【VIP专享】2015年10月自考离散数学(02324)试题及答案解析

合集下载

2023年10月02324离散数学自考试题

2023年10月02324离散数学自考试题

2023年10月02324离散数学自考试题全文共四篇示例,供读者参考第一篇示例:2023年10月02324离散数学是一门非常重要的数学课程,它涉及数学中的离散结构及其应用。

离散数学在计算机科学、信息技术、通信工程等领域具有重要的应用价值,因此掌握离散数学的知识对于从事相关行业的人来说至关重要。

在2023年10月02324离散数学的考试中,考生将会面对一系列的试题,来考查他们对离散数学的理解和掌握程度。

以下是一份假设的2023年10月02324离散数学自考试题示例:第一部分:选择题(每题1分,共20题)1. 下列哪个不是离散数学的研究对象?A. 图论B. 集合论C. 实变函数D. 逻辑2. 设A={a,b,c},B={a,c,d},则A∩B=?A. {a,b,c}B. {a,c}C. {b}D. {a,c,d}3. 在集合论中,全集的补集被称为?A. 空集B. 补集C. 子集D. 交集4. 下列哪个是图的最短路径算法?A. Kruskal算法B. Prim算法C. Dijkstra算法D. 拓扑排序算法1. 若A={1,2,3,4},则A的幂集共有多少个子集?2. 设集合A={1,2,3},B={2,3,4},求A∪B的结果。

3. 设二元关系R={(1,1),(2,2),(3,3)},则R的自反性是?4. 设G={V,E}是一个无向图,若V={a,b,c,d},E={{a,b},{b,c},{c,d},{d,a}},求G的度数序列。

5. 设S={a,b,c},则S的所有排列有多少种?1. 设f(x)=3x+2,g(x)=x^2,求f(g(x))。

2. 求解逻辑表达式P∧¬Q∧R的真值表。

3. 设集合A中元素个数为n,B中元素个数为m,求A×B的元素个数。

1. 证明:对于任意集合A,A与A的补集的交集为∅。

2. 证明:若G为连通图,则G是无向图。

3. 证明:若一个图G中所有顶点的度数均为偶数,则G为欧拉图。

《离散数学》试题及答案

《离散数学》试题及答案

一、填空题1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B={3} ; ρ(A) - ρ(B)={3},{1,3},{2,3},{1,2,3}} .2. 设有限集合A, |A| = n, 则|ρ(A×A)| = 22n.3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是α1= {(a,1), (b,1)}, α2= {(a,2), (b,2)},α3= {(a,1), (b,2)}, α4= {(a,2), (b,1)}, 其中双射的是α3, α4 .4. 已知命题公式G=⌝(P→Q)∧R,则G的主析取范式是(P∧⌝Q∧R)5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为12,分枝点数为3.6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A⋂B={4} ; A⋃B={1,2,3,4};A-B={1,2} .7.设R是集合A上的等价关系,则R所具有的关系的三个特性是自反性, 对称性传递性.8. 设命题公式G=⌝(P→(Q∧R)),则使公式G为真的解释有(1, 0, 0), (1, 0, 1),(1, 1, 0)9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R2 = {(2,1),(3,2),(4,3)}, 则R1∙R2 ={(1,3),(2,2),(3,1)} , R2∙R1 = {(2,4),(3,3),(4,2)} _R12 ={(2,2),(3,3).10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A⨯B)| = .11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = -1<=x<0 , B-A = {x | 1 < x < 2, x∈R} ,A∩B ={x | 0≤x≤1, x∈R} , .13.设集合A={2, 3, 4, 5, 6},R是A上的整除关系,则R以集合形式(列举法)记为{(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)} .14. 设一阶逻辑公式G = ∀xP(x)→∃xQ(x),则G的前束范式是∃x(⌝P(x)∨Q(x)) .15.设G是具有8个顶点的树,则G中增加21 条边才能把G变成完全图。

离散数学练习题(含答案)

离散数学练习题(含答案)

离散数学试题第一部分选择题一、单项选择题1.下列是两个命题变元p,q的小项是( C )A.p∧┐p∧q B.┐p∨qC.┐p∧q D.┐p∨p∨q2.令p:今天下雪了,q:路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为( D )A.p→┐q B.p∨┐qC.p∧q D.p∧┐q3.下列语句中是命题的只有( A )A.1+1=10 B.x+y=10C.sinx+siny<0 D.x mod 3=24.下列等值式不正确的是( C )A.┐(∀x)A⇔(∃x)┐AB.(∀x)(B→A(x))⇔B→(∀x)A(x)C.(∃x)(A(x)∧B(x))⇔(∃x)A(x)∧(∃x)B(x)D.(∀x)(∀y)(A(x)→B(y))⇔(∀x)A(x)→(∀y)B(y)5.谓词公式(∃x)P(x,y)∧(∀x)(Q(x,z)→(∃x)(∀y)R(x,y,z)中量词∀x的辖域是( C )A.(∀x)Q(x,z)→(∃x)(∀y)R(x,y,z))B.Q(x,z)→(∀y)R(x,y,z)C.Q(x,z)→(∃x)(∀y)R(x,y,z)D.Q(x,z)6.设A={a,b,c,d},A上的等价关系R={<a,b>,<b,a>,<c,d>,<d,c>}∪I A,则对应于R的A的划分是( D )A.{{a},{b,c},{d}} B.{{a,b},{c},{d}}C.{{a},{b},{c},{d}} D.{{a,b},{c,d}}7.设A={Ø},B=P(P(A)),以下正确的式子是( A )A.{Ø,{Ø}}∈B B.{{Ø,Ø}}∈BC.{{Ø},{{Ø}}}∈B D.{Ø,{{Ø}}}∈B8.设X,Y,Z是集合,一是集合相对补运算,下列等式不正确的是( A )A.(X-Y)-Z=X-(Y∩Z)B.(X-Y)-Z=(X-Z)-YC.(X-Y)-Z=(X-Z)-(Y-Z)D.(X-Y)-Z=X-(Y∪Z)9.在自然数集N上,下列定义的运算中不可结合的只有( D )A.a*b=min(a,b)B.a*b=a+bC.a*b=GCD(a,b)(a,b的最大公约数)02324# 离散数学试题第1 页共4页02324# 离散数学试题 第 2 页 共4页D .a*b=a(mod b)10.设R 和S 是集合A 上的关系,R ∩S 必为反对称关系的是( A ) A .当R 是偏序关系,S 是等价关系; B .当R 和S 都是自反关系; C .当R 和S 都是等价关系; D .当R 和S 都是传递关系11.设R 是A 上的二元关系,且R ·R ⊆R,可以肯定R 应是( D ) A .对称关系; B .全序关系; C .自反关系; D .传递关系 12.设R 为实数集,函数f :R →R ,f(x)=2x ,则f 是( B ) A .满射函数 B .单射函数 C .双射函数 D .非单射非满射第二部分 非选择题二、填空题1.设论域是{a,b,c},则(∀x)S(x)等价于命题公式 S(a)∧S(b)∧S(c) ;(x ∃)S(x)等价于命题公式 S(a)∨S(b) ∨S(c) 。

离散数学考试题及详细参考答案

离散数学考试题及详细参考答案

离散数学考试题(后附详细答案)一、命题符号化(共6小题,每小题3分,共计18分)1.用命题逻辑把下列命题符号化a)假如上午不下雨,我去看电影,否则就在家里读书或看报。

b)我今天进城,除非下雨。

c)仅当你走,我将留下。

2.用谓词逻辑把下列命题符号化a)有些实数不是有理数b)对于所有非零实数x,总存在y使得xy=1。

c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.二、简答题(共6道题,共32分)1.求命题公式(P→(Q→R)) (R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。

(5分)2.设个体域为{1,2,3},求下列命题的真值(4分)a)x y(x+y=4)b)y x (x+y=4)3.求x(F(x)→G(x))→(xF(x)→xG(x))的前束范式。

(4分)4.判断下面命题的真假,并说明原因。

(每小题2分,共4分)a)(A B)-C=(A-B) (A-C)b)若f是从集合A到集合B的入射函数,则|A|≤|B|5.设A是有穷集,|A|=5,问(每小题2分,共4分)a)A上有多少种不同的等价关系?b)从A到A的不同双射函数有多少个?6.设有偏序集<A,≤>,其哈斯图如图1,求子集B={b,d,e}的最小元,最大元、极大元、极小元、上界集合、下界集合、上确界、下确界,(5分)f g图17.已知有限集S={a1,a2,…,a n},N为自然数集合,R为实数集合,求下列集合的基数S;P(S);N,N n;P(N);R,R×R,{o,1}N(写出即可)(6分)三、证明题(共3小题,共计40分)1.使用构造性证明,证明下面推理的有效性。

(每小题5分,共10分)a)A→(B∧C),(E→ F)→ C, B→(A∧ S) B→Eb)x(P(x)→ Q(x)), x(Q(x)∨R(x)),x R(x) x P(x)2.设R1是A上的等价关系,R2是B上的等价关系,A≠ 且B≠ ,关系R满足:<<x1,y1>,<x2,y2>>∈R,当且仅当< x1, x2>∈R1且<y1,y2>∈R2。

【全国自考历年真题10套】02324离散数学2013年4月至2019年10月试题

【全国自考历年真题10套】02324离散数学2013年4月至2019年10月试题
选择题部分
注意事项:
1.答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或 钢笔填写在答题纸规定的位置上。
2.每小题选出答案后,用 2B 铅笔把答题纸上对应题目的答案标号涂黑。如需改动, 用橡皮擦干净后,再选涂其他答案标号。不能答在试题卷上。
一、单项选择题(本大题共 15 小题,每小题 1 分,共 15 分)
A. (∃x)( A(x) ∧ B(x)) ⇔ (∃x) A(x) ∧ (∃x)B(x)
B. A →(∃x)B(x) ⇔ (∃x)( A → B(x))
C.(∃x)A(x) → B ⇔ (∀x)( A(x) → B)
D. ¬(∃x)A(x) ⇔ (∀x)¬A(x)
4.设 A(x): x 是鸟, B(x): x 会飞,命题“没有不会飞的鸟”符号化为
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”
的相应代码涂黑。错涂、多涂或未涂均不得分。
1.设 p:天下雨;q:我走路上学。命题“只要不下雨,我就走路上学”可符号化为
A.p → q
B.q →p
C.┐p → q D.q → ┐p
2.设简单无向图 G 有 16 条边,有 3 个 4 度结点,有 4 个 3 度结点,其余结点的度数均小 3,则 G 中的结点个数至.少.为
02324# 离散数学试题 第 3 页 (共 4 页)
02324# 离散数学试题 第 4 页 (共 4 页)
绝密★考试结束前
全国 2014 年 4 月高等教育自学考试
离散数学试题
课程代码:02324
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分
注意事项: 1.答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或

【VIP专享】2015年10月自考离散数学(02324)试题及答案解析

【VIP专享】2015年10月自考离散数学(02324)试题及答案解析

2015年10月高等教育自学考试全国统一命题考试离散数学试卷(课程代码02324)本试卷共4页,满分l00分,考试时间l50分钟。

考生答题注意事项:1.本卷所有试题必须在答题卡上作答。

答在试卷上无效,试卷空白处和背面均可作草稿纸。

2.第一部分为选择题。

必须对应试卷上的题号使用2B铅笔将“答题卡”的相应代码涂黑。

3.第二部分为非选择题。

必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。

4.合理安排答题空间,超出答题区域无效。

第一部分选择题一、单项选择题(本大题共l5小题,每小题l分。

共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题卡”的相应代码涂黑。

未涂、错涂或多涂均无分。

1.设简单无向图G有l5条边,有3个4度结点,其余结点的度数均为3,则G中的结点个数是A. 6 B.7 C.8 D.92.﹤A,≤﹥是一个偏序集,其中A是正整数l2的正因子的集合,≤为整除关系,元素6能盖住元素A.1 B.3 C.6 D.123.下列公式不是合式公式的为4.设a:小华,P(x):x是教授,f(x):x的父亲,则语句“小华的父亲是教授”可符号化为A.P(f(a)) B.P(a)∧f(a)C.f(P(a)) D.P(a)∨f(a)5.设p:天下雨,q:我开车上班。

命题“除非不下雨,否则我开车上班”可符号化为A.p→q B.q→p C.﹁p→q D.q→﹁ p6.设是集合A上的相容关系,则下列关系不一定是相容关系的是7.下列公式中与公式等价的是8.设有一个连通平面图G,共有7个结点,l2条边,则G的面的个数为A.6 B.7 C. 8 D. 99.设R l、R2都是从A到B的二元关系,则下列各式成立的为10.下列语句是假命题的是A.只有2是奇数,才是无理数 B.只要2是奇数,就是无理数C.如果2是奇数,那么就是无理数 D.除非是无理数,否则2不是奇数11.设<G,*>为群,有A.(ab)-1=ab B.(ab)-1=baC.(ab)-1=a-1b-1 D.(ab)-1=b-1a-112.下列无向图不一定为树的是A. 无回路的连通图 B.有n个结点,n—l条边的连通图C.每对结点间都有路的图 D.连通但删去一条边便不连通的图A.0 B.1 C.b D.c14.在自然数集N上,下列运算满足结合律的是A.a*b=a B.a*b=︱a—b︱C.a*b=b a D.a*b =2a+b15.设论域为整数集,下列公式中真值为真的是第二部分非选择题二、填空题(本大题共l0小题,每小题2分,共20分)请在答题卡上作答。

最新自考离散数学02324真题含答案(.4-2016.4年整理版)

最新自考离散数学02324真题含答案(.4-2016.4年整理版)

全国2009年4月自学考试离散数学试题(附答案)课程代码:02324一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.下列为两个命题变元P,Q的小项是()A.P∧Q∧⎤ P B.⎤ P∨QC.⎤ P∧Q D.⎤ P∨P∨Q2.下列语句中是真命题的是()A.我正在说谎B.严禁吸烟C.如果1+2=3,那么雪是黑的D.如果1+2=5,那么雪是黑的3.设P:我们划船,Q:我们跑步。

命题“我们不能既划船又跑步”符号化为()A.⎤ P∧⎤ Q B.⎤ P∨⎤ QC.⎤(P↔Q)D.⎤(⎤ P∨⎤ Q)4.命题公式(P∧(P→Q))→Q是()A.矛盾式B.蕴含式C.重言式D.等价式5.命题公式⎤(P∧Q)→R的成真指派是()A.000,001,110,B.001,011,101,110,111C.全体指派D.无6.在公式(x∀)F(x,y)→(∃y)G(x,y)中变元x是()A.自由变元B.约束变元C.既是自由变元,又是约束变元D.既不是自由变元,又不是约束变元7.集合A={1,2,…,10}上的关系R={<x,y>|x+y=10,x∈A,y∈A},则R的性质是()A.自反的B.对称的C.传递的、对称的D.反自反的、传递的8.若R和S是集合A上的两个关系,则下述结论正确的是()A.若R和S是自反的,则R∩S是自反的B.若R和S是对称的,则R S是对称的C.若R和S是反对称的,则R S是反对称的D.若R和S是传递的,则R∪S是传递的9.R={<1,4>,<2,3>,<3,1>,<4,3>},则下列不是..t(R)中元素的是()A.<1,1> B.<1,2>C.<1,3> D.<1,4>10.设A={{1,2,3},{4,5},{6,7,8}},下列选项正确的是()A.1∈A B.{1,2,3}⊆AC.{{4,5}}⊂A D.∅∈A11.在自然数集N上,下列运算是可结合的是()A.a*b=a-2b B.a*b=min{a,b}C.a*b=-a-b D.a*b=|a-b|12.在代数系统中,整环和域的关系是()A.整环一定是域B.域不一定是整环C.域一定是整环D.域一定不是整环13.下列所示的哈斯图所对应的偏序集中能构成格的是()A.B.C.D.14.设G为有n个结点的简单图,则有()A.Δ(G)<n B.Δ(G)≤nC.Δ(G)>n D.Δ(G)≥n15.具有4个结点的非同构的无向树的数目是()A.2 B.3C.4 D.5二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

自考离散数学02324课后答案:[5]1.6章节

自考离散数学02324课后答案:[5]1.6章节

似若来生愿.想一起去看星星,那最亮一颗是我心大雨
(3)|W∨|QT(2) (4)Q→|WT(3) (5)W→|WT(1)(4) (6)|W∨|WT(5) (7)|WT(6) (8)|(W∧Q)→|WCP (9)W→(W∧Q)T(8) d)
证明 (1)R∨SP (2)|R→ST(1) (3)|RP (4)ST(2)(3) (5)S→|QP (6)|QT(4)(5) (7)|W←→QP
2dj0f4c9b
似若来生愿.想一起去看星星,那最亮一颗是我心大雨
前提 P→|Q,R→Q,|P→||S,R 结论||S 证明(1)P→|QP (2)Q→|PT(1) (3)R→QP (4)R→|PT(2)(3) (5)|P→||SP (6)R→||ST(4)(5)
(7)RP (8)||ST(6)(7)自考离散数学 02324 课后答 案(共 5 篇)上一篇:1.5 章节
丙说“是乙”,丁说“不是我”,四人的回答只有 一人符合实际,问成绩最好是哪些?只有一人成 绩最好的是谁。
解: 设 P 甲成绩最好 Q 乙成绩最好 R 丙成绩最好 S 丁成绩最好
似若来生愿.想一起去看星星,那最亮一颗是我心大雨
如果甲说的是正确的,则|P,|S,|Q,S|S 与 S 矛盾
如果乙若来生愿.想一起去看星星,那最亮一颗是我心大雨
结论:如果我在看书,则天在下雨。 解: 设 P 天晴; Q 下雨; R 我去看电影; S 我在看书; 已知|P→Q∧|Q→P,P→R,R→|S,S 结论 Q
证明(1)P→RP (2)R→|SP (3)P→|ST(1)(2) (4)SP (5)|PT(3)(4) (6)|P→Q∧|Q→PP (7)|P→QT(6) (8)QT(5)(7)
(3)|A∨BP (4)A→BT(3) (5)AP(附加前提) (6)BT(4)(5) (6)|CT(2)(6) (6)A→|CCP b)证明(1)(C∧D)→EP (2)|(C∧D)∨ET(1)

《离散数学》试题及答案

《离散数学》试题及答案

一、填空题1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B={3} ; ρ(A) - ρ(B)={3},{1,3},{2,3},{1,2,3}} .2. 设有限集合A, |A| = n, 则|ρ(A×A)| = 22n.3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是α1= {(a,1), (b,1)}, α2= {(a,2), (b,2)},α3= {(a,1), (b,2)}, α4= {(a,2), (b,1)}, 其中双射的是α3, α4 .4. 已知命题公式G=⌝(P→Q)∧R,则G的主析取范式是(P∧⌝Q∧R)5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为12,分枝点数为3.6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A⋂B={4} ; A⋃B={1,2,3,4};A-B={1,2} .7.设R是集合A上的等价关系,则R所具有的关系的三个特性是自反性, 对称性传递性.8. 设命题公式G=⌝(P→(Q∧R)),则使公式G为真的解释有(1, 0, 0), (1, 0, 1),(1, 1, 0)9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R2 = {(2,1),(3,2),(4,3)}, 则R1∙R2 ={(1,3),(2,2),(3,1)} , R2∙R1 = {(2,4),(3,3),(4,2)} _R12 ={(2,2),(3,3).10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A⨯B)| = .11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = -1<=x<0 , B-A = {x | 1 < x < 2, x∈R} ,A∩B ={x | 0≤x≤1, x∈R} , .13.设集合A={2, 3, 4, 5, 6},R是A上的整除关系,则R以集合形式(列举法)记为{(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)} .14. 设一阶逻辑公式G = ∀xP(x)→∃xQ(x),则G的前束范式是∃x(⌝P(x)∨Q(x)) .15.设G是具有8个顶点的树,则G中增加21 条边才能把G变成完全图。

自考2324离散数学第四章课后答案

自考2324离散数学第四章课后答案

自考2324离散数学第四章课后答案4.1习题参考答案--------------------------------------------------------------------------------1、在自然数集N中,下列哪种运算是可结合的()。

a)、a某b=a-bb)a某b=ma某(a,b)c)、a某b=a+2bd)a某b=|a-b|根据结合律的定义在自然数集N中任取a,b,c三数,察看(a。

b)。

c=a。

(b。

c)是否成立?可以发现只有b、c满足结合律。

晓津观点:b)满足结合律,分析如下:a)若有a,b,c∈N,则(a某b)某c=(a-b)-ca某(b某c)=a-(b-c)在自然数集中,两式的值不恒等,因此本运算是不可结合的。

b)同上,(a某b)某c=ma某(ma某(a,b),c)即得到a,b,c中最大的数。

a某(b某c)=ma某(a,ma某(b,c))仍是得到a,b,c中最大的数。

此运算是可结合的。

c)同上,(a某b)某c=(a+2b)+2c而a某(b某c)=a+2(b+2c),很明显二者不恒等,因此本运算也不是可结合的。

d)运用同样的分析可知其不是可结合的。

--------------------------------------------------------------------------------2、设集合A={1,2,3,4,...,10},下面定义的哪种运算,关于集合A是不封闭的a)某某y=ma某(某,y)b)某某y=min(某,y);c)某某y=GCD(某,y),即某,y最大公约数;d)某某y=LCM(某,y)即某,y最小公倍数;d)是不封闭的。

--------------------------------------------------------------------------------3、设S是非空有限集,代数系统<(),∪,∩>中,()上,对∪的幺元为___φ___,零元为___S____,()上对∩的幺元为___S_____零元___φ____。

离散数学2023年10月真题

离散数学2023年10月真题

2023年10月高等教育自学考试全国统一命题考试离散数学试题(课程代码02324)注意事项:1.本试卷分为两部分,第一部分为选择题,第二部分为非选择题。

2.应考者必须按试题顺序在答题卡(纸)指定位置上作答,答在试卷上无效。

3.涂写部分、画图部分必须使用2B铅笔,书写部分必须使用黑色字迹签字笔。

第一部分选择题一、单项选择题:本大题共15小题,每小题1分,共15分。

在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。

1.令p:今天我上班,q:今天我休息。

命题“今天我要么上班要么休息”的符号化形式为A.p V qB.q→pC.¬ p∧qD.(¬ q∧p)V(q∧¬ p)2.设令F(x):x是火车,G(x):x是汽车,L(x,y):x比y快。

命题“有的火车比有的汽车快”的符号化形式为A.∀x(F(x)→∀y(G(y)→L(x,y)))B.∃x(F(x)∧∃y(G(y)∧L(x,y)))C.¬∃y(G(y)∧∀x(F(x)→L(y,x)))D.¬∀y(G(y)→∀x(F(x)→L(x,y)))3.下列关于小项和大项的性质表述正确的是A.任意两个不同小项的合取式必为真B.任意两个不同大项的析取式必为假C.任意两个不同小项的析取式必为假D.大项的否定是小项下图中是欧拉图的为4.B. C. D.A.5.设有非空集合A上的全域关系S,则关系S不是A.自反关系B.对称关系C.传递关系D.反对称关系6.简单无向图G有9条边,每个结点都是3度结点,则G的结点数为A.5B.6C.7D.87.下列谓词恒等式,不正确的是A.∀x(P(x)V Q(x))⇔∀xP(x)V∀xQ(x)B.∃x(P(x)V Q(x))⇔∃xP(x)V∃xQ(x)C.∀x(P→Q(x))⇔P→∀xQ(x)D.∃x(P→Q(x))⇔P→∃xQ(x)8.下列度数序列中,不能构成简单无向图的是A.{1,1,1,2,3}B.{1,2,2,3}C.{6,2,2,2,4}D.{3,3,3,3}9.设A={3z|z∈Z),运算为实数加法+和乘法*,则<A,+,*>构成的代数系统是A.环B.整环C.域D.格10.集合A上的自反关系R的关系矩阵为M,则M的元素必定A.对角线上全是0B.关于反对角线对称C.关于对角线对称D.对角线上全是111.已知A、B、C、D是任意集合,则下列各式成立的是A.(A∪B)×(C∪D)=(A×C)∪(B×D)B.(A∩B)×C=(A×C)∩(B×C)C.(A⊕B)×(C⊕D)=(A×C)⊕(B×D)D.(A-B)×(C-D)=(A×C)-(B×D)12.要从完全图K4中得到一棵生成树,需要删除的边数为A.1B.2C.3D.413.设有集合A上的关系R1和R2,下列命题为真的是A.若关系R1和R2是自反的,则R₁⁰ R2也是自反的B.若关系R1和R2是对称的,则R₁⁰ R2也是对称的C.若关系R1和R2是传递的,则R₁⁰ R2也是传递的D.若关系R1和R2是反自反的,则R₁⁰ R2也是反自反的14.下图中4个偏序集的图形,能构成格的是d e e g a afb c b d b fc db c c ea ea dA. B. C. D.15.设有穷集合A的元素个数为m,则A到A的不同单射函数的个数为A.m!B.m mC.m2D.2m第二部分非选择题二、填空题:本大题共10小题,每小题2分,共20分。

(完整版)《离散数学》试题及答案解析,推荐文档

(完整版)《离散数学》试题及答案解析,推荐文档
3. 设 R 是实数集合,,,是 R 上的三个映射,(x) = x+3, (x) = 2x, (x) = x/4, 试求复合映射•,•, •, •,••.
4. 设 I 是如下一个解释:D = {2, 3},
a
b
f (2) f (3)
3
2
3
2
试求 (1) P(a, f (a))∧P(b, f (b));
WORD 整理版
一、填空题 1 设集合 A,B,其中 A={1,2,3}, B= {1,2}, 则 A - B=____________________;
(A)
- (B)= __________________________ . 2. 设有限集合 A, |A| = n, 则 |(A×A)| = __________________________. 3. 设集合 A = {a, b}, B = {1, 2}, 则从 A 到 B 的所有映射是 __________________________ _____________, 其中双射的是
专业资料学习参考
WORD 整理版
0 1 1 1 1
15. 设图 G 的相邻矩阵为 1 0 1 0 0 ,则 G 的顶点数与边数分别为(
).
1 1 0 1 1
1 0 1 0 1
1 0 1 1 0
(A)4, 5 (B)5, 6 三、计算证明题
(C)4, 10
(D)5, 8.
1.设集合 A={1, 2, 3, 4, 6, 8, 9, 12},R 为整除关系。
则在解释 I 下取真值为 1 的公式是( ).
(A)xyP(x,y) (B)xyP(x,y) (C)xP(x,x) (D)xyP(x,y). 6. 若供选择答案中的数值表示一个简单图中各个顶点的度,能画出图的是( ).

《离散数学》试题及答案

《离散数学》试题及答案

一、填空题1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B={3} ; ρ(A) - ρ(B)={3},{1,3},{2,3},{1,2,3}} .2. 设有限集合A, |A| = n, 则|ρ(A×A)| = 22n.3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是α1= {(a,1), (b,1)}, α2= {(a,2), (b,2)},α3= {(a,1), (b,2)}, α4= {(a,2), (b,1)}, 其中双射的是α3, α4 .4. 已知命题公式G=⌝(P→Q)∧R,则G的主析取范式是(P∧⌝Q∧R)5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为12,分枝点数为3.6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A⋂B={4} ; A⋃B={1,2,3,4};A-B={1,2} .7.设R是集合A上的等价关系,则R所具有的关系的三个特性是自反性, 对称性传递性.8. 设命题公式G=⌝(P→(Q∧R)),则使公式G为真的解释有(1, 0, 0), (1, 0, 1),(1, 1, 0)9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R2 = {(2,1),(3,2),(4,3)}, 则R1∙R2 ={(1,3),(2,2),(3,1)} , R2∙R1 = {(2,4),(3,3),(4,2)} _R12 ={(2,2),(3,3).10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A⨯B)| = .11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = -1<=x<0 , B-A = {x | 1 < x < 2, x∈R} ,A∩B ={x | 0≤x≤1, x∈R} , .13.设集合A={2, 3, 4, 5, 6},R是A上的整除关系,则R以集合形式(列举法)记为{(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)} .14. 设一阶逻辑公式G = ∀xP(x)→∃xQ(x),则G的前束范式是∃x(⌝P(x)∨Q(x)) .15.设G是具有8个顶点的树,则G中增加21 条边才能把G变成完全图。

离散数学自学考试真题附答案打印版

离散数学自学考试真题附答案打印版

离散数学试题课程代码:02324一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。

1.一个连通的无向图G ,如果它的所有结点的度数都是偶数,那么它具有一条( )A.汉密尔顿回路B.欧拉回路C.汉密尔顿通路D.初级回路2.设G 是连通简单平面图,G 中有11个顶点5个面,则G 中的边是( )3.在布尔代数L 中,表达式(a ∧b)∨(a∧b ∧c)∨(b ∧c)的等价式是( )∧(a ∨c)B.(a ∧b)∨(a ’∧b)C.(a ∨b)∧(a ∨b ∨c)∧(b ∨c)D.(b ∨c)∧(a ∨c)4.设i 是虚数,·是复数乘法运算,则G=<{1,-1,i,-i},·>是群,下列是G的子群是( )A.<{1},·>B.〈{-1},·〉C.〈{i},·〉D.〈{-i},·〉5.设Z 为整数集,A 为集合,A 的幂集为P(A),+、-、/为数的加、减、除运算,∩为集合的交运算,下列系统中是代数系统的有( )A.〈Z ,+,/〉B.〈Z ,/〉C.〈Z ,-,/〉D.〈P(A),∩〉6.下列各代数系统中不含有零元素的是( )A.〈Q ,*〉Q 是全体有理数集,*是数的乘法运算B.〈Mn(R),*〉,Mn(R)是全体n 阶实矩阵集合,*是矩阵乘法运算C.〈Z ,ο〉,Z 是整数集,ο定义为x οxy=xy,∀x,y ∈ZD.〈Z ,+〉,Z 是整数集,+是数的加法运算 7.设A={1,2,3},A 上二元关系R 的关系图如下: R 具有的性质是 A.自反性 B.对称性 C.传递性 D.反自反性 8.设A={a,b,c},A 上二元关系R={〈a,a 〉,〈b,b 〉,〈a,c 〉},则关系R 的对称闭包S(R)是( ) ∪I A ∪{〈c,a 〉} ∩I A 9.设X={a,b,c},Ix 是X 上恒等关系,要使Ix ∪{〈a,b 〉,〈b,c 〉,〈c,a 〉,〈b,a 〉}∪R 为X 上的等价关系,R 应取( ) A.{〈c,a 〉,〈a,c 〉} B.{〈c,b 〉,〈b,a 〉} C.{〈c,a 〉,〈b,a 〉} D.{〈a,c 〉,〈c,b 〉} 10.下列式子正确的是( ) A. ∅∈∅ B.∅⊆∅ C.{∅}⊆∅ D.{∅}∈∅11.设解释R 如下:论域D 为实数集,a=0,f(x,y)=x-y,A(x,y):x<y.下列公式在R 下为真的是( ) A.( ∀ x)( ∀y)( ∀z)(A(x,y))→A(f(x,z),f(y,z)) B.( ∀x)A(f(a,x),a) C.(∀x)(∀y)(A(f(x,y),x)) D.(∀x)(∀y)(A(x,y)→A(f(x,a),a)) 12.设B 是不含变元x 的公式,谓词公式(∀x)(A(x)→B)等价于( ) A.(∃x)A(x)→B B.(∀x)A(x)→B (x)→B D.(∀x)A(x)→(∀x)B 13.谓词公式(∀x)(P(x,y))→(∃z)Q(x,z)∧(∀y)R(x,y)中变元x( )A.是自由变元但不是约束变元B.既不是自由变元又不是约束变元C.既是自由变元又是约束变元D.是约束变元但不是自由变元14.若P :他聪明;Q :他用功;则“他虽聪明,但不用功”,可符号化为( )∨Q ∧┐Q →┐Q ∨┐Q15.以下命题公式中,为永假式的是( )→(p ∨q ∨r)B.(p →┐p)→┐pC.┐(q →q)∧pD.┐(q ∨┐p)→(p ∧┐p)二、填空题(每空1分,共20分)16.在一棵根树中,仅有一个结点的入度为______,称为树根,其余结点的入度均为______。

自考2324离散数学第三章课后答案

自考2324离散数学第三章课后答案

自考2324离散数学课后答案3.1 习题参考答案1、写出下列集合的的表示式。

a)所有一元一次方程的解组成的集合。

A={x|x是所有一元一次方程的解组成的集合}晓津答案:A={x| ax+b=0∧a∈R∧b∈R}b) x2-1 在实数域中的因式集。

B={1,(x-1),(x+1)|x∈R}c)直角坐标系中,单位圆内(不包括单位圆周)的点集。

C={x,y| x2+y2<1 }晓津答案:C={a(x,y)|a为直角坐标系中一点且 x2+y2<1 }d)极坐标中,单位圆外(不包括单位圆周)的点集。

D={r,θ| r>1,0<=θ<=360}晓津答案:D={a(r,θ)|a为极坐标系中一点且 r>1,0<=θ<=2π } e)能被5整除的整数集E={ x| x mod 5=0}2、判定下列各题的正确与错误。

a) {x}{x};正确b) {x}∈{x};正确晓津观点:本命题错误。

理由:{x}作为一个元素是一个集合,而右边集合中的元素并不是集合。

c) {x}∈{x,{x}};正确d) {x}{x,{x}};正确----------------------------------------------------------------3、设 A={1,2,4},B={1,3,{2}},指出下列各式是否成立。

a) {2}∈A; b) {2}∈B c) {2}Ad) {2}B; e) ∈A f) A解:jhju、晓津和wwbnb 的答案经过综合补充,本题的正确答案是:b、c、d、f成立,a,d、e不成立。

理由:a式中,{2}是一个集合,而在A中并无这样的元素。

因此不能说{2}属于A,当然如果说2∈A则是正确的。

对于e式也应作如此理解,空集是一个集合,在A中并无这个集合元素,如f 式则是正确的。

空集包含于任何集合中,但空集不一定属于任一集合。

----------------------------------------------------------------4、设A= {} , B=(A),问下列各题是否正确。

离散数学试卷及答案(23)

离散数学试卷及答案(23)

一、单项选择题:(每小题1分,本大题共10分)1.命题公式)(P Q P ∨→是( )。

A 、 矛盾式;B 、可满足式;C 、重言式;D 、等价式。

2.下列各式中哪个不成立( )。

A 、)()())()((x xQ x xP x Q x P x ∀∨∀⇔∨∀ ;B 、)()())()((x xQ x xP x Q x P x ∃∨∃⇔∨∃;C 、)()())()((x xQ x xP x Q x P x ∀∧∀⇔∧∀;D 、Q x xP Q x P x ∧∀⇔∧∀)())((。

3.谓词公式)())()((x Q y yR x P x →∃∨∀中的 x 是( )。

A 、自由变元;B 、约束变元;C 、既是自由变元又是约束变元;D 、既不是自由变元又不是约束变元。

4.在0 Φ之间应填入( )符号。

A 、= ;B 、⊂ ;C 、∈ ;D 、∉ 。

5.设< A , > 是偏序集,A B ⊆,下面结论正确的是( )。

A 、B 的极大元B b ∈且唯一; B 、B 的极大元A b ∈且不唯一;C 、B 的上界B b ∈且不唯一;D 、B 的上确界A b ∈且唯一。

6.在自然数集N 上,下列( )运算是可结合的。

(对任意N b a ∈,)A 、b a b a -=* ;B 、),max(b a b a =* ;C 、b a b a 5+=* ;D 、b a b a -=*。

7.Q 为有理数集N ,Q 上定义运算*为a*b = a + b – ab ,则<Q ,*>的幺元为()。

A 、a ;B 、b ;C 、1;D 、0。

8.给定下列序列,( )可以构成无向简单图的结点次数序列。

A 、(1,1,2,2,3);B 、(1,1,2,2,2);C 、(0,1,3,3,3);D 、(1,3,4,4,5)。

9.设G 是简单有向图,可达矩阵P(G)刻划下列 ( )关系。

A 、点与边;B 、边与点;C 、点与点;D 、边与边。

02324离散数学

02324离散数学

2016年10月高等教育自学考试全国统一命题考试离散数学试卷(课程代码 02324)本试卷共4页,满分l00分,考试时间l50分钟。

考生答题注意事项:1.本卷所有试题必须在答题卡上作答。

答在试卷上无效,试卷空白处和背面均可作草稿纸。

2.第一部分为选择题。

必须对应试卷上的题号使用2B铅笔将“答题卡”的相应代码涂黑。

3.第二部分为非选择题。

必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。

4.合理安排答题空间,超出答题区域无效。

第一部分选择题 (共l5分)一、单项选择题(本大题共l5小题,每小题l分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题卡”的相应代码涂黑。

未涂、错涂或多涂均无分。

1.谓词公式的辖域是2.设无向树T有3个度数为4的结点,其余结点都为树叶,则T的结点数为A.10 B.11 C.12 D.133.设集合A有3个元素,则A中的划分有A.3个 B.5个 C.6个 D.9个4.下列关系不可能是相容关系的是A。

恒等关系 B.全域关系 C.等价关系 D.拟序关系5.设论域为整数集,下列命题中真值为假的是6.4个结点的非同构的无向树的数目是A.5 B.4 C.3 D.27.下列命题公式是永真式的为8.下列语句是原子命题的为A.x+y>xy B.请给我来点掌声吧C.小明既爱唱歌又爱跳舞 D.火星上有生物9.设2为整数集合,则下列集合关于数的加法运算不能构成独异点的是10.设,则既是s的元素又是s的子集的为11.设p:他怕困难;q:他获得成功。

命题“除非他不怕困难,否则他不会获得成功”可符号化为12.在整数集Z上,下列运算满足结合律的是A.a*b=ab一1 B.a*b=|a-b|C.a*b=2a+b D.a*b=a+b-113.下列图对应的格是有补格的为14.设G为连通的无向简单图。

若G恰有2个奇度结点,则G一定具有A.欧拉回路 B.欧拉通路C.哈密尔顿回路 D.哈密尔顿通路15.设F(x):x是火车;G(y):y是汽车;H(x,y):x比y快;则下列语句可以表示成公式的是A.每列火车都比所有汽车快 B. 每列火车都比某些汽车快C.某些火车比某些汽车快 D.某些火车比所有汽车快第二部分非选择题 (共85分)二、填空题(本大题共l0小题,每小题2分。

自考离散数学02324课后答案:[3]1.4章节

自考离散数学02324课后答案:[3]1.4章节

(答案及点评) a)证明如下:P→(Q→P) &lt;=P→(|Q∨P)(等值公式) &lt;=|P∨(|Q∨P)(等值公式)
路遥文学好看的书推荐 /路遥文学()只提供小说搜索服务,推荐路遥文学好看的小说!
c)已知|A&lt;=|B,问 a&lt;=B 吗?
答:
a)A&lt;=B 等价式不成立。假定有一组指派, A 为 T、B 为 F,这对于已知条件来说是成立的,而 对于结论是不成立的。b)A&lt;=B 也不成立。假定
路遥文学好看的书推荐 /路遥文学()只提供小说搜索服务,推荐路遥文学好看的小说!
f)由 P∨|P&lt;=T, (Q∧|Q)&lt;=F(否定律),F ∧|R&lt;=F(同一律)可将原式化为:T→F&lt;=F, 即原命题是一永假式。
g)(P∧|P)←→Q&lt;=F←→Q,当 Q 为 T 时,
命题为 F,当 Q 为 F 时,命题为 T,因此本命题是 可满足式。
h)可列真值表如下: PQP←→Q|(P∨Q)P←→Q)→|(P∨Q)
&lt;=(|P∨R)∨(|Q∨R)(等值公式)
&lt;=(|P∨|Q)∨R∨R(交换、结合律)
&lt;=|(P∧Q)∨R(德摩根律)&lt;=(P∧Q)→ R(等值公式)注意:证到这里,我们发现这个结果 与题目所提供的右边公式不相同,那么就是说,原
路遥文学好看的书推荐 /路遥文学()只提供小说搜索服务,推荐路遥文学好看的小说!
&lt;=P∨(|P∨|Q)(交换律) &lt;=P→(P→|Q)(等值公式) b)证明如下: (P←→Q)
&lt;=|((P∧Q)∨(|P∧|Q))(等值公式) &lt;=|(P∧Q)∧|(|P∧|Q)(德摩根律) &lt;=|(P∧Q)∧(P∨Q)(德摩根律)&lt;=(P∨ Q)∧|(P∧Q)(交换律)

自考离散数学02324课后答案:[1]1.2章节

自考离散数学02324课后答案:[1]1.2章节

c)我既不看电视,也不去看电影,我准备做作
/show_21.html
业。 d)四边形 ABCD 是平行四边形,当且仅当它的 对边平行。
答案:
a)原子命题为:今天天气炎热;今天有雷阵雨 b)原子命题为:你去比赛;我去比赛; c)原子命题为:我看电视;我看电影;我做作
/show_21.html
k)火星上有生物。 答案: a)的真值为 T;

b)的真值为 T;
c)不是命题; d)的真值为 F; e)F;
f)不是命题;
/show_21.html
g)F; h)不是命题; i)T;
j)不是命题;
/show_21.html
c)设 P:天下大雨;Q:他在体育馆内锻炼则本
/show_21.html
例符号化为:P→Q d)设 P:天下大雨;Q:他在室内运动则本例符 号化为:|P→|Q
e)设 P:经一事;Q:长一智则本例符号化为: |P→|Q
4.将下列复合命题分成若干原子命 a)今天天气炎热,且有雷阵雨。 b)如果你不去比赛,那么我也不去比赛。
业;
/show_21.html
d)原子命题为:四边形 ABCD 是平行四边形; 四边形的对边平行; 另外要注意的是,一些悖论因为是无法辨别真 假的,所以不是命题,如
P:我在说谎。
看上去像是一个命题,但这是个愽论(如果 P 为 T,则我就不是在说谎了,如果 P 为 F 则我就是 在说谎了。所以无法辨别真假。) 自考需要坚持,为自己加油!自考离散数学 02324 课后答案(共 5 篇)下一篇:1.3 章节
k)F。 3.将下列命题符号化 a)小李不但聪明而且用功。
b)昨天晚自习时小赵做了二三十道数学题。
/show_21.html
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年10月高等教育自学考试全国统一命题考试
离散数学试卷
(课程代码02324)
本试卷共4页,满分l00分,考试时间l50分钟。

考生答题注意事项:
1.本卷所有试题必须在答题卡上作答。

答在试卷上无效,试卷空白处和背面均可作草稿纸。

2.第一部分为选择题。

必须对应试卷上的题号使用2B铅笔将“答题卡”的相应代码涂黑。

3.第二部分为非选择题。

必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。

4.合理安排答题空间,超出答题区域无效。

第一部分选择题
一、单项选择题(本大题共l5小题,每小题l分。

共15分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题卡”
的相应代码涂黑。

未涂、错涂或多涂均无分。

1.设简单无向图G有l5条边,有3个4度结点,其余结点的度数均为3,则G中的结点
个数是
A. 6 B.7 C.8 D.9
2.﹤A,≤﹥是一个偏序集,其中A是正整数l2的正因子的集合,≤为整除关系,元素6
能盖住元素
A.1 B.3 C.6 D.12
3.下列公式不是合式公式的为
4.设a:小华,P(x):x是教授,f(x):x的父亲,则语句“小华的父亲是教授”可符号
化为
A.P(f(a)) B.P(a)∧f(a)
C.f(P(a)) D.P(a)∨f(a)
5.设p:天下雨,q:我开车上班。

命题“除非不下雨,否则我开车上班”可符号化为
A.p→q B.q→p C.﹁p→q D.q→﹁ p
6.设是集合A上的相容关系,则下列关系不一定是相容关系的是
7.下列公式中与公式等价的是
8.设有一个连通平面图G,共有7个结点,l2条边,则G的面的个数为
A.6 B.7 C. 8 D. 9
9.设R l、R2都是从A到B的二元关系,则下列各式成立的为
10.下列语句是假命题的是
A.只有2是奇数,才是无理数 B.只要2是奇数,就是无理数
C.如果2是奇数,那么就是无理数 D.除非是无理数,否则2不是奇数11.设<G,*>为群,有
A.(ab)-1=ab B.(ab)-1=ba
C.(ab)-1=a-1b-1 D.(ab)-1=b-1a-1
12.下列无向图不一定为树的是
A. 无回路的连通图 B.有n个结点,n—l条边的连通图
C.每对结点间都有路的图 D.连通但删去一条边便不连通的图
A.0 B.1 C.b D.c
14.在自然数集N上,下列运算满足结合律的是
A.a*b=a B.a*b=︱a—b︱
C.a*b=b a D.a*b =2a+b
15.设论域为整数集,下列公式中真值为真的是
第二部分非选择题
二、填空题(本大题共l0小题,每小题2分,共20分)
请在答题卡上作答。

16.公式的约束变元为________,自由变
元为________。

17.设A={2,3,4,5},a*b=max(a,b)。

代数系统<A,*>的幺元是________,零元是。

18.设无向树T有3个度数为3的结点,其余结点都为树叶,则T的结点数为________。

19.命题公式,的二进制编码大项Mi为________。

20.设A={4,2,l},B={5,l,3},则B-A=________,B⊕A=_______。

21.设F(x):x有进取心,要求只能使用全称量词,命题“某些人有进取心”可符号化为 ________.
22.设A={0,b,c,d},B={1,2,3,4},A到B的关系R={<a,4>,<6,1>,<b,2>}, B到A的关系S={<4,a>,<3,b>,<2,c>},则R。

S=________。

23.命题公式的成真指派有________个,成假指派有________个。

24.设R={<a,2>,<b,4>,<b,3>,<d,2>}是集合A={a,b,c,d}到集合
B={1,2,3,4}的关系,则ranR=________,domR=________。

25.设,则其幂集P(S)的元素个数为________。

三、计算题 (本大题共5小题。

每小题6分,共30分)
请在答题卡上作答。

26.构造命题公式(﹁P→Q)∧(Q→R)的真值表。

27.利用等值演算法求命题公式(﹁P∨Q)∧(R→﹁Q)的主析取范式。

29.S={{1,2},{3},{4,5}}是集合A={1,2,3,4,5}上的一个划分。

(1)写出由S导出的A上的等价关系的有序对集合;
(2)写出的关系矩阵。

30.设解释I如下:D={2,3},已知F(2,2)=F(3,3)=0,F(2,3)=F(3,2)=1,
f(2,2)=f(2,3)=2,f(3,2)=f(3,3)=3。

求谓词公式在I下的真值。

四、证明题(本大题共3小题,每小题7分,共21分)
请在答题卡上作答。

31.A,B,C是集合。

证明:(A一B)一C=A一(B ∪C)。

32.设无向简单图G有9个结点。

证明:G中至少存在两个度数相同的结点。

33. 设<G,* >是群,C(G)= 。

证明:<C(G),*>是
<G,*>的一个子群。

五、综合应用题(本大题共2小题,每小题7分,共14分)
请在答题卡上作答。

34.符号化下列命题,并构造推理证明。

每个学生都是勤奋的;每个勤奋而又聪明的人在他
的工作生活中都将获得成功;小华是学生,并且是聪明的。

所以,小华在他的工作生活中将获得成功。

35.今有a,b,c,d,e,g共7人,已知下列事实:
a会讲法语;b会讲法语、意大利语和日语;c会讲法语、汉语;d会讲日语和意大利语;e会讲德语、汉语和法语;f会讲英语、日语和俄语;g会讲英语和德语。

试问:这7个人应如何围圆桌排座位,才能使每个人和他两边的人可以交谈?(须写出所有可能方案)。

相关文档
最新文档