive pinion, which is turned by the driveshaft, turns the ring gear.<2>The ring gear, which is attached to the differential case, turns the case.<3>The pinion shaft, located in a bore in the differential case, is at right angles to the axle shafts and turns with the case.<4>The differential pinion <drive> gears are mounted on the pinion shaft and rotate with the shaft.<5>Differential side gears <driven gears> are meshed with the pinion gears and turn with the differential housing and ring gear as a unit.<6>The side gears are splined to the inner ends of the axle shafts and rotate the shafts as the housing turns.<7>When both wheels have equal traction, the pinion gears do not rotate on the pinion shaft, since the input force of the pinion gears is divided equally between the two side gears.<8>When it is necessary to turn a corner, the differential gearing becomes effective and allows the axle shafts to rotate at different speeds.As the inner wheel slows down, the side gear splined to the inner wheel axle shaft also slows. The pinion gears act as balancing levers by maintaining equal tooth loads to both gears, while allowing unequal speeds of rotation at the axle shafts. If the vehicle speed remains constant, and the inner wheel slows down to 90 percent of vehicle speed, the outer wheel will speed up to 110 percent. However, because this system is known as an open differential, if one wheel should become stuck <as in mud or snow>, all of the engine power can be transferred to only one wheel.Engineers searched diligently for ways to allow each driving wheel to operate at its own speed. Many ideas were tried with mixed results before the basic design for the present-day, standard differential was finally developed. The successful idea that is still used in principle today was to divide the engine power by dividing the axle in two-attaching each driving wheel separately to its own half-axle and placing in between, an ingenious, free-rotating pinion and gear arrangement. The arrangement was called the differential because it differentiates between the actual speed needs of each wheel and splits the power from the engine into equal driving force to each wheel.On/off road vehicles and other trucks required to haul heavy loads are sometimes equipped with double reduction axles. A double reduction axle uses two gear sets for greater overall gear reduction and peak torque development. This design is favored for severe-ser-vice applications, such as dump trucks, cement mixers, and other heavy haulers.The double reduction axle uses a heavy-duty spiral bevel or hypoid pinion and ring gear combination for the first reduction. The second reduction is accomplished with a wide-faced helical spur pin-ion and gear set. The drive pinion and ring gear function just as in a single reduction axle. However, the differential case is not bolted to the ring gear. Instead, the spur pinion is keyed to and driven by the ring gear. The spur pinion is in turn constantly meshed with the helical spur gear to which the differential case is bolted.Many heavy duty trucks are equipped with two rear drive axles. These tandem axle trucks require a special gear arrangement to deliver power to both the forward and rearward rear driving axles. This gearing must also be capable of allowing for speed differences between the axles. Two axle hub arrangements are available to provide support between the axle hub and the truck's wheels: the semi-floating type axle and the fully floating type axle. Of the two ,the semi-floating is the simplest,cheapest design to incorporate ,but the fully floating axle is more popular in heavy-duty trucks.In the semi-floating type axle, drive power from the differential is taken by each axle half-shaft and transferred directly to the wheels. A single bearing assembly, located at the outer end of the axle, is used to support the axle half-shaft. The part of the axle ex-tending beyond the bearing assembly is either splined or tapered to a wheel hub and brake drum assembly. The main disadvantage of this type of axle is that the outer end of each axle shaft must carry and support the weight of the truck that is placed on the wheels. If an axle half-shaft should break ,the truck's wheel will fall off.Drive axle operation is controlled by the differential carrier assembly. A differential carrier assembly consists of a number of major components. These include:1. Input shaft and pinion gear2. Ring gear3. Differential with two differential case halves, a differential spider ,four pinion gears ,and two side gears with washers.This differential assembly fits between the axle shafts, with the shafts being splined to the differential side gears. The parts of the differential carrier are held in position by a number of bearings and thrust washers.The leading end of the input shaft is connected to the drive shaft by a yoke and universal joint. The pinion gear on the other end of the input shaft is in constant mesh with the ring gear. The ring gear is bolted to a flange on the differential case. Insied the case, the legs of the spider are held in matching grooves in the case halves. The legs of the spider also support the four pinion gears. In addition ,the case houses the side gears ,which are in mesh with the pinions and are splined to the axle shafts.When the drive shaft torque is applied to the input shaft and drive pinion, the input shaft and pinion rotate in a direction that is perpendicular to the truck's drive axles. The drive pinion is beveled at 45 degrees and engages the ring gear, which is also beveled at 45 degrees, causing the ring gear to revolve at 90 degrees to the drive shaft. This means the torque flow changes direction and becomes parallel to the axles and wheels.The drive shaft must also be able to change in length while transmitting torque. As the rear axle reacts to road surface changes, torque reactions and braking forces, ittends to rotate for-ward or backward, requiring a corresponding change in the length of the drive shaft. In order to transmit engine torque to the rear axles, the drive shaft must be durable and strong. An engine producing 1 000 pound--feet of torque, when multiplied by a 12 to t gear ration in the transmission, will deliver 12 000 pound-feet breakaway torque to the drive shaft. The shaft must be strong enough to deliver this twisting force to a loaded axle without deforming or cracking under the strain.Drive shafts are constructed of high-strength steel tubing to provide maximum strength with minimum weight. The diameter of the shaft and wall thickness of the tubing is determined by several factors ~ maximum torque and vehicle payload, type of operation, road conditions, and the brake torque that might be encountered. One-piece ,two-piece ,and three-piece drive shafts are used, depending on the length of the drive line. Each end of the drive shaft has a yoke used to connect the shaft to other drive line components. The yoke might be rigidly welded to the shaft tube or it might be a spline, or slip yoke. The tube yokes are connected through universal joints to end yokes on the output and input shafts of the transmission and axle.A typical slip joint consists of a hardened, ground splined shaft welded to the drive shaft tube that is inserted into a slip yoke that has matching internal splines. The sliding splines between a slib joint and a permanent joint must support the drive shaft and be capable of sliding under full torque loads. The propeller shaft is generally hollow to promote light weight and of a diameter sufficient to impart great strength. Quality steel, aluminum, and graphite are used in its construction. Some have a rubber mounted torsional damper.The universal yoke and splined stub <where used> are welded to the ends of a hollow shaft. The shaft must run true, and it must be carefully balanced to avoid vibrations. The propeller shaft is often turning at engine speeds. It can cause great damage if bent, unbalanced or if there is wear in the universal joints. As the rear axle moves up and down, it swings on an arc that is different from that of the drive line. As a result, the distance between transmission and rear axle will change to some extent.When the propeller shaft turns the differential, the axles and wheels are driven forward. The driving force developed between the tires and the road is first transferred to the rear axle housing. From the axle housing, it is transmitted to the frame or body in one of three ways:1. Through leaf springs that are bolted to the housing and shackled to theframe.2. Through control or torque arms shackled to both frame and axle housing.3. Through a torque tube that surrounds the propeller shaft which is bolted to the axle housing and pivoted to the transmission, by means of a large ball socket. 二、中文翻译驱动桥汽车传动系统中驱动桥和差速器有许多形式.无论是前轮、后轮还是四轮驱动,差速器都是必要的,以便使发动机的功率充分的发挥到路面上.驱动桥必须通过一个90°角传递动力.以传统的后轮驱动汽车为例,动力由前置引擎传到大致在一条直线上的驱动桥,然后动力必须经过一个直角传递给驱动车轮.这一过程是通过一个小齿轮传递到一个齿圈上而完成的.该齿圈连接到差速器壳,壳里面装有一组小齿轮,小齿轮与带有花键的每个轴的轴端相联接,由桥壳的旋转,从而差速齿轮带动轴转动,这个轴同时连接的就是驱动车轮.图示为一个典型驱动桥的组成差速器齿轮具有两个基本的功能:在转弯时允许后轮以不同的速度转动并将动力分配到两后轮.〔1〕提供的说明是为了帮助理解这一过程是如何实现的.轴带动小驱动齿轮在齿圈上旋转.〔2〕该齿圈与差速器壳相连,并带动壳旋转.〔3〕差速器壳内设有一小孔,放置一个小齿轮轴,该小轴与差速器成直角,并随壳体转动.〔4〕差速行星齿轮驱动装在小轴上的齿轮,使轴转动.〔5〕差速器边上的齿轮〔驱动齿轮〕与小齿轮啮合,并与做在一体的差速器壳和齿圈一起转动.〔6〕一侧带花键的齿轮与两轴端配合,随桥壳旋转.〔7〕当两车轮具有相同的驱动力的时候,小齿轮〔行星齿轮〕在其轴架〔行星架〕上不旋转,输入到小齿轮上的力平均分配给两端的齿轮.〔8〕当需要转弯时,差动齿轮开始起作用,能够实现两端的半轴以不同的速度旋转.由于内侧车轮速度减慢,同侧的花键轴齿轮也变慢,行星齿轮作为平衡杠杆,保持两边的轮齿负荷相等,同时允许两边的半轴以不同的的速度旋转.如果汽车的行进速度保持不变,内侧车轮的速度将减低90%.外侧车轮的速度将增加到110%.但是,因为系统有差速器,所以一旦有一个车轮转速保持不变〔如在泥或雪地〕,那么所有的发动机功率将全部转移到另外的一个车轮.工程师们努力地寻找方法使每个驱动轮都按照自己的速度运行.在如今标准的差速器被最终发明出来之前,许多想法被交叉尝试.目前在理论上非常成功的、一直沿用到今天的想法是通过把车轴分离成对称的两部分.每一个半轴都连接到分离的驱动轮上,然后中间安放一个独立的自由旋转的小齿轮和其它两个齿轮来分离来自发动机的动力.这个结构被称为差速装置.因为这种装置能提供给每个车轮实际所需要的速度并且把来自发动机的动力分成相同的驱动力作用给每个车轮.许多卡车有时需要装备双级减速驱动桥来拖拽重物.双级减速驱动桥使用两套减速齿轮来降低速度使转矩达到峰值.这种设计是非常受优待的例如自卸式卡车、混凝土搅拌车和其它重型货车.双减速车桥采用了重型的螺旋锥齿轮或准双曲面齿轮和环行齿轮配合从而进行第一级减速.第二级减速是通过宽面的螺旋柱形直齿轮及其它齿轮组的配合完成的.主动小齿轮和环行齿轮在单级减速桥上运行,而差速器箱没有被环形齿轮锁死,相反,环形齿轮能将柱形直齿轮键入并驱动,柱形直齿轮就可以依次不断地与差速器箱中的螺旋正齿轮相啮合.许多重型载货汽车都配备了两个后驱动桥,这种平衡悬架轴的卡车需要一种特殊的齿轮配置方法来解决后驱动桥上的向前与向后的传动.这些齿轮必须要考虑到车轴间的转速差.两个车轴轴毂的排列为轴毂和车轮间提供了有力的支持.在半浮动式轴与全浮动式轴中,半浮动式轴的设计较简单、价格便宜的,而全浮动式轴多受欢迎于重型卡车中.对于半浮动式轴,来自差速器的动力施加与两个半轴,并直接传递到轮子上.一个单轴承组〔位于轴承外端〕被用于支撑半轴.轴端外延到轴承组上的部分与轮闸和轮鼓的连接是花键或锥形连接.这种轴的缺点是每个半轴的外端都有支撑轮子上的车体.如果有一个半轴断裂,车轮就会脱离.驱动轴的动作由差速器结构控制.差速器结构由以下几个主要的部件:1.输入轴和齿轮结构2.齿圈3.差速器包括两个差速器半箱,差速架,4个齿轮,两个带垫圈的边齿轮.差速器结构位于两个半轴之间,通过边齿轮与之花键连接.差速器部件用许多轴承和止推垫圈固定.输入轴头通过一个套和万向节与驱动轴连接.输入轴另一端的齿轮与齿圈啮合.齿圈被销在差速箱的轮缘上.箱内,支架腿啮合与箱子的凹槽.支架腿同时支撑着4个小齿轮.此外,差速箱还包裹着边齿轮,而边齿轮与小齿轮啮合并与轴花键连接.当驱动轴的转矩施加与输入轴并带动小齿轮,输入轴和小齿轮就会在与车轴垂直的方向转动.传动齿轮和环形齿轮都通过45°斜齿相互啮合,使环形齿轮与驱动轴的转动方向形成90°角.这意味着扭矩改变了方向后与车轴和车轮平行.驱动桥在传递转矩的同时还能改变长度.因为后轴反映路面的变化,转矩的反映和制动力的变化,适应向前或者向后的旋转.同时还要适应驱动桥的长度变化.为了把发动机的转矩传递到后轴,驱动桥必须耐用而且结实.发动机产生1000镑·尺的转矩时乘以一个齿轮12个齿在驱动桥上就产生了12000镑·尺的转矩.后轴必须足够结实来传递扭转力矩给承载轴上不能产生变形和段裂.驱动桥是由高强度的空心钢管制成的以最小的重量来提供最大的动力轴的直径和轴壁的薄厚是由扭矩的峰值、车辆的额定载重、运行的方式、路面状况和制动力矩共同决定的.每一个驱动桥的末端都有十字轴用来连接轴和其它的纵向驱动组件的.这个十字轴被刚性的焊接在半轴的软管上或者是滑动叉上.这个支撑管一头连接着万向节,另一头接在支配管上用来输入和输出变速器和轴的动力.一个经淬火的滑联合,花键轴焊接传动轴管插入一个滑动叉有内花键相配合.滑动花键之间的滑动联合常设联合必须支持传动轴,并承受滑动下全负荷扭矩.传动轴是空心的,并重量轻普遍应用,一个足够大的直径以传递的巨大转矩. 优质钢、铝、石墨被用于制造的材料. 并安装一个橡胶的扭振减振阻尼器.普遍的轭状花键管被焊接到两端的空心轴.轴的运行必须准确,并它必须小心平衡,以避免受振动. 传动轴往往是转弯时发动机的转速.如果转弯时,不平衡或有磨损的万向节,它可以造成很大损害.由于后轴上下移动, 它摇摆出一个弧形的,不同的传动线.在变速器和后轴将有某种程度的改变.当传动轴转差,车轴和车轮是驱动前进.主动力之间的轮胎和道路是首先被转移到后轴壳.从动轴套,它是传送给骨架或机构,其中有3种方式:1.通过钢板弹簧,螺栓,以及桥壳和骨架的束缚.2.通过控制或扭力杆两种构架及轴壳的束缚.3.通过扭力杆,环绕在传动轴的螺栓与轴壳的传输,采用了大的球形支座.。

机械毕业设计英文外文翻译398驱动桥_(2)

机械毕业设计英文外文翻译398驱动桥_(2)

附录 A 英文文献Drive axleAll vehicles have some type of drive axle/differential assembly incorporated into the driveline. Whether it is front, rear or four wheel drive, differentials are necessary for the smooth application of engine power to the road.PowerflowThe drive axle must transmit power through a 90 angle. The°flow of power in conventional front engine/rear wheel drive vehicles moves from the engine to the drive axle in approximately a straight line. However, at the drive axle, the power must be turned at right angles (from the line of the driveshaft) and directed to the drive wheels.This is accomplished by a pinion drive gear, which turns a circular ring gear. The ring gear is attached to a differential housing, containing a set of smaller gears that are splined to the inner end of each axle shaft. As the housing is rotated, the internal differential gears turn the axle shafts, which are also attached to the drive wheels.Rear-wheel driveRear-wheel-drive vehicles are mostly trucks, very large seda ns and many sports car and coupe models. The typical rear wheel drive vehicle uses a front mounted engine and transmission assemblies with adriveshaft coupling the transmission to the rear drive axle. Drive in through the layout of the bridge, the bridge drive shaft arranged vertically in thesame vertical plane, and not the drive axle shaft, respectively, i n their own sub-actuator with a direct conn ecti on, but the actuator is located at the front or the back of the adjace nt shaft of the two bridges is arranged in series. Vehicle before and after the two ends of the driv ing force of thedrive axle, is the sub-actuator and the tran smissi on through the middle of the bridge. The adva ntage is not only a reduction of the number of drive shaft, and raise the driving axle of the common parts of each other, and to simplify the structure, reduces the volume and quality.Some vehicles do not follow this typical example. Such as the olderPorsche or Volkswagen vehicles which were rear engine, rear drive. RING GEAP£ 1■ ■■ BEARING RIGHT AXLESHAFTPINION GEAR LER-HA^DI AXLE SHAHDRIVE HNMN\ DRIVE PINION,二omRENTIAL ‘CASE 亠 /:Fig 1 Drive axleThese vehicles use a rear mounted transaxle with halfshafts connected to the drive wheels. Also, some vehicles were produced with a front engine, rear transaxle setup with a driveshaft connecting the engine to the transaxle, and halfshafts linking the transaxle to the drive wheels. Differential operationIn order to remove the wheel around in the kinematics due to the lack of co-ordination about the wheel diameter arising from a different or the same rolling radius of wheel travel required, inter-wheel motor vehicles are equipped with about differential, the latter to ensure that the car driver Bridge on both sides of the wheel when in range with a trip to the characteristics of rotating at different speeds to meet the requirements of the vehicle kinematics.The accompanying illustration has been provided to help understand how this occurs.1. The drive pinion, which is turned by the driveshaft, turns the ring gear.2. The ring gear, which is attached to the differential case, turns the case.3. The pinion shaft, located in a bore in the differential case, is at right angles to the axle shafts and turns with the case.4. The differential pinion (drive) gears are mounted on the pinion shaft and rotate with the shaft .5. Differential side gears (driven gears) are meshed with the pinion gears and turn with the differential housing and ring gear as a unit.6. The side gears are splined to the inner ends of the axle shafts and rotate the shafts as the housing turns.7. When both wheels have equal traction, the pinion gears do not rotate on the pinion shaft, since the input force of the pinion gears isdivided equally between the two side gears.8. When it is necessary to turn a corner, the differential gearing becomes effective and allows the axle shafts to rotate at different speeds .Open-wheel differential on each general use the same amount of torque. To determine the size of the wheel torque to bear two factors: equipment and friction. In dry conditions, when a lot of friction, the wheel bearing torque by engine size and gear restrictions are hours in the friction (such as driving on ice), is restricted to a maximum torque, so that vehicles will not spin round. So even if the car can produce more torque, but also need to have sufficient traction to transfer torque to the ground. If you increase the throttle after the wheels slip, it will only make the wheels spin faster.Limited-slip and locking differential operationDifferential settlement of a car in the uneven road surface and steeringwheel-drive n speed at about the differe nt requireme nts; but is followed by the existenee of differential in the side car wheel skid can not beeffective when the power transmission, that is, the wheel slip can notproduce the driv ing force, rather tha n spin the wheel and does not have eno ugh torque. Good non-slip differe ntial settleme nt of the car wheels skid on the side of the power transmission when the issue, that is, lock ing differe ntial, so that no Ion ger serve a useful differe ntial right and leftsides of the wheel can be the same torque.Limited-slip and locking differential operation can be divided into twomajor categories :(1) mandatory locking type in ordinary differential lockingen forceme nt age ncies to in crease, whe n the side of the wheel skidoccurs, the driver can be electric, pneumatic or mechanical means tomanipulate the locking body meshing sets of DIP Shell will be with theaxle differe ntial lock into one, thus the temporary loss of differe ntial role. Relatively simple structure in this way, but it must be operated by the driver, and good roads to stop locking and restore the role of differential.a tie shaftpinion shaftdiffarartial \畑9"哼differenld ” pinionFig 5 Limited-slip differential(2) self-locking differential installed in the oil viscosity or friction clutch coupling, when the side of the wheel skid occurs when both sides of the axle speed difference there, coupling or clutch friction resistance on the automatic, to make certain the other side of the wheel drive torque and the car continued to travel. When there is no speed difference on both sides of the wheel, the frictional resistance disappeared, the role of automatic restoration of differentials. More complicated structure in this way, but do not require drivers to operate. Has been increasingly applied in the car. About non-slip differential, not only used for the differential between the wheels, but also for all-wheel drive vehicle inter-axle differential/.Gear ratioThe drive axle of a vehicle is said to have a certain axle ratio. This number (usually a whole number and a decimal fraction) is actually a comparison of the number of gear teeth on the ring gear and the pinion gear. For example, a 4.11 rear means that theoretically, there are 4.11 teeth on the ring gear for each tooth on the pinion gear or, put another way, the driveshaft must turn 4.11 times to turn the wheels once. The role of the final drive is to reduce the speed from the drive shaft, thereby increasing the torque. Lord of the reduction ratio reducer, a driving force for car performance and fuel economy have a greater impact. In general, the more reduction ratio the greater the acceleration and climbing ability, and relatively poor fuel economy. However, if it is too large, it can not play the full power of the engine to achieve the proper speed. The main reduction ratio is more Smaller ,the speed is higher, fuel economy is better, but the acceleration and climbing ability will be poor.附录 B 文献翻译驱动桥所有的汽车都装有不同类型的驱动桥和差速器来驱动汽车行驶。

驱动桥的构造外文文献翻译、中英文翻译、外文翻译

驱动桥的构造外文文献翻译、中英文翻译、外文翻译

附录AThe structure of driving axleThe driving axle is in the power power transmission the terminal, its basic function increases the torque which transmits by the drive shaft or the transmission gearbox, and power reasonable assignment for left and right driving gear, moreover also withstands the function vertical sets up, the longitudinal force and the transverse force between the road surface and the frame or the automobile body.The driving axle generally by the main gear box, the differential device, the wheel transmission device and the driving axle shell and so on is composed.1.Driving axle design:The driving axle design must satisfy following basic request:1). Choice main reduction gear ratios ought to be able to guarantee the automobile has the best power and the fuel economy.2). External dimensions must be small, guaranteed has the necessity ground clearance.3). Gears and other transmission piece works do steadily, the noise is small.4). Has the high transmission efficiency under each kind of rotational speed and the load.5). Under the guarantee enough intensity, the rigidity condition, should make every effort the quality to be small, under the reed the quality should be as far as possible small in particular, improves the automobile smoothness.6). Coordinated with the suspension fork guidance organization movement, regarding changes the driving axle, but also should coordinate with the rotation gear movement.7). Structures are simple, the processing technology capability is good, the manufacture is easy, disassembling, the adjustment is convenient.2.Driving axle classificationThe driving axle minute non-separation type with separates the type two big kinds.1).Non-separation type driving axleThe non-separation type driving axle also is called the integral-type driving axle, its rear axle drive pipe and main gear box shell with shaft casing rigidly connected whole Liang,thus the both sides rear axle and the driving gear swing related, passes the elastic part and the frame is connected.It by the driving axle shell 1, the main gear box, the differential device and the rear axle is composed.2). Separation type driving axleThe driving axle uses the independent suspension fork, namely the main gear box shell fixes on the frame, the both sides rear axle and the driving gear can be opposite in the rolling plane in the chassis have the relative motion to be called the separation type driving axle.In order to coordinates with the independent suspension fork, fixes the main gear box shell in the frame (or automobile body) on, the driving axle shell partition and through the hinge joint, or no longer has the driving axle shell other parts besides the main gear box shell.In order to meet the need which about the driving gear independence beats, between the differential device and between wheel rear axle each section connects with the universal joint.3.Drive axle of compositionMainly by the reducer drive, and half axle and drive axle shell, etc.1) .Main reducerThe speed reducer is usually used to change the direction of transmission, reduce speed and increase torque, guarantee cars have enough force and appropriate speed. Main reducer, have more single type, double, double speed reducer, wheel edges.a). Single main reducerBy a reduction gear reducer realization of single reducer, called. Its simple structure, light weight, dongfeng BQl090, light, medium sized truck was widely used in automobile.b). Double main reducerIn some large trucks, load demand is bigger than the slow, with single main reducer drive, driven gear diameter increases, affect to the ground clearance drive, so using twice. Usually called doublestage reducer. Two groups of double reduction gear reducer, increasing torsional twice slowdown.To improve the tapered gear pair of meshing smoothness and strength, the level of spiral bevel gears reduction gear pair is. Second gear pair is helical gears for support.Active tapered gear rotating, drive driven circular gear rotating, thus completing silver. Level Article 2 the initiative of cylindrical gears and driven tapered gear coaxial and rotate together, and bring about a follower of cylindrical gears rotate, 2. Because a follower ofcylindrical gears installed in differential shell, so, when a follower of cylindrical gears turning, through the differential and half shaft is driven wheel rotation.2).DifferentialAround half shaft are used to connect differential wheel, can make the sides with different velocity rotating torque simultaneously. Ensure the normal scroll wheel. Some more, in the car driver bridge or in the breakthrough of thansfer transmission shaft with differential between, also called the bridge between differential. Its role in the car is in turn or flat road to drive wheels, and generate differential between the role.Current domestic cars and other cars are adopted symmetric bevel gear ordinary differential. Symmetrical type gear differential planetary gear, half of planetary gear axle shaft gear, or a cross (direct axis) and differential shell, etc.Most current car using differential planetary gear, ordinary bevel gear differential by two or four conical planetary gear and planetary gear axle, two cone half shaft gear and differential shell, etc.3). Half axleHalf shaft are coming to the differential wheel, drive torque to move the car wheel rotation, the solid shaft. Due to the different structure, installation of hub axial force and the different also. Therefore, half shaft are divided into the floating, use, three/four floating three types.a). Howo fou-point suspending half axleGeneral big, medium-sized cars are adopted the floating structure. Half of the spline shaft inside with the half shaft with differential gears connected to the end of the half shaft are forging flanges, bolts and wheel connection. Hub through two far apart WenCheng tapered roller bearings in half a collar. Half a collar and driving axle shell pressure to drive, composition. Use this form, half shaft bearing no direct link with the bridge housing, half shaft driving torque and not only bear any moment under this half shaft are called "the floating" half axle. The so-called "float" means half shaft are not bending load.The float, the half axle shaft for lugs and made one. But there are some heavy trucks to lugs, and made the individual parts of the spline shaft in the half. Therefore, both ends of the spline shaft is used, can HuanTou.b). Use half axleUse of half axle within the same with the client, not withstand float bending-torsional. The client through a direct bearing on the inside of half axle shell. This means that willsupport the half axle under bending moment. Therefore, the half sleeve torque, except under bending moment, local use half shaft is called. This structure is mainly used for certain.The red flag brand limousines CA7560 type of thing. The half shaft are not bending moment, the client will inherit all external use, so called bending support.c). 3/4 floating half axleThree-quarters of floating half shaft are short of bending degree between use and the floating. This type of half axle currently used in XiaoWoChe, only on individual applications, such as M20 type car. Warsaw,4). The bridge housinga). Integral bridge housingIntegral bridge housing for the intensity and rigidity, and facilitate the good performance of the installation, adjustment and maintenance, and widely used. Integral bridge housing for manufacturing methods, which can be divided into different midway through the whole cast type, the steel casting and stamping steel welding etc.b). Drive axle shell segmentedSection type bridge housing generally fall into two, one will DuanLianCheng two by bolts. Bridge housing is segmented to casting and machining.附录B驱动桥的构造驱动桥处于动力传动系的末端,其基本功能是增大由传动轴或变速器传来的转矩,并将动力合理的分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直立、纵向力和横向力。

机械毕业设计英文外文翻译400驱动桥差速器

机械毕业设计英文外文翻译400驱动桥差速器

附录英文文献翻译Drive axle/differentialAll vehicles have some type of drive axle/differential assembly incorporated into the driveline. Whether it is front, rear or four wheel drive, differentials are necessary for the smooth application of engine power to the road.PowerflowThe drive axle must transmit power through a 90° angle. The flow of power in conventional front engine/rear wheel drive vehicles moves from the engine to the drive axle in approximately a straight line. However, at the drive axle, the power must be turned at right angles (from the line of the driveshaft) and directed to the drive wheels.This is accomplished by a pinion drive gear, which turns a circular ring gear. The ring gear is attached to a differential housing, containing a set of smaller gears that are splined to the inner end of each axle shaft. As the housing is rotated, the internal differential gears turn the axle shafts, which are also attached to the drive wheels.Figure 11Component parts of a typical driven axle assembly.Differential operationThe differential is an arrangement of gears with two functions: to permit the rear wheels to turn at different speeds when cornering and to divide the power flow between both rear wheels.The accompanying illustration has been provided to help understand how this occurs. The drive pinion, which is turned by the driveshaft, turns the ring gear (1).The ring gear, which is attached to the differential case, turns the case (2).The pinion shaft, located in a bore in the differential case, is at right angles to the axle shafts and turns with the case (3).The differential pinion (drive) gears are mounted on the pinion shaft and rotate with the shaft (4). Differential side gears (driven gears) are meshed with the pinion gears and turn with the differential housing and ring gear as a unit (5).The side gears are splined to the inner ends of the axle shafts and rotate the shafts as the housing turns (6).When both wheels have equal traction, the pinion gears do not rotate on the pinion shaft, since the input force of the pinion gears is divided equally between the two side gears (7).When it is necessary to turn a corner, the differential gearing becomes effective and allows theaxle shafts to rotate at different speeds (8).As the inner wheel slows down, the side gear splined to the inner wheel axle shaft also slows. The pinion gears act as balancing levers by maintaining equal tooth loads to both gears, while allowing unequal speeds of rotation at the axle shafts. If the vehicle speed remains constant, and the inner wheel slows down to 90 percent of vehicle speed, the outer wheel will speed up to 110 percent. However, because this system is known as an open differential, if one wheel should become stuck (as in mud or snow), all of the engine power can be transferred to only one wheel. Figure 12Overview of differential gear operating principles.Limited-slip and locking differential operationLimited-slip and locking differentials provide the driving force to the wheel with the best traction before the other wheel begins to spin. This is accomplished through clutch plates, cones or locking pawls.The clutch plates or cones are located between the side gears and the inner walls of the differential case. When they are squeezed together through spring tension and outward force from the side gears, three reactions occur. Resistance on the side gears causes more torque to be exerted on the clutch packs or clutch cones. Rapid one wheel spin cannot occur, because the side gear is forced to turn at the same speed as the case. So most importantly, with the side gear and the differential case turning at the same speed, the other wheel is forced to rotate in the same direction and at the same speed as the differential case. Thus, driving force is applied to the wheel with the better traction.Locking differentials work nearly the same as the clutch and cone type of limited slip, except that when tire speed differential occurs, the unit will physically lock both axles together and spin them as if they were a solid shaft.Figure 13Limited-slip differentials transmit power through the clutches or cones to drive the wheel having the best traction.Identifying a limited-slip drive axleMetal tags are normally attached to the axle assembly at the filler plug or to a bolt on the cover. During the life of the vehicle, these tags can become lost and other means must be used to identify the drive axle.To determine whether a vehicle has a limited-slip or a conventional drive axle by tire movement, raise the rear wheels off the ground. Place the transmission in PARK (automatic) or LOW (manual), and attempt to turn a drive wheel by hand. If the drive axle is a limited-slip type, it will be very difficult (or impossible) to turn the wheel. If the drive axle is the conventional (open) type, the wheel will turn easily, and the opposing wheel will rotate in the reverse direction.Place the transmission in neutral and again rotate a rear wheel. If the axle is a limited-slip type, the opposite wheel will rotate in the same direction. If the axle is a conventional type, the opposite wheel will rotate in the opposite direction, if it rotates at all.Gear ratioThe drive axle of a vehicle is said to have a certain axle ratio. This number (usually a whole number and a decimal fraction) is actually a comparison of the number of gear teeth on the ring gear and the pinion gear. For example, a 4.11 rear means that theoretically, there are 4.11 teeth on the ring gear for each tooth on the pinion gear or, put another way, the driveshaft must turn 4.11 times to turn the wheels once. Actually, with a 4.11 ratio, there might be 37 teeth on the ring gear and 9 teeth on the pinion gear. By dividing the number of teeth on the pinion gear into the number of teeth on the ring gear, the numerical axle ratio (4.11) is obtained. This also provides a good method of ascertaining exactly which axle ratio one is dealing with.Another method of determining gear ratio is to jack up and support the vehicle so that both drive wheels are off the ground. Make a chalk mark on the drive wheel and the driveshaft. Put the transmission in neutral. Turn the wheel one complete turn and count the number of turns that the driveshaft/halfshaft makes. The number of turns that the driveshaft makes in one complete revolution of the drive wheel approximates the axle ratio.Figure 14The numerical ratio of the drive axle is the number of the teeth on the ring gear divided by the number of the teeth on the pinion gear.译文:驱动桥/差速器所有的车辆有一些类型的驱动桥/差速器总成包含在传动系统中。

驱动桥设计外文翻译

驱动桥设计外文翻译

Car drive axle design1 IntroductionThe structure form of the main reducer is based on the type of the gear and the way of the active gear and the driven gear.2 drive axleDrive axle in the tail end of the power transmission system, its basic function is to increase the torque came by the drive shaft or transmission, the reasonable distribution of power to the left and right driving wheels, and also bear role of road and the frame or body between vertical and longitudinal force and lateral force. The drive axle is composed of a main reducer, a differential, a wheel drive device and a drive axle housing.Reducer is the original motivation and independent of the working machine between the closed transmission, used to reduce speed and increase torque to meet the needs of a variety of working machinery. According to transmission form can be divided into three different for the gear reducer, worm reducer and planetary reducer; in accordance with the transmission of the series can be divided into single and multistage speed reducer; according to transmission layout situation can be divided for expansion, shunt type and coaxial type reducer. Gear reducer transmission efficiency and high reliability, long service life, maintenance is simple, and therefore the scope of application is very wide.2.1 main reducerThe main reducer gear has the spiral bevel gear type, the type of the double curved surface gear type, the type of the cylindrical gear and the worm gear and so on. At present, the main reducer gear of the automobile drive axle adopts spiral bevel gear. When the load is high, the work is stable, the noise is small, and the contact load on the tooth surface is low. So the use of single bevel gears.2.1.2 main reducer drive, driven bevel gear support formThe car driving axle design, so the use of cantilever installation. The using of the cantilever installation, ensure that the gear stiffness, active gear shaft neck should be increased, so that the distance between the two bearings than the distance of the cantilever high at least 2.5 times.3 the differential designCar in the exercise of the security, about two wheels at the same time the roll over the journey is often not equal, around two in the pressure is not equal, and the tread wear uneven, two wheel load is uneven and cause the wheel rolling radius does not match; the wheels touch the pavement conditions about different, exercises the resistance range, on the one hand will increase tire wear, power and fuel consumption, on the other hand will divert too difficult, through and handling stability is bad. Therefore, the left and right wheels of the drive axle are provided with a wheel differential mechanism.Differential is a differential transmission mechanism, used in the two output shaft torque distribution, and ensure two output shaft may rotate at different angular velocities, to ensure the driving wheels in various kinds of sports under the condition of power transmission, to avoid slipping between the tire and the ground. Differential according to its structural characteristics can be divided into gear type, convex wheel, worm wheel type and teeth embedded in a variety of forms, such as free wheel.4 half shaft For semi axis diameternot less than the diameter of the rod, the end part of the processing done slightly thicker, and appropriate to reduce spending less of the keyway depth, the tooth number must be a corresponding increase in, usually take 10 teeth (car half axle) to 18 teeth (truck half axle). The failure mode of the half shaft is basically too fatigue failure. The rod part of the axle shaft of the heavy duty truck is thicker, the outer end flange is relatively large, and the two ends of the shaft can be used as the half shaft structure with connection when no larger forging equipment is adopted, and the process is simplified by taking the same parameters. In the modern automobile half shaft, theis used quite widely, but also has the structure form of the rectangle or the trapezoidal .Shaft is one of the main parts of the machine, and all of the transmission parts of rotary motion must be installed on the axis to carry out the movement and power transmission. So the main function of the shaft is to support the rotating parts and the transmission of motion and power. According to the different load bearing, the shaft can be divided into shaft, mandrel and shaft of the third class, the relay under bending moment and bearing torque becomes the shaft. This type of shaft in the machine in the most common, only to withstand the bending moment and does not bear the torque a mandrel, the mandrel is divided into rotation and fixed mandrel mandrel two. Shaft which is only subjected to torque and does not bear the bending moment becomes the drive shaft.5 the bridge shell and the bridge shell accessories designThe main function of the drive axle housing is to support the quality of the vehicle, and is affected by the road surface reaction force and torque transmitted by the wheel, and the suspension is passed to the body. The drive shaft shell is a force transmitting member and the carrier, so the axle housing should meet the following requirements:1) with sufficient strength and stiffness, to ensure that the reducer gear mesh is normal anddoes not cause additional bending stress.2) under the premise of ensuring sufficient rigidity, as far as possible to reduce the car to improve the ride comfort.3) to ensure sufficient ground clearance.4) the structure craft is good, the cost is low.The bridge shell is a cross beam, the pivot point is located in the center of the tire, the load function in the steel plate spring seat, the average truck is used to improve the overall carrying capacity of the truck, the distance between the pivot point of the twin shaft is calculated according to the distance between the two.The maximum stress of the drive axle housing occurs near the steel plate spring. The force that causes the bending moment of the bridge shell is: the carrying capacity of the vertical load G2, the traction force F and its reaction torque M. And car shift when the tire lateral force Y2 external force in the drive axle housing, in order to simplify the calculation, just never sideslip BRDF is moving in a straight line calculated, and in terms of safety coefficient due consideration.The bending stress of the malleable cast iron bridge should not exceed 300m^2. The bending stress should not exceed 500m2 on the half shaft bushing and wheel axle of medium carbon alloy steel, and the shear stress should not exceed 250N/mm^2.Combines the actual situation of the vehicle, considering the overall expansion forming welding axle, so the material to consider ductility . We choose 16Mn.6 summaryThrough this design, it is now to design a product, only to feel that their knowledge is far from enough. There is a saying: it is never too late to learn. That's a bit of a point! Is my teacher, all my knowledge to learn!Through this design, the ability to check the manual has been greatly improved. Now, through the guidance of teachers, through their own practice, you can now go to the library to check the information, but also to look at what aspects of the information, the psychological is very clear, not so much as before.In other areas also have a lot of harvest, this graduation design makes me develop a meticulous work method. Before doing homework always give a lick and a promise, didn't have a bit of patience, sitting in the stool is not an under the heart, always with a fickle attitude to treat their own thing, now, I can very calm, very serious has been able to carry on. This may be to do the course design for me to leave things, this will be of great benefit to me later in the community.All in all, this design has made me a lot! thank you!轿车驱动桥设计1引言驱动桥处于动力传动系尾端,其基本功能是增加由传动轴或变速器传来的转矩,将动力合理分配给左、右驱动轮,且还承受作用路面和车架或车身之间的垂立、纵向力和横力。

外文翻译---驱动桥的设计

外文翻译---驱动桥的设计

附录Drive axle powertrain at the end of their basic function is to increase the transmission came from the drive shaft or torque, and a reasonable distribution of power to the left and right wheel, in addition to acting on the road and under the frame or body legislation between the vertical, longitudinal and lateral force. General from the main drive axle reducer, differential, gear wheels and drive axle housings and other components.The design of the Drive axle:Drive axle should be designed to meet the basic requirements are as follows:1. Select the main reduction ratio should be able to ensure the car has the best power and fuel economy.2. Smaller size, to ensure that the necessary ground clearance.3. Gear and other pieces of the work of a smooth transmission,and small noise.4. In a variety of speed and load with a high transmission efficiency.5. In ensuring adequate strength and stiffness conditions, should strive for the quality of small, especially under the mass-spring should be as small as possible in order to improve vehicle ride comfort.6. And suspension movement-oriented coordination of steering drive axle, but also with the coordination of steering movement.7. The structure of simple, good processing, manufacturing, easy disassembly, to facilitate adjustment.Drive axle classificationAt non-drive axle disconnect disconnect-style-type with two broad categories.1. Non-disconnect-type drive axleNon-disconnect-type drive axle also known as integrated drive axle, the axle casing and the main shaft reducer with shell shell and connected to a rigid beam, which on both sides of the axle and wheel related to swing through the flexible connected with the frame components. It consists of drive axle housing 1, the main reducer, differential and axle components.2. disconnect-type drive axle.Drive the use of independent suspension bridge, that is the main reducer shell fixedon the vehicle chassis, on both sides of the axle and wheel in the horizontal plane as opposed to relative movement of the body is referred to as drive off the bridge.In order to match with independent suspension, the main reducer shell fixed at the frame (or body), the drive axle housing sub connected through the hinge, or in addition to the main reducer shell outside the shell is no longer driven to other parts of the bridge. Wheel in order to meet the needs of independent jump up and down, between the differential and the wheel axle of the above connection between the use of universal joints.Drive axle componentsDriven mainly by the main bridge reducer, differential, axle and drive axle housings and other components.1. Main reducer assemblyUsed to change the main drive reducer general direction, to reduce speed and increase torque, and ensure there is sufficient car drivers and the appropriate speed skin. More types of the main reducer, a single-stage, dual-class, two-speed, such as Wheel Speed Reducer.1) single-stage main reducerReduction gear by a slowdown in the realization of the devices, called single-stage reducer. Its structure is simple, light weight, such as Dongfeng BQl090 type light and medium-sized trucks on a wide range of applications.2) two-stage main reducerLarger number of heavy-duty trucks, require a larger reduction ratio, the main use of a single-stage reducer drive, moving from gear to be larger in diameter will affect the drive axle of the ground clearance, so the use of two slowdown. Often referred to as two-stage reducer. There are two sets of two-stage reduction gear reducer, speed the realization of the two by twisting.In order to enhance the meshing gear pair taper and strength of a smooth, slow down the first-class pair of spiral bevel gear is. Gears 2 is inclined gear teeth due to prop.Take the initiative to rotate bevel gear, gear driven rotary driven round silver, thus completing a slowdown. Active second stage cylindrical gear reducer and the driven bevel gear coaxial with the rotation, and drive gear driven rotating cylinder, a second-class speed. Due to the driven gear mounted on the cylindrical shell on thedifferential, so that when the driven gear rotating cylinder, through the differential and drive axle that is, the rotation of the wheels.2. DifferentialDifferential is designed to connect the axle around, on both sides of the wheels can rotate at different angular torque transfer at the same time. To ensure the normal scroll wheel. Some multi-bridge-driven cars, in the sub-actuator type or in the transmission through the shaft is also equipped with a differential, known as the bridge between the differential. Its role is to turn in the car or on uneven road surface, so that drive wheels before and after the differential between the role.At present, China-made cars and other types of vehicles in the basic use of symmetric ordinary differential bevel gear. Symmetric by the planetary bevel gear differential gear, axle gears, planetary gear axis (cross-axis or a direct-axis) and the differential composition of the shell and so on.At present the majority of planetary gear-type motor vehicles using differential and ordinary differential bevel gear cone by two or four planet gears, planetary gear shaft, the two cone axle differential gear, and about the composition of the shell and so on.3.Auto semi-axleAxle is the differential torque and then came to the wheels, drive wheels spin, promote the solid axle car. As a result of the installation of wheel structure, and the forces of the axle are also different. Therefore, divided into full-floating axle, semi-floating, 3 / 4, three types of floating.1) full-floating axleGenerally large and medium-sized used car floating the whole structure. Axle with the inner end of the spline axle with the differential gear connected to the outer end of the axle forging a flange with bolts and wheel hub to connect. Wheel away from the more distant of two tapered roller bearings for the text on the axle casing. Rear axle shell casing pressure and one pair to form the drive axle housing. Supporting the use of such forms, axle and axle housing no direct link so that only bear the drive axle torque without bearing any moment, the axle referred to as "full-floating" axle. The so-called "floating", meaning not subject to bending load axle.Full-floating axle, the outer end flange plate for one made with the axis. But there are also a number of trucks to make a separate flange parts, and by nested spline outer end in the axle. Thus, at both ends of the axle spline, you can use for the first.2) semi-floating axleSemi-floating axle with the inner end of the same floating, not subject to bending and torsion. Away from direct client support through a bearing in the axle of the inner shell. This approach will support the outer end axle bearing moment. Therefore, this short-sleeve in addition to transfer torque, but also to sustain the local moment, it is known as the semi-floating axle. This structure is mainly used in small passenger cars. License Hongqi CA7560 icon for the type of drive axle limousine. Axle from the inner end of its moment, out client has to bear all the moment, so called semi-floating bearing.3) 3 / 4 floating axle3 /4 floating axle is affected by the degree of bending between the short semi-floating and full floating between. At present the application of this type halfshaft few pickup truck only on individual applications such as Warsaw, M20 vehicles.4. Automobile axle housing:1) the overall shell-style bridgeBridge shell due to the overall strength and stiffness performance, ease of main reducer installation, adjustment and maintenance, and are widely used. Integral axle housing due to different manufacturing methods can be divided into the overall foundry type, pressed into the middle of casting steel pipe and welded steel plate, such as stamping.2) sub-type drive axle housingSub-type axle housing will generally be divided into two sections, from two sections of a connecting bolt. Sub-type axle housing casting and processing easier.驱动桥处于动力传动系的末端,其基本功能是增大由传动轴或变速器传来的转矩,并将动力合理的分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直立、纵向力和横向力。

汽车驱动桥外文文献翻译、中英文翻译、外文翻译

汽车驱动桥外文文献翻译、中英文翻译、外文翻译

汽车驱动桥外文文献翻译、中英文翻译、外文翻译Drive AxleIn any vehicle。

there is always a drive ___ of whether it's a front。

rear。

or four-wheel drive。

differentials are crucial for the smooth n of engine power to the road.The drive axle must be able to transmit power through a 90-___ front-engine/rear-wheel drive vehicles。

the flow of power moves from the engine to the drive axle in a ___。

at the drive axle。

the power must be turned at a right angle (from the line of the driveshaft) and directed to the drive wheels.To do this。

a n drive gear is used to turn a ___ to the inner end of each axleshaft。

As the housing rotates。

the internal differential gears turn the axle shafts。

which are also attached to the drive wheels.二、中文翻译驱动桥所有车辆都有一种驱动桥/差速器组件集成到传动线中。

无论是前驱、后驱还是四驱,差动器都是平稳将发动机动力传递到路面上的必要条件。

驱动桥必须能够通过90度角传递动力。

在传统的前置发动机/后驱车辆中,动力流从发动机到驱动桥的方向是近似直线的。

中英文文献翻译—驱动桥相关介绍

中英文文献翻译—驱动桥相关介绍

附录附录ADriver introductions Bridge1. Features:Drive Bridge at the end of powertrain, and the basic function of which is to increase came from the drive shaft or transmission of torque, and a reasonable distribution of power to the left and right driving wheel, and also bear in the role of the frame or the road and Legislative body between the vertical, horizontal and vertical of power. Driven by the general bridge reducer, differential, wheels, transmission and drive axle housings and other components.2. The bridge design driver:(1) Drive bridge design should meet the following basic requirements:(1). Choice of the reduction ratio should be able to guarantee that vehicles have the power and the best fuel economy.(2). Dimensions small to ensure that the necessary ground clearance.(3). Transmission gears and other pieces of work stable and noise.(4). Under various load and speed with high transmission efficiency.(5). Guarantee sufficient strength, rigidity conditions, should strive for quality small, particularly unsprung mass should be as small as possible to improve vehicle ride comfort.(6). Oriented suspension and coordination of movement, to the drive axle, and the steering mechanism should be coordinated with campaigns.(7). Simple structure, and processing of, and easy to manufacture, enables easy adjustment.3. Drive Bridge Category3.1 non-driving axle-disconnectDisconnect-general non-driving axle, simple structure, low cost, reliable, widely used in a variety of truck, bus and the bus, in the majority of off-road vehicles and some cars also adopt this structure. Their specific structure, in particular the shell structure while the bridge is not the same, but there is one common characteristic is that Shell is a bridge support in the drive wheel about the rigid hollow beam, and the half-axle gear transmission components, such as installation of one of them. Then the whole drive axle, drive shaft driven wheel and some are in unsprung mass, larger vehicles unsprung mass, which is one of its shortcomings.Drive Axle size depends primarily on the outline of the main types reducer. In the tire size and drive underneath the minimum ground clearance has been determined by circumstances, it defines the diameter of the driven gear reducer size. Ratio of a given condition, if the single-stage reducer can not meet the requirements of ground clearance, with the dual-class structure. In the two-stage reducer, the two usually on a main gear reducer shell reducer, can also slow gear as a second-class round-reducer. The round-reducer: In order to improve cross-country motor vehicle ground clearance, can be a spur gear consisting of round-gear reducer initiatives under its follower of the vertical top gear; buses to reduce vehicle height and the center of mass of train floors height, so as to enhance stability and the convenience of the passengers get on and off, can be round-gear reducer initiatives under its vertical driven gear beneath some double-decker bus in order to further reduce the compartment floor height in a round-Gear reducer At the same time, the main reducer and differential assembly also moved to the driver's side wheel.In a few large-scale high-speed bus engine, multi-bridge drive vehicle and ultra-heavy laden car, and sometimes used for the worm reducer, it not only has the quality of small, compact size of circumstances can be large and transmission ratio Smoothing the merits of silent work, and the overall layout of the car is very convenient.3.2-drive axle disconnectDisconnect-drive axle different from the non-driving axle-disconnect the obvious characteristics of a connection is that the former does not drive the wheels about the rigidity of the overall casing or beam. Disconnect drive bridge is the bridge sub-shell, and can be done between the relative motion, such as off-the bridge. In addition, it always match with independent suspension, it is also known as the independent suspension bridge driver. The middle of this bridge, the main reducer and differential, are mounting in the frame beamsinside or on the floor, or backbone of the frame. Lord reducer, and the driveshaft and differential wheel drive part of the quality of transmission quality on all spring. As both sides of the drive wheel independent suspension can be used to the site relative to each other frame for the upper and lower compartments or swing, with a corresponding demand on the drive wheel and the gear casing or casing for the corresponding swing.The hoisting of the type of vehicle assembly and elastic damping device components and characteristics of the work is to determine vehicle ride comfort of the main factors, and the quality of auto parts spring the size of their ride also have a marked impact. Disconnect-drive axle unsprung mass smaller, independent suspension with the match, which drive the wheels of contact with the ground and on all-terrain better adaptability, which can greatly reduce car running on uneven road vibration and the tilt train, travelling to the vehicle's ride and the average driving speed, reducing the wheels and axles on the dynamic load and parts, increasing its reliability and service life. However, due to disconnect the drive Bridge and the independent suspension with the match of the complex structure, this structure is mainly seen on the ride comfort of the higher part of sedans and some off-road vehicle, and the latter more than a light following riders Bridge drive vehicles or heavy-duty off-road vehicle.3.3 Bridge over drive layoutIn order to improve loading and adoption of some medium - and heavy-duty vehicles and all over the use of off-road vehicles are driven more bridge, and often used 4,6 × 4 × 8 × such as 6,8-driven type. Multi-Bridge driver in the circumstances, the driving force at the drive actuator pass in the way the two bridges. The two corresponding power transmission, the Multi-Bridge drive vehicle driving axle layout patterns into non-hollow and hollow. The former in order to force the pass at the drive actuator bridge to the actuator from the drive axle by its own dedicated power transmission drive shaft, not only to increase the number of drive shaft, and the cause of the drive axle Bridge parts in particular Shell, and other major parts Semiaxle not universal. On the 8 × 8 vehicle, this non-drive-through bridge is even more inappropriate, but also a difficult layout.In order to solve the above problems, modern bridges are used in cars driven through the drive axle-type layout.In the drive-through layout of the bridge, the bridge driveshaft layout in the same vertical longitudinal plane, and were not the driving axle drive shaft and use their own sub-actuator directly connected, but in front of the actuator or the back of the two adjacent bridge driveshaft is the tandem arrangement. The two ends of the car after driving axle impetus by the actuator and transmission through the middle of the bridge. The advantage is not only reduce the number of drive shaft, but also increase the driving axle parts of the mutual general, and to simplify the structure, reducing the size and quality. This vehicle design (such as car variant), manufacturing and maintenance, convenient4. Drive axle componentsDriven mainly by the main bridge reducer, differential, half-axle and drive axle housings and other components.1. Lord reducerReducer to change the general direction of transmission, reduce speed and increase torque to ensure that there are sufficient vehicles and the driving force of the appropriate speed Paper. Reducer more main types, single-stage, two-stage, two-speed, such as round-reducer.(1) single-stage main reducerBy achieving a gear reducer deceleration devices, known as a single-stage reducer. Its structure is simple, light weight, Dongfeng BQl090 type light, widely used on medium-duty truck.( 2) Two-stage main reducerSome of the larger truck load for a slowdown than larger, single-level main reducer drive, moving from the diameter of gear must be increased, it will affect the drive axle ground clearance, a two-reducer . Often referred to as the two-stage reducer. There are two double-reducing gear reducer, to the two-twisting by deceleration.To enhance the meshing of gears cone smooth and strength, the first vice-gear reducer is spiral bevel gears. Two helical gear is the result of Vice gear.Active bevel gear rotation, led a round-driven rotary gear, thus completing a slowdown. Second-class deceleration initiative Gear Driven and bevel gear and a rotating coaxial, and driven gear driven rotary cylinder, a second-class deceleration. Driven by cylindrical gear installed in the differential case, therefore, when the follower cylinder gear rotates, and through the half axle differential rotation that drive the wheels. 2. DifferentialAbout half axle differential to connect, to enable both sides of the wheels at different angular velocity of rotation torque transmission. Guarantee the normal wheels rolling. Some bridges-driven cars, in the actuator or in the hollow shaft of the transmission are available differential, known as bridge between differential. Its role in the automotive turn or uneven traffic on the road, before and after the drive wheel differential between role.At present domestic cars and other types of vehicles in the basic use of the symmetrical cone ordinary differential gear. Symmetric bevel gear from the planetary gear differential, half axle gear, planetary gear shaft (axle or a direct cross-axis) and differential shell components.Most car-use planetary gear differential, ordinary differential bevel gear cone by two or four planetary gears, gear shaft, the two conical about half axle differential gear and shell components.3. SemiaxleSemi-axle differential is the torque came to pass wheels, rotating wheel drive, and promote car travelling solid shaft. Since the installation of wheels different structures, and the force Semiaxle also different. Therefore, Semiaxle divided into floating, semi-floating, 3 / 4 floating three types.(1) Full-floating SemiaxleGenerally large and medium-sized cars are used all floating structures. Semiaxle end of the spline and with the half-axle differential gear connected to the outer end Semiaxle forging a flange, with bolts and wheels connected. Wheel through two further away from the text of Tapered Roller Bearings for the half axle casing. Semiaxle bridge shell casing pressure and after one match, composition drive axle housings. Supporting the use of such forms, and the bridge shell Semiaxle not directly linked to Semiaxle driving torque not only bear to bear any moment, such Semiaxle called the "floating" half axle. The so-called "floating" that is not half axle bending load.Floating Semiaxle all, the end-to-flange and shaft into one. But there are also some truck into separate parts of the flange, and a set of keys to spend half axle, in the end. As a result, the two ends are Semiaxle spline can be used for the first.(2) semi-floating SemiaxleSemi-axle semi-floating with all of the floating-the same does not bear bending and torsion. Aloof-supported through a direct bearing on the inside half axle casing. Supportingthis approach will bear moment Semiaxle outer end. Therefore, in addition to this Banxiu torque transmission, but also to sustain local moment, the semi-called floating Semiaxle. This structure type mainly used for small buses.(3), 3 / 4 floating Semiaxle3 /4 floating Semiaxle is subject to the degree of bending short range semi-floating and the entire floating between. Application of this type currently Semiaxle little Xiaowoche only on the individual applications, such as Warsaw M20 car.附录B驱动桥相关介绍一.功能:驱动桥处于动力传动系的末端,其基本功能是增大由传动轴或变速器传来的转矩,并将动力合理的分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直立、纵向力和横向力。

重型商用车驱动桥设计翻译

重型商用车驱动桥设计翻译

华南理工大学广州汽车学院本科生毕业设计(论文)翻译英文原文名DRIVE AXLE ASSEMBLIES中文译名驱动桥系别汽车工程系专业班级车辆工程学生姓名陈威指导教师上官文斌填表日期2011-5-19二〇一一年五月英文原文版出处:Dirk Spindler Georg von Petery INA-Schaeffler KG. Angular Contact Ball Bearings for a Rear Axle Differential.SAE ,2003译文成绩:指导教师(导师组)签名:译文:驱动桥在学习本章之后,你将了解不同类型驱动桥的组成,并能列举不同种类的驱动桥;比较后桥与前桥的不同之处;描述驱动桥的工作原理。

驱动桥有很多重要作用。

它可以使车轮回正,控制车轮滚动,可以使其中一个车轮的转速比另外一个车轮快,两个车轮均可获得转矩。

驱动桥可以获得来自于车轮的反作用力,通过弹簧,操纵杆等将作用力传到车架上。

驱动桥在车轮制动器被安装的基础上通过弹簧来固定,并获得簧上质量。

很显然,驱动桥需要使用高质量的材料来制作。

结构后桥的几个基本组成部分:桥壳,半轴,差速器。

桥壳桥壳通常是由钢板模压件焊接在一起而制成的。

桥壳的中心部分是由铸钢制成的。

有两种类型的桥壳常被使用:整体式桥壳(应用广泛)和分段式桥壳(应用较少)是由两个或者更多的部分组成。

车桥两个车桥在桥壳的内部,它们在内部相接触,在某些位置它们是不接触的。

外部的凸出端附在车轮和轮毂上。

内部端被花键固定在差速器上,外端被滚子轴承所固定。

连接轮两种方法被应用于驱动桥的轮毂上。

一种方法是在驱动桥一端用拔销来固定,另一端通过凸缘固定。

半轴的类型半轴有三种基本的类型,全浮式, 3/4浮式和半浮式。

大多是汽车采用半浮式,大部分货车采用全浮式半轴支承。

如果半轴折断,车轮将停止转动。

驱动桥汽车转弯时的工况与普通行驶时的不同,必须使用一个叫做差速器的单元使两个半轴都获得动力,让左右驱动车轮的行驶速度不同。

驱动桥设计_概述_方案分析yj

驱动桥设计_概述_方案分析yj

第二节 驱动桥的结构方案分析(Analysis of the drive axle structure)
▪驱动桥的结构形式与驱动车轮的悬架形式密切相关
▪(Drive axle structure is closely related with the suspension of the driving wheel):
第五章 驱动桥设计(Design of the drive axle)
驱动桥的组成和功用(The composition and function of the drive axle)
组成(Composition):
主减速器(Final drive)
差速器(Differential)
半轴(Axle shaft)
驱动桥壳(Drive axle housing)
功用(Function):
( 1 ห้องสมุดไป่ตู้ 降 速 增 矩 (Deceleration and torque
increased);
( 2 ) 改 变 转 矩 方 向 (Change the torque direction);
(3)实现差速作用(Realized diff speed);
• 当车轮采用非独立悬架时,驱动桥应为非断开式(或称为整体式)
具有桥壳的非断开式驱动桥结构简单、制造工艺性好、成本低、工作 可靠、维修调整容易,广泛应用于各种商用车和部分乘用车上。但整个驱 动桥均属于簧下质量,对汽车平顺性和降低动载荷不利。
当采用独立悬架时.应选用断开式驱动桥(When independent suspension is applied, a divided axle should be chose)
断开式驱动桥无刚性的整体外壳或梁,主减速器及其壳体装在车架或车身上, 两侧驱动车轮则与车架或车身作弹性联系,并可彼此独立地分别相对于车架成车 身作上下摆动,车轮传动装置采用万向节传动。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

驱动桥设计外文翻译驱动桥设计随着汽车对安全、节能、环保的不断重视,汽车后桥作为整车的一个关键部件,其产品的质量对整车的安全使用及整车性能的影响是非常大的,因而对汽车后桥进行有效的优化设计计算是非常必要的。

驱动桥处于动力传动系的末端,其基本功能是增大由传动轴或变速器传来的转矩,并将动力合理地分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直力力和横向力。

驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。

驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能,而对于载重汽车显得尤为重要。

驱动桥设计应当满足如下基本要求:1、符合现代汽车设计的一般理论。

2、外形尺寸要小,保证有必要的离地间隙。

3、合适的主减速比,以保证汽车的动力性和燃料经济性。

4、在各种转速和载荷下具有高的传动效率。

5、在保证足够的强度、刚度条件下,力求质量小,结构简单,加工工艺性好,制造容易,拆装,调整方便。

6、与悬架导向机构运动协调,对于转向驱动桥,还应与转向机构运动协调。

智能电子技术在汽车上得以推广使得汽车在安全行驶和其它功能更上一层楼。

通过各种传感器实现自动驾驶。

除些之外智能汽车装备有多种传感器能充分感知交通设施及环境的信息并能随时判断车辆及驾驶员是否处于危险之中,具备自主寻路、导航、避撞、不停车收费等功能。

有效提高运输过程中的安全,减少驾驶员的操纵疲劳度,提高乘客的舒适度。

当然蓄电池是电动汽车的关键,电动汽车用的蓄电池主要有:铅酸蓄电池、镍镉蓄电池、钠硫蓄电池、钠硫蓄电池、锂电池、锌—空气电池、飞轮电池、燃料电池和太阳能电池等。

在诸多种电池中,燃料电池是迄今为止最有希望解决汽车能源短缺问题的动力源。

燃料电池具有高效无污染的特性,不同于其他蓄电池,其不需要充电,只要外部不断地供给燃料,就能连续稳定地发电。

燃料电池汽车(FCEV)具有可与内燃机汽车媲美的动力性能,在排放、燃油经济性方面明显优于内燃机车辆。

这项发明通常涉及到多能源动力总成的车辆,以及,尤其是多能源动力总成,有多个电源包括电动马达来驱动的汽车轮子。

混合动力电动动力系统已经被发展成为包括电机(IC)做内燃机引擎,自主经营的或者联合根据行驶条件下,国家费用的牵引电池,与电源,最有效地满足当前所产生的电力需求车辆操作。

大部分电子混合动力汽车可以在市场上买到是前轮驱动车辆,只不过前轮带动起来的。

混合动力电动动力系统被开发用于四轮驱动车,允许两个电机和引擎传送权力后方的驱动轮。

当包装电动马达驱动后桥机组是较好的使用躺轴功率流,马达驱动单元被放在后桥中心线。

这样的电的混合动力系统,然而,现在的包装设计很困难,特别是当副轴车辆传动是用来传输动力,纵向驱动轴后轴。

需要混合动力电动存在的动力,在其中轴是靠电动机驱动的或的内燃机结合电机。

以减少成本,电动机器将提供所有混合功能,包括电气能源的产生、电动汽车、电子发动机启动投放提高发动机的功率,再生式制动。

一个驱动器单位是混合动力电动汽车包括市场,发动机,电动机器包括转子,副轴,齿轮组包括一个输入可驱动的连接到发动机和输出,用来传送之间权限投入与产出和生产第一速度微分导致一个录入速度超过每小时的速度输出,第一和第二驾车轴差动机构可驱动的连接到输出线时,因为传输功率和输出之间驾车轴,可驱动的行星齿轮装置连接到输出和转子,说之间权限传输转子和输出线,制作了第二速度微分导致转子速度超过速度输出。

转矩反应为减速的行星齿轮传动提供关于住房通过鼓轴或孔中,而不是通过一个外径住房,从而简化轴承支撑要求和允许紧凑的定位的机械传动的元素。

使用的行星齿轮传动将车速元素的电机驱动电只准许路径的尺寸缩小包装驱动单元所需的空间。

标准的适用范围就变得更加明显的优选从以下的详细描述,索赔和图纸。

要理解,的描述和明确的例子,虽然指示优先考虑的重要体现,给出了发明的说明而已。

各种各样的变化、修改描述和例子仍变得明显体现技术领域的人。

另外,设计必须得考虑所选择材料的可加工性能。

一种材料的可机加工性通常以四种因素的方式定义:、分的表面光洁性和表面完整性。

12、刀具的寿命。

3、切削力和功率的需求。

4、切屑控制。

以这种方式,好的可机加工性指的是好的表面光洁性和完整性,长的刀具寿命,低的切削力和功率需求。

关于切屑控制,细长的卷曲切屑,如果没有被切割成小片,以在切屑区变的混乱,缠在一起的方式能够严重的介入剪切工序。

因为剪切工序的复杂属性,所以很难建立定量地释义材料的可机加工性的关系。

在制造厂里,刀具寿命和表面粗糙度通常被认为是可机加工性中最重要的因素。

尽管已不再大量的被使用,近乎准确的机加工率在以下的例子中能够被看到。

通常,零件的可机加工性能是根据以下因素来定义的:表面粗糙度,刀具的寿命,切削力和功率的需求以及切屑的控制。

材料的可机加工性能不仅取决于起内在特性和微观结构,而且也依赖于工艺参数的适当选择与控制。

拖臂悬架结合起来的一种行为,semi-trailing-arm落后表现出轴。

它是用来驱动的汽车前面。

如果轴经验,它就像一卷悬垂态的手臂。

扭转刚度的摩天大楼,这活象一个例如在球场的汽车)轴stabiliser酒吧。

如果两个轮子的旅行经历相同的悬架(表现得像个拖臂悬架。

梁式轴(Four-Link-Style)前面的一辆汽车后轴,不必有相同的高度为他们的卷中心。

辊轴轴线上,这是经过辊子的中心——和后轴,看到前面的图。

辊轴如果一个横向力的重心,导致层(fom)上面的重心轴的卷必须补偿片刻所致。

由于一些弹簧悬辊。

这一刻之间分配方面和后桥有赖于相对弹簧刚度的前面,与后轴,整体侧倾角(这是一样的,和后轴)取决于总和的悬架刚度(前加上后方)。

传送到地面的瞬间,没有任何卷的整体车辆通过应用侧向力轴向前滚动的位置(在CG)。

(注:如果滚动的轴,剩下的扭矩,CG必须补偿汽悬泉会像一辆摩托车内倾斜。

这一幕的分布与后轴会,计算了分别计算各轴的位置,by-using相应的axle-using卷中心的一部分的事实,轮轴横向力所承受的一部分,与正常负荷、轮轴必须随身携带不同的例子一个有限的特点,防滑差速器有点不同,不同的风格,一个自锁装置。

这个Torsen?风格差异;(从扭矩遥感)行为非常快(并可能严厉的)。

在较低的输入扭矩的差动齿轮只是轻轻负载和移动,自由敞开的装置。

随着力矩和速度起落架网格,大米和两个输出轴锁在一起。

扭矩比(high-torque-wheel除以low-torque-wheel)不等,2.5:1 max。

7:1,Torsen II的风格,从3:1来1.8:1(根据齿轮,齿轮表面处理的角度,类型的滚子轴承(平原,…) 达纳Trac-Loc?limited-slip差的(见图)包含一些预紧通过弹簧离合器片、贝尔维尔)提供了一定的静态启动扭矩已经在零输入扭矩。

蜘蛛齿轮,齿轮啮合侧设计那样(楔形齿),增加输入扭矩将增加的负担,提高离合器盘的锁轴。

独立的粘性微分锁的扭矩,但反应速度与输出轴之间的差异。

包括离合器片没有机械接触,但是很紧的间隙,使粘滞摩擦提供扭矩的转让。

注意,粘稠的差距在很光滑,有一定的时间延迟,作为粘度增加与所产生的热量(指的是特殊的液体是合宜的齿厚)。

这使得操作容易使用汽车(虽然可以街是太慢了有些应用)。

Design of driving axleAs the car to safety, energy saving, the constant attention to environmental protection, vehicle after vehicle bridge as a key component, the quality of their products on the safe use of cars and car performance of a very large, so the car after Bridge Effectively optimize the design and calculation is very necessary. Drive Bridge at the end of powertrain, its basic function is to increase came from the drive shaft or transmission of torque and power reasonably allocated to the left and right driving wheel and also bear in the role of the road and trailers or Body of power between the vertical and horizontal force. Drive from the main bridge general reducer, differential and the wheels, transmission and drive axle components, such as Shell. Bridge drive a vehicle with one of the four trains, its performance will have a direct impact on vehicle performance, and it is particularly important for the truck. Drive bridge should be designed to meet the following basic requirements:a) a suitable main slowdown than to ensure that the car from thebest power and fuel economy.b) small form factor to ensure that the necessary ground clearance.c) transmission gears and other parts of a smooth, noise.d) in various load and speed of transmission with high efficiency.e) to ensure adequate strength, stiffness conditions, should strivefor the quality of small, in particular the quality of the spring as possible, to improve the car ride. f) suspension and body-oriented movement coordination, the drive to the bridge, should also be coordinated with the campaign steering mechanism.g) simple structure, processing technology and good, easy to manufacture, enables easy adjustment..Intelligent electronic technology in the bus to promote safe driving and that the other functions. The realization of automatic driving through various sensors. Except some smart cars equipped with multiple outside sensors can fully perception of information and trafficfacilities and to judge whether the vehicles and drivers in danger, has the independent pathfinding, navigation, avoid bump, no parking fees etc. Function. Effectively improve the safe transport of manipulation, reduce the pilot fatigue,improve passenger comfort. Of course battery electric vehicle is the key, the electric car battery mainly has: the use of lead-acid batteries, nickel cadmium battery, the battery, sodium sulfide sodium sulfidelithium battery, the battery, the battery, the flywheel zinc - air fuelcell and solar battery, the battery. In many kind of cells, the fuelcell is by far the most want to solve the problem of energy shortage car. Fuel cells have high pollution characteristics, different from other battery, the battery, need not only external constantly supply of fuel and electricity can continuously steadily. Fuel cell vehicles (FCEV) can be matched with the car engine performance and fuel economy and emission in the aspects of superior internal-combustion vehicles. Keyword: drive axle differential bridge reducer Bridge shellThis is an ANSYS optimum design for driving axle housing of a off-road vehicle. Firstly, the author established a three-dimensional model of the driving axle. States of stress in different working conditions were analyzed. Furthermore, the maximum pressure of driving axle was achieved.And then, the three-dimensional model was imported into ANSYS, with some other manipulations, such as meshing, adding degree of freedom, applying surface loads, etc.States of stress of driving axle were calculated with the results exported. Finally, this paper carried out the optimum design accordingto the target of minimizing the qualitative properties and homogenizing the distribution of stresses. TheConfirmatory analysis showed that this design measured up to the engineering requirement.This invention relates generally to a powertrain for a vehicle, and, more particularly, to a powertrain having multiple power sourcesincluding an electric motor for driving a set of vehicle wheels.Hybrid electric powertrains have been developed that include an electric motor and an internal combustion (IC) engine, which can operate independently or in combination depending on the driving conditions, the state of charge of a traction battery, and the power source that most efficiently meets the current power demands imposed by the vehicle operator.Most electric hybrid vehicles available commercially are front wheeldrive vehicles, in which only the front wheels are driven. Hybrid electric powertrains being developed for use in four-wheel drive vehicles allow both the motor and engine to transmit power to a rear set of driven wheels.When packaging an electric motor drive unit for a rear axle it is preferable to use a lay shaft power flow such that the motor drive unit is placed on the rear axle centerline. Such electric hybrid drive systems, however, present packaging difficulties to the vehicle designer, particularly when layshaft gearing is used to transmit power from a longitudinal drive shaft to a rear axle.A need exists for a hybrid electric powertrain in which one axle is driven by an electric motor or an IC engine in combination with the motor. To minimize cost, an electric machine would provide all hybrid functions includingelectric energy generation, electric vehicle launch, engine starting, electric boosting of engine power, and regenerative braking. A driveunit for a hybrid electric motor vehicle includes an engine, an electric machine including a rotor, a layshaft gearset including an input driveably connected to the engine and an output, for transmitting powerbetween the input and the output and producing a first speeddifferential that causes a speed of the input to exceed a speed of the output, first and second driveshafts, a differential mechanism driveably connected to said output, for transmitting power between said output and the driveshafts, and a planetary gear unit driveably connected to the output and the rotor, for transmitting power between said rotor and said output and producing a second speed differential that causes a speed of the rotor to exceed the speed of the output.A torque reaction for the speed reduction planetary gearing is provided on a housing through a bore of a shaft or drum rather than through an outer diameter of the housing, thereby simplifying the bearing support requirements and allowing compact positioning of the mechanical drive elements. Use of planetary gearing to reduce the speed of elements driven by the electric machine in the electric only drive path reduces the size of the package space required for the drive unit. The scope of applicability of the preferred embodiment will become apparent from the following detailed description, claims and drawings. It should be understood, that the description and specific examples, although indicating preferred embodiments of theinvention, are given by way of illustration only. Various changes and modifications to the described embodiments and examples will become apparent to those skilled in the art.MACHINABILITYThe machinability of a material usually defined in terms of four factors:1、 Surface finish and integrity of the machined part;2、 Tool life obtained;3、 Force and power requirements;4、 Chip control.Thus, good machinability good surface finish and integrity, longtool life, and low force And power requirements. As for chip control, long and thin (stringy) cured chips, if not broken up, can severely interfere with the cutting operation by becoming entangled in the cutting zone.Because of the complex nature of cutting operations, it is difficult to establish relationships that quantitatively define the machinability of a material. In manufacturing plants, tool life and surface roughness are generally considered to bethemostimportant factors in machinability. Although not used much any more, approximate machinability ratings are available in the example below.SUMMARYMachinability is usually defined in terms of surface finish, tool life, force and power requirements, and chip control. Machinability of materials depends not only on their intrinsic properties and microstructure, but also on proper selection and control of process variables.A combination of trailing- and semi-trailing-arm behaviour shows the following axis. It is used for front driven cars only. If the axle experiences roll, it behaves like a semi-trailing arm. The torsional stiffness counteracts the roll, by this acting like a stabiliser bar. Ifboth wheels experience the same suspension travel (e.g. during pitch of the car) the axle behaves like a trailing arm suspension.Beam Type Axle (Four-Link-Style)Front- and rear-axle of a car needn't have the same hight for their roll center. The roll axis is that axis, that goes through the roll center of front- and rear-axle, see following drawing:Roll AxisIf a lateral force is applied at the center of gravity, the moment resulting fom the hight ofthe center of gravity above the roll axis has to be compensated by a moment caused bythesuspension springs due to some roll. The distribution of this moment between front- and rear axle depends on the relative spring stiffness of front- and rear-axle, the overallroll angle (which is the same for front- and rear-axle) depends on the sum of the suspension stiffness (front plus rear).The moment transmitted to the ground without any roll for theoverall vehicle is given bythe applied lateral force times the roll axis hight (at the position of CG). (Remark: If theroll axis is above the CG, the remaining torque that has to be compensated by the suspension springs would make the car lean inside like a motorcycle!). The distribution of this moment between front- and rear-axle can be calculated by calculating each axle seperately, by-using the position of the roll center of the corresponding axle-using the fact that the part of lateral force, that the axle has tocarry, corresponds to the partof the normal load, the axlehas to carryDifferential ExamplesThe characteristics of alimited slip differential are alittle bit different fordifferent stylesof a self-locking device.The Torsen? styledifferentials (from TORqueSENsing) act very fast (andpossiblyharsh). Under low input torque the differential gears are onlylightly loaded and move freely like an open device. With increasing torque (and speed) the gear meshes areloaded up and the two output shafts are locked together. The torque ratio (high-torque-wheel divided by low-torque-wheel) varies from max. 7:1 to 2.5:1, for the Torsen II stylefrom 3:1 to 1.8:1 (depending on gear angles, gear surface treatment, type of bearing(plain, roller...)The Dana Trac-Loc? limited-slip differential (see picture below) contains some preloaded(by Belleville springs) clutch plates, which provide a certainstatic breakout torque already at zero input torque. The spider gear and side gear mesh are designed in that way (with wedge-shaped gear teeth), that increasing input torque will increase the loadon the clutch plates, by this increasing the locking of the axle.Dana Trac-Loc? limited-slip differentialThe viscous differential locks independent of of torques, but reacts to the speed differences between the output shafts. The contained clutch plates have no mechanical contact, but very tight clearances, so that the viscous friction provides the torque transfer. Note that viscous differentials set in very smooth, and with a certain time delay, as the viscosity increases with the generated heat (means the special fluid is becoming 'thicker'). This makes the handling easier for street use cars (while may be too slow for some racing applications).。

相关文档
最新文档