数学高考导数难题导数零点问题导数
高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用
高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用高考压轴题:导数题型及解题方法一、切线问题题型1:求曲线y=f(x)在x=x处的切线方程。
方法:f'(x)为在x=x处的切线的斜率。
题型2:过点(a,b)的直线与曲线y=f(x)的相切问题。
方法:设曲线y=f(x)的切点(x,f(x)),由(x-a)f'(x)=f(x)-b求出x,进而解决相关问题。
注意:曲线在某点处的切线若有则只有一条,曲线过某点的切线往往不止一条。
例题:已知函数f(x)=x-3x。
1)求曲线y=f(x)在点x=2处的切线方程;(答案:9x-y-16=0)2)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围。
提示:设曲线y=f(x)上的切点(x,f(x)),建立x,f(x)的等式关系。
将问题转化为关于x,m的方程有三个不同实数根问题。
答案:m的范围是(-3,-2))练1:已知曲线y=x-3x。
1)求过点(1,-3)与曲线y=x-3x相切的直线方程。
(答案:3x+y=0或15x-4y-27=0)2)证明:过点(-2,5)与曲线y=x-3x相切的直线有三条。
题型3:求两个曲线y=f(x)、y=g(x)的公切线。
方法:设曲线y=f(x)、y=g(x)的切点分别为(x1,f(x1))、(x2,g(x2)),建立x1,x2的等式关系,(x2-x1)f'(x1)=g(x2)-f(x1),(x2-x1)f'(x2)=g(x2)-f(x1);求出x1,x2,进而求出切线方程。
解决问题的方法是设切点,用导数求斜率,建立等式关系。
例题:求曲线y=x与曲线y=2elnx的公切线方程。
(答案:2ex-y-e=0)练1:求曲线y=x与曲线y=-(x-1)的公切线方程。
(答案:2x-y-1=0或y=0)2.设函数f(x)=p(x-2)-2lnx,g(x)=x,直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于(1,0),求实数p的值。
高中数学导数难题怎么解题
高中数学导数难题怎么解题导数是高考数学必考的内容,近年来高考加大了对以导数为载体的知识问题的考查,题型在难度、深度和广度上不断地加大、加深,从而使得导数相关知识愈发显得重要。
下面是小编为大家整理的关于高中数学导数难题解题技巧,希望对您有所帮助。
欢迎大家阅读参考学习!1.导数在判断函数的单调性、最值中的应用利用导数来求函数的最值的一般步骤是: (1)先根据求导公式对函数求出函数的导数; (2)解出令函数的导数等于 0 的自变量; (3)从导数性质得出函数的单调区间; (4)通过定义域从单调区间中求出函数最值。
2.导数在函数极值中的应用利用导数的知识来求函数极值是高中数学问题比较常见的类型。
利用导数求函数极值的一般步骤是: (1)首先根据求导法则求出函数的导数; (2)令函数的导数等于 0,从而解出导函数的零点; (3)从导函数的零点个数来分区间讨论,得到函数的单调区间; (4)根据极值点的定义来判断函数的极值点,最后再求出函数的极值。
3.导数在求参数的取值范围时的应用利用导数求函数中的某些参数的取值范围,成为近年来高考的热点。
在一般函数含参数的题中,通过运用导数来化简函数,可以更快速地求出参数的取值范围。
导数知识在函数解题中的妙用函数知识是高中数学的重点内容,其中包括极值、图像、奇偶性、单调性等方面的分析,具有代表性的题型就是极值的计算和单调性的分析,按照普通的解题过程是通过图像来分析,可是对于较难的函数来说,制作图像不仅浪费时间,而且极容易出错,而在函数解题中应用导数简直就是手到擒来。
例如:函数 f(x)=x3+3x2+9x+a,分析 f(x)的单调性。
这是高中数学中常见的三次函数,在对这道题目进行单调性分析时,很多学生根据思维定式会采用常规的手法画图去分析单调区间,但由于未知数a 的存在而遇到困难。
如果考虑用导数的相关知识解决这一问题,解:f’(x)=-3x2+6x+9,令 f’(x)>0,那么解得 x<-1 或者 x>3,也就是说函数在(- ∞ ,-1), (3,+∞)这个单调区间上单调递减,这样就能非常容易的判断函数的单调性。
数学高考导数难题导数零点问题导数整理2017
含参导函数零点问题的几种处理方法方法一:直接求出,代入应用对于导函数为二次函数问题,可以用二次函数零点的基本方法来求。
1)因式分解求零点(1123)?Rx?1(?(a?)x)f(x?a?2ax 例1 讨论函数的单调区间232)?2?1)(x?1)x?2?(axf'(x)?ax?(2a)(xf'可以因式分的符号问题。
由解析:即求方法二:猜出特值,证明唯一对于有些复杂的函数,有些零点可能是很难用方程求解的方法求出的,这时我们可以考虑用特殊值去猜出零点,再证明该函数的单调性而验证其唯一性。
112x3ax1)x??x(a?f(x)?(x?a?1)e?R?a,讨论函数,的极值情况例423x2x)1e?x?a?(x?a)(?(x?a)ex?(a?1)x?f'(x)?a)f'(x其它的零点就的一个零点为,解析:,只能解出x0?1?e?x的根,不能解。
是2Ra?x?a)ln x,f(x)?(例5(2011高考浙江理科)设函数a?ex)xy?f(的极值点,求实数(Ⅰ)若为2exf()?4ea],3e(0,x?为自然对数),(Ⅱ)求实数恒有的取值范围,使得对任意的成立(注:方法三:锁定区间,设而不求对于例5,也可以直接设函数来求,2e)?0?4f(xa e1?1?x?30?x有实时,对于任意的数题,恒有意,首②当先①当,由立成a e22e22,?e?a)4e ln(3e)f(3e)?(3)1???a)(2ln xf'(x)?(x?e?e?3?a3,但这时解得由x)e3ln(ln(3e)a??12ln x ax?0?'(x)f=0外还有会发现的解除了的解,显然无法用特殊值猜出。
xa??(x)2ln x?1h h(1)?1?a?0h(a)?2ln a?0,,令,注意到x2e?3eln(3e)1a)f02(ln3e?h(3e)?2ln(3e?2ln(3e)?1?)?1?且。
数学高考导数难题导数零点问题导数新颖2017
标准文档含参导函数零点问题的几种办理方法 方法一:直接求出,代入应用关于导函数为二次函数问题,能够用二次函数零点的基本方法来求。
( 1)因式分解求零点 例 1 议论函数f ( x)1 3(a1 ) x2 2 x 1( a )ax 2 R 的单一区间3分析:即求 f ' (x) 的符号问题。
由f ' (x)ax 2 (2a1)x 2 (ax 1)( x 2) 能够因式分方法二:猜出特值,证明独一关于有些复杂的函数,有些零点可能是很难用方程求解的方法求出的,这时我们能够考虑用特别值去猜出零点,再证明该函数的单一性而考证其独一性。
例 4 议论函数 f ( x)( x a 1)ex1 x 3 1(a 1) x 2 ax , aR ,的极值状况32分析: f ' ( x) ( x a)e x x 2(a 1) x a(xa)(e xx 1) ,只好解出 f ' ( x) 的一个零点为 a , 其余的零点就是 e xx 1 0 的根,不可以解。
例 5( 2011 高考浙江理科)设函数f ( x) (x a)2 ln x, aR(Ⅰ)若 xe 为 yf (x) 的极值点,务实数a(Ⅱ)务实数 a 的取值范围,使得对随意的x (0,3e], 恒有 f ( x) 4e 2 建立(注: e 为自然对数),方法三:锁定区间,设而不求关于例 5,也能够直接设函数来求,① 当 0x 1 时 , 对 于 任 意 的 实 数 a , 恒 有 f ( x) 04e 2 成 立 ② 当 1 x 3e , 由 题 意 , 首 先 有f (3e)(3e24e 2 , 解得 3e2e a 3e2e由 f '( x) ( x a)(2ln x1a a ) ln( 3e)ln(3e)) ,但这时ln(3e)x会发现 f ' ( x)0 的排除了 xa 外还有 2ln x 1a=0 的解,明显没法用特别值猜出。
专题11 利用导数解决零点问题(解析版)
专题11 利用导数解决零点问题1.(2022·全国·高考真题(理))已知函数()()ln 1e xf x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)若()f x 在区间()()1,0,0,-+∞各恰有一个零点,求a 的取值范围. 【答案】(1)2y x = (2)(,1)-∞- 【解析】 【分析】(1)先算出切点,再求导算出斜率即可(2)求导,对a 分类讨论,对x 分(1,0),(0,)-+∞两部分研究 (1)()f x 的定义域为(1,)-+∞当1a =时,()ln(1),(0)0e x x f x x f =++=,所以切点为(0,0)11(),(0)21e xx f x f x ''-=+=+,所以切线斜率为2 所以曲线()y f x =在点(0,(0))f 处的切线方程为2y x = (2)()ln(1)e xaxf x x =++()2e 11(1)()1e (1)e x x x a x a xf x x x '+--=+=++设()2()e 1x g x a x =+-1︒若0a >,当()2(1,0),()e 10x x g x a x ∈-=+->,即()0f x '>所以()f x 在(1,0)-上单调递增,()(0)0f x f <= 故()f x 在(1,0)-上没有零点,不合题意2︒若10a -,当,()0x ∈+∞,则()e 20xg x ax '=->所以()g x 在(0,)+∞上单调递增所以()(0)10g x g a >=+,即()0f x '> 所以()f x 在(0,)+∞上单调递增,()(0)0f x f >= 故()f x 在(0,)+∞上没有零点,不合题意 3︒若1a <-(1)当,()0x ∈+∞,则()e 20x g x ax '=->,所以()g x 在(0,)+∞上单调递增 (0)10,(1)e 0g a g =+<=>所以存在(0,1)m ∈,使得()0g m =,即()0'=f m 当(0,),()0,()x m f x f x '∈<单调递减 当(,),()0,()x m f x f x '∈+∞>单调递增所以当(0,),()(0)0x m f x f ∈<= 当,()x f x →+∞→+∞所以()f x 在(,)m +∞上有唯一零点又(0,)m 没有零点,即()f x 在(0,)+∞上有唯一零点(2)当()2(1,0),()e 1x x g x a x ∈-=+-设()()e 2x h x g x ax '==-()e 20x h x a '=->所以()g x '在(1,0)-单调递增 1(1)20,(0)10eg a g ''-=+<=>所以存在(1,0)n ∈-,使得()0g n '= 当(1,),()0,()x n g x g x '∈-<单调递减当(,0),()0,()x n g x g x '∈>单调递增,()(0)10g x g a <=+< 又1(1)0eg -=> 所以存在(1,)t n ∈-,使得()0g t =,即()0f t '= 当(1,),()x t f x ∈-单调递增,当(,0),()x t f x ∈单调递减 有1,()x f x →-→-∞而(0)0f =,所以当(,0),()0x t f x ∈>所以()f x 在(1,)t -上有唯一零点,(,0)t 上无零点 即()f x 在(1,0)-上有唯一零点 所以1a <-,符合题意所以若()f x 在区间(1,0),(0,)-+∞各恰有一个零点,求a 的取值范围为(,1)-∞-2.(2022·全国·高考真题(理))已知函数()ln xf x x a x x e -=+-.(1)若()0f x ≥,求a 的取值范围;(2)证明:若()f x 有两个零点12,x x ,则121x x <. 【答案】(1)(,1]e -∞+ (2)证明见的解析 【解析】 【分析】(1)由导数确定函数单调性及最值,即可得解;(2)利用分析法,转化要证明条件为1e 11e 2ln 02x x x x x x x ⎡⎤⎛⎫----> ⎪⎢⎥⎝⎭⎣⎦,再利用导数即可得证.(1)()f x 的定义域为(0,)+∞,2111()e 1x f x x x x ⎛⎫'=--+ ⎪⎝⎭1111e 1e 11x x x x x x x x ⎛⎫-⎛⎫⎛⎫=-+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭令()0f x =,得1x =当(0,1),()0,()x f x f x '∈<单调递减当(1,),()0,()x f x f x >'∈+∞单调递增()(1)e 1f x f a ≥=+-, 若()0f x ≥,则e 10a +-≥,即1a e ≤+ 所以a 的取值范围为(,1]e -∞+ (2)由题知,()f x 一个零点小于1,一个零点大于1 不妨设121x x 要证121x x <,即证121x x < 因为121,(0,1)x x ∈,即证()121f x f x ⎛⎫> ⎪⎝⎭因为()()12f x f x =,即证()221f x f x ⎛⎫> ⎪⎝⎭即证1e 1ln e ln 0,(1,)x x x x x x x x x-+--->∈+∞即证1e 11e 2ln 02x x x x x x x ⎡⎤⎛⎫----> ⎪⎢⎥⎝⎭⎣⎦下面证明1x >时,1e 11e 0,ln 02x x x x x x x ⎛⎫->--< ⎪⎝⎭设11(),e e xx g x x xx =->,则11122111111()e e e 1e e 1x x x xx g x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫'=--+⋅-=--- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭111e 1e 1e e xx x xx x x x x ⎛⎫⎛⎫-⎛⎫=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭设()()()22e 1111,e e 0x x xx x x x x x x x ϕϕ-⎛⎫=>=-=⎪⎭'> ⎝所以()()1e x ϕϕ>=,而1e e x <所以1e e 0xx x->,所以()0g x '>所以()g x 在(1,)+∞单调递增 即()(1)0g x g >=,所以1e e 0xx x x-> 令11()ln ,12h x x x x x ⎛⎫=--> ⎪⎝⎭2222211121(1)()10222x x x h x x x x x ----⎛⎫'=-+==< ⎪⎝⎭所以()h x 在(1,)+∞单调递减即()(1)0h x h <=,所以11ln 02x x x ⎛⎫--< ⎪⎝⎭;综上, 1e 11e 2ln 02x x x x x x x ⎡⎤⎛⎫----> ⎪⎢⎥⎝⎭⎣⎦,所以121x x <. 3.(2022·全国·高考真题(文))已知函数1()(1)ln f x ax a x x=--+.(1)当0a =时,求()f x 的最大值;(2)若()f x 恰有一个零点,求a 的取值范围. 【答案】(1)1- (2)()0,+∞ 【解析】 【分析】(1)由导数确定函数的单调性,即可得解; (2)求导得()()()211ax x f x x --'=,按照0a ≤、01a <<及1a >结合导数讨论函数的单调性,求得函数的极值,即可得解. (1)当0a =时,()1ln ,0f x x x x =-->,则()22111xf x x x x-'=-=,当()0,1∈x 时,0f x ,()f x 单调递增; 当()1,x ∈+∞时,0fx,()f x 单调递减;所以()()max 11f x f ==-;(2)()()11ln ,0f x ax a x x x =--+>,则()()()221111ax x a f x a x x x--+'=+-=, 当0a ≤时,10-≤ax ,所以当()0,1∈x 时,0f x,()f x 单调递增;当()1,x ∈+∞时,0fx,()f x 单调递减;所以()()max 110f x f a ==-<,此时函数无零点,不合题意; 当01a <<时,11a >,在()10,1,,a ⎛⎫+∞ ⎪⎝⎭上,0f x,()f x 单调递增;在11,a ⎛⎫⎪⎝⎭上,0f x,()f x 单调递减;又()110f a =-<,由(1)得1ln 1x x +≥,即1ln 1x x ≥-,所以ln x x x <<<当1x >时,11()(1)ln 2((2f x ax a x ax a ax a x x=--+>--+-+则存在2312m a a⎛⎫=+> ⎪⎝⎭,使得()0f m >,所以()f x 仅在1,a ⎛⎫+∞ ⎪⎝⎭有唯一零点,符合题意;当1a =时,()()2210x f x x-'=≥,所以()f x 单调递增,又()110f a =-=,所以()f x 有唯一零点,符合题意; 当1a >时,11a <,在()10,,1,a ⎛⎫+∞ ⎪⎝⎭上,0f x,()f x 单调递增;在1,1a ⎛⎫⎪⎝⎭上,0f x,()f x 单调递减;此时()110f a =->,由(1)得当01x <<时,1ln 1xx>-,1>ln 21x ⎛> ⎝, 此时11()(1)ln 2(11)1f x ax a x ax ax x x ⎛=--+<--+-< ⎝ 存在2114(1)n a a=<+,使得()0f n <, 所以()f x 在10,a ⎛⎫ ⎪⎝⎭有一个零点,在1,a ⎛⎫+∞ ⎪⎝⎭无零点,所以()f x 有唯一零点,符合题意; 综上,a 的取值范围为()0,+∞.4.(2022·全国·模拟预测)已知函数()()ln 13f x a x x =+-.(1)讨论函数()f x 的单调性;(2)证明:当1a =时,方程()sin 3f x x x =-在,2π⎛⎫+∞ ⎪⎝⎭上有且仅有一个实数解.【答案】(1)答案不唯一,具体见解析 (2)证明见解析 【解析】 【分析】(1)先求出函数的定义域,再求出()31af x x '=-+,然后分0a >,0a ≤可得出函数的单调性. (2)设()()ln 1sin g x x x =+-,将问题转化为函数()g x 在,2π⎛⎫+∞ ⎪⎝⎭上有且仅有一个零点,又当e 1x >-时,()ln 1lne 1sin x x +>=≥,所以只需证()g x 在,e 12π⎛⎤- ⎥⎝⎦上有且仅有一个零点,求出其导数,由零点存在原理即可证明. (1)函数()()ln 13f x a x x =+-的定义域是()1,-+∞,()31af x x '=-+. 当0a >时,令()0f x '<,得33a x ->;令()0f x '>,得313a x --<<, 故()f x 在31,3a -⎛⎫- ⎪⎝⎭上单调递增,在3,3a -⎛⎫+∞ ⎪⎝⎭上单调递减;当0a ≤时,()0f x '<恒成立,故()f x 在()1,-+∞上单调递减. (2)当1a =时,方程()sin 3f x x x =-即为()ln 13sin 3x x x x +-=-,即()ln 1sin 0x x +-=. 令()()ln 1sin g x x x =+-,则()1cos 1g x x x '=-+, 则“方程()sin 3f x x x =-在,2π⎛⎫+∞ ⎪⎝⎭上有且仅有一个实数解”等价于“函数()g x 在,2π⎛⎫+∞ ⎪⎝⎭上有且仅有一个零点”.当e 1x >-时,()ln 1lne 1sin x x +>=≥,所以()0g x >在()e 1,-+∞上恒成立, 所以只需证()g x 在,e 12π⎛⎤- ⎥⎝⎦上有且仅有一个零点.因为e 1π-<,所以当,e 12x π⎛⎤∈- ⎥⎝⎦时,cos 0x <,101x >+, 所以()0g x '>在,e 12π⎛⎤- ⎥⎝⎦上恒成立.所以()g x 在,e 12π⎛⎤- ⎥⎝⎦上单调递增,又ln 1sin ln 1102222g ππππ⎛⎫⎛⎫⎛⎫=+-=+-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()e 11sin e 1g -=--,所以()g x 在,e 12π⎛⎤- ⎥⎝⎦上有且仅有一个零点,即()g x 在,2π⎛⎫+∞ ⎪⎝⎭上有且仅有一个零点.故方程()sin 3f x x x =-在,2π⎛⎫+∞ ⎪⎝⎭上有且仅有一个实数解.5.(2022·湖北·大冶市第一中学模拟预测)已知函数()e sin xf x x ax =+,其中e 是自然对数的底数.(1)若1a =时,试判断f (x )在区间(2π-,0)的单调性,并予以证明;(2)从下面两个条件中任意选一个,试求实数a 的取值范围. ①函数()f x 在区间[0,2π]上有且只有2个零点; ①当2,0x π⎡⎤∈⎢⎥⎣⎦时,()2f x x ≥.【答案】(1)f (x )在(π2-,0)上单调递增,证明见解析;(2)选择①:π22e 1πa -≤<-;选择①:1a ≥-.【解析】 【分析】(1)求导,通过判定导函数在(π2-,0)上的正负确定单调性; (2)选择①:易得()00f =,则因此f (x )在π0,2x ⎛⎤∈ ⎥⎝⎦上有且只有1个零点,求导通过讨论找出符合条件的a 的取值范围;选择①:构造函数2π()e sin ,0,2x m x x ax x x ⎡⎤=+-∈⎢⎥⎣⎦,此时()00m =,可通过端点效应或隐零点等思路求a的取值范围. (1)当1a =时,()e sin ,(,0)2xf x x ax x π=+∈-()πe sin e cos 1sin 14x x xf x x x x ⎛⎫=++=++ ⎪⎝⎭'.当π,02x ⎛⎫∈- ⎪⎝⎭时,πππ,444x ⎛⎫+∈- ⎪⎝⎭,所以sin 1144x x ππ⎛⎫⎛⎫<+<-+< ⎪ ⎪⎝⎭⎝⎭, 又0e 1x <<,πsin 14xx ⎛⎫+>- ⎪⎝⎭,从而()0f x '>,所以,f (x )在(π2-,0)上单调递增. (2) 选择①,由函数()e sin 0π,2xf x x ax x ⎡⎤=+∈⎢⎥⎣⎦,,可知()00f =因此f (x )在π0,2x ⎛⎤∈ ⎥⎝⎦上有且只有1个零点.()e sin e cos x x f x x x a +'=+,令()e sin e cos x x h x x x a =++, 则()2e cos 0xh x x '=≥在[0.π2]上恒成立.即()f x '在[0,π2]上单调递增,()2ππ01e 2f a f a ⎛'⎫=+=⎪⎭'+ ⎝,,当1a ≥-时,()()00f x f '≥'≥,f (x )在[0.π2]上单调递增.则f (x )在(0,π2]上无零点,不合题意,舍去,当π2e a ≤-时,()0π2f x f ⎛⎫'≤'≤ ⎪⎝⎭,()f x 在[0,π2]上单调递减,则()f x 在(0,π2]上无零点,不合题意,舍去,当2e 1a π-<<-时,π2(0)10,()e 2π0f a f a '=+<'=+≥则()f x '在(0,π2)上只有1个零点,设为0x .且当0(0,)x x ∈时,()0f x <′;当0,2x x π⎛⎫∈ ⎪⎝⎭时,()0f x >′ 所以当()00x x ∈,时,()f x 在(0,0x )上单调递减,在(x0,π2)上单调递增,又()π200e ππ22f f a ⎛⎫==+ ⎪⎝⎭,因此只需20π22πe f a ⎛⎫=+≥ ⎪⎝⎭即可,即π22e 1πa -≤<-,综上所述:2π2e 1πα-≤<-选择①,构造函数2π()e sin ,0,2x m x x ax x x ⎡⎤=+-∈⎢⎥⎣⎦此时()2π2e π244π00x m m a ⎛⎫==+- ⎪⎝⎭,则2π()e sin e cos 2(0)π1,(e 2π)xxm x x x a x m a m a'=++-'=+'=-+,易知(1)π)(2m m '>'令()e sin e cos 2,()2e cos 2,(0)0,()2π2x x xt x x x a x t x x t t =++-'=-'='=-令2π()2e cos 2,()2e (cos sin ),(0)2,()2πe 2xxp x x p x x x p p =-=-'='=-', 令()2e (cos sin )x q x x x =-,则()4e sin 0x q x x '=-≤ 所以()2e (cos sin )x q x x x =-在(0,π2)上单调递减.又π20π(0)(0)20,()()2e 22πq p q p ='=>='=-<在(0,π2)上存在唯一实数1x 使得()10q x =,且满足当()10,x x ∈时,()0q x >当1π(,)2x x ∈时.()0q x <即p (x )在(0,x 1)上单调递增,在(x 1,π2)上单调递减.又()()ππ0002022p t p t ⎛⎫⎛⎫==-=-< ⎪'' ⎪⎝⎭⎝⎭,,所以()2e cos 2x p x x =-在1π(,)2x 上存在一实数2x 使得()20p x =,且满足当2(0,)x x ∈时,()0p x >;当2π()2x x ∈⋅时,()0p x <即()()t x m x ='在(0,x2)上单调递增,在(2x ,2π)上单调递减, 当()010m a ='+≥时,即()10a m x ≥-'≥,,函数()2e sin x m x x ax x =+-在[0,π2]上单调递增,又()00m =,因此()2e sin 0x m x x ax x =+-≥恒成立,符合题意,当()010m a '=+<,即1a <-,在π20,x ⎛⎫∈ ⎪⎝⎭上必存在实数3x ,使得当()30,x x ∈时,()0m x '<,又()00m =,因此在()30,x x ∈上存在实数()0m x <,不合题意,舍去 综上所述1a ≥-.6.(2022·浙江湖州·模拟预测)已知函数12()e x f x =(e 为自然对数的底数). (1)令1()||()()g x a x f x f x =--,若不等式()0g x ≤恒成立,求实数a 的取值范围; (2)令3()()x xf x m ϕ=-,若函数()ϕx 有两不同零点()1212,x x x x <. ①求实数m 的取值范围;①证明:21e e 21x x m -<+. 【答案】(1)(,1]-∞;(2)①2,03e m ⎛⎫∈- ⎪⎝⎭;①证明见解析.【解析】 【分析】(1)根据()g x 为偶函数,将问题转化为0x ≥时()0g x ≤恒成立,根据(0)0g =及参变分离求0x >有1122ee x x a x--≤恒成立,求参数范围;(2)①利用导数研究()ϕx 的单调性,及区间值域情况,进而判断()0x ϕ=有两不同解时m 的范围即可;①由(1)知:0x <时1122e e x x x -≥-且120x x <<,应用放缩法有2()e e x x x ϕ≥-,构造2()e e x x F x =-研究极值并判断()F x m =的两根与12,x x 大小关系得到3214e e e e x x x x -<-即可证结论. (1)由题设,1122()||e ex x g x a x -=--,则()()g x g x =-,所以()g x 为偶函数,故只需0x ≥时,()0g x ≤恒成立,而(0)0g =满足, 所以0x >有1122ee x x a x--≤恒成立,令02t x =>,则e e 2t ta t--≤,若()e e 2t t h t t -=--,则()e e 220t t h t -'=+-≥=,仅当0=t 时等号成立, 所以()0h t '>,即()h t 在(0,)+∞上递增,则()(0)0h t h >=,即e e 2t t t -->, 所以,在(0,)+∞上e e 12t tt-->,则1a ≤, 综上:a 的范围为(,1]-∞. (2)①由题设,323()1e 2x x x ϕ⎛⎫=+ ⎪'⎝⎭,若()0x ϕ'>得:23x >-,故()ϕx 在2,3⎛⎫-∞- ⎪⎝⎭单调减,在2,3⎛⎫-+∞ ⎪⎝⎭单调增,且x 趋向负无穷()ϕx 趋向于0,x 趋向正无穷()ϕx 趋向于正无穷,又2233e ϕ⎛⎫-=- ⎪⎝⎭,()00ϕ=,则0x <时,()0x ϕ<;0x >时,()0x ϕ>,要使()0x ϕ=有两个不同解12,x x 且120x x <<,则2,03e m ⎛⎫∈- ⎪⎝⎭;①由(1)知:0x <时1122e ex x x -≥-,则1132222()e e e e e x x x x xx ϕ-⎛⎫≥-=- ⎪⎝⎭;记2()e e x x F x =-且0x <,则(()e e 1)2x x F x '=-,所以(,ln 2)-∞-上()0F x '<,(ln 2,0)-上()0F x '>,故()F x 在(,ln 2)-∞-上递减,(ln 2,0)-上递增,且12()(ln 2),043e F x F ⎛⎫≥-=-∈- ⎪⎝⎭,所以()F x m =也有两根,记为34x x <,又(,0)-∞上)(()x F x ϕ≥,则31240x x x x <<<<, 令e x t =,则34e ,e xx 为20t t m --=的两根,故34e e 1x x +=,34e e x x m =-,所以34e e x x -=3124e e e e x x x x <<<,所以3214(41)1e e e e 212x x x xm m ++-<-==+. 7.(2022·湖北·模拟预测)已知()()1ln af x a x x x=-++(1)若0a <,讨论函数()f x 的单调性; (2)()()ln a g x f x x x =+-有两个不同的零点1x ,()2120x x x <<,若12202x x g λλ+⎛⎫'> ⎪+⎝⎭恒成立,求λ的范围.【答案】(1)单调性见解析 (2)(][),22,λ∈-∞-+∞【解析】 【分析】(1)求导可得()()()21x a x f x x +-'=,再根据a -与0,1的关系分类讨论即可;(2)由题()ln g x a x x =+,,设()120,1x t x =∈根据零点关系可得21ln x x a t -=,再代入1222x x g λλ+⎛⎫' ⎪+⎝⎭化简可得()()21ln 02t t t λλ+-+<+恒成立,设()()()21ln 2t ht t t λλ+-=++,再求导分析单调性与最值即可(1)()f x 定义域为()0,∞+()()()()()222211111x a x a x a x a f x a x x x x+--+-'=-+-== ①)01a <-<即10a -<<时,()01f x a x '<⇒-<<,()00f x x a '>⇒<<-或1x > ①)1a -=即1a =-时,()0,x ∈+∞,()0f x '≥恒成立 ①)1a ->即1a <-,()01f x x a '<⇒<<-,()001f x x '>⇒<<或x a >- 综上:10a -<<时,(),1x a ∈-,()f x 单调递减;()0,a -、()1,+∞,()f x 单调递增 1a =-时,()0,x ∈+∞,()f x 单调递增1a <-时,()1,x a ∈-,()f x 单调递减;()0,1、(),a -+∞,()f x 单调递增(2)()ln g x a x x =+,由题1122ln 0ln 0a x x a x x +=⎧⎨+=⎩,120x x <<则()1221ln ln a x x x x -=-,设()120,1x t x =∈ ①212112ln ln ln x x x xa x x t--==-()1a g x x'=+ ①122112122221122ln 2x x x x g a x x t x x λλλλλλ+-++⎛⎫'=+=⋅+ ⎪+++⎝⎭()()()21102ln t t tλλ+-=+>+恒成立()0,1t ∈,①ln 0t < ①()()21ln 02t t t λλ+-+<+恒成立设()()()21ln 2t h t t t λλ+-=++,①()0h t <恒成立()()()()()()()()22222224122241222t t t t h t t t t t t t λλλλλλλ⎛⎫-- ⎪++-+⎝⎭'=-==+++ ①)24λ≥时,204t λ-<,①()0h t '>,①()h t 在()0,1上单调递增 ①()()10h t h <=恒成立, ①(][),22,λ∈-∞-+∞合题①)24λ<,20,4t λ⎛⎫∈ ⎪⎝⎭,①()0h t '>,①()h t 在20,4λ⎛⎫⎪⎝⎭上单调递增2,14t λ⎛⎫∈ ⎪⎝⎭时,()0h t '<, ①()h t 在2,14λ⎛⎫⎪⎝⎭上单调递减①2,14t λ⎛⎫∈ ⎪⎝⎭,()()10h t h >=,不满足()0h t <恒成立综上:(][),22,λ∈-∞-+∞【点睛】本题主要考查了分类讨论分析函数单调性的问题,同时也考查了双零点与恒成立问题的综合,需要根据题意消去参数a ,令()120,1x t x =∈,再化简所求式关于t 的解析式,再构造函数分析最值.属于难题 8.(2022·浙江绍兴·模拟预测)设a 为实数,函数()e ln 1=++x f x a x x . (1)当1a e=-时,求函数()f x 的单调区间;(2)判断函数()f x 零点的个数.【答案】(1)减区间为()0,∞+,无增区间. (2)当0a ≥,函数()f x 在(0,)+∞上没有零点;当210e a -≤<,函数()f x 在(0,)+∞上有1个零点;当21e a <-,函数()f x 在(0,)+∞上有2个零点. 【解析】 【分析】(1)利用二次求导研究函数()f x 的单调性,进而得出结果; (2)利用分类讨论的思想,根据函数()f x 与()()f x g x x=具有相同的零点,结合导数分别研究当0a ≥、210e a -≤<、21e a <-时()g x 的单调性,利用零点的存在性定理即可判断函数()g x 的零点个数,进而得出结果. (1)函数()f x 的定义域为(0,)+∞, 当1a e=-时,1()e ln 1e xf x x x =-++,则1()e ln 1x f x x -'=-++,且()01f '=, 有1111e ()ex x x f x x x---''=-+=,令()01f x x ''=⇒=, 所以当(0,1)x ∈时()0f x ''>,则()'f x 单调递增, 当(1,)x ∈+∞时()0f x ''<,则()'f x 单调递减, 所以max ()(1)0f x f ''==,即()0f x '≤,则函数()f x 在(0,)+∞上单调递减, 即函数()f x 的减区间为(0,)+∞,无增区间; (2)由(1)知当1a e=-时函数()f x 在(0,)+∞上单调递减,又(1)0f =,此时函数()f x 只有1个零点; 因为函数()f x 的定义域为(0,)+∞,所以()f x 与()f x x具有相同的零点, 令()e 1()ln (0)x f x a g x x x x x x ==++>, 则222(1)e 11(1)(e 1)()x x a x x a g x x x x x --+'=+-=, 当0a ≥时,e 10x a +>,令()01g x x '=⇒=,则函数()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,所以min ()(1)e 10g x g a ==+>,此时函数()g x 无零点,即函数()f x 无零点;当0a <时,令()01g x x '=⇒=或1ln()x a=-,若10e a -<<,则11ln()a<-,列表如下:当211e ea -≤≤-时,222e 2e 222e 4222e e e (e )2e 2e e 2e 0e ea g ------=++<++=-++<, 当210e a -<<即21e a ->时,131e ()a a->-,1121111()e ln()[e ln()1]aa g a a a a a a a a---=-+--=---+3111[()(1)1]0a a a a a <-----+<,又(1)0g >,此时函数()g x 有1个零点,则函数()f x 有1个零点; 若1e <-a ,则11ln()a>-,列表如下:所以ln()min 1e 111()(ln())ln ln()ln ln()ln1011ln()ln()aa g x g a a a a a -=-=+-+=-<=--, 又(1)0g >,2(e )0g <,则此时函数()g x 有2个零点,即函数()f x 有2个零点; 综上,当0a ≥时,函数()f x 在(0,)+∞上没有零点, 当210ea -≤<时,函数()f x 在(0,)+∞上有1个零点, 当21e a <-时,函数()f x 在(0,)+∞上有2个零点.【点睛】与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图像,讨论其图像与x 轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图像的交点问题.9.(2022·河南·开封市东信学校模拟预测(理))已知函数()ln 12a af x x x =+-+,其中R a ∈. (1)讨论函数()f x 的单调性;(2)讨论函数()f x零点的个数.【答案】(1)当4a ≤时,函数()f x 的增区间为(0,)+∞,没有减区间;当4a >时,函数()f x 的增区间为,⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭,减区间为⎝⎭(2)当4a ≤,函数()f x 有且仅有一个零点;当4a >时,函数()f x 有且仅有3个零点 【解析】 【分析】(1)求导,再分0a <,04a ≤≤和4a >分类讨论即可;(2)根据单调性及零点存在性定理分析即可. (1)函数()f x 的定义域为(0,)+∞,2221(2)1()(1)(1)a x a x f x x x x x +-+'=-=++,在一元二次方程2(2)10x a x +-+=中,22Δ(2)44(4)a a a a a =--=-=-, ①当0a <时,()0f x '≥,此时函数()f x 单调递增,增区间为(0,)+∞,没有减区间; ①当04a ≤≤时,()0f x '≥,此时函数()f x 单调递增,增区间为(0,)+∞,没有减区间; ①当4a >时,一元二次方程2(2)10x a x +-+=有两个不相等的根, 分别记为()1221,x x x x >,有122x x a +=-,1210x x =>,可得210x x >>, 有12x x ==可得此时函数()f x 的增区间为()()120,,,x x +∞减区间为()12,x x , 综上可知,当4a ≤时,函数()f x 的增区间为(0,)+∞,没有减区间;当4a >时,函数()f x 的增区间为,⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭,减区间为⎝⎭; (2)由(1)可知:①当4a ≤时,函数()f x 单调递增,又由(1)0f =,可得此时函数只有一个零点为1x =; ①当4a >时,由122110,x x x x =>>,可得1201x x <<<,又由(1)0f =,由函数的单调性可知()()12(1)0,(1)0f x f f x f >=<=, 当01x <<且20e ax -<<时,可得2ln ln e ax -<,有ln 02ax +<, 可得()ln ln 022a af x x a x <+-=+<, 当2e ax >时,2()ln ln e 02222aa a a af x x >->-=-=可知此时函数()f x 有且仅有3个零点,由上知,当4a ≤时,函数()f x 有且仅有一个零点; 当4a >时,函数()f x 有且仅有3个零点.10.(2022·贵州·贵阳一中模拟预测(文))已知函数()323.f x ax x a b =-++(1)讨论()f x 的单调性;(2)当()f x 有三个零点时a 的取值范围恰好是()()()3,22,00,1,--⋃-⋃求b 的值. 【答案】(1)答案见解析 (2)3b = 【解析】 【分析】(1)求函数()f x 的导函数()'f x ,讨论a ,并解不等式()0f x '>,()0f x '<可得函数的单调区间;(2)由(1)结合零点存在性定理可求b . (1)()f x 的定义域为R ,()()23632,f x ax x x ax =-=-'若0a =,则()0600f x x x '>⇒->⇒<,()00f x x <⇒>'∴ ()f x 在(),0∞-单调递增,()0,∞+单调递减,若0a >,则()00'>⇒<f x x 或2x a>, ()200f x x a>⇒<<', ()f x ∴在(),0∞-单调递增,20,a ⎛⎫ ⎪⎝⎭单调递减,2,a ⎛⎫+∞ ⎪⎝⎭单调递增,若0a <,则()200f x x a'>⇒<< ()20f x x a>⇒<'或0x >, ()f x ∴在2,a ⎛⎫-∞ ⎪⎝⎭单调递减,2,0a ⎛⎫⎪⎝⎭单调递增,()0,∞+单调递减.(2)可知()f x 要有三个零点,则0a ≠, 且2(0)0f f a ⎛⎫< ⎪⎝⎭由题意也即是()200f f a ⎛⎫< ⎪⎝⎭的解集就是()()()3,22,00,1--⋃-⋃,也就是关于a 的不等式()()()32224400a b a ba a b a b a a ++-⎛⎫++-<⇒< ⎪⎝⎭的解集就是()()()3,22,00,1--⋃-⋃, 令()()()32240a b a ba h a a+++=<,时()()()()()1114130h b b b b =++-=+-=, 所以有1b =-或3b =, 当3b =时,()()()()()323222233434400a a a a a a a h a aa++-+-+-=<⇒<,()()()2231440a a a a a+-++<的解是()()()3,22,00,1--⋃-⋃,满足条件,当1b =-时,()()()322140a a a h a a---=<,当1a =-时,()1120h -=>,不满足条件, 故1b ≠-,综合上述3b =.11.(2022·河南·平顶山市第一高级中学模拟预测(理))已知函数()()e 12()exx xf x a a =+--∈R . (1)若()e ()=⋅x g x f x ,讨论()g x 的单调性; (2)若()f x 有两个零点,求实数a 的取值范围. 【答案】(1)答案见解析;(2)()0,1. 【解析】 【分析】(1)对函数进行求导,分为0a ≤和0a >两种情形,根据导数与0的关系可得单调性;(2)函数有两个零点即()e ()=⋅x g x f x 有两个零点,根据(1)中的单调性结合零点存在定理即可得结果. (1)由题意知,()()()e ()e e 12e e 12e e x x x x x xx x g x f x a a x ⎡⎤=⋅=⋅+--=+--⎢⎥⎣⎦,()g x 的定义域为(,)-∞+∞,()e (e 1)e e 2e 1(2e 1)(e 1)x x x x x x x g x a a a '=++⋅--=+-.若0a ≤,则()0g x '<,所以()g x 在(,)-∞+∞上单调递减; 若0a >,令()0g x '=,解得ln x a =-.当(,ln )x a ∈-∞-时,()0g x '<;当(ln ,)x a ∈-+∞时,()0g x '>, 所以()g x 在(,ln )a -∞-上单调递减,在(ln ,)a -+∞上单调递增. (2)因为e 0x >,所以()f x 有两个零点,即()e ()=⋅x g x f x 有两个零点. 若0a ≤,由(1)知,()g x 至多有一个零点.若0a >,由(1)知,当ln x a =-时,()g x 取得最小值,最小值为1(ln )1ln g a a a-=-+. ①当1a =时,由于(ln )0g a -=,故()g x 只有一个零点: ①当(1,)∈+∞a 时,由于11ln 0a a-+>,即(ln )0g a ->,故()g x 没有零点; ①当(0,1)a ∈时,11ln 0a a-+<,即(ln )0g a -<. 又2222(2)e (e 1)2e 22e 20g a -----=+-+>-+>,故()g x 在(,ln )a -∞-上有一个零点.存在03ln 1,x a ⎛⎫⎛⎫∈-+∞ ⎪ ⎪⎝⎭⎝⎭,则0000000000()e (e 1)2e e (e 2)e 0x x x x x xg x a x a a x x =+--=+-->->.又3ln 1ln a a ⎛⎫->- ⎪⎝⎭,因此()g x 在(ln ,)a -+∞上有一个零点.综上,实数a 的取值范围为(0,1).12.(2022·青海·大通回族土族自治县教学研究室三模(理))已知函数()ln 1f x ax x =++. (1)若()f x 在(0,)+∞上仅有一个零点,求实数a 的取值范围; (2)若对任意的0x >,2()e x f x x ≤恒成立,求实数a 的取值范围. 【答案】(1)0a ≥或1a =- (2)(,2]-∞ 【解析】 【分析】(1)求导1()f x a x'=+,0x >,分0a ≥和0a <讨论求解; (2)对任意的0x >,2()e x f x x ≤恒成立,转化为2ln 1e xx a x+≤-在(0,)+∞上恒成立求解. (1)解:1()f x a x'=+,0x >, 当0a ≥时,()0f x '>恒成立,所以()f x 在(0,)+∞上单调递增.又()11ee 11a af a a ----=--+()1e 10a a --=-≤,(1)10f a =+>, 所以此时()f x 在(0,)+∞上仅有一个零点,符合题意; 当0a <时,令()0f x '>,解得10x a <<-;令()0f x '<,解得1x a>-, 所以()f x 在10,a ⎛⎫- ⎪⎝⎭上单调递增,所以()f x 在1,a ∞⎛⎫-+ ⎪⎝⎭上单调递减.要使()f x 在(0,)+∞上仅有一个零点,则必有10f a ⎛⎫-= ⎪⎝⎭,解得1a =-.综上,当0a ≥或1a =-时,()f x 在(0,)+∞上仅有一个零点. (2)因为()ln 1f x ax x =++,所以对任意的0x >,2()e x f x x ≤恒成立,等价于2ln 1e xx a x+≤-在(0,)+∞上恒成立. 令2ln 1()e (0)xx m x x x+=->,则只需min ()a m x ≤即可, 则2222e ln ()+'=x x xm x x ,再令22()2e ln (0)x g x x x x =+>,则()221()4e 0'=++>xg x x x x, 所以()g x 在(0,)+∞上单调递增.因为12ln 204g ⎛⎫=< ⎪⎝⎭,2(1)2e 0g =>,所以()g x 有唯一的零点0x ,且0114x <<, 所以当00x x <<时,()0m x '<,当0x x >时,()0m x '>, 所以()m x 在()00,x 上单调递减,在()0,x +∞上单调递增. 因为022002eln 0x x x +=,所以()()()00002ln 2ln ln ln x x x x +=-+-,设()ln (0)S x x x x =+>,则1()10'=+>S x x, 所以函数()S x 在(0,)+∞上单调递增.因为()()002ln S x S x =-,所以002ln x x =-,即0201ex x =.所以()0()m x m x ≥=02000000ln 1ln 11e 2x x x x x x x +-=--=, 则有2a ≤.所以实数a 的取值范围为(,2]-∞.13.(2022·福建省福州第一中学三模)已知函数()e sin 1x f x a x =--在区间0,2π⎛⎫⎪⎝⎭内有唯一极值点1x .(1)求实数a 的取值范围;(2)证明:()f x 在区间(0,)π内有唯一零点2x ,且212x x <. 【答案】(1)(1,)+∞ (2)证明见解析 【解析】 【分析】(1)先求导,再讨论1a 时,函数单增不合题意,1a >时,由导数的正负确定函数单调性知符合题意; (2)先由导数确定函数()f x 在区间(0,)π上的单调性,再由零点存在定理即可确定在区间(0,)π内有唯一零点;表示出()12f x ,构造函数求导,求得()120f x >,又由()20f x =,结合()f x 在()1,x x π∈上的单调性即可求解. (1)()e cos x f x a x '=-,当0,2x π⎛⎫∈ ⎪⎝⎭时,cos (0,1)x ∈,21e e x π<<,①当1a 时,()0f x '>,()f x 在0,2π⎛⎫⎪⎝⎭上单调递增,没有极值点,不合题意,舍去;①当1a >时,显然()'f x 在0,2π⎛⎫ ⎪⎝⎭上递增,又因为(0)10f a '=-<,2e 02f ππ⎛⎫'=> ⎪⎝⎭,所以()'f x 在0,2π⎛⎫ ⎪⎝⎭上有唯一零点1x ,所以()10,x x ∈,()0f x '<;1,2x x π⎛⎫∈ ⎪⎝⎭,()0f x '>,所以()f x 在0,2π⎛⎫⎪⎝⎭上有唯一极值点,符合题意.综上,(1,)∈+∞a .(2)由(1)知1a >,所以,2x ππ⎡⎫∈⎪⎢⎣⎭时,()e cos 0x f x a x '=->,所以()10,x x ∈,()0f x '<,()f x 单调递减;()1,x x π∈,()0f x '>,()f x 单调递增,所以()10,x x ∈时,()(0)0f x f <=,则()10<f x ,又因为()e 10f ππ=->,所以()f x 在()1,πx 上有唯一零点2x ,即()f x 在(0,)π上有唯一零点2x .因为()112211112e sin 21e 2sin cos 1x x f x a x a x x =--=--,由(1)知()10f x '=,所以11e cos xa x =,则()112112e 2e sin 1x xf x x =--,构造2()e 2e sin 1,0,2t t p t t t π⎛⎫=--∈ ⎪⎝⎭,所以()2()2e 2e (sin cos )2e e sin cos t t t t p t t t t t '=-+=--,记()e sin cos ,0,2tt t t t πϕ⎛⎫=--∈ ⎪⎝⎭,则()e cos sin t t t t ϕ'=-+,显然()t ϕ'在0,2π⎛⎫ ⎪⎝⎭上单调递增,所以()(0)0t ϕϕ''>=,所以()t ϕ在0,2π⎛⎫ ⎪⎝⎭上单调递增,所以()(0)0t ϕϕ>=,所以()0p t '>,所以()p t 在0,2π⎛⎫⎪⎝⎭上单调递增,所以()(0)0p t p >=,所以()()1220f x f x >=,由前面讨论可知:112x x π<<,12x x π<<,且()f x 在()1,x x π∈单调递增,所以122x x >.【点睛】本题关键点在于先表示出()12f x ,构造函数()p t 求导,令导数为新的函数再次求导,进而确定函数()p t 的单调性,从而得到()120f x >,再结合()20f x =以及()f x 在()1,x x π∈上的单调性即可证得结论. 14.(2022·安徽·合肥市第八中学模拟预测(文))已知函数()e (sin cos )sin .x f x x x a x =+-.(1)当1a =时,求函数f (x )在区间[0]2π,上零点的个数; (2)若函数()y f x =在(0,2π)上有唯一的极小值点,求实数a 的取值范围 【答案】(1)2个(2)2]∞-⋃(,3222[2e ,)2e ,2e πππ⎧⎫+∞⋃⎨⎬⎩⎭【解析】 【分析】(1)利用导数判断函数f x ()在[0]2π,上的单调性,结合零点存在性定理确定零点个数;(2)利用导数,通过分类讨论确定函数f x ()的单调性及极值,由此确定a 的取值范围.(1)因为1a =,所以()e (sin cos )sin .x f x x x x =+-()(2e 1)cos x f x x '=-,则当02x π⎛⎫∈ ⎪⎝⎭,时,()0f x '>,f x ()在02π⎛⎫⎪⎝⎭,上单调递增,当322x ππ⎛⎫∈ ⎪⎝⎭,时,()0f x '<,f x ()在322ππ⎛⎫⎪⎝⎭,上单调递减, 当322x ππ⎛⎫∈ ⎪⎝⎭,时,()0f x '>,f x ()在322ππ⎛⎫⎪⎝⎭,单词递增, 又32223(0)10,()e 10,()1e 0,(2)e 022f f f f ππππππ=>=->=-<=>,则f x ()在322ππ⎛⎫ ⎪⎝⎭,,322ππ⎛⎫⎪⎝⎭,上各有一个零点,所以f x ()在区间[0]2π,上共有两个零点, (2)2()(2e )cos ,(02),22e 2e x x f x a x x ππ'=-∈<<,①当2a ≤时,当02x π⎛⎫∈ ⎪⎝⎭,时,()0f x '>,f x ()在02π⎛⎫⎪⎝⎭,上单调递增,当322x ππ⎛⎫∈ ⎪⎝⎭,时,()0f x '<,f x ()在322ππ⎛⎫⎪⎝⎭,上单调递减, 当322x ππ⎛⎫∈ ⎪⎝⎭,时,()0f x '>,f x ()在322ππ⎛⎫⎪⎝⎭,单词递增, 此时f x ()在32x π=的时候取得极小值,则2a ≤时符合题意: ①当22e a π≥时,当02x π⎛⎫∈ ⎪⎝⎭,时,()0f x '<,f x ()在02π⎛⎫⎪⎝⎭,上单调递减,当322x ππ⎛⎫∈ ⎪⎝⎭,时,()0f x '>,f x ()在322ππ⎛⎫⎪⎝⎭,上单调递增, 当322x ππ⎛⎫∈ ⎪⎝⎭,时,()0f x '<,f x ()在322ππ⎛⎫⎪⎝⎭,单词递减, 此时f x ()在2x π=的时候取得极小值,则22a e π≥时符合题意①当222e a π<<时,0ln 22a π<<,此时f x ()在0,ln 2a ⎛⎫ ⎪⎝⎭上单调递减,在ln ,22a π⎛⎫ ⎪⎝⎭,上单调递增,在3,22ππ⎛⎫ ⎪⎝⎭上单调递减,在3(,2)2ππ上单调递增,此时有两个极小值点,不符合题意: ①当22e a π=时,ln22a π=,此时f x ()在(0,32π)上单调递减,在3,22ππ⎛⎫ ⎪⎝⎭上单调递增,此时f x ()在32x π=的时候取得极小值,则22e a π=时符合题意;①当3222e 2e a ππ<<时,3ln 222a ππ<<,此时f x ()在02π⎛⎫ ⎪⎝⎭,上单调递减,在,ln 22a π⎛⎫ ⎪⎝⎭上单调递增,在3ln 22a π⎛⎫⎪⎝⎭,上单调递减,在3,22ππ⎛⎫⎪⎝⎭上单调递增,此时有两个极小值点,不符合题意; ①当322e a π=时,3ln22a π=,此时f x ()在02π⎛⎫ ⎪⎝⎭,上单调递减,在22ππ⎛⎫ ⎪⎝⎭,上单调递增,此时f x ()在2x π=的时候取得极小值,则322e a π=时符合题意;①当322e 2e a ππ<<时,3ln 222a ππ<<,此时f x ()在02π⎛⎫ ⎪⎝⎭,上单调递减,在322ππ⎛⎫⎪⎝⎭,上单调递增,在3(,ln )22a π上单调递减,在(ln ,2)2aπ上单调递增,此时有两个极小值点,不符合题意;综上所述3222(,22e ,)2 ][e ,2e a πππ⎧⎫∈-∞+∞⎨⎬⎩⎭.【点睛】(1)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同. (2)若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内绝不是单调函数,即在某区间上单调增或减的函数没有极值.15.(2022·江西·上高二中模拟预测(理))已知函数()()2ln 0ax af x x a x -=->.(1)讨论()f x 的单调性;(2)设()()2ag x f x x=-+有两个零点12,x x ,若212x x >,证明:3312672e x x +>. 【答案】(1)答案见解析 (2)证明见解析 【解析】 【分析】(1)求导得()2221b ax x af x a x x x -+-=--=',对导函数进行分情况讨论其正负,即可得()f x 的单调性. (2)通过函数有两个零点,转化成1212ln 2ln 2x x a x x ++==,然后根据比例,构造出221111ln 2ln()2ln 2ln 2x x tx x x x ++==++,得到122111,e t x t x t x --==,进而构造函数33313ln ()ln[(1)]ln(1)1t t h t t t t t -=+=++-,利用导数处理单调性,进而可求. (1))()2221b ax x af x a x x x -+-=--=' 令2()F x ax x a =-+- ,则()00F a =-< ,且对称轴102x a=> 而214a ∆=-易知当10,2a ⎛⎫∈ ⎪⎝⎭ 时()f x 在0⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭ 单调递减,在⎝⎭单调递增当)12a ∞⎡∈+⎢⎣, 时()f x 在()0+∞,单调递减. (2)()g x 有两个零点12,x x 且0x >,则1212ln 2ln 2ln 2ln 20x x x x ax a a x x x +++-+=⇒=⇒==, 设21x t x =, 212x x >,2t ∴> ∴221111ln 2ln()2ln 2ln 2x x tx x x x ++==++,∴11ln ln 2ln 2t x t x ++=+,所以12111ln ln 2e 1t t x x t t --=-⇒=-, ∴33333631121(1)e (1)t x x t x t t --+=+=+,设33313ln ()ln[(1)]ln(1)1t t h t tt t t -=+=++-,2t >,则222331(1)()[1ln ](1)1t t h t t t t t -'=--+-+, 设2231(1)()1ln 1t t t t t tϕ-=--++,则7437323223211()(441)[(1)4(1)](1)(1)t t t t t t t t t t t t t ϕ--'=+--=-+-++, 当(1,)t ∈+∞时,()0t ϕ'>,所以函数()t ϕ在(1,)t ∈+∞上递增,()()10t ϕϕ∴>=,则()0h t '>,()h t ∴在(1,)+∞递增,又2t >,∴()(2)ln72h t h >=,故3361272e x x -+>. 【点睛】本题考查了含参函数的单调性,最值问题,方程与函数零点的综合问题,利用导数解决单调性的问题,分情况讨论,转化,构造函数证明不等式,二阶求导等综合性的函数知识,在做题时要理清思路,是一道导数的综合题.16.(2022·山东师范大学附中模拟预测)已知函数()()ln h x x a x a =-∈R . (1)若()h x 有两个零点,a 的取值范围;(2)若方程()e ln 0xx a x x -+=有两个实根1x 、2x ,且12x x ≠,证明:12212e ex x x x +>. 【答案】(1)()e,+∞ (2)证明见解析 【解析】 【分析】(1)分析可知0a ≠,由参变量分离法可知直线1y a=与函数()ln xf x x=的图象有两个交点,利用导数分析函数()f x 的单调性与极值,数形结合可求得实数a 的取值范围;(2)令e 0x t x =>,其中0x >,令111e x t x =,222e xt x =,分析可知关于t 的方程ln 0t a t -=也有两个实根1t 、2t ,且12t t ≠,设120t t >>,将所求不等式等价变形为12112221ln 1t t t t t t ⎛⎫- ⎪⎝⎭>+,令121t s t =>,即证()21ln 1s s s ->+,令()()21ln 1s g s s s -=-+,其中1s >,利用导数分析函数()g s 的单调性,即可证得结论成立. (1)解:函数()h x 的定义域为()0,∞+.。
高考数学导数中的零点问题解决方法
导数中的零点问题解决方法解决零点问题,需要采用数形结合思想,根据函数的图像或者趋势图像找出符合题意的条件即可,因此用导数判断出单调性作出函数图像或趋势图像至关重要。
一、能直接分离参数的零点题目此类问题较为简单,分离之后函数无参数,则可作出函数的准确图像,然后上下移动参数的值,看直线与函数交点个数即可。
例1.已知函数(),()ln a f x x g x x x =+=,若关于x 的方程2()()2g x f x e x =-只有一个实数根,求a 的值。
解析:22()ln ()22g x x f x e a x ex x x =-⇒=-+,令2ln ()2x h x x ex x=-+,'21ln ()22x h x x e x-=-+,令'()0h x =,则x e = 当0x e <<时,'()0h x >,()h x 单调递增;当x e >时,'()0h x <,()h x 单调递 减,2max 1()()h x h e e e ==+ —注意这里()h x 的单调性不是硬解出来的,因为你会发现'()h x 的式子很复杂,但是如果把()h x 当成两个函数的和,即2ln (),()2x m x n x x ex x==-+,此时(),()m x n x 的单调性和极值点均相同,因此可以整体判断出()h x 的单调性和极值点。
所以21a e e=+(注意:有一个根转化为图像只有一个交点即可) 二、不能直接分离参数的零点问题(包括零点个数问题)这里需要注意几个转化,以三次函数为例,若三次函数有三个不同的零点,则函数必定有两个极值点,且极大值和极小值之积为负数,例如()f x 在区间(0,1)上有零点,此时并不能确定零点的个数,只能说明至少有一个零点,若函数在区间上单调,只需要用零点存在性定理即可,但是若函数在区间上不单调,则意味着()f x 在区间(0,1)上存在极值点。
高中数学导数求零点做题方法及例题
高中数学导数求零点做题方法及例题《高中数学导数求零点做题方法及例题》导数求零点是高中数学中的一个重要概念和解题方法。
理解和掌握此方法,对于解决各种数学问题以及考试取得优异成绩都非常关键。
本文将介绍导数求零点的做题方法,并通过例题加深理解。
首先,我们回顾一下导数的定义。
在数学中,给定一个函数f(x),若其在某一点x_0处的导数f'(x_0)等于0,那么x_0就被称为函数f(x)的一个零点。
换句话说,零点就是函数曲线与x轴相交的点,即函数取值为零的位置。
那么,如何求解导数为零的点呢?我们可以运用微积分中的导数概念以及一些求根的方法,例如二分法、牛顿迭代法等。
下面以实际例题来说明导数求零点的做题方法。
例题1:已知函数f(x)=x^3-3x^2-9x+5,求其在(-∞,+∞)上的所有零点。
解:首先,我们需要求出导数f'(x)。
对于f(x)=x^3-3x^2-9x+5,求导后可得到f'(x)=3x^2-6x-9。
其次,我们将求得的导数f'(x)令为0,并解方程得到零点。
即3x^2-6x-9=0,两侧同时除以3,化简得到x^2-2x-3=0。
利用求根公式或配方法,解得x=-1,x=3。
因此,函数f(x)=x^3-3x^2-9x+5在(-∞,+∞)上的零点为 x=-1 和 x=3。
通过此例题,我们可以总结出求导数零点的方法:1. 求函数的导数。
2. 将导数等于0,即f'(x)=0,转化为方程。
3. 解方程得到零点。
导数求零点的方法在高中数学中经常出现,它常被应用于曲线的切线问题、函数图像的性质研究等。
掌握此方法不仅可以提升解题效率,还可以更加深刻地理解函数的性质。
总结起来,导数求零点是一种常用的数学方法,通过对函数的导数进行求解得到函数的零点。
掌握了此方法,我们可以在解决各种数学问题时更加轻松而高效。
因此,同学们在学习数学时,应该注重理解和运用导数求零点的做题方法,才能在考试中取得好成绩。
高考数学专题《函数与导数》解读
从新高考的考查情况来看,函数与导数一直是高考的重点和难点.一般以基本初等函数为载体,利用导数研究函数的单调性、极值、最值、零点等问题,同时与解不等式关系最为密切,还可能与三角函数、数列等知识综合考查。
一般出现在选择题和填空题的后两题以及解答题中,难度较大,复习备考的过程中应引起重视。
通过导数研究函数的单调性、极值、最值问题,考查考生的分类讨论思想、等价转化思想以及数学运算、逻辑推理核心素养.1、研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论. (1)讨论分以下四个方面①二次项系数讨论;②根的有无讨论;③根的大小讨论;④根在不在定义域内讨论. (2)讨论时要根据上面四种情况,找准参数讨论的分类. (3)讨论完毕须写综述.2、研究函数零点或方程根的方法(1)通过最值(极值)判断零点个数的方法:借助导数研究函数的单调性、极值后,通过极值的正负,函数单调性判断函数图象走势,从而判断零点个数或者通过零点个数求参数范围.(2)数形结合法求解零点:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性,画出草图数形结合确定其中参数的范围.(3)构造函数法研究函数零点:①根据条件构造某个函数,利用导数确定函数的单调区间及极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求解.②解决此类问题的关键是将函数零点、方程的根、曲线交点相互转化,突出导数的工具作用,体现转化与化归的思想方法. 3、求与函数零点有关的参数范围的方法: 方程有实根函数的图象与轴有交点函数有零点.(1)参数分离法,构造新的函数,将问题转化为利用导数求新函数单调性与最值.(2)分类讨论法. 4、不等式的恒成立问题和有解问题、无解问题是联系函数、方程、不等式的纽带和桥梁,也是高考的重点()0f x =()y f x =x ()y f x =重难点06 函数与导数和热点问题,往往用到的方法是依据不等式的特点,等价变形,构造函数,借助图象观察,或参变分离,转化为求函数的最值问题来处理.恒成立问题的重要思路:(1)m≥f(x)恒成立⇒m≥f(x)max.(2)m≤f(x)恒成立⇒m≤f(x)min.存在性(有解)问题的重要思路:(1)存在m≥f(x) ⇒m≥f(x) min(2) 存在m≤f(x) ⇒m≤f(x) max.5、利用导数证明不等式f(x)>g(x)的基本方法:(1)若f(x)与g(x)的最值易求出,可直接转化为证明f(x)min>g(x)max;(2)若f(x)与g(x)的最值不易求出,可构造函数h(x)=f(x)-g(x),然后根据函数h(x)的单调性或最值,证明h(x)>0.无论不等式的证明还是解不等式,构造函数,运用函数的思想,利用导数研究函数的性质,达到解题的目的,是一成不变的思路,合理构思,善于从不同角度分析问题,是解题的法宝.6、函数性质综合问题函数性质综合应用问题的常见类型及解题策略:(1)函数单调性与奇偶性的综合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性的综合.此类问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)单调性、奇偶性与周期性的综合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.(4)应用奇函数图象关于原点对称,偶函数图象关于y轴对称.利用单调性比较大小、解不等式、研究函数的最值、函数单调性的讨论(含参)、零点问题和不等式恒成立的相关问题(包含不等式证明和由不等式恒成立求参数取值范围)是出题频率最高的;同时也要注意极值点偏移、双变量等热点问题。
导数大题零点问题解题技巧
导数大题零点问题解题技巧
导数大题零点问题的解题技巧主要包括以下几个方面:
1. 确定函数的单调性:通过求导数并判断导数的正负,可以确定函数的单调性。
如果函数在某区间内单调递增或递减,那么该区间内函数的值域就是连续的,因此在这个区间内函数最多只有一个零点。
2. 利用零点存在定理:如果函数在区间端点的函数值异号,即 f(a)f(b)<0,则函数在这个区间内至少有一个零点。
3. 构造函数:通过构造函数,可以将问题转化为求函数的最值问题,从而找到函数的零点。
4. 结合图像:通过画出函数的图像,可以直观地观察函数的零点位置和个数。
5. 转化问题:将问题转化为其他形式,例如转化为求函数的最值问题、不等式问题等,从而简化问题。
在解题过程中,要注意以下几点:
1. 确定函数的定义域和值域,确保函数的连续性和可导性。
2. 注意函数的奇偶性和周期性,这些性质可能会影响函数的零点位置和个数。
3. 注意函数的极值点和拐点,这些点可能是函数的零点或拐点。
4. 注意题目中的隐含条件,例如函数在某点的导数值、函数在某区间的单调性等。
5. 注意计算精度和误差控制,避免计算错误导致答案不准确。
导数与函数的零点问题解析
导数与函数的零点问题解析在数学中,导数和函数的零点是非常重要的概念和问题。
导数可以描述函数的变化率,而函数的零点则表示函数在某一点上取值为零的情况。
在本文中,我们将对导数与函数的零点进行详细的解析和讨论。
一、导数的定义与作用导数是描述函数变化率的指标,可以用来衡量函数在某一点上的斜率或变化速度。
它定义为函数在某一点上的极限,即导数等于函数在该点处的切线斜率。
对于一个函数f(x),它在点x处的导数可以通过以下公式计算得出:f'(x) = lim(h→0) [f(x+h) - f(x)] / h导数的概念对于理解函数的性质和行为非常重要,它可以帮助我们分析函数的增减性、凸凹性以及局部极值等特征。
通过导数,我们可以得出函数在各个点的斜率,从而推断函数的曲线形状和趋势。
二、函数的零点与解析函数的零点是指函数在某个点上的取值为零的情况。
换句话说,函数的零点是使得函数等于零的自变量的值。
寻找函数的零点在数学和实际问题中都具有重要的意义。
为了找到函数的零点,我们可以利用导数的概念和性质进行分析。
根据导数的定义,我们知道当函数在某一点的导数为零时,函数在该点可能存在极值或拐点。
因此,我们可以采用导数为零的点作为起点,通过求解函数的导数方程来找到函数的零点。
具体而言,我们可以按照以下步骤来解析函数的零点问题:1. 找到函数的导数方程。
2. 求解导数方程,得到导数为零的所有解。
3. 使用解析工具或数值逼近法,确定解的精确值或近似值。
4. 检验解是否满足函数为零的条件。
通过以上步骤,我们可以较为准确地求解函数的零点,从而揭示函数的性质和特征。
函数的零点问题在数学、经济、物理等领域具有广泛的应用,如寻找方程的根、求解最优化问题等。
三、解析与数值求解的比较在解析函数的零点问题时,我们依赖于函数的导数和解析工具的应用。
通过解析方法可以获得函数零点的精确解,这对于研究函数的性质和行为非常重要。
然而,对于一些复杂的函数和方程,解析求解可能变得非常困难甚至不可能。
微专题 利用导数研究函数的零点问题
利用导数研究函数的零点问题内容概览题型一 利用导数探究函数零点的个数题型二 利用函数零点问题求参数范围题型三 与函数零点有关的证明[命题分析]函数零点问题在高考中占有很重要的地位,主要涉及判断函数零点的个数或范围.高考常考查基本初等函数、三次函数与复合函数的零点问题,以及函数零点与其他知识的交汇问题,一般作为解答题的压轴题出现.题型一 利用导数探究函数零点的个数[典例1](2022·陇南模拟)已知函数f(x)=r1e-a(a∈R),讨论f(x)的零点个数.【解析】令f(x)=r1e-a=0,得a=r1e,设g(x)=r1e,则g'(x)=e−(r1)e(e)2=−e,当x>0时,g'(x)<0,当x<0时,g'(x)>0,所以g(x)在(-∞,0)上单调递增,在(0,+∞)上单调递减,所以g(x)≤g(0)=1,而当x>-1时,g(x)>0,当x<-1时,g(x)<0,g(x)的大致图象如图所示:所以①当a>1时,方程g(x)=a无解,即f(x)没有零点;②当a=1时,方程g(x)=a有且只有一解,即f(x)有唯一的零点;③当0<a<1时,方程g(x)=a有两解,即f(x)有两个零点;④当a≤0时,方程g(x)=a有且只有一解,即f(x)有唯一的零点;综上,当a>1时,f(x)没有零点;当a=1或a≤0时,f(x)有唯一的零点;当0<a<1时,f(x)有两个零点.【方法提炼】利用导数确定函数零点或方程的根的个数的方法:(1)构造函数:构造函数g(x)(要求g'(x)易求,g'(x)=0可解),转化为确定g(x)的零点个数问题求解,利用导数研究该函数的单调性、极值(最值),并确定定义区间端点值的符号(或变化趋势)等,画出g(x)的图象草图,数形结合求解函数零点的个数. (2)应用定理:利用零点存在定理,先用该定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值的符号,进而判断函数在该区间上零点的个数.【对点训练】(2023·成都模拟)设函数f(x)=ln x+,m∈R.讨论函数g(x)=f'(x)-.3的零点个数【解析】由题设,可知g(x)=f'(x)-3=1-2-3(x>0),令g(x)=0,得m=-13x3+x(x>0),设φ(x)=-13x3+x(x>0),则φ'(x)=-x2+1=-(x-1)(x+1),当x∈(0,1)时,φ'(x)>0,φ(x)在(0,1)上单调递增,当x∈(1,+∞)时,φ'(x)<0,φ(x)在(1,+∞)上单调递减,所以x=1是φ(x)的极大值点,也是φ(x)的最大值点,所以φ(x)的最大值为φ(1)=23,画出y=φ(x)的大致图象(如图),可知①当m>23时,函数g(x)无零点;②当m=23时,函数g(x)有且只有一个零点;③当0<m<23时,函数g(x)有两个零点;④当m≤0时,函数g(x)有且只有一个零点;综上所述,当m>23时,函数g(x)无零点;当m=23或m≤0时,函数g(x)有且只有一个零点;)有两个零点.当0<m<2时,函数g(x【加练备选】已知函数f(x)=x e x+e x.(1)求函数f(x)的单调区间和极值;(2)讨论函数g(x)=f(x)-a(a∈R)的零点的个数.【解析】(1)函数f(x)的定义域为R,且f'(x)=(x+2)e x,令f'(x)=0得x=-2,则f'(x),f(x)的变化情况如表所示:x(-∞,-2)-2(-2,+∞)f'(x)-0+f(x)单调递减-12单调递增所以f(x)的单调递减区间是(-∞,-2),单调递增区间是(-2,+∞),当x=-2时,f(x)有极小值为f(-2)=-1e2,无极大值;(2)令f(x)=0,得x=-1,当x<-1时,f(x)<0;当x>-1时,f(x)>0,且f(x)的图象经过点(-2,-1e2),(-1,0),(0,1);当x→-∞时,与一次函数相比,指数函数y=e-x增长更快,从而f(x)=r1e−→0;当x→+∞时,f(x)→+∞,f'(x)→+∞,根据以上信息,画出f(x)大致图象如图所示,函数g(x)=f(x)-a(a∈R)的零点的个数为y=f(x)的图象与直线y=a的交点个数,当x=-2时,f(x)有极小值f(-2)=-1e2,所以关于函数g(x)=f(x)-a(a∈R)的零点个数有如下结论:当a<-1e2时,零点的个数为0;当a=-1e2或a≥0时,零点的个数为1;当-1e2<a<0时,零点的个数为2.题型二 利用函数零点问题求参数范围[典例2](2022·全国乙卷)已知函数f(x)=ax-1-(a+1)ln x.(1)当a=0时,求f(x)的最大值;(2)若f(x)恰有一个零点,求a的取值范围.【解析】(1)当a=0时,f(x)=-1-ln x,x>0,则f'(x)=12-1=1−2,当x∈(0,1)时,f'(x)>0,f(x)单调递增;当x∈(1,+∞)时,f'(x)<0,f(x)单调递减;所以f(x)max=f(1)=-1;(2)f(x)=ax-1-(a+1)ln x,x>0,则f'(x)=a+12-r1=(B−1)(K1)2,当a≤0时,ax-1<0,所以当x∈(0,1)时,f'(x)>0,f(x)单调递增;当x∈(1,+∞)时,f'(x)<0,f(x)单调递减;所以f(x)max=f(1)=a-1<0,此时函数无零点,不合题意;当0<a<1时,1>1,在(0,1),(1,+∞)上,f'(x)>0,f(x)单调递增;在(1,1)上,f'(x)<0,f(x)单调递减;又f(1)=a-1<0,由(1)得1+ln x≥1,即ln1≥1-x,所以ln x<x,ln <,ln x<2,当x>1时,f(x)=ax-1-(a+1)ln x>ax-1-2(a+1)>ax-(2a+3),则存在m=(3+2)2>1,使得f(m)>0,所以f(x)仅在(1,+∞)上有唯一零点,符合题意;当a=1时,f'(x)=(K1)22≥0,所以f(x)单调递增,又f(1)=a-1=0,所以f(x)有唯一零点,符合题意;当a>1时,1<1,在(0,1),(1,+∞)上,f'(x)>0,f(x)单调递增;在(1,1)上,f'(x)<0,f(x)单调递减;此时f(1)=a-1>0,由(1)得当0<x<1时,ln x>1-1,ln >1-1,所以ln x>2(1-1),此时f(x)=ax-1-(a+1)ln x<ax-1-2(a+1) (1-1)<-1+2(r1),存在n=14(r1)2<1,使得f(n)<0,所以f(x)在(0,1)上有一个零点,在(1,+∞)上无零点,所以f(x)有唯一零点,符合题意;综上,a的取值范围为(0,+∞).【方法提炼】由函数零点求参数范围的策略(1)涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间和极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求得参数的取值范围;(2)解决此类问题的关键是将函数零点、方程的根、曲线交点相互转化,突出导数的工具作用,体现转化与化归的思想方法;(3)含参数的函数的零点个数,可转化为方程解的个数,若能分离参数,可将参数分离出来后,得到不含参数的具体函数,作出该函数图象,根据图象特征求参数的范围.【对点训练】(2021·全国甲卷)已知a>0且a≠1,函数f(x)=(x>0).(1)当a=2时,求f(x)的单调区间;(2)若曲线y=f(x)与直线y=1有且仅有两个交点,求a的取值范围.【解析】(1)a =2时,f (x )=22,f'(x )=2b2−2ln2·2(2)2=o2−En2)2=ln2· 2ln2−g2,当x ∈ 0,2ln2 时,f'(x )>0,f (x )单调递增;当x ∈2ln2,+∞ 时,f'(x )<0,f (x )单调递减;(2)由题知f (x )=1在(0,+∞)上有两个不等实根,f (x )=1⇔x a =a x ⇔a ln x =x ln a ⇔ln=ln,令g (x )=ln,g'(x )=1−ln 2,g (x )在(0,e)上单调递增,在(e,+∞)上单调递减,又g (e)=1e,g (1)=0,lim m+∞g (x )=0,所以0<ln<1e⇒a >1且a ≠e .所以a 的取值范围为(1,e)∪(e,+∞).【加练备选】 (2020·全国卷Ⅰ)已知函数f(x)=e x-a(x+2).(1)当a=1时,讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【解析】(1)当a=1时,f(x)=e x-x-2,则f'(x)=e x-1.当x<0时,f'(x)<0;当x>0时,f'(x)>0.所以f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增;(2)f'(x)=e x-a.当a≤0时,f'(x)>0,所以f(x)在(-∞,+∞)上单调递增,故f(x)至多存在1个零点,不合题意;当a>0时,由f'(x)=0可得x=ln a.当x∈(-∞,ln a)时,f'(x)<0;当x∈(ln a,+∞)时,f'(x)>0.所以f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增,故当x=ln a时,f(x)取得最小值,最小值为f(ln a)=-a(1+ln a).(i)若0<a≤1e,则f(ln a)≥0,f(x)在(-∞,+∞)上至多存在1个零点,不合题意; (ii)若a>1e,则f(ln a)<0.因为f(-2)=e-2>0,所以f(x)在(-∞,ln a)上存在唯一零点.易知,当x>2时,e x-x-2>0,所以当x>4且x>2ln(2a)时,f(x)=e2·e2-a(x+2)>e ln(2a)·2+2 -a(x+2)=2a>0.故f(x)在(ln a,+∞)上存在唯一零点,从而f(x)在(-∞,+∞)上有两个零点.综上,a的取值范围是1题型三 与函数零点有关的证明[典例3](2022·新高考Ⅰ卷)已知函数f(x)=e x-ax和g(x)=ax-ln x有相同的最小值.(1)求a;(2)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【解析】(1)f(x)=e x-ax的定义域为R,而f'(x)=e x-a,若a≤0,则f'(x)>0,此时f(x)无最小值,故a>0.g(x)=ax-ln x的定义域为(0,+∞),而g'(x)=a-1=B−1.当x<ln a时,f'(x)<0,故f(x)在(-∞,ln a)上单调递减,当x>ln a时,f'(x)>0,故f(x)在(ln a,+∞)上单调递增,故f(x)min=f(ln a)=a-a ln a.当0<x<1时,g'(x)<0,故g(x)在 0,1上单调递减,当x>1时,g'(x)>0,故g(x)在1,+∞ 上单调递增,故g(x)min=g1=1-ln1.因为f(x)=e x-ax和g(x)=ax-ln x有相同的最小值,故1-ln1=a-a ln a,整理得到K11+=ln a,其中a>0,设t(a)=K11+-ln a,a>0,则t'(a)=2(1+p2-1=−2−1o1+p2<0,故t(a)在(0,+∞)上单调递减,而t(1)=0,故t(a)=0的唯一解为a=1,故K11+=ln a的解为a=1.综上,a=1;(2)由(1)可得f(x)=e x-x和g(x)=x-ln x的最小值为1-ln 1=1-ln11=1.当b>1时,考虑e x-x=b的解的个数,x-ln x=b的解的个数.设S(x)=e x-x-b,S'(x)=e x-1,当x<0时,S'(x)<0,当x>0时,S'(x)>0,故S(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,所以S(x)min=S(0)=1-b<0,而S(-b)=e-b>0,S(b)=e b-2b,设u(b)=e b-2b,其中b>1,则u'(b)=e b-2>0,故u(b)在(1,+∞)上单调递增,故u(b)>u(1)=e-2>0,故S(b)>0,故S(x)=e x-x-b有两个不同的零点,即e x-x=b的解的个数为2.设T(x)=x-ln x-b,T'(x)=K1,当0<x<1时,T'(x)<0,当x>1时,T'(x)>0,故T(x)在(0,1)上单调递减,在(1,+∞)上单调递增,所以T(x)min=T(1)=1-b<0,而T(e-b)=e-b>0,T(e b)=e b-2b>0,T(x)=x-ln x-b有两个不同的零点,即x-ln x=b的解的个数为2.当b=1,由(1)讨论可得x-ln x=b,e x-x=b仅有一个零点,当b<1时,由(1)讨论可得x-ln x=b,e x-x=b均无零点,故若存在直线y=b与曲线y=f(x),y=g(x)有三个不同的交点,则b>1.设h(x)=e x+ln x-2x,其中x>0,故h'(x)=e x+1-2,设s(x)=e x-x-1,x>0,则s'(x)=e x-1>0,故s(x)在(0,+∞)上单调递增,故s(x)>s(0)=0,即e x>x+1,所以h'(x)>x+1-1≥2-1>0,所以h(x)在(0,+∞)上单调递增,而h(1)=e-2>0,h(1e3)=e1e3-3-2e3<e-3-2e3<0,故h(x)在(0,+∞)上有且只有一个零点x0,1e3<x0<1且:当0<x<x0时,h(x)<0,即e x-x<x-ln x,即f(x)<g(x),当x>x0时,h(x)>0,即e x-x>x-ln x,即f(x)>g(x),因此若存在直线y=b与曲线y=f(x),y=g(x)有三个不同的交点,故b=f(x0)=g(x0)>1,此时e x-x=b有两个不同的零点x1,x0(x1<0<x0),此时x-ln x=b有两个不同的零点x0,x4(0<x0<1<x4),故e1-x1=b,e0-x0=b,x4-ln x4-b=0,x0-ln x0-b=0,所以x4-b=ln x4,即e4−=x4,即e4−-(x4-b)-b=0,故x4-b为方程e x-x=b的解,同理x0-b也为方程e x-x=b的解,又e1-x1=b可化为e1=x1+b,即x1-ln(x1+b)=0,即(x1+b)-ln(x1+b)-b=0,故x1+b为方程x-ln x=b的解,同理x0+b也为方程x-ln x=b的解,所以{x1,x0}={x0-b,x4-b},而b>1,故0=4−s1=0−s即x1+x4=2x0.所以x1,x0,x4成等差数列.所以,存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【方法提炼】(1)证明与零点有关的不等式,函数的零点本身就是一个条件,即零点对应的函数值为0;(2)证明的思路一般是对条件进行等价转化,构造合适的新函数,利用导数知识探讨该函数的性质(如单调性、极值情况等),再结合函数图象来解决.【对点训练】 (2019·全国Ⅰ卷)已知函数f(x)=sin x-ln(1+x),f'(x)为f(x)的导数.证明:(1)f'(x)在区间 −1,π2上存在唯一极大值点;(2)f(x)有且仅有2个零点.【证明】(1)设g(x)=f'(x),则g(x)=cos x-11+,g'(x)=-sin x+1(1+p2,当x∈ −1,π2时,g'(x)单调递减,而g'(0)>0,g'(π2)<0,可得g'(x)在 −1,π2上有唯一零点,设g'(x)的零点为α.则当x∈(-1,α)时,g'(x)>0;当x∈ sπ2时,g'(x)<0.所以g(x)在(-1,α)上单调递增,在 sπ2上单调递减,故g(x)在 −1,π2上存在唯一极大值点,即f'(x)在 −1,π2上存在唯一极大值点;(2)f(x)的定义域为(-1,+∞).①当x∈(-1,0]时,由(1)知,f'(x)在(-1,0)上单调递增,而f'(0)=0,所以当x∈(-1,0)时,f'(x)<0,故f(x)在(-1,0)上单调递减,又f(0)=0,从而x=0是f(x)在(-1,0]上的唯一零点.②当x∈ 0,π2时,由(1)知,f'(x)在(0,α)上单调递增,在 sπ2上单调递减,而f'(0)=0, f'π2<0,所以存在β∈ sπ2,使得f'(β)=0,且当x∈(0,β)时,f'(x)>0;当x∈ sπ2时,f'(x)<0.故f(x)在(0,β)上单调递增,在 sπ2上单调递减.又f(0)=0,fπ2=1-ln 1+π2>0,所以当x∈ 0,π2时,f(x)>0.所以f(x)在 0,π2上没有零点.③当x∈π2,π 时,f'(x)<0,所以f(x)在π2,π 上单调递减.而fπ2>0,f(π)<0,所以f(x)在π2,π 上有唯一零点.④当x∈(π,+∞)时,ln(x+1)>1,所以f(x)<0,从而f(x)在(π,+∞)上没有零点.综上,f(x)有且仅有2个零点.【加练备选】 (2023·菏泽模拟)已知函数f(x)=ln x-x+2sin x,f'(x)为f(x)的导函数.(1)求证:f'(x)在(0,π)上存在唯一零点;(2)求证:f(x)有且仅有两个不同的零点.【证明】(1)设g(x)=f'(x)=1-1+2cos x,当x∈(0,π)时,g'(x)=-2sin x-12<0,所以g(x)在(0,π)上单调递减,又因为g(π3)=3π-1+1>0,g(π2)=2π-1<0,所以g(x)在(π3,π2)上有唯一的零点;(2)设f'(x)在(0,π)上的唯一零点为α,由(1)知π3<α<π2.①当x∈(0,π)时,x∈(0,α)时,f'(x)>0,f(x)单调递增;x∈(α,π)时,f'(x)<0,f(x)单调递减;所以f(x)在(0,π)上存在唯一极大值点α.所以f(α)>f(π2)=lnπ2-π2+2>2-π2>0,又因为f(1e2)=-2-1e2+2sin1e2<-2-1e2+2<0,所以f(x)在(0,α)上恰有一个零点.又因为f(π)=ln π-π<2-π<0,所以f(x)在(α,π)上也恰有一个零点.②当x∈[π,2π)时,sin x≤0,f(x)≤ln x-x,设h(x)=ln x-x,h'(x)=1-1<0,所以h(x)在[π,2π)上单调递减,所以h(x)≤h(π)<0,所以当x∈[π,2π)时,f(x)≤h(x)≤h(π)<0恒成立,所以f(x)在[π,2π)上没有零点.③当x∈[2π,+∞)时,f(x)≤ln x-x+2.设φ(x)=ln x-x+2,φ'(x)=1-1<0,所以φ(x)在[2π,+∞)上单调递减,所以φ(x)≤φ(2π)<0,所以当x∈[2π,+∞)时,f(x)≤φ(x)≤φ(2π)<0恒成立,所以f(x)在[2π,+∞)上没有零点.综上,f(x)有且仅有两个零点.。
导数18 大题(零点分析)中档-2022年全国一卷新高考数学题型细分汇编
导数——大题——零点分析(中档,中上、未):1.(2022年山东东营J58)已知函数221()2()2x ax f x x x a e =+-∈R ( 2.71828e =…是自然对数的底数).(1)若()f x 在(0.2)x ∈内有两个极值点,求实数a 的取值范围;(①)(2)1a =时,讨论关于x 的方程211()2|ln |()2x f x x x b x b xe⎡⎤-++=∈⎢⎥⎣⎦R 的根的个数.(零点分析,中档;第二问,未;)2.(2022年江苏南京J09)已知函数()f x =e 2x ,()(21)g x m x =+,m >0,设()()()h x f x g x =-(1)若函数()h x 有两个零点,求实数m 的取值范围;(②)(2)若直线()y g x =是直线()f x =e 2x 的一条切线,求证:∀a >b ,都有22()()2a h a h b e a b--- .(零点分析,中档;第二问,未;)1.(2022年湖南长沙长郡中学J19)已知()()()2ln ln f x ax x x x x =+--有三个不同零点1x ,2x ,3x ,且123.x x x << (1)求实数a 的范围;(③)(2)求证:3121232.ln ln ln x x x x x x ++>(零点分析,中档;第二问,未;)1.(2022年湖北四校联考J16)已知函数()()()1sin cos f x a x x x a R =+-∈.(④)(1)若()f x 在5,26ππ⎛⎫⎪⎝⎭上有零点,求实数a 的取值范围;(2)若04a π-<≤,记()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最小值为()g a ,求()g a 的取值范围.(零点分析,中档,未;第二问,未;)2.(2022年湖南邵阳J41)已知函数()()2ln ,f x x a x a R =-∈.(1)讨论函数()f x 的零点个数;(⑤)(2)若函数()f x 存在两个不同的零点12,x x ,证明:12x x e >.(零点分析,中档;第二问,未;)1.(2022年广东仿真J04)(12分)已知函数()f x axlnx =,(0)a ≠.(⑥)(1)若函数1()()1g x f x x ='++(其中:()f x '为()f x 的导数)有两个极值点,求实数a 的取值范围;(2)当1a =时,求证:()sin 1x f x e x <+-.(零点分析,中档;第二问,未;)1.(2022年河北J47)已知函数()()()e ln 0x af x x a a -=-+>.(1)证明:函数()f x '在()0,∞+上存在唯一的零点;(⑦)(2)若函数()f x 在区间()0,∞+上的最小值为1,求a 的值.(零点分析,中档;第二问,未;)1.(2022年广东佛山一中J29)(本小题12分)已知函数()ln 2sin f x x x x =-+.(1)证明:()f x 在区间π0,2⎛⎫ ⎪⎝⎭存在唯一的极值点;(⑧)(2)试讨论()f x 的零点个数.(零点分析,中档;第二问,未;)①【答案】(1)22e e a <<;(2)答案见解析.【解析】【分析】(1)若()f x 在(0,2)x ∈内有两个极值点,则()0f x '=在(0,2)x ∈内有两个不相等的变号根,等价于0x e ax -=在(0,2)x ∈上有两个不相等的变号根.令()x g x e ax =-,分类讨论()g x 有两个变号根时a 的范围;(2)化简原式可得:2()|ln |,(0,)xxh x x b x e =--∈+∞,分别讨论(1,)x ∈+∞和(0,1)x ∈时()h x 的单调性,可得()h x 的最小值,分类讨论最小值与0的关系,结合()h x 的单调性可以得到零点个数.【详解】(1)由题意可求得()()22(2)()2x xxa x x x e ax f x x ee'---=+-=,因为()f x 在(0,2)x ∈内有两个极值点,所以()0f x '=在(0,2)x ∈内有两个不相等的变号根,即0x e ax -=在(0,2)x ∈上有两个不相等的变号根.设()x g x e ax =-,则()x g x e a '=-,①当0a 时,(0,2),()0x x g x e a '∈=->,所以()g x 在(0,2)上单调递增,不符合条件.②当0a >时,令()0x g x e a '=-=得ln x a =,当ln 2a ,即2a e 时,(0,2),()0x x g x e a '∈=-<,所以()g x 在(0,2)上单调递减,不符合条件;当ln 0a ,即01a < 时,(0,2),()0x x g x e a '∈=->,所以()g x 在(0,2)上单调递增,不符合条件;当0ln 2a <<,即21a e <<时,()g x 在(0,ln )a 上单调递减,(ln ,2)a 上单调递增,若要0xe ax -=在(0,2)x ∈上有两个不相等的变号根,则(0)0,(2)0,(ln )0,0ln 2,g g g a a >⎧⎪>⎪⎨<⎪⎪<<⎩,解得22e e a <<.综上所述,22e e a <<.(2)设2211()|ln |()2|ln |,(0,)2x x x h x x f x x x b x b x xee ⎡⎤=--+-=--∈+∞⎢⎥⎣⎦,令2x x y e =,则212x x y e '-=,所以2x x y e =在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减.(ⅰ)当(1,)x ∈+∞时,ln 0x >,则2()ln x xh x x b e=--,所以22()21x xe h x ex x '-⎛⎫=+- ⎪⎝⎭.因为2210,0xe x x->>,所以()0h x '>,因此()h x 在(1,)+∞上单调递增.(ⅱ)当(0,1)x ∈时,ln 0x <,则2()ln x xh x x b e=---,所以22()21x xe h x ex x '-⎛⎫=-+- ⎪⎝⎭.因为()22221,,1,01,1,x xxe ee ex x ∈><<∴>即21,xe x-<-,又211,x -<所以22()210x xe h x ex x '-⎛⎫=-+-< ⎪⎝⎭,因此()h x 在(0,1)上单调递减.综合(ⅰ)(ⅱ)可知,当(0,)x ∈+∞时,2()(1)h x h e b -=-- ,当2(1)0h e b -=-->,即2b e -<-时,()h x 没有零点,故关于x 的方程根的个数为0,当2(1)0h e b -=--=,即2b e -=-时,()h x 只有一个零点,故关于x 的方程根的个数为1,当2(1)0h e b -=--<,即2b e ->-时,①当(1,)x ∈+∞时,221()ln ln ln 1x x h x x b x b x b e e ⎛⎫=-->-+>-- ⎪⎝⎭,要使()0h x >,可令ln 10x b -->,即()1,bx e+∈+∞;②当(0,1)x ∈时,121()ln ln ln 12x x h x x b x e b x b e -⎛⎫=-----+>--- ⎪⎝⎭,要使()0h x >,可令ln 10x b --->,即()10,bx e--∈,所以当2b e ->-时,()h x 有两个零点,故关于x 的方程根的个数为2,综上所述:当2b e -<-时,关于x 的方程根的个数为0,当2b e -=-时,关于x 的方程根的个数为1,当2b e ->-时,关于x 的方程根的个数为2.【点睛】本题考查已知极值点的个数求参数,以及分类讨论求函数的零点个数问题,属于难题.关键点点睛:分类讨论求函数的零点时,(1)先从函数有无零点得到参数的一个范围;(2)函数有零点时,再判断函数零点是否在给定区间内,得到参数下一步的范围.②【答案】(1)()1,+∞(2)证明见解析【解析】【分析】(1)根据零点存在性定理进行判定;(2)根据题意,求出切线,然后转化所给不等式逐步分析求证.【小问1详解】()()()22ln e 21,2e 202x x mh x m x h x m x =-+==⇒='-当ln 2m x <时,()()0,h x h x '<单调递减;当ln 2mx >时,()()0,h x h x '>单调递增,()min ln ()ln 1ln 2m h x h m m m m m⎛⎫∴==-+=- ⎪⎝⎭要使()h x 有两个零点,首先必有ln 01m m m -<⇒>当1m >时,注意到()()2110,e 212em h h m m m ⎛⎫-=>=-+ ⎪⎝⎭2224220m m m m m >--=->()h x ∴在1ln ,22m ⎛⎫- ⎪⎝⎭和ln ,2m m ⎛⎫⎪⎝⎭上各有一个零点,符合题意综上:m 取值范围为()1,+∞【小问2详解】证明:()22e xf x '=,设()()21g x m x =+与()f x 切于()20,ex P x ()()()00220202e 20,1,21,e 2121exx x m x m g x x h x x m x ⎧=⎪∴⇒=∴=∴=+∴=--⎨+=⎪⎩要证:()()22e 2ah a h b a b-≤-⇔-证:222e 2e 22e 2a b a a ba b--+≤--即证:222e e 2e a b a a b-≤-,即证:()221e2b aa b --≤-令22,0a b t t -=>⇔证明:1e ,e 1t t t t ---≤+≥构造()()()e ,1e0,ttF t t F t F t --=+=>∴'-在()0,∞+上()()01F t F ∴>=,证毕!【点睛】函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.③【答案】(1)()2e e 11e e 1-+-(,)(2)答案见解析【解析】【分析】(1)先利用参变量分离法,可得ln ln x xa x x x=--,然后构造函数ln ()ln x xh x x x x=--,判断()h x 单调性,然后作出函数的大致图像,确定a 的范围即可;(2)由(1)知,12301e x x x <<<<<,可设ln ()xu x x=,则1()1h x u u =--,然后利用导数确定()u x 的图像,由根的分布情况及111ln x u x =,32223ln ln x x u x x ==运算可得结果.【小问1详解】解:令()0f x =,得2ln (0)ln x ax x x x x+=>-,∴ln ln x x a x x x =--.设ln ()ln x xh x x x x=--,221ln (1)1ln ()(ln )x x x x x h x x x x ----=--'2222(1ln )(ln )(ln )x x x x x x x ⎡⎤---⎣⎦=-22222(1ln )2ln (ln )ln (1ln )(2ln )(ln )(ln )x x x x x x x x x x x x x x ⎡⎤----⎣⎦==--设()2ln x x x ϕ=-,121()2x x x x ϕ'-=-=,易知()x ϕ在102⎛⎫ ⎪⎝⎭,单调递减,在12⎛⎫+∞ ⎪⎝⎭,单调递增,∴min 11()()1ln1ln 2022x ϕϕ==-=+,∴()2ln 0x x x ϕ=->,则由()0h x '=,得1x =或e x =,令()0h x '>,解得()1,e x ∈;令()0h x '<,解得()()01e,x ∞∈⋃+,()h x ∴在()01,单调递减,在()1,e 单调递增,在()e,∞+单调递减,()h x ∴有极小值()11h =,有极大值()()2e 1e e 1e e 1e e e 1h -+=-=--,又1ln ()ln 1xh x x x x=--,当0x +→时,ln 1ln =⋅→-∞x x x x ,()∴→+∞h x ,当x →+∞时,ln 0xx→,∴()1h x →,()h x ∴的图像如下:由图可知,要使()f x 有3个不同零点,即()h x a =有3个不同零点,实数a 的取值范围为()2e e 11,e e 1⎛⎫-+ ⎪ ⎪-⎝⎭.【小问2详解】由(1)知,12301e x x x <<<<<,令ln ()x u u x x ==,则1()1h x u u=--,21ln xu x-=',故当()0,e x ∈时,()u x 单调递增;当()e,x ∞∈+时,()u x 单调递减.且0x +→时,u ∞→-;()10u =;x →+∞时,0u →;()()max1e .eu x u ==所以ln ()xu x x=的图像如下:由11u a u-=-,得1(1)(1)u u a u --=-,即2(1)10u a u a +-+-=,由根的分布知:2(1)10u a u a +-+-=有两根1u ,2u ,且1210eu u <<<,由图①②知,111ln x u x =,32223ln ln x x u x x ==,又121211u u au u a+=-⎧⎨=-⎩,∴1212u u u u +=,∴12111u u +=,∴3121231211212ln ln ln x x x x x x u u u ++=+=-,又10<u ,∴110u ->,故3121232ln ln ln x x x x x x ++>.【点睛】本题考查利用导数研究函数的零点,利用导数证明不等式,考查逻辑思维能力和运算求解能力,属于难题.导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.④【答案】(1)31,16π⎛⎫--- ⎪ ⎪⎝⎭(2)22,024⎫-⎪⎪⎣⎭【解析】【分析】(1)令()cos sin x xF x x=,求出其导数后可判断函数的单调性,从而可求其值域,故可求实数a 的取值范围;(2)求出()f x ',令()()G x f x =',求出()G x ',利用题设条件可得()0G x '>,从而可得()f x '在0,2π⎛⎫⎪⎝⎭存在唯一的零点且可得()f x '的符号情况,从而可得()f x 的单调性,故可得其最小值,再利用导数可求其取值范围.【小问1详解】由()0f x =得cos 1sin x x a x +=,令()cos sin x xF x x=,则()2sin cos 0sin x x x F x x -'=<,所以()F x 在5,26ππ⎛⎫⎪⎝⎭上单调递减,()53,06F x π⎛⎫∈- ⎪ ⎪⎝⎭,从而531,16a π⎛⎫∈--- ⎪ ⎪⎝⎭.【小问2详解】令()()cos sin G x f x a x x x '==+,因为0,,024x a ππ⎛⎫∈-≤< ⎪⎝⎭,故()()1sin cos 0G x a x x x '=-+>,所以()G x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,又()00G a =<,022G ππ⎛⎫=> ⎪⎝⎭,所以存在唯一实数00,2x π⎛⎫∈ ⎪⎝⎭,使得()00G x =,且当()00,x x ∈时,()0f x '<,当0,2x x π⎛⎫∈ ⎪⎝⎭时,()0f x '>,故()f x 在()00,x 上单减,在0,2x π⎛⎫⎪⎝⎭上单增,从而()f x 的最小值()()()00001sin cos g a f x a x x x ==+-,∵000cos sin 0a x x x +=,∴000sin cos x x a x -=,故()()()00000001sin cos sin cos x g a f x a x x x x x ==+-=-.令()sin 0cos 2x x h x x x π-⎛⎫=<< ⎪⎝⎭,则()2sin cos 0cos x x xh x x +'=-<,所以()h x 在0,2π⎛⎫⎪⎝⎭上单减,由题意04a π-<≤可得()()004h h x h π⎛⎫< ⎪⎝⎭≤,所以004x π<≤,令()sin 0cos 4x H x x x x π⎛⎫=-< ⎪⎝⎭≤,则()()222cos cos 1sin cos sin cos cos cos x x x x x x x H x x x x--+=-=()2sin cos sin 0cos x x x x x -+=<,所以()H x 在0,4π⎛⎤⎥⎝⎦上单减,故()g a 的取值范围为22,024⎫-⎪⎪⎣⎭.【点睛】思路点睛:含参数的零点问题,可利用参变分离把参数的范围问题转化为不含参数的新函数的值域问题,在函数的单调性的讨论中,如果导函数的零点不易求得,可虚设零点来简化问题的讨论.⑤【答案】(1)答案见解析;(2)证明见解析.【解析】【分析】(1)先对函数()f x 进行求导,然后对a 进行分类讨论,便可得到函数()f x 零点的个数;(2)利用(1)的结论,便可知函数在2a e >时有两个零点,再构造一个新函数,可将双变量变为单变量,对该新函数进行研究即可.【小问1详解】因为()()2220a x af x x x x x-'=-=>①当0a ≤,()0f x '>,函数()f x 在区间()0,∞+单调递增,(i )0a =时,函数()f x 在()0,∞+上无零点;(ii )0a <,由0x →时,()f x →-∞,()20f e e a =->,∴()f x 在()0,∞+只有一个零点;②当0a >时,函数()f x 在区间2a ⎛ ⎝上单调递减,在区间2a ⎫+∞⎪⎪⎭上单调递增;(注意0x →时,()f x →+∞,x →+∞时,()f x →+∞)所以()ln 1ln 22222a a a a a f x f a ⎛⎫≥=-=- ⎪⎝⎭,(i )02a f >即02e a <<时,()f x 无零点;(ii )02a f =,即2a e =时,()f x 只有一个零点;(iii )02a f <即2a e =时,()f x 有两个零点;综上所述,当0a <或2a e =时,()f x 在只有一个零点;当02a e ≤<时,()f x 无零点;当2a e >时,()f x 有两个零点;方法二:0a =时,函数()2f x x =在()0,∞+上无零点;0a ≠时,由()21ln 0x f x a x =⇒=,令()2ln x g x x =,则()()312ln 0x g x x x -'=>,由()312ln 0x g x x e x -'==⇒=,则(x e ∈时,()g x 单调递增,)x e ∞∈+时,()g x 单调递减,则()12g x ge e =≤,做出简图,由图可知:(注意:0x →时,()g x →-∞,x →+∞时()0g x →)当10a <或12e a =,即0a <或2a e =时,21ln x a x=只有一个根,即()f x 在()0,∞+只有一个零点;当1102a e <<时,即2a e >时,21ln x a x =有两个根,即()f x 在()0,∞+有两个零点;当112a e>时,即02e a <<时,21ln x a x =无实根,即()f x 在()0,∞+无零点;综上所述,当0a <或2a e =时,()f x 在只有一个零点;当02a e ≤<时,()f x 无零点;当2a e >时,()f x 有两个零点;【小问2详解】由(1)可知2a e >时,()f x 有两个零点,设两个零点分别为12,x x ,且210x x >>,由()()21112222ln 00ln 0x a x f x f x x a x ⎧-===⇒⎨-=⎩,即211222ln ln x a x x a x ⎧=⎨=⎩,所以()()222212122121ln ln ,ln ln x x a x x x x a x x +=+-=-,即()222121122221ln ln ln ln x x x x x x x x -+=+-要证明12x x e >,即证12ln ln 1x x +>,需证()2221122221ln ln 1x x x x x x ++>-,再证2221212221ln ln x x x x x x -->+,然后证221221211ln 01x x x x x x ⎛⎫- ⎪⎝⎭->⎛⎫+ ⎪⎝⎭,设21x x x =,则1x >,即证221ln 01x x x -->+,即22ln 101x x +->+,令()()22ln 111h x x x x =+->+,则()()()()()()22222222222141140111x x x x h x x x x x x x +--'=-==>+++,故函数()h x 在()1,+∞上单调递增,所以()()10h x h >=,即有22ln 101x x +->+,所以12x x e >.⑥【答案】见解析【详解】(1)依题意知:(0,)x ∈+∞,()f x alnx a '=+,∴1(),((0,))1g x alnx a x x =++∈+∞+∴22(21)()(1)ax a x a g x x x +-+'=+,()g x 有两个极值点,()g x ∴'在(0,)+∞有两个变号零点,令()0g x '=得:2(21)0ax a x a +-+=,(0)a ≠,关于x 的一元二次方程有两个不等的正根,记为1x ,2x ,∴1212000x x x x >⎧⎪+>⎨⎪⋅>⎩ ,即410210a a a -+>⎧⎪-⎨->⎪⎩,解得14102a a ⎧<⎪⎪⎨⎪<<⎪⎩,∴104a <<,故a 的取值范围为:1(0,)4.(2)证明:当1a =时,()sin 1sin 1sin 10x x x f x e x xlnx e x e x xlnx <+-⇔<+-⇔+-->,设()sin 1(0)x M x e x xlnx x =+-->,()cos (1)x M x e x lnx '=+-+,()2x M x e lnx ∴'-- ,先证1x e x >+,令()1x g x e x =--,()1x g x e '=-,当0x >时,()0g x '>,()g x ∴在[0,)+∞上单调递增,又(0)0g = ,0x ∴>时()0g x >,即1x e x >+.再证1lnx x - ,令()1h x lnx x =-+,11()1x h x x x -'=-=,当01x <<时,()0h x '>,()h x 单调递增;当1x >时,()0h x '<,()h x 单调递减.()h x h ∴ (1)0=,1lnx x ∴- 成立,()2(1)(1)20x M x e lnx x x ∴'=-->++--=,(0,)x ∴∈+∞时,()M x 单调递增,∴当[1x ∈,)+∞,()M x M (1)sin110e =+->,∴当(0,1)x ∈,0xlnx ->,0()sin 1sin 1sin 010x x M x e x xlnx e x e ∴=+-->+->+-=,(0,)x ∴∈+∞,()0M x >,命题得证.⑦【答案】(1)证明见解析(2)12【分析】(1)首先求出函数的导函数,即可得到()f x '在()0,∞+上单调递增,再计算(0)f ',构造函数,利用导数说明(0)0f '<,再计算(1)f a '+,即可得到(1)0f a '+>,从而得证;(2)由(1)可知存在唯一的0(0,)x ∈+∞,使得0()0f x '=,即001x a e x a -=+,即可得到min 0()()f x f x =,即可得到001ln()1x a x a -+=+,再根据1ln y x x=-的单调性得到01x a =-,即可得到121a e -=,从而求出a 的值;(1)证明:∵()()()e ln 0x a f x x a a -=-+>,∴()1e x a f x x a--'=+.∵e x a y -=在区间()0,∞+上单调递增,1y x a=+在区间()0,∞+上单调递减,∴函数()f x '在()0,∞+上单调递增.又1(0)a aa a e f e a ae --'=-=,令()(0)a g a a e a =->,()10a g a e '=-<,则()g a 在()0,∞+上单调递减,()(0)1g a g <=-,故(0)0f '<.令1m a =+,则1()(1)021f m f a e a ''=+=->+,所以函数()f x '在()0,∞+上存在唯一的零点.(2)解:由(1)可知存在唯一的0(0,)x ∈+∞,使得0001()e 0x a f x x a -'=-=+,即001x a e x a -=+().函数1()x a f x e x a-'=-+在()0,∞+上单调递增,∴当0(0,)x x ∈时,()0f x '<,()f x 单调递减;当0(,)x x ∈+∞时,()0f x '>,()f x 单调通增;∴0min 00()()e ln()x a f x f x x a -==-+,由()式得min 0001()()ln()f x f x x a x a==-++.∴001ln()1x a x a-+=+,显然01x a +=是方程的解,又∵1ln y x x =-是单调递减函数,方程001ln()1x a x a -+=+有且仅有唯一的解01x a +=,把01x a =-代入()式,得121a e -=,∴12a =,即所求实数a 的值为12.【点睛】思路点睛:函数的零点问题,一般需要利用函数的单调性和零点存心定理进行判断,对于导数零点不易求的情形,可通过虚设零点来处理.⑧答案:【解析】(1)函数()f x 的定义域为(0,)+∞,导函数为1()12cos f x x x'=-+.……1分当π02x <<时,21()2sin 0f x x x ''=--<,所以()f x '在π0,2⎛⎫ ⎪⎝⎭单调递减.………2分又因为π303πf ⎛⎫'=> ⎪⎝⎭,π2102πf ⎛⎫'=-< ⎪⎝⎭,根据函数零点存在定理,()f x '在区间π0,2⎛⎫ ⎪⎝⎭有且只有一个零点0ππ,32x ⎛⎫∈ ⎪⎝⎭.…………3分当00x x <<时,()0f x '>;当0x x >时,()0f x '<.因此,()f x 在0(0,)x 单调递增,在0π,2x ⎛⎫ ⎪⎝⎭单调递减,故()f x 在区间π0,2⎛⎫ ⎪⎝⎭存在唯一的极值点0x x =.…………4分(2)令()ln g x x x =-,则1()1g x x '=-.当01x <<时,()0g x '>;当1x >时,()0g x '<.因此,()g x 在(0,1)单调递增,在(1,)+∞单调递减.………………………5分由于()()2sin ()2f x g x x g x =+≤+,且当4x >时,()(2)ln 442g x g <=-<-,故当3π42x ≥>时,()0f x <,从而()f x 在区间3π,2⎡⎫+∞⎪⎢⎣⎭没有零点.………………7分当π3π22x <<时,cos 0x <,从而12()110πf x x '<-<-<,()f x 在π3π,22⎛⎫ ⎪⎝⎭单调递减.又πππ3πln 20,02222f f ⎛⎫⎛⎫=-+>< ⎪ ⎪⎝⎭⎝⎭,根据函数零点存在定理,()f x 在区间π3π,22⎛⎫ ⎪⎝⎭有且只有一个零点1π3π,22x ⎛⎫∈ ⎪⎝⎭.………………………………………………9分当π02x <<时,由(1)知()f x 在0(0,)x 单调递增,在0π,2x ⎛⎫ ⎪⎝⎭单调递减.又0πππ1(1)10,()0662f g g f x f ⎛⎫⎛⎫⎛⎫=+<+=>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,根据函数零点存在定理,()f x 在区间π0,2⎛⎫ ⎪⎝⎭有且只有一个零点20π,6x x ⎛⎫∈ ⎪⎝⎭.………11分综上所述,()f x 有且只有2个零点.…………………………………………………12分。
【高考理数】利用导数解决函数零点问题(解析版)
2020题型一 利用导数讨论函数零点的个数 【题型要点解析】对于函数零点的个数的相关问题,利用导数和数形结合的数学思想来求解.这类问题求解的通法是:(1)构造函数,这是解决此类题的关键点和难点,并求其定义域; (2)求导数,得单调区间和极值点; (3)画出函数草图;(4)数形结合,挖掘隐含条件,确定函数图象与x 轴的交点情况进而求解.1.已知f (x )=ax 3-3x 2+1(a >0),定义h (x )=max{f (x ),g (x )}=⎩⎪⎨⎪⎧f (x ),f (x )≥g (x ),g (x ),f (x )<g (x ).(1)求函数f (x )的极值;(2)若g (x )=xf ′(x ),且存在x ∈[1,2]使h (x )=f (x ),求实数a 的取值范围; (3)若g (x )=ln x ,试讨论函数h (x )(x >0)的零点个数.【解】 (1)∈函数f (x )=ax 3-3x 2+1,∈f ′(x )=3ax 2-6x =3x (ax -2),令f ′(x )=0,得x 1=0或x 2=2a,∈a >0,∈x 1<x 2,列表如下:∈f (x )的极大值为f (0)=1,极小值为f ⎪⎭⎫⎝⎛a =8a 2-12a 2+1=1-4a 2. (2)g (x )=xf ′(x )=3ax 3-6x 2,∈存在x ∈[1,2],使h (x )=f (x ),∈f (x )≥g (x )在x ∈[1,2]上有解,即ax 3-3x 2+1≥3ax 3-6x 2在x ∈[1,2]上有解, 即不等式2a ≤1x 3+3x 在x ∈[1,2]上有解.设y =1x 3+3x =3x 2+1x 3(x ∈[1,2]),∈y ′=-3x 2-3x 4<0对x ∈[1,2]恒成立,∈y =1x 3+3x 在x ∈[1,2]上单调递减,∈当x =1时,y =1x 3+3x 的最大值为4,∈2a ≤4,即a ≤2.(3)由(1)知,f (x )在(0,+∞)上的最小值为f ⎪⎭⎫⎝⎛a 2=1-4a 2, ∈当1-4a 2>0,即a >2时,f (x )>0在(0,+∞)上恒成立,∈h (x )=max{f (x ),g (x )}在(0,+∞)上无零点.∈当1-4a2=0,即a =2时,f (x )min =f (1)=0.又g (1)=0,∈h (x )=max{f (x ),g (x )}在(0,+∞)上有一个零点. ∈当1-4a2<0,即0<a <2时,设φ(x )=f (x )-g (x )=ax 3-3x 2+1-ln x (0<x <1), ∈φ′(x )=3ax 2-6x -1x <6x (x -1)-1x <0,∈φ(x )在(0,1)上单调递减.又φ(1)=a -2<0,φ⎪⎭⎫ ⎝⎛e 1=a e3+2e 2-3e 2>0,∈存在唯一的x 0∈⎪⎭⎫⎝⎛1,1e ,使得φ(x 0)=0,(∈)当0<x ≤x 0时,∈φ(x )=f (x )-g (x )≥φ(x 0)=0, ∈h (x )=f (x )且h (x )为减函数. 又h (x 0)=f (x 0)=g (x 0)=ln x 0<ln 1=0, f (0)=1>0,∈h (x )在(0,x 0)上有一个零点; (∈)当x >x 0时,∈φ(x )=f (x )-g (x )<φ(x 0)=0, ∈h (x )=g (x )且h (x )为增函数,∈g (1)=0,∈h (x )在(x 0,+∞)上有一零点;从而h (x )=max{f (x ),g (x )}在(0,+∞)上有两个零点,综上所述,当0<a <2时,h (x )有两个零点;当a =2时,h (x )有一个零点; 当a >2时,h (x )无零点.题组训练一 利用导数讨论函数零点的个数 已知函数f (x )=ln x -12ax +a -2,a ∈R .(1)求函数f (x )的单调区间;(2)当a <0时,试判断g (x )=xf (x )+2的零点个数. 【解析】 (1)f ′(x )=1x -a 2=2-ax2x(x >0).若a ≤0,则f ′(x )>0,∈函数f (x )的单调递增区间为(0,+∞);若a >0,当0<x <2a 时,f ′(x )>0,函数f (x )单调递增,当x >2a 时,f ′(x )<0,函数f (x )单调递减,综上,若a ≤0时,函数f (x )的单调递增区间为(0,+∞);若a >0时,函数f (x )的单调递增区间为⎪⎭⎫ ⎝⎛a 2,0,单调递减区间为⎪⎭⎫ ⎝⎛∞+a 2.(2)g (x )=x ln x -12ax 2+ax -2x +2,g ′(x )=-ax +ln x +a -1.又a <0,易知g ′(x )在(0,+∞)上单调递增, g ′(1)=-1<0,g ′(e)=-a e +a =a (1-e)>0, 故而g ′(x )在(1,e)上存在唯一的零点x 0, 使得g ′(x 0)=0.当0<x <x 0时,g ′(x )<0,g (x )单调递减;当x >x 0时,g ′(x )>0,g (x )单调递增, 取x 1=e a ,又a <0,∈0<x 1<1,∈g (x 1)=x 1)2221(ln 111x a ax x +-+-=e a⎪⎭⎫ ⎝⎛+-+-a a e a ae a 2221, 设h (a )=a -12a e a +a -2+2e a ,(a <0),h ′(a )=-12a e a -12e a -2e a +2,(a <0),h ′(0)=-12,h ″(a )=e -a -e a +e -a -12a e a >0,∈h ′(a )在(-∞,0)上单调递增,h ′(a )<h ′(0)<0, ∈h (a )在(-∞,0)上单调递减,∈h (a )>h (0)=0, ∈g (x 1)>0,即当a <0时,g (e a )>0.当x 趋于+∞时,g (x )趋于+∞,且g (2)=2ln2-2<0. ∈函数g (x )在(0,+∞)上始终有两个零点. 题型二 由函数零点个数求参数的取值范围 【题型要点解析】研究方程的根(或函数零点)的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根(函数零点)的情况,这是导数这一工具在研究方程中的重要应用.已知函数f (x )=mxln x ,曲线y =f (x )在点(e 2,f (e 2))处的切线与直线2x +y =0垂直(其中e为自然对数的底数).(1)求f (x )的解析式及单调减区间;(2)若函数g (x )=f (x )-kx 2x -1无零点,求k 的取值范围.【解析】 (1)函数f (x )=mx ln x 的导数为f ′(x )=m (ln x -1)(ln x )2,又由题意有:f ′(e2)=12∈m 4=12∈m =2,故f (x )=2xln x.此时f ′(x )=2(ln x -1)(ln x )2,由f ′(x )≤0∈0<x <1或1<x ≤e ,所以函数f (x )的单调减区间为(0,1)和(1,e].(2)g (x )=f (x )-kx 2x -1∈g (x )=x ⎪⎭⎫ ⎝⎛--1ln 2x kx x ,且定义域为(0,1)∈(1,+∞),要函数g (x )无零点,即要2ln x =kxx -1在x ∈(0,1)∈(1,+∞)内无解,亦即要k ln x -2(x -1)x =0在x ∈(0,1)∈(1,+∞)内无解.构造函数h (x )=k ln x -2(x -1)x ∈h ′(x )=kx -2x2.∈当k ≤0时,h ′(x )<0在x ∈(0,1)∈(1,+∞)内恒成立,所以函数h (x )在(0,1)内单调递减,h (x )在(1,+∞)内也单调递减.又h (1)=0,所以在(0,1)内无零点,在(1,+∞)内也无零点,故满足条件;∈当k >0时,h ′(x )=kx -2x 2∈h ′(x )=22x k x k ⎪⎭⎫ ⎝⎛-, (i)若0<k <2,则函数h (x )在(0,1)内单调递减,在⎪⎭⎫⎝⎛k 2,1内也单调递减,在⎪⎭⎫ ⎝⎛+∞,2k 内单调递增,又h (1)=0,所以在(0,1)内无零点;易知h ⎪⎭⎫ ⎝⎛k 2<0,而h (e 2k )=k ·2k -2+2e2k>0,故在⎪⎭⎫⎝⎛+∞,2k 内有一个零点,所以不满足条件;(ii)若k =2,则函数h (x )在(0,1)内单调递减,在(1,+∞)内单调递增.又h (1)=0,所以x ∈(0,1)∈(1,+∞)时,h (x )>0恒成立,故无零点,满足条件;(iii)若k >2,则函数h (x )在⎪⎭⎫ ⎝⎛k 2,0内单调递减,在⎪⎭⎫⎝⎛1,2k 内单调递增,在(1,+∞)内单调递增,又h (1)=0,所以在⎪⎭⎫⎝⎛1,2k 及(1,+∞)内均无零点. 又易知h ⎪⎭⎫⎝⎛k 2<0,而h (e -k )=k (-k )-2+2e k =2e k -k 2-2,又易证当k >2时,h (e -k )>0,所以函数h (x )在⎪⎭⎫ ⎝⎛k 2,0内有一零点,故不满足条件.综上可得:k 的取值范围为:k ≤0或k =2.题组训练二 由函数零点个数求参数的取值范围 已知函数f (x )=ln x -ax (ax +1),其中a ∈R . (1)讨论函数f (x )的单调性;(2)若函数f (x )在(0,1]内至少有1个零点,求实数a 的取值范围. 【解析】(1)依题意知,函数f (x )的定义域为(0,+∞), 且f ′(x )=1x-2a 2x -a=2a 2x 2+ax -1-x =(2ax -1)(ax +1)-x,当a =0时,f (x )=ln x ,函数f (x )在(0,+∞)上单调递增;当a >0时,由f ′(x )>0,得0<x <12a,由f ′(x )<0,得x >12a ,函数f (x )⎪⎭⎫⎝⎛a 21,0上单调递增, 在⎪⎭⎫⎝⎛+∞,21a 上单调递减. 当a <0时,由f ′(x )>0,得0<x <-1a ,由f ′(x )<0,得x >-1a,函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎪⎭⎫⎝⎛+∞-,1a 上单调递减. (2)当a =0时,函数f (x )在(]0,1内有1个零点x 0=1;当a >0时,由(1)知函数f (x )在⎪⎭⎫ ⎝⎛a 21,0上单调递增,在⎪⎭⎫⎝⎛+∞,21a 上单调递减. ∈若12a ≥1,即0<a ≤12时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞且f (1)=-a 2-a <0知,函数f (x )在(0,1]内无零点;∈若0<12a <1,即当a >12时,f (x )在⎪⎭⎫ ⎝⎛a 21,0上单调递增,在⎥⎦⎤⎝⎛1,21a 上单调递减,要使函数f (x )在(0,1]内至少有1个零点,只需满足f ⎪⎭⎫⎝⎛a 21≥0,即ln 12a ≥34, 又∈a >12,∈ln 12a <0,∈不等式不成立.∈f (x )在(0,1]内无零点;当a <0时,由(1)知函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎪⎭⎫⎝⎛+∞-,1a 上单调递减. ∈若-1a ≥1,即-1≤a <0时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞,且f (1)=-a 2-a >0,知函数f (x )在(0,1]内有1个零点;∈若0<-1a <1,即a <-1时,函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎥⎦⎤⎝⎛-1,1a 上单调递减,由于当x →0时,f (x )→-∞,且当a <-1时,f ⎪⎭⎫⎝⎛-a 1=ln ⎪⎭⎫⎝⎛-a 1<0,知函数f (x )在(0,1]内无零点.综上可得a 的取值范围是[-1,0].题型三 利用导数证明复杂方程在某区间上仅有一解 【题型要点解析】证明复杂方程在某区间上有且仅有一解的步骤: (1)在该区间上构造与方程相应的函数; (2)利用导数研究该函数在该区间上的单调性; (3)判断该函数在该区间端点处的函数值的符号; (4)作出结论.已知函数f (x )=(x 2-2x )ln x +ax 2+2.(1)当a =-1时,求f (x )在点(1,f (1))处的切线方程;(2)当a >0时,设函数g (x )=f (x )-x -2,且函数g (x )有且仅有一个零点,若e -2<x <e ,g (x )≤m ,求m 的取值范围.【解析】 (1)当a =-1时,f (x )=(x 2-2x )ln x -x 2+2,定义域为(0,+∞),∈f ′(x )=(2x -2)ln x +x -2-2x =(2x -2)ln x -x -2.∈f ′(1)=-3,又f (1)=1,f (x )在(1,f (1))处的切线方程3x +y -4=0.(2)令g (x )=f (x )-x -2=0,则(x 2-2x )ln x +ax 2+2=x +2,即a =1-(x -2)·ln xx ,令h (x )=1-(x -2)·ln xx,则h ′(x )=-1x 2-1x +2-2ln x x 2=1-x -2ln xx 2.令t (x )=1-x -2ln x ,t ′(x )=-1-2x =-x -2x ,∈t ′(x )<0,t (x )在(0,+∞)上是减函数, 又∈t (1)=h ′(1)=0,所以当0<x <1时,h ′(x )>0, 当x >1时,h ′(x )<0,所以h (x )在(0,1)上单调递增, 在(1,+∞)上单调递减,∈h (x )max =h (1)=1.因为a >0,所以当函数g (x )有且仅有一个零点时,a =1.g (x )=(x 2-2x )ln x +x 2-x ,若e -2<x <e ,g (x )≤m ,只需g (x )max ≤m , g ′(x )=(x -1)(3+2ln x ),令g ′(x )=0得x =1,或x =e -32,又∈e -2<x <e∈函数g (x )在(e -2,e -32)上单调递增,在(e -32,1)上单调递减,在(1,e)上单调递增,又g (e -32)=-12e -3+2e -32,g (e)=2e 2-3e ,∈g (e -32)=-12e -3+2e -32<2e -32<2e<2e ⎪⎭⎫ ⎝⎛-23e =g (e),即g (e -32)<g (e),g (x )max =g (e)=2e 2-3e ,∈m ≥2e 2-3e .题组训练三 利用导数证明复杂方程在某区间上仅有一解 已知y =4x 3+3tx 2-6t 2x +t -1,x ∈R ,t ∈R .(1)当x 为常数时,t 在区间⎥⎦⎤⎢⎣⎡32,0变化时,求y 的最小值φ(x );(2)证明:对任意的t ∈(0,+∞),总存在x 0∈(0,1),使得y =0.【解析】 (1)当x 为常数时,设f (t )=4x 3+3tx 2-6t 2x +t -1=-6xt 2+(3x 2+1)t +4x 3-1,f ′(t )=-12xt +3x 2+1.∈当x ≤0时,由t ∈⎥⎦⎤⎢⎣⎡32,0知f (t )>0,f (t )在⎥⎦⎤⎢⎣⎡32,0上递增,其最小值φ(x )=f (0)=4x 3-1;∈当x >0时,f (t )的图象是开口向下的抛物线,其对称轴为直线;t =-3x 2+1-12x =3x 2+112x ,若⎩⎪⎨⎪⎧x >0,3x 2+112x ≤13,即13≤x ≤1,则f (t )在⎥⎦⎤⎢⎣⎡32,0上的最小值为 φ(x )=f ⎪⎭⎫⎝⎛32=4x 3+2x 2-83x -13.若⎩⎪⎨⎪⎧x >0,3x 2+112x >13,即0<x <13或x >1,则f (t )在⎥⎦⎤⎢⎣⎡32,0上的最小值为φ(x )=f (0)=4x 3-1.综合∈∈,得φ(x )=⎩⎨⎧4x 3-1,x <13或x >1,4x 3+2x 2-83x -13,13≤x ≤1.(2)证明:设g (x )=4x 3+3tx 2-6t 2x +t -1,则g ′(x )=12x 2+6tx -6t 2=12(x +t )⎪⎭⎫ ⎝⎛-2t x 由t ∈(0,+∞),当x 在区间(0,+∞)内变化时,g ′(x ),g (x )取值的变化情况如下表:∈当t2≥1,即t ≥2时,g (x )在区间(0,1)内单调递减,g (0)=t -1>0,g (1)=-6t 2+4t +3=-2t (3t -2)+3≤-4(3-2)+3<0.所以对任意t ∈[2,+∞),g (x )在区间(0,1)内均存在零点,即存在x 0∈(0,1),使得g (x 0)=0.∈当0<t 2<1,即0<t <2时,g (x )在⎪⎭⎫ ⎝⎛2,0t 内单调递减,在⎪⎭⎫ ⎝⎛1,2t 内单调递增,若t ∈(0,1),则g ⎪⎭⎫⎝⎛2t =-74t 3+t -1≤-74t 3<0,g (1)=-6t 2+4t +3≥-6t +4t +3=-2t +3≥1>0,所以g (x )在⎪⎭⎫⎝⎛1,2t 内存在零点;若t ∈(1,2),则g (0)=t -1>0,g ⎪⎭⎫ ⎝⎛2t =-74t 3+t -1<-74×13+2-1<0,所以g (x )在⎪⎭⎫⎝⎛2,0t 内存在零点.所以,对任意t ∈(0,2),g (x )在区间(0,1)内均存在零点,即存在x 0∈(0,1),使得g (x 0)=0, 综合∈∈,对任意的t ∈(0,+∞),总存在x 0∈(0,1),使得y =0.【专题训练】1.已知函数f (x )=xln x+ax ,x >1.(1)若f (x )在(1,+∞)上单调递减,求实数a 的取值范围; (2)若a =2,求函数f (x )的极小值;(3)若方程(2x -m )ln x +x =0,在(1,e]上有两个不等实根,求实数m 的取值范围. [解析] (1)f ′(x )=ln x -1ln 2x +a ,由题意可得f ′(x )≤0在(1,+∞)上恒成立,∈a ≤1ln 2x -1ln x=221ln 1⎪⎭⎫⎝⎛-x -14.∈x ∈(1,+∞),∈ln x ∈(0,+∞), ∈当1ln x -12=0时,函数t =221ln 1⎪⎭⎫ ⎝⎛-x -14的最小值为-14,∈a ≤-14. 故实数a 的取值范围为⎥⎦⎤ ⎝⎛∞-41,(2)当a =2时,f (x )=xln x +2x ,f ′(x )=ln x -1+2ln 2x ln 2x,令f ′(x )=0,得2ln 2x +ln x -1=0, 解得ln x =12或ln x =-1(舍),即x =e 12.当1<x <e 12时,f ′(x )<0,当x >e 12时,f ′(x )>0,∈f (x )的极小值为f (e 12)=e 1212+2e 1e =4e 12.(3)将方程(2x -m )ln x +x =0两边同除以ln x 得(2x -m )+x ln x =0,整理得xln x+2x =m ,即函数g (x )=xln x +2x 的图象与函数y =m 的图象在(1,e]上有两个不同的交点.由(2)可知,g (x )在(1,e 12)上单调递减,在(e 12,e]上单调递增,g (e 12)=4e 12,g (e)=3e ,在(1,e]上,当x →1时,x ln x →+∞,∈4e 12<m ≤3e ,故实数m 的取值范围为(4e 12,3e].2.已知f (x )=2x ln x ,g (x )=x 3+ax 2-x +2.(1)如果函数g (x )的单调递减区间为⎪⎭⎫⎝⎛-1,31,求函数g (x )的解析式; (2)在(1)的条件下,求函数y =g (x )的图象在点P (-1,g (-1))处的切线方程; (3)已知不等式f (x )≤g ′(x )+2恒成立,若方程a e a -m =0恰有两个不等实根,求m 的取值范围.【解】 (1)g ′(x )=3x 2+2ax -1,由题意知,3x 2+2ax -1<0的解集为⎪⎭⎫⎝⎛-1,31, 即3x 2+2ax -1=0的两根分别是-13,1,代入得a =-1,∈g (x )=x 3-x 2-x +2. (2)由(1)知,g (-1)=1,∈g ′(x )=3x 2-2x -1,g ′(-1)=4,∈点P (-1,1)处的切线斜率k =g ′(-1)=4,∈函数y =g (x )的图象在点P (-1,1)处的切线方程为y -1=4(x +1),即4x -y +5=0.(3)由题意知,2x ln x ≤3x 2+2ax +1对x ∈(0,+∞)恒成立,可得a ≥ln x -32x -12x 对x ∈(0,+∞)恒成立.设h (x )=ln x -32x -12x,则h ′(x )=1x -32+12x 2=-(x -1)(3x +1)2x 2,令h ′(x )=0,得x =1,x =-13(舍),当0<x <1时,h ′(x )>0;当x >1时,h ′(x )<0, ∈当x =1时,h (x )取得最大值,h (x )max =h (1)=-2, ∈a ≥-2.令φ(a )=a e a ,则φ′(a )=e a +a e a =e a (a +1), ∈φ(a )在[-2,-1]上单调递减,在(-1,+∞)上单调递增,∈φ(-2)=-2e -2=-2e 2,φ(-1)=-e -1=-1e ,当a →+∞时,φ(a )→+∞,∈方程a e a -m =0恰有两个不等实根,只需-1e <m ≤-2e 2.3.设函数f (x )=x 3+ax 2+bx +c .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围; (3)求证:a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.【解析】 (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b .因为f (0)=c ,f ′(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c .(2)当a =b =4时,f (x )=x 3+4x 2+4x +c , 所以f ′(x )=3x 2+8x +4. 令f ′(x )=0,得3x 2+8x +4=0, 解得x =-2或x =-23.f (x )与f ′(x )在区间(-∞,+∞)上的情况如下:所以,当c >0且c -3227<0时,存在x 1∈(-4,-2),x 2∈⎪⎭⎫ ⎝⎛--3,2,x 3∈⎪⎭⎫⎝⎛-0,3,使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈⎪⎭⎫⎝⎛2732,0时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点.(3)证明:当Δ=4a 2-12b <0时,f ′(x )=3x 2+2ax +b >0,x ∈(-∞,+∞),此时函数f (x )在区间(-∞,+∞)上单调递增,所以f (x )不可能有三个不同零点.当Δ=4a 2-12b =0时,f ′(x )=3x 2+2ax +b 只有一个零点,记作x 0. 当x ∈(-∞,x 0)时,f ′(x )>0,f (x )在区间(-∞,x 0)上单调递增; 当x ∈(x 0,+∞)时,f ′(x )>0,f (x )在的区间(x 0,+∞)上单调递增. 所以f (x )不可能有三个不同零点.综上所述,若函数f (x )有三个不同零点,则必有Δ=4a 2-12b >0. 故a 2-3b >0是f (x )有三个不同零点的必要条件.当a =b =4,c =0时,a 2-3b >0,f (x )=x 3+4x 2+4x =x (x +2)2只有两个不同零点,所以a 2-3b >0不是f (x )有三个不同零点的充分条件.因此a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.。
数学高考导数难题导数零点问题导数最新整理
含参导函数零点问题的几种处理方法 方法一:直接求出,代入应用对于导函数为二次函数问题,可以用二次函数零点的基本方法来求。
(1)因式分解求零点 例1 讨论函数)(12)21(31)(23R a x x a ax x f ∈+++-=的单调区间 解析:即求)('x f 的符号问题。
由)2)(1(2)12()('2--=++-=x ax x a ax x f 可以因式分方法二:猜出特值,证明唯一对于有些复杂的函数,有些零点可能是很难用方程求解的方法求出的,这时我们可以考虑用特殊值去猜出零点,再证明该函数的单调性而验证其唯一性。
例4 讨论函数ax x a x e a x x f x++-+--=23)1(2131)1()(,R a ∈,的极值情况 解析:)1)(()1()()('2-+-=++-+-=x e a x a x a x e a x x f xx,只能解出)('x f 的一个零点为a ,其它的零点就是01=-+x e x的根,不能解。
例5(2011高考浙江理科)设函数R a x a x x f ∈-=,ln )()(2(Ⅰ)若e x =为)(x f y =的极值点,求实数a(Ⅱ)求实数a 的取值范围,使得对任意的],3,0(e x ∈恒有24)(e x f ≤成立(注:e 为自然对数), 方法三:锁定区间,设而不求对于例5,也可以直接设函数来求,①当10≤<x 时,对于任意的实数a ,恒有240)(e x f <≤成立②当e x 31≤<,由题意,首先有,4)3ln(3()3(22e e a e ef ≤-=)解得)3ln(23)3ln(23e e e a e e e +≤≤-由'()()(2ln 1)af x x a x x=-+-,但这时会发现0)('=x f 的解除了a x =外还有xax -+1ln 2=0的解,显然无法用特殊值猜出。
导数与零点问题解题技巧
导数与零点问题解题技巧
1. 嘿,你想知道怎么通过导数来巧妙找到函数的零点吗?就像在一片迷雾中找到那关键的线索!比如求函数f(x)=x³-3x+2 的零点,咱通过求导找到极值点,就能逐步逼近零点啦,是不是很神奇?
2. 哇哦,注意啦!导数可是解决零点问题的一把利器呀!好比你找宝藏有了精确的地图。
像对于函数 g(x)=e^x-x-1,用导数不就能轻松分析它零点的情况嘛!
3. 嘿呀,有没有觉得导数和零点问题之间像是有一条神秘的纽带呀!就像侦探和线索一样。
比如分析函数 h(x)=sinx+x 在某个区间的零点,导数能帮大忙呢!
4. 哎呀,学会这些解题技巧那可真是太棒啦!简直像是掌握了绝世武功。
想想函数i(x)=lnx+x²,用导数去攻克零点问题,多有成就感!
5. 天呐,导数与零点问题的结合简直妙不可言!就如同给你一双慧眼。
拿函数 j(x)=x^4-4x² 来说,导数能让我们快速看清零点的分布呢。
6. 哇塞,这些解题技巧你可不能错过呀!这就好比游戏里的通关秘籍。
像是函数 k(x)=x+cosx ,利用导数去求解零点,厉害吧!
7. 嘿,你知道用导数解决零点问题能带来多大的乐趣吗?那可比发现新大陆还让人兴奋!好比函数l(x)=x³/3-x²+2x 的零点求解。
8. 总之,导数与零点问题解题技巧真的超有用的啦!你一定要好好掌握哦!就像拥有了一把打开数学难题大门的钥匙!不管遇到什么函数,都能轻松应对!。
专题02 函数的零点个数问题、隐零点及零点赋值问题(学生版) -25年高考数学压轴大题必杀技系列导数
专题2 函数的零点个数问题、隐零点及零点赋值问题函数与导数一直是高考中的热点与难点,函数的零点个数问题、隐零点及零点赋值问题是近年高考的热点及难点,特别是隐零点及零点赋值经常成为导数压轴的法宝.(一) 确定函数零点个数1.研究函数零点的技巧用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.对于函数零点个数问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.但需注意探求与论证之间区别,论证是充要关系,要充分利用零点存在定理及函数单调性严格说明函数零点个数.2. 判断函数零点个数的常用方法(1)直接研究函数,求出极值以及最值,画出草图.函数零点的个数问题即是函数图象与x 轴交点的个数问题.(2)分离出参数,转化为a =g (x ),根据导数的知识求出函数g(x )在某区间的单调性,求出极值以及最值,画出草图.函数零点的个数问题即是直线y =a 与函数y =g (x )图象交点的个数问题.只需要用a 与函数g (x )的极值和最值进行比较即可.3. 处理函数y =f (x )与y =g (x )图像的交点问题的常用方法(1)数形结合,即分别作出两函数的图像,观察交点情况;(2)将函数交点问题转化为方程f (x )=g (x )根的个数问题,也通过构造函数y =f (x )-g (x ),把交点个数问题转化为利用导数研究函数的单调性及极值,并作出草图,根据草图确定根的情况.4.找点时若函数有多项有时可以通过恒等变形或放缩进行并项,有时有界函数可以放缩成常数,构造函数时合理分离参数,避开分母为0的情况.【例1】(2024届河南省湘豫名校联考高三下学期考前保温卷数)已知函数()()20,ex ax f x a a =¹ÎR .(1)求()f x 的极大值;(2)若1a =,求()()cos g x f x x =-在区间π,2024π2éù-êúëû上的零点个数.【解析】(1)由题易得,函数()2ex ax f x =的定义域为R ,又()()()22222e e 2e e e x xx xxax x ax ax ax ax f x ---===¢,所以,当0a >时,()(),f x f x ¢随x 的变化情况如下表:x(),0¥-0()0,22()2,¥+()f x ¢-0+0-()f x ]极小值Z极大值]由上表可知,()f x 的单调递增区间为()0,2,单调递减区间为()(),0,2,¥¥-+.所以()f x 的极大值为()()2420e af a =>.当a<0时,()(),f x f x ¢随x 的变化情况如下表:x(),0¥-0()0,22()2,¥+()f x ¢+0-0+()f x Z 极大值]极小值Z由上表可知,()f x 的单调递增区间为()(),0,2,¥¥-+,单调递减区间为()0,2.所以()f x 的极大值为()()000f a =<.综上所述,当0a >时,()f x 的极大值为24ea;当a<0时,()f x 的极大值为0.(2)方法一:当1a =时,()2e x xf x =,所以函数()()2cos cos e x xg x f x x x =-=-.由()0g x =,得2cos e xx x =.所以要求()g x 在区间π,2024π2éù-êúëû上的零点的个数,只需求()y f x =的图象与()cos h x x =的图象在区间π,2024π2éù-êúëû上的交点个数即可.由(1)知,当1a =时,()y f x =在()(),0,2,¥¥-+上单调递减,在()0,2上单调递增,所以()y f x =在区间π,02éù-êúëû上单调递减.又()cos h x x =在区间π,02éù-êúëû上单调递增,且()()()()()1e 1cos 11,001cos00f h f h -=>>-=-=<==,所以()2e x xf x =与()cos h x x =的图象在区间π,02éù-êúëû上只有一个交点,所以()g x 在区间π,02éù-êúëû上有且只有1个零点.因为当10a x =>,时,()20ex x f x =>,()f x 在区间()02,上单调递增,在区间()2,¥+上单调递减,所以()2e x xf x =在区间()0,¥+上有极大值()2421e f =<,即当1,0a x =>时,恒有()01f x <<.又当0x >时,()cos h x x =的值域为[]1,1-,且其最小正周期为2πT =,现考查在其一个周期(]0,2π上的情况,()2ex x f x =在区间(]0,2上单调递增,()cos h x x =在区间(]0,2上单调递减,且()()0001f h =<=,()()202cos2f h >>=,所以()cos h x x =与()2ex x f x =的图象在区间(]0,2上只有一个交点,即()g x 在区间(]0,2上有且只有1个零点.因为在区间3π2,2æùçúèû上,()()0,cos 0f x h x x >=£,所以()2e x xf x =与()cos h x x =的图象在区间3π2,2æùçúèû上无交点,即()g x 在区间3π2,2æùçúèû上无零点.在区间3π,2π2æùçúèû上,()2ex x f x =单调递减,()cos h x x =单调递增,且()()3π3π002π1cos2π2π22f h f h æöæö>><<==ç÷ç÷èøèø,,所以()cos h x x =与()2ex x f x =的图象在区间3π,2π2æùçúèû上只有一个交点,即()g x 在区间3π,2π2æùçúèû上有且只有1个零点.所以()g x 在一个周期(]0,2π上有且只有2个零点.同理可知,在区间(]()*2π,2π2πk k k +ÎN 上,()01f x <<且()2e xx f x =单调递减,()cos h x x =在区间(]2π,2ππk k +上单调递减,在区间(]2ππ,2π2πk k ++上单调递增,且()()()02π1cos 2π2πf k k h k <<==,()()()2ππ01cos 2ππ2ππf k k h k +>>-=+=+()()()02ππ1cos 2ππ2ππf k k h k <+<=+=+,所以()cos h x x =与()2ex x f x =的图象在区间(]2π,2ππk k +和2ππ,2π2π]k k ++(上各有一个交点,即()g x 在(]2π,2024π上的每一个区间(]()*2π,2π2πk k k +ÎN 上都有且只有2个零点.所以()g x 在0,2024π](上共有2024π220242π´=个零点.综上可知,()g x 在区间π,2024π2éù-êúëû上共有202412025+=个零点.方法二:当1a =时,()2e x xf x =,所以函数()()2cos cos ex x g x f x x x =-=-.当π,02éùÎ-êúëûx 时,()22sin 0e x x x g x x -=¢+£,所以()g x 在区间π,02éù-êúëû上单调递减.又()π0,002g g æö-><ç÷èø,所以存在唯一零点0π,02x éùÎ-êúëû,使得()00g x =.所以()g x 在区间π,02éù-êúëû上有且仅有一个零点.当π3π2π,2π,22x k k k æùÎ++ÎçúèûN 时,20cos 0ex x x ><,,所以()0g x >.所以()g x 在π3π2π,2π,22k k k æù++ÎçúèûN 上无零点.当π0,2x æùÎçèû时,()22sin 0exx x g x x -=¢+>,所以()g x 在区间π0,2æöç÷èø上单调递增.又()π00,g 02g æö<>ç÷èø,所以存在唯一零点.当*π2π,2π,2x k k k æùÎ+ÎçúèûN 时,()22sin exx x g x x ¢-=+,设()22sin e x x x x x j -=+,则()242cos 0exx x x x j -=+¢+>所以()g x ¢在*π2π,2π,2k k k æù+ÎçúèûN 上单调递增.又()π2π0,2π+02g k g k æö¢<>ç÷èø¢,所以存在*1π2π,2π,2x k k k æùÎ+ÎçúèûN ,使得()10g x ¢=.即当()12π,x k x Î时,()()10,g x g x <¢单调递减;当1π,2π2x x k æùÎ+çúèû时,()()10,g x g x >¢单调递增.又()π2π0,2π02g k g k æö<+>ç÷èø,所以()g x 在区间*π2π,2π,2k k k æù+ÎçúèûN 上有且仅有一个零点所以()g x 在区间π2π,2π,2k k k æù+ÎçúèûN 上有且仅有一个零点.当3π2π,2π2π,2x k k k æùÎ++ÎçúèûN 时,()22sin exx x g x x ¢-=+,设()22sin e x x x x x j -=+,则()242cos 0e xx x x x j -=+¢+>所以()g x ¢在3π2π,2π2π,2k k k æù++ÎçúèûN 上单调递增.又()3π2π0,2π2π02g k g k æö+<+<ç÷¢¢èø,所以()g x 在区间3π2π,2π2π,2k k k æù++ÎçúèûN 上单调递减:又()3π2π0,2π2π02g k g k æö+>+<ç÷èø,所以存在唯一23π2π,2π2π2x k k æöÎ++ç÷èø,使得()20g x =.所以()g x 在区间3π2π,2π2π,2k k k æù++ÎçúèûN 上有且仅有一个零点.所以()g x 在区间(]2π,2π2π,k k k +ÎN 上有两个零点.所以()g x 在(]0,2024π上共有2024π220242π´=个零点.综上所述,()g x 在区间π,2024π2éù-êúëû上共有202412025+=个零点.(二) 根据函数零点个数确定参数取值范围根据函数零点个数确定参数范围的两种方法1.直接法:根据零点个数求参数范围,通常先确定函数的单调性,根据单调性写出极值及相关端点值的范围,然后根据极值及端点值的正负建立不等式或不等式组求参数取值范围;2.分离参数法:首先分离出参数,然后利用求导的方法求出构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围,分离参数法适用条件:(1)参数能够分类出来;(2)分离以后构造的新函数,性质比较容易确定.【例2】(2024届天津市民族中学高三下学期5月模拟)已知函数()()ln 2f x x =+(1)求曲线()y f x =在=1x -处的切线方程;(2)求证:e 1x x ³+;(3)函数()()()2h x f x a x =-+有且只有两个零点,求a 的取值范围.【解析】(1)因为()12f x x ¢=+,所以曲线()y f x =在=1x -处的切线斜率为()11112f -==-+¢,又()()1ln 120f -=-+=,所以切线方程为1y x =+.(2)记()e 1x g x x =--,则()e 1xg x ¢=-,当0x <时,()0g x ¢<,函数()g x 在(),0¥-上单调递减;当0x >时,()0g x ¢>,函数()g x 在()0,¥+上单调递增.所以当0x =时,()g x 取得最小值()00e 10g =-=,所以()e 10xg x x =--³,即e 1x x ³+.(3)()()()()()2ln 22,2h x f x a x x a x x =-+=+-+>-,由题知,()()ln 220x a x +-+=有且只有两个不相等实数根,即()ln 22x a x +=+有且只有两个不相等实数根,令()()ln 2,22x m x x x +=>-+,则()()()21ln 22x m x x -+=+¢,当2e 2x -<<-时,()0m x ¢>,()m x 在()2,e 2--上单调递增;当e 2x >-时,()0m x ¢<,()m x 在()e 2,¥-+上单调递减.当x 趋近于2-时,()m x 趋近于-¥,当x 趋近于+¥时,()m x 趋近于0,又()1e 2ef -=,所以可得()m x 的图象如图:由图可知,当10ea <<时,函数()m x 的图象与直线y a =有两个交点,所以,a 的取值范围为10,e æöç÷èø.(三)零点存在性赋值理论及应用1.确定零点是否存在或函数有几个零点,作为客观题常转化为图象交点问题,作为解答题一般不提倡利用图象求解,而是利用函数单调性及零点赋值理论.函数赋值是近年高考的一个热点, 赋值之所以“热”, 是因为它涉及到函数领域的方方面面:讨论函数零点的个数(包括零点的存在性, 唯一性); 求含参函数的极值或最值; 证明一类超越不等式; 求解某些特殊的超越方程或超越不等式以及各种题型中的参数取值范围等,零点赋值基本模式是已知 f (a ) 的符号,探求赋值点 m (假定 m < a )使得 f (m ) 与 f (a ) 异号,则在 (m ,a ) 上存在零点.2.赋值点遴选要领:遴选赋值点须做到三个确保:确保参数能取到它的一切值; 确保赋值点 x 0 落在规定区间内;确保运算可行三个优先:(1)优先常数赋值点;(2)优先借助已有极值求赋值点;(3)优先简单运算.3.有时赋值点无法确定,可以先对解析式进行放缩,再根据不等式的解确定赋值点(见例2解法),放缩法的难度在于“度”的掌握,难度比较大.【例3】(2024届山东省烟台招远市高考三模)已知函数()()e x f x x a a =+ÎR .(1)讨论函数()f x 的单调性;(2)当3a =时,若方程()()()1f x x xm f x x f x -+=+-有三个不等的实根,求实数m 的取值范围.【解析】(1)求导知()1e xf x a =¢+.当0a ³时,由()1e 10xf x a ¢=+³>可知,()f x 在(),¥¥-+上单调递增;当a<0时,对()ln x a <--有()()ln 1e 1e0a xf x a a --=+>+×=¢,对()ln x a >--有()()ln 1e 1e 0a x f x a a --=+<+×=¢,所以()f x 在()(,ln a ¥ù---û上单调递增,在())ln ,a ¥é--+ë上单调递减.综上,当0a ³时,()f x 在(),¥¥-+上单调递增;当a<0时,()f x 在()(,ln a ¥ù---û上单调递增,在())ln ,a ¥é--+ë上单调递减.(2)当3a =时,()3e xf x x =+,故原方程可化为3e 13e 3e xx xx m x +=++.而()23e 13e 3e 3e 3e 3e 3e x x x x x x xx x x x x x x +-=-=+++,所以原方程又等价于()23e 3e xx x m x =+.由于2x 和()3e3e xxx +不能同时为零,故原方程又等价于()23e 3e x x xm x =×+.即()()2e 3e 90x x x m x m --×-×-=.设()e xg x x -=×,则()()1e xg x x -=-×¢,从而对1x <有()0g x ¢>,对1x >有()0g x ¢<.故()g x 在(],1-¥上递增,在[)1,+¥上递减,这就得到()()1g x g £,且不等号两边相等当且仅当1x =.然后考虑关于x 的方程()g x t =:①若0t £,由于当1x >时有()e 0xg x x t -=×>³,而()g x 在(],1-¥上递增,故方程()g x t =至多有一个解;而()110eg t =>³,()0e e t g t t t t --=×£×=,所以方程()g x t =恰有一个解;②若10e t <<,由于()g x 在(],1-¥上递增,在[)1,+¥上递减,故方程()g x t =至多有两个解;而由()()122222e2e e 2e 2e 12e 22x x x x xxx x g x x g g -------æö=×=×××=××£××=×ç÷èø有1222ln 1ln 222ln 2e2e t t g t t -×-æö£×<×=ç÷èø,再结合()00g t =<,()11e g t =>,()22ln 2ln 2e ln e 1t>>=,即知方程()g x t =恰有两个解,且这两个解分别属于()0,1和21,2ln t æöç÷èø;③若1t e=,则()11e t g ==.由于()()1g x g £,且不等号两边相等当且仅当1x =,故方程()g x t =恰有一解1x =.④若1e t >,则()()11eg x g t £=<,故方程()g x t =无解.由刚刚讨论的()g x t =的解的数量情况可知,方程()()2e 3e 90x x x m x m --×-×-=存在三个不同的实根,当且仅当关于t 的二次方程2390t mt m --=有两个不同的根12,t t ,且110,e t æöÎç÷èø,21,e t ¥æùÎ-çúèû.一方面,若关于t 的二次方程2390t mt m --=有两个不同的根12,t t ,且110,e t æöÎç÷èø,21,e t ¥æùÎ-çúèû,则首先有()20Δ93694m m m m <=+=+,且1212119e e m t t t -=£<.故()(),40,m ¥¥Î--È+, 219e m >-,所以0m >.而方程2390t mt m--=,两解符号相反,故只能1t =,2t =23e m >这就得到203e m ->³,所以22243e m m m æö->+ç÷èø,解得219e 3e m <+.故我们得到2109e 3em <<+;另一方面,当2109e 3e m <<+时,关于t 的二次方程2390t mt m --=有两个不同的根1t =,2t 22116e 13319e 3e 9e 3e 2et +×+×++===,2t 综上,实数m 的取值范围是210,9e 3e æöç÷+èø.(四)隐零点问题1.函数零点按是否可求精确解可以分为两类:一类是数值上能精确求解的,称之为“显零点”;另一类是能够判断其存在但无法直接表示的,称之为“隐零点”.2.利用导数求函数的最值或单调区间,常常会把最值问题转化为求导函数的零点问题,若导数零点存在,但无法求出,我们可以设其为0x ,再利用导函数的单调性确定0x 所在区间,最后根据()00f x ¢=,研究()0f x ,我们把这类问题称为隐零点问题. 注意若)(x f 中含有参数a ,关系式0)('0=x f 是关于a x ,0的关系式,确定0x 的合适范围,往往和a 的范围有关.【例4】(2024届四川省成都市实验外国语学校教育集团高三下学期联考)已知函数()e xf x =,()ln g x x =.(1)若函数()()111x h x ag x x +=---,a ÎR ,讨论函数()h x 的单调性;(2)证明:()()()()1212224x f x f x g x -->-.(参考数据:45e 2.23»,12e 1.65»)【解析】(1)由题意()()1ln 1,11x h x a x x x +=-->-,所以()()22,11ax a h x x x -+¢=>-,当0a =时,()0h x ¢>,所以()h x 在()1,+¥上为增函数;当0a ¹时,令()0h x ¢=得21x a=-,所以若0a >时,211a-<,所以()0h x ¢>,所以()h x 在()1,+¥上为增函数,若0<a 时,211a ->,且211x a<<-时,()0h x ¢>,21x a >-时,()0h x ¢<,所以()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数,综上:当0a ³时,()h x 在()1,+¥上为增函数,当0<a 时,()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数;(2)()()()()1212224x f x f x g x -->-等价于()2121e e 2ln 204x x x x ---+>,设()()2121e e 2ln 24x x F x x x =---+,则()()()222e 2e 12e e 2e e x x x x x x x x x x F x x x x x-+--¢=--==,因为0x >,所以e 10x x +>,设()e 2x x x j =-,则()()10e xx x j ¢=+>,则()x j 在()0,¥+上单调递增,而()4544e 20,1e 2055j j æö=-<=->ç÷èø,所以存在04,15x æöÎç÷èø,使()00x j =,即00e 2xx =,所以00ln ln 2x x +=,即00ln ln 2x x =-,当00x x <<时,()0F x ¢<,则()F x 在()00,x 上单调递减,当0x x >时,()0F x ¢>,则()F x 在()0,x +¥上单调递增,所以()()00200min 121e e 2ln 24x x F x x x =---+()000220001421212ln 22222ln 224x x x x x x =---++=-+-+,设()21422ln 22,15m t t t t æö=-+-+<<ç÷èø,则()3220m t t ¢=+>,则()m t 在4,15æöç÷èø上单调递增,42581632ln 222ln 20516580m æö=-+-+=->ç÷èø,则()min 0F x >,则不等式()2121e e 2ln 204x x x x ---+>恒成立,即不等式()()()()1212224x f x f x g x -->-成立.【例1】(2024届山西省晋中市平遥县高考冲刺调研)已知函数()πln sin sin 10f x x x =++.(1)求函数()f x 在区间[]1,e 上的最小值;(2)判断函数()f x 的零点个数,并证明.【解析】(1)因为()πln sin sin 10f x x x =++,所以1()cos f x x x ¢=+,令()1()cos g x f x x x ==+¢,()21sin g x x x-¢=-,当[]1,e Îx 时,()21sin 0g x x x =--<¢,所以()g x 在[]1,e 上单调递减,且()11cos10g =+>,()112π11e cos e<cos 0e e 3e 2g =++=-<,所以由零点存在定理可知,在区间[1,e]存在唯一的a ,使()()0g f a a =¢=又当()1,x a Î时,()()0g x f x =¢>;当(),e x a Î时,()()0g x f x =¢<;所以()f x 在()1,x a Î上单调递增,在(),e x a Î上单调递减,又因为()ππ1ln1sin1sinsin1sin 1010f =++=+,()()ππe ln e sin e sin1sin e sin 11010f f =++=++>,所以函数()f x 在区间[1,e]上的最小值为()π1sin1sin10f =+.(2)函数()f x 在()0,¥+上有且仅有一个零点,证明如下:函数()πln sin sin 10f x x x =++,()0,x ¥Î+,则1()cos f x x x¢=+,若01x <£,1()cos 0f x x x+¢=>,所以()f x 在区间(]0,1上单调递增,又()π1sin1sin010f =+>,11πππ1sin sin 1sin sin 0e e 1066f æö=-++<-++=ç÷èø,结合零点存在定理可知,()f x 在区间(]0,1有且仅有一个零点,若1πx <£,则ln 0,sin 0x x >³,πsin010>,则()0f x >,若πx >,因为ln ln π1sin x x >>³-,所以()0f x >,综上,函数()f x 在()0,¥+有且仅有一个零点.【例2】(2024届江西省九江市高三三模)已知函数()e e (ax axf x a -=+ÎR ,且0)a ¹.(1)讨论()f x 的单调性;(2)若方程()1f x x x -=+有三个不同的实数解,求a 的取值范围.【解析】(1)解法一:()()e eax axf x a -=-¢令()()e e ax axg x a -=-,则()()2e e0ax axg x a -+¢=>()g x \在R 上单调递增.又()00,g =\当0x <时,()0g x <,即()0f x ¢<;当0x >时,()0g x >,即()0f x ¢>()f x \在(),0¥-上单调递减,在()0,¥+上单调递增.解法二:()()()()e 1e 1e e e ax ax ax ax axa f x a -+-=-=¢①当0a >时,由()0f x ¢<得0x <,由()0f x ¢>得0x >()f x \在(),0¥-上单调递减,在()0,¥+上单调递增②当0a <时,同理可得()f x 在(),0¥-上单调递减,在()0,¥+上单调递增.综上,当0a ¹时,()f x 在(),0¥-上单调递减,在()0,¥+上单调递增.(2)解法一:由()1f x x x -=+,得1e e ax ax x x --+=+,易得0x >令()e e x xh x -=+,则()()ln h ax h x =又()e e x xh x -=+Q 为偶函数,()()ln h ax h x \=由(1)知()h x 在()0,¥+上单调递增,ln ax x \=,即ln xa x=有三个不同的实数解.令()()2ln 1ln ,x x m x m x x x -=¢=,由()0m x ¢>,得0e;x <<由()0m x ¢<,得e x >,()m x \在(]0,e 上单调递增,在()e,¥+上单调递减,且()()110,e em m ==()y m x \=在(]0,1上单调递减,在(]1,e 上单调递增,在()e,¥+上单调递减当0x →时,()m x ¥→+;当x →+¥时,()0m x →,故10ea <<解得10e a -<<或10e a <<,故a 的取值范围是11,00,e e æöæö-Èç÷ç÷èøèø解法二:由()1f x x x -=+得1e e ax ax x x --+=+,易得0x >令()1h x x x -=+,则()h x 在()0,1上单调递减,在()1,¥+上单调递增.由()()e axh h x =,得e ax x =或1e ax x -=两边同时取以e 为底的对数,得ln ax x =或ln ax x =-,ln ax x \=,即ln xa x=有三个不同的实数解下同解法一.【例3】(2024届重庆市第一中学校高三下学期模拟预测)已知函数31()(ln 1)(0)f x a x a x =++>.(1)求证:1ln 0x x +>;(2)若12,x x 是()f x 的两个相异零点,求证:211x x -<【解析】(1)令()1ln ,(0,)g x x x x =+Î+¥,则()1ln g x x ¢=+.令()0g x ¢>,得1ex >;令()0g x ¢<,得10e x <<.所以()g x 在10,e æöç÷èø上单调递减,在1,e ¥æö+ç÷èø上单调递增.所以min 11()10e e g x g æö==->ç÷èø,所以1ln 0x x +>.(2)易知函数()f x 的定义域是(0,)+¥.由()(ln f x a x =+,可得()a f x x ¢=.令()0f x ¢>得x >()0f x ¢<得0<所以()0f x ¢>在æççè上单调递减,在¥ö+÷÷ø上单调递增,所以min 3()ln 333a a f x f a æö==++ç÷èø.①当3ln 3033a aa æö++³ç÷èø,即403e a <£时,()f x 至多有1个零点,故不满足题意.②当3ln 3033a a a æö++<ç÷èø,即43e a >1<<.因为()f x 在¥ö+÷÷ø上单调递增,且(1)10f a =+>.所以(1)0f f ×<,所以()f x 在¥ö+÷÷ø上有且只有1个零点,不妨记为1x 11x <<.由(1)知ln 1x x>-,所以33221(1)0f a a a a a æö=+>+=>ç÷ç÷èø.因为()f x 在æççè0f f <×<,所以()f x 在æççè上有且只有1个零点,记为2x 2x <<211x x <<<<2110x x -<-<.同理,若记12,x x öÎÎ÷÷ø则有2101x x <-<综上所述,211x x -<.【例4】(2022高考全国卷乙理)已知函数()()ln 1e xf x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若()f x 在区间()()1,0,0,-+¥各恰有一个零点,求a 取值范围.的【解析】(1)当1a =时,()ln(1),(0)0e xxf x x f =++=,所以切点为(0,0),11(),(0)21ex xf x f x -¢¢=+=+,所以切线斜率为2所以曲线()y f x =在点(0,(0))f 处的切线方程为2y x =.(2)()ln(1)e x ax f x x =++,()2e 11(1)()1e (1)ex x xa x a x f x x x +--¢=+=++,设()2()e 1xg x a x=+-1°若0a >,当()2(1,0),()e 10x x g x a x Î-=+->,即()0f x ¢>所以()f x 在(1,0)-上单调递增,()(0)0f x f <=故()f x 在(1,0)-上没有零点,不合题意,2°若10a -……,当,()0x Î+¥时,()e 20xg x ax ¢=->所以()g x 在(0,)+¥上单调递增,所以()(0)10g x g a >=+…,即()0f x ¢>所以()f x 在(0,)+¥上单调递增,()(0)0f x f >=,故()f x 在(0,)+¥上没有零点,不合题意.3°若1a <-,(1)当,()0x Î+¥,则()e 20x g x ax ¢=->,所以()g x 在(0,)+¥上单调递增,(0)10,(1)e 0g a g =+<=>,所以存在(0,1)m Î,使得()0g m =,即()0¢=f m .当(0,),()0,()x m f x f x ¢Î<单调递减,当(,),()0,()x m f x f x ¢Î+¥>单调递增,所以当(0,),()(0)0x m f x f Î<=,当,()x f x →+¥→+¥,所以()f x 在(,)m +¥上有唯一零点,又()f x 在(0,)m 没有零点,即()f x 在(0,)+¥上有唯一零点,(2)当()2(1,0),()e 1xx g x a xÎ-=+-,()e2xg x ax ¢=-,设()()h x g x ¢=,则()e 20x h x a ¢=->,所以()g x ¢在(1,0)-上单调递增,1(1)20,(0)10eg a g ¢¢-=+<=>,所以存(1,0)n Î-,使得()0g n ¢=当(1,),()0,()x n g x g x ¢Î-<单调递减当(,0),()0,()x n g x g x ¢Î>单调递增,()(0)10g x g a <=+<,在又1(1)0eg -=>,所以存在(1,)t n Î-,使得()0g t =,即()0f t ¢=当(1,),()x t f x Î-单调递增,当(,0),()x t f x Î单调递减有1,()x f x →-→-¥而(0)0f =,所以当(,0),()0x t f x Î>,所以()f x 在(1,)t -上有唯一零点,(,0)t 上无零点,即()f x 在(1,0)-上有唯一零点,所以1a <-,符合题意,综上得()f x 在区间(1,0),(0,)-+¥各恰有一个零点,a 的取值范围为(,1)-¥-.【例5】(2024届辽宁省凤城市高三下学期考试)已知函数()1e ln xf x x x x -=--.(1)求函数()f x 的最小值;(2)求证:()()1e e e 1ln 2xf x x x +>---éùëû.【解析】(1)因为函数()1e ln x f x x x x -=--,所以()()()11111e 11e x x f x x x x x --æö=+--=+-çè¢÷ø,记()11e,0x h x x x -=->,()121e 0x h x x-¢=+>,所以()h x 在()0,¥+上单调递增,且()10h =,所以当01x <<时,()0h x <,即()0f x ¢<,所以()f x 在()0,1单调递减;当1x >时,()0h x >,即()0f x ¢>,所以()f x 在()1,¥+单调递增,且()10f ¢=,所以()()min 10f x f ==.(2)要证()()1e e e 1ln 2xf x x x éù+>---ëû,只需证明:()11e ln 02xx x --+>对于0x >恒成立,令()()11e ln 2xg x x x =--+,则()()1e 0xg x x x x¢=->,当0x >时,令1()()e xm x g x x x=¢=-,则21()(1)e 0xm x x x =+¢+>,()m x 在(0,)+¥上单调递增,即()1e xg x x x=¢-在(0,)+¥上为增函数,又因为222333223227e e033238g éùæöæöêú=-=-<ç÷ç÷êøøëû¢úèè,()1e 10g =¢->,所以存在02,13x æöÎç÷èø使得()00g x ¢=,由()0200000e 11e 0x x x g x x x x ¢-=-==,得020e 1xx =即0201x e x =即0201x e x =即002ln x x -=,所以当()00,x x Î时,()1e 0xg x x x=¢-<,()g x 单调递减,当()0,x x ¥Î+时,()1e 0xg x x x=¢->,()g x 单调递增,所以()()()0320000000022min0122111e ln 2222x x x x x x g x g x x x x x -++-==--+=++=,令()3222213x x x x x j æö=++-<<ç÷èø,则()22153223033x x x x j æö=++=++>ç÷èø¢,所以()x j 在2,13æöç÷èø上单调递增,所以()0220327x j j æö>=>ç÷èø,所以()()()002002x g x g x x j ³=>,所以()11e ln 02xx x --+>,即()()1e e e 1ln 2xf x x x éù+>---ëû.1.(2024届湖南省长沙市第一中学高考最后一卷)已知函数()()e 1,ln ,xf x xg x x mx m =-=-ÎR .(1)求()f x 的最小值;(2)设函数()()()h x f x g x =-,讨论()hx 零点的个数.2.(2024届河南省信阳市高三下学期三模)已知函数()()()ln 1.f x ax x a =--ÎR (1)若()0f x ³恒成立,求a 的值;(2)若()f x 有两个不同的零点12,x x ,且21e 1x x ->-,求a 的取值范围.3.(2024届江西省吉安市六校协作体高三下学期5月联考)已知函数()()1e x f x ax a a -=--ÎR .(1)当2a =时,求曲线()y f x =在1x =处的切线方程;(2)若函数()f x 有2个零点,求a 的取值范围.4.(2024届广东省茂名市高州市高三第一次模拟)设函数()e sin x f x a x =+,[)0,x Î+¥.(1)当1a =-时,()1f x bx ³+在[)0,¥+上恒成立,求实数b 的取值范围;(2)若()0,a f x >在[)0,¥+上存在零点,求实数a 的取值范围.5.(2024届河北省张家口市高三下学期第三次模)已知函数()ln 54f x x x =+-.(1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)证明:3()25f x x>--.6.(2024届上海市格致中学高三下学期三模)已知()e 1xf x ax =--,a ÎR ,e 是自然对数的底数.(1)当1a =时,求函数()y f x =的极值;(2)若关于x 的方程()10f x +=有两个不等实根,求a 的取值范围;(3)当0a >时,若满足()()()1212f x f x x x =<,求证:122ln x x a +<.7.(2024届河南师范大学附属中学高三下学期最后一卷)函数()e 4sin 2x f x x l l =-+-的图象在0x =处的切线为3,y ax a a =--ÎR .(1)求l 的值;(2)求()f x 在(0,)+¥上零点的个数.8.(2024年天津高考数学真题)设函数()ln f x x x =.(1)求()f x 图象上点()()1,1f 处的切线方程;(2)若()(f x a x ³在()0,x Î+¥时恒成立,求a 的值;(3)若()12,0,1x x Î,证明()()121212f x f x x x -£-.9.(2024届河北省高三学生全过程纵向评价六)已知函数()ex axf x =,()sin cosg x x x =+.(1)当1a =时,求()f x 的极值;(2)当()0,πx Î时,()()f x g x £恒成立,求a 的取值范围.10.(2024届四川省绵阳南山中学2高三下学期高考仿真练)已知函数()()1ln R f x a x x a x=-+Î.(1)讨论()f x 的零点个数;(2)若关于x 的不等式()22ef x x £-在()0,¥+上恒成立,求a 的取值范围.11.(2024届四川省成都石室中学高三下学期高考适应性考试)设()21)e sin 3x f x a x =-+-((1)当a =()f x 的零点个数.(2)函数2()()sin 22h x f x x x ax =--++,若对任意0x ³,恒有()0h x >,求实数a 的取值范围12.(2023届云南省保山市高三上学期期末质量监测)已知函数()2sin f x ax x =-.(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)当0x >时,()cos f x ax x ³恒成立,求实数a 的取值范围.13.(2024届广东省揭阳市高三上学期开学考试)已知函数()()212ln 1R 2f x x mx m =-+Î.(1)当1m =时,证明:()1f x <;(2)若关于x 的不等式()()2f x m x <-恒成立,求整数m 的最小值.14.(2023届黑龙江省哈尔滨市高三月考)设函数(1)若,,求曲线在点处的切线方程;(2)若,不等式对任意恒成立,求整数k 的最大值.15.(2023届江苏省连云港市高三学情检测)已知函数.(1)判断函数零点的个数,并证明;(2)证明:.322()33f x x ax b x =-+1a =0b =()y f x =()()1,1f 0a b <<1ln 1x k f f x x +æöæö>ç÷ç÷-èøèø()1,x Î+¥21()e xf x x=-()f x 2e ln 2cos 0x x x x x --->。
第13讲 导数-零点问题(解析版)
第13讲 导数-零点问题1.高考对本部分的考查一般有三个层次:(1)主要考查求导公式,求导法则与导数的几何意义; (2)导数的简单应用,包括求函数的单调区间、极值、最值等;(3)综合考查,如零点、证明不等式、恒成立问题、求参数等,包括解决应用问题,将导数内容和传统内容中有关不等式、数列及函数单调性有机结合,设计综合题.2.利用导数解决函数的零点问题时,一般先由零点的存在性定理说明在所求区间内至少有一个零点,再利用导数判断在所给区间内的单调性,由此求解. 3.利用导数解决函数零点问题的方法:(1)先求出函数的单调区间和极值,根据函数的性质画出图象,然后将问题转化为函数图象与轴交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合的思想和分类讨论的思想; (2)构造新函数,将问题转化为研究两函数的图象的交点问题;(3)分离参变量,即由()0f x =分离参变量,得()a x ϕ=,研究直线y a =与()y x ϕ=的图象的交点问题.【好题赏析】1.设函数22()ln 2x f x k x =-,0k >.(1)求()f x 的单调区间和极值;(2)证明:若()f x 存在零点,则()f x 在区间(1,上仅有一个零点.【答案】(1)()f x 的单调递减区间是(0,)k ,单调递增区间是(,)k +∞;()f x 极小值2(12ln )2k k -;(2)证明见解析.【分析】(1)求函数导数,分析函数的单调性即可得极值;(2)由(1)知,()f x 在区间(0,)+∞上的最小值为2(12ln )()2k k f k -=,由()0f k ≤得k 讨论k =和k >【解析】(1)由22()ln 02 ()x f x k x k >=-得222()k x k f x x x x-'=-=. 由()0f x '=解得x k =.()f x 与()'f x 在区间(0,)+∞上的情况如下:所以,()f x 的单调递减区间是(0,)k ,单调递增区间是(,)k +∞;()f x 在x k =处取得极小值2(12ln )()2k k f k -=,无极大值.(2)由(1)知,()f x 在区间(0,)+∞上的最小值为2(12ln )()2k k f k -=.因为()f x 存在零点,所以2(12ln )02k k -≤,从而k当k =()f x 在区间(1,上单调递减,且0f =,所以x =()f x 在区间(1,上的唯一零点.当k >()f x 在区间上单调递减,且1(1)02f =>, 2e 02kf -=<,所以()f x 在区间上仅有一个零点.综上可知,若()f x 存在零点,则()f x 在区间上仅有一个零点. 2.已知函数()e 1=-x f x ,()sin =g x a x ,a ∈R . (1)若1a =-,证明:当0x ≥时,()()f x g x ≥; (2)讨论()()()x f x g x ϕ=-在[0,]x π∈上零点的个数.【答案】(1)证明见解析;(2)当1a ≤时,()ϕx 在[0,]π上有1个零点;当1a >时,()ϕx 在[0,]π上有2个零点.【分析】(1)作差,令()()()1sin =-=-+xF x f x g x e x ,利用导数证明当0x ≥,有()(0)0F x F ≥=即可;(2)对于()()()x f x g x ϕ=-,求出()cos '=-xx e a x ϕ,对a 讨论,利用零点存在定理讨论零点个数.【解析】(1)令()()()1sin =-=-+x F x f x g x e x ,所以()cos '=+xF x e x当(0,)x ∈+∞时,e 1x >,cos 1x ≥-,所以()0F x '>.所以()F x 在[0,)+∞上单调递增.当0x ≥,有()(0)0F x F ≥=, 所以()()f x g x ≥在[0,)x ∈+∞上恒成立.(2)()1sin ()=--∈xx e a x a R ϕ.所以()cos '=-xx e a x ϕ, 设()()'=h x x ϕ,()sin xh x e a x '=+,①当0a ≤时,因为[0,]x π∈,所以sin 0-≥a x ,而10x e -≥,所以1sin 0x e a x --≥,即()0x ϕ≥恒成立,所以()ϕx 零点个数为1个.②当01a <≤时,()sin 0xh x e a x '=+≥,所以()x ϕ'在[0,]π上递增,而(0)10'=-≥a ϕ,所以()(0)0''≥=x ϕϕ,所以()ϕx 在[0,]π上递增,因为(0)0ϕ=,所以0x =是唯一零点,此时()ϕx 零点个数为1个.③当1a >时,()sin 0xh x e a x '=+≥,所以()x ϕ'在[0,]π上递增,而(0)10'=-<a ϕ,202⎛⎫'=> ⎪⎝⎭e ππϕ,所以存在0[0,]x π∈,有()00x ϕ'=,所以当00x x <<时,()ϕx 单调递减,当0x x π<<时,()ϕx 单调递增,所以当0x x =时,()ϕx 取得最小值()0x ϕ,而()0(0)0<=x ϕϕ,()10=->e πϕπ,因为()ϕx 图象是连续不间断的,由零点存在性定理知,()ϕx 在()0,x π上有唯一零点,因为0x =也是零点,所以()ϕx 在[0,]π上有2个零点.综上:当1a ≤时,()ϕx 在[0,]π上有1个零点;当1a >时,()ϕx 在[0,]π上有2个零点.【名师点睛】(1)利用导数证明不等式的解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,解题关键是如何根据不等式的结构特征构造一个可导函数; (2)研究函数零点(方程有根) 的常用方法:①直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; ②分离参数法:先将参数分离,转化成求函数的值域问题加以解决; ③数形结合法:研究单调性,利用零点存在定理判断. 3.已知函数()cos xf x ea x -=-,其中a R ∈,e 为自然对数的底数.(1)若()0f x ≥在0,2π⎛⎫⎪⎝⎭上恒成立,求实数a 的取值范围; (2)当1a =,()0,x π∈时, ①证明:函数()f x 恰有一个零点;②设0x 为()f x 的极值点,1x 为()f x 的零点,证明:1012x x π--<.参考数据:ln 20.6931≈ 【答案】(1)4a π-≤;(2)①证明见解析;②证明见解析.【解析】(1)若()0f x ≥在0,2π⎛⎫ ⎪⎝⎭恒成立,即cos xe a x -≤在0,2π⎛⎫ ⎪⎝⎭恒成立, 令()cos xe g x x -=,则()22sin sin 4cos c c s os o xx x x e e x g x x x xπ---⎛⎫- ⎪⎝⎭+-'==. 当04x π<≤时,()0g x '≤;当42x ππ<<时,()0g x '>.即()g x 在0,4π⎛⎤ ⎥⎝⎦上单调递减;在,42ππ⎛⎫⎪⎝⎭上单调递增. 故()44g x g ππ-⎛⎫≥= ⎪⎝⎭,即()4min g x π-=,所以4a π-≤.(2)当1a =时,()cos xf x ex -=-,()sin x f x e x -'=-+,①(1)当2x π≤<π时,()cos 0xf x e x -=->,即()f x 在,2上没有零点.(2)当02x π<<时,令()()h x f x =',则()cos 0xh x ex -'=+>,所以()f x '在0,2π⎛⎫ ⎪⎝⎭上单调递增,()010f '=-<,2102f e ππ-⎛⎫'=-> ⎪⎝⎭,所以()f x '在0,2π⎛⎫⎪⎝⎭上存在唯一实根0x ,故()f x 在()00,x 上单调递减,在0,2x π⎛⎫⎪⎝⎭上单调递增.因为()00f =,()()000f x f <=,202f e ππ-⎛⎫=> ⎪⎝⎭, 所以()f x 在0,2x π⎛⎫⎪⎝⎭上有且只有一个零点1x . 综上,函数()f x 在()0,π上恰有一个零点; ②因为0x 为()f x 的极值点,所以()0'0f x =,即00sin x ex -=.因为sin y x x =-的导函数为cos 10y x '=-<在0,2x π⎛⎫∈ ⎪⎝⎭上恒成立,所以sin y x x =-在0,2x π⎛⎫∈ ⎪⎝⎭上单调递减,因此sin 0y x x =-<恒成立,即sin x x <对任意0,2x π⎛⎫∈ ⎪⎝⎭成立,所以00sin x x <,00,2x π⎛⎫∈ ⎪⎝⎭, 所以有00x ex -<,即有00ln 0x x +>成立.令()ln m x x x =+,0,2x π⎛⎫∈ ⎪⎝⎭,()110m x x '=+>,所以()m x 在0,2x π⎛⎫∈ ⎪⎝⎭上单调递增,11ln 2022m ⎛⎫=-< ⎪⎝⎭,()110m =>,()m x 在1,12x ⎛⎫∈ ⎪⎝⎭上有且仅有一个零点,设为2x .而()000ln 0m x x x =+>,所以()()020m x m x >=,故0212x x >>. 由①012x x π<<,所以01122x x π<<<,故1012x x π--<. 【名师点睛】本题考查导数的应用、零点、不等式、极值等综合应用能力,考查转化与化归、推理论证与运算求解能力,难度较大. 4.已知21()(1)2xf x x e ax =-+. (1)当a e =-时,求()f x 的极值;(2)若()f x 有2个不同零点,求a 的取值范围. 【答案】(1)()1f x =-极大值,()2ef x =-极小值; (2)(0,)+∞. 【分析】(1)求出函数的导数()()xf x x e e '=-,求其零点,根据零点分析各区间导数的正负,即可求出极值(2)根据()()xf x x e a '=+,分类讨论,分别分析当0a =时,当0a >时,当0a <时导函数的零点,根据零点分析函数的极值情况.【解析】(1)当a e =-时 ()()xf x x e e '=-,令()0f x '=得01x =或,0x <,()0f x '>,()f x 为增函数,01x <<,()0f x '< 1x >,()0f x '>,()f x 为增函数所以()()01f x f ==-极大值,()()12e f x f ==-极小值. (2)()()xf x x e a '=+,01当0a =时,()()1xf x x e =-,只有个零点1x =;02当0a >时,0x e a +>,(),0x ∈-∞,()0f x '<,()f x 为减函数,()0,x ∈+∞,()0f x '>,()f x 为增函数()()01f x f ==-极小值而()102af =>,所以当0x >,()00,1x ∃∈,使()00f x =, 当0x <时,所以1x e < 所以()11x x e x ->-,所以()()22111122xf x x e ax x ax =-+>-+2112ax x =+-取10x =<,所以()()10f x f x >= ()()00f x f ⋅<,所以函数有2个零点,03当0a <时,()()xf x x e a '=+,令()0f x '=得0x =,()ln x a =-①()ln 0a ->,即1a <-时,当x 变化时 ()f x ,()f x '变化情况是所以()()01f x f ==-极大值,所以函数()f x 至多有一个零点,不符合题意;②1a =-时,()ln 0a -=,()f x 在(),-∞+∞单调递增,所以()f x 至多有一个零点,不合题意,③当()ln 0a -<时,即以()1,0a ∈-时,当x 变化时()f x ,()f x '的变化情况是所以0x <,0a <时,()()2102xf x x e ax =-+<,()01f =-,所以函数()f x 至多有个零点,综上:a 的取值范围是()0,∞+.5.设函数()32.f x x ax bx c =+++(1)求曲线()y f x =在点()()0,0f 处的切线方程;(2)设4a b ==,若函数()f x 有三个不同零点,求c 的取值范围; (3)求证:230a b ->是()f x 有三个不同零点的必要而不充分条件. 【答案】(1)y bx c =+;(2)320,27⎛⎫⎪⎝⎭;(3)见解析. 【解析】(1)由()32f x x ax bx c =+++,得()232f x x ax b =++'.因为()0f c =,()0f b '=,所以曲线()y f x =在点()()0,0f 处的切线方程为y bx c =+.(2)当4a b ==时,()3244f x x x x c =+++,所以()2384f x x x '=++.令()0f x '=,得23840x x ++=,解得2x =-或23x =-. ()f x 与()f x '在区间(),-∞+∞上的情况如下:所以,当0c >且32027c -<时,存在()14,2x ∈--,222,3x ⎛⎫∈-- ⎪⎝⎭,32,03x ⎛⎫∈- ⎪⎝⎭,使得()()()1230f x f x f x ===.由()f x 的单调性知,当且仅当320,27c ⎛⎫∈ ⎪⎝⎭时,函数()3244f x x x x c =+++有三个不同零点.(3)当24120a b ∆=-<时,()2320f x x ax b =++>',(),x ∈-∞+∞,此时函数()f x 在区间(),-∞+∞上单调递增,所以()f x 不可能有三个不同零点. 当24120a b ∆=-=时,()232f x x ax b =++'只有一个零点,记作0x .当()0,x x ∈-∞时,()0f x '>,()f x 在区间()0,x -∞上单调递增; 当()0,x x ∈+∞时,()0f x '>,()f x 在区间()0,x +∞上单调递增. 所以()f x 不可能有三个不同零点.综上所述,若函数()f x 有三个不同零点,则必有24120a b ∆=->. 故230a b ->是()f x 有三个不同零点的必要条件. 当4a b ==,0c时,230a b ->,()()232442f x x x x x x =++=+只有两个不同零点,所以230a b ->不是()f x 有三个不同零点的充分条件.因此230a b ->是()f x 有三个不同零点的必要而不充分条件. 6.已知函数()axf x e x =-(a R ∈,e 为自然对数的底数).(1)若()f x 有两个零点,求实数a 的取值范围;(2)当()f x 有两个零点1x ,2x ,且12x x <,求证:212x x e ⋅>.【答案】(1)10,e ⎛⎫⎪⎝⎭(2)证明见解析 【解析】(1)()f x 有两个零点⇔关于x 的方程ax e x =有两个相异实根由0>ax e ,知0x >,()f x ∴有两个零点ln xa x⇔=有两个相异实根. 令()ln x G x x =,则()21ln xG x x-'=, 由()0G x '>得0x e <<,由()0G x '<得x e >,()G x ∴在()0,e 单调递增,在(),e +∞单调递减,()()max 1G x G e e∴==,又()10G =,∴当01x <<时,()0G x <,当1x >时,()0G x >,当x →+∞时,()0G x →,()f x ∴有两个零点时,实数a 的取值范围为10,e ⎛⎫⎪⎝⎭.(2)由题意得1212ax ax e x e x ⎧=⎨=⎩10x ∴>,20x >1122ln ln ax x ax x =⎧∴⎨=⎩, ()1212ln ln a x x x x ∴+=+ ①,()2121ln ln a x x x x -=-,12x x <,2121ln ln x x a x x -∴=-,要证:212x x e ⋅>,只需证12ln ln 2x x +>,由①知()()22112121212221111ln ln ln ln =ln 1x x x x xx x a x x x x x x x x x ⎛⎫+ ⎪- ⎪+=+=⋅+⋅-⎪- ⎪⎝⎭, 120x x <<211x x ∴>,令21x t x =,1t >,∴只需证1ln 21t t t +⎛⎫⋅> ⎪-⎝⎭, 1t >101t t +∴>-,∴只需证:()()21ln 1t t t ->+,令()()()()21F ln 11t t t t t -=->+, ()()()()222114011t F t t t t t -'∴=-=>++,()F t ∴在()1,+∞递增,()()0F t F t ∴>=()()21ln 1t t t -∴>+,即12ln ln 2x x +>,即212x x e ⋅>.【名师点睛】本题主要考查了利用导数分析函数的单调性以及求解零点有关的问题,同时也考查了双变量构造函数证明单调性的方法,需要根据题意将参数a 用零点表达,再构造函数分析单调性证明不等式.属于难题.7.已知函数()ln f x x x a =-+有两个不同的零点. (1)求实数a 的取值范围;(2)若函数()f x 的两个不同的零点为12x x ,,且12x x <,当22x ≥时,证明:2212x x ⋅<.【答案】(1)(),1∞--;(2)详见解析.【解析】(1)由题意得ln 0x x a -+=在(0,)+∞上有两个不同的实根, 而()11f x x'=-,当01x <<时,()0f x '<,此时()f x 在()0,1上单调递减; 当1x >时,()0f x '>,此时()f x 在(1,)+∞上单调递增;所以()f x 在(0,)+∞的最小值为()11f a =+.所以10+<a 即1a <-, 易得01a e <<,()0aaf ee=>,1a e ->,()2a a f e e a --=+,令t a =-,()()21t g t e t t =->,则()20tg t e '=->,所以()g t 在(1,)+∞上单调递增,所以()()120g t g e >=->,所以()20a af e e a --=+>,所以当1a <-时,ln 0x x a -+=在()0,1和(1,)+∞上各有一个实根, 故实数a 的取值范围为(),1∞--.(2)证明:由(1)可得101x <<,21>x ,()()120f x f x ==, 而()()111222222222ln ln f x f x x a a x x x ⎛⎫⎛⎫-=-+--+ ⎪ ⎪⎝⎭⎝⎭()2222222222222ln ln 3ln ln 2x x a a x x x x x ⎛⎫=-+--+=--+ ⎪⎝⎭,设2t x =,令()()223ln ln 22h t t t t t =--+≥,于是()()()23321341t t h t t t t-+'=-+=,由于2t ≥,故()0h t '≥,即()h t 在[)2,+∞上单调递增,所以()()322ln 202h t h ≥=->. 所以当22x ≥时,()12220f x f x ⎛⎫-> ⎪⎝⎭,即()1222f x f x ⎛⎫> ⎪⎝⎭, 又()f x 在()0,1上递减,而101x <<,22201x <<, 所以1222x x <,即2122x x ⋅<. 【名师点睛】本题考查了利用导数研究函数的零点个数问题,考查了利用导数证明不等式,考查了推理能力和转化化归思想,属于难题.8.已知函数()()cos e .xf x x a x a =-+∈R(1)当1a =时,证明:()f x 在区间()0,2π上不存在零点;(2)若01≤<a ,试讨论函数()()cos g x a x f x =-+-的零点个数.【答案】(1)证明见解析;(2)当01a <<时,函数()g x 有两个零点;当1a =时,函数()g x 只有一个零点.【分析】(1)将1a =代入,求出()f x 的导函数()f x ',得出()f x 在()0,2π上的单调性,即可判断函数的零点.(2)先求出()g x 的单调区间,得出()g x 的最小值,进一步得出最小值的符号,由零点存在原理可得答案.【解析】(1)当1a =时,()cos e x f x x x =-+,则()sin 1xf x x e '=--+,()cos x f x x e ''=--,当()0,2x π∈,1cos 1x -≤≤,01x e e >=所以()cos 0xf x x e ''=--<,所以()f x '在()0,2π上单调递减.所以()()00f x f ''<=,所以()f x 在区间()0,2π单调递减. 所以当()0,x π∈时,()()00f x f <=, 故函数()f x 在区间()0,2π上不存在零点;(2)由题意可得()()cos xg x a x f x ae x a =-+-=--,因为()()10,ln 01xg x ae x a a '=-==-<≤,所以()g x 在(),ln a -∞-上单调递减,在()ln ,a -+∞上单调递增,因此()()ln 1ln g x g a a a ≥-=-+, 因为01a <≤,所以①当1a =时,()()ln 0,00a g x g -=≥=, 此时,()g x 在(),-∞+∞上仅有一个零点;②当01a <<时,()ln 0,00a g ->=,令()()1ln 01h a a a a =-+<<,()()10,ah a h a a-'=>在()0,1上单调递增,从而()()10h a h <=, 所以()ln 1ln 0g a a a -=-+<,由()g x 在(),ln a -∞-上单调递减,()00g =,()0,ln a ∈-∞ 从而()g x 在(),ln a -∞-上存在一个零点, 因为()12ln 2ln g a a a a -=-+,记()12ln a a a aϕ=-+, 且()()22211210a a a a a ϕ-'=--+=-<,从而()a ϕ在()0,1上单调,有()()10a ϕϕ>=,即()2ln 0g a ->,()ln 1ln 0g a a a -=-+<,且()g x 在()ln ,a -+∞上单调递增, 所以()g x 在()ln ,2ln a a --上也存在一个零点,综上:当01a <<时,函数()g x 有两个零点;当1a =时,函数()g x 只有一个零点.【名师点睛】本题考查利用导数研究函数得单调性,零点问题,考查分类讨论思想,解答本题得关键是得出()ln 1ln 0g a a a -=-+<,由()12ln 2ln g a a a a-=-+得出()2ln 0g a ->,从而得出结论,属于难题.9.已知函数()()2xax af x x a e+=+∈R 有两个零点. (1)求实数a 的取值范围;(2)设1x ,2x 是()f x 的两个零点,求证:12110x x +<. 【答案】(1)(),0-∞;(2)证明见解析.【解析】(1)函数()f x 的定义域为R ,则()()22x x xx e a ax f x x e e-'=-=. ①当0a =时,()2f x x =,此时函数()f x 仅有一个零点0x =,不合题意.②当0a <时,令()0f x '>,得0x >,故函数()f x 在()0,∞+上单调递增,令()0f x '<,得0x <,故()f x 在(),0-∞上单调递减.又由()00f a =<,()11f -=,所以()f x 在(),0-∞上有唯一零点; 令()()10x x g x x e +=≥,则()0xxg x e'=-≤, 所以函数()g x 单调递减,有()()001g x g <≤=,即101x x e +<≤,可得x ax aa e+≥.又当x >时,20x a +>,所以()20f x x a ≥+>,所以()f x 在[)0,+∞上有唯一零点,所以当0a <时,函数()f x 有两个零点 ③当0a >时,令()0f x '=,得0x =,ln2a x =, i )当ln 02a=,即2a =时,()()210xx x e f x e-'=≥, 此时函数()f x 在R 上单调递增,不可能有两个零点,不合题意; ii )当ln02a <,即02a <<时,令()0f x '>,得ln 2a x <或0x >,所以函数()f x 在,ln 2a ⎛⎫-∞ ⎪⎝⎭,()0,∞+上单调递增,令()0f x '<,得ln02a x <<,所以()f x 在ln ,02a ⎛⎫⎪⎝⎭上单调递减,所以()ln 2a f x f ⎛⎫= ⎪⎝⎭极大值,()()0f x f =极小值,又()00f a =>,可得此时函数()f x 最多有一个零点,不合题意; iii )当ln02a >,即2a >时,令()0f x '>,得ln 2a x >或0x <,所以函数()f x 在(),0-∞、ln ,2a ⎛⎫+∞ ⎪⎝⎭上单调递增,令()0f x '<,得0ln2a x <<,所以()f x 在0,ln 2a ⎛⎫ ⎪⎝⎭上单调递减.又当0x ≥时,有()0f x >,且函数()f x 在(),0-∞单调递增,所以函数()f x 最多仅有一个零点,不合题意.综上,若函数()f x 有两个零点,则实数a 的取值范围为(),0-∞.(2)由(1)知,当(),0a ∈-∞时,函数()f x 有两个零点,且一个为正、一个为负.不妨设120x x <<,有()()12f x f x =.由()()()()112211211111x x ax a ax a f x f x f x f x x x e e -+-+⎛⎫⎛⎫--=--=+-+ ⎪ ⎪⎝⎭⎝⎭()()111111x x a x e x e -⎡⎤=++-⎣⎦.令()()()()110xxh x x e x ex -=-++<,则()()()210x x x xx e h x x e e e--'=-=>,所以函数()h x 在(),0-∞上单调递增,所以对0x ∀<,()()00h x h <=. 又0a <,所以()()210f x f x -->,即()()21f x f x >-. 又10x <,10x ->,且函数()f x 在区间()0,∞+上单调递增, 所以21x x >-,所以120x x +>. 又120x x <,所以121212110x x x x x x ++=<,所以12110x x +<. 【名师点睛】此题考查已知函数的零点的个数利用导数求参数的取范围,利用导数证明不等式,考查转化能力和计算能力,综合性强,属于难题. 10.已知函数()ln =-+f x x x a . (1)讨论函数()f x 零点的个数;(2)若函数()f x 存在两个零点()1212,x x x x <,证明:122ln ln 0x x +<.【答案】(1)1a <时,函数()f x 无零点.1a =时,函数()f x 有1个零点. 1a >时,函数()f x 有2个零点. (2)证明见解析.【解析】(1)有题意得()111x f x x x-'=-= 由()0f x '>得01x <<,()0f x '<得1x >,所以()f x 在()0,1上单调递增,在1+,上单调递减.1x ∴=时,()f x 取得极大值,也是最大值为()11f a =-,所以当10a -<,即1a <时,函数()f x 无零点. 当10a -=,即1a =时,函数()f x 有1个零点. 当10a ->,即1a >时,()0aaf e a ea --=--+<()2a a f e a e =-,设()2(1)x u x x e x =->, ()20x u x e '=-<在(1,)+∞恒成立,()u x 在(1,)+∞单调递减,()(1)20u x u e <=-<,所以()0a f e <,()f x 在(,1)a e -,(1,)ae 各有一个零点,函数()f x 有2个零点.综上所述:1a <时,函数()f x 无零点.1a =时,函数()f x 有1个零点.1a >时,函数()f x 有2个零点.(2)由(1)(1)10f a =->,即1a >时,()f x 有两个零点12,x x ,(12x x <),则1(0,1)x ∈,2(1,)x ∈+∞,由1122ln ln 0x x a x x a -+=-+=,得221211ln ln lnx x x x x x , 令21x t x =,则1t >,11ln tx x t -=,1ln 1t x t =-, 122ln ln 0x x +<221212ln()001x x x x ⇔<⇔<<,2120x x >显然成立,要证122ln ln 0x x +<,即证2121x x <,只要证33ln 1(1)t tt <-,即证33ln (1)t t t <-,(1t >),令33()ln (1)g x t t t =--,(1)0g =,322()ln 3ln 3(1)g t t t t '=+--,(1)0g '=,令()()h t g t '=,则2223ln 6ln 3()6(1)[ln 2ln 22)t t h t t t t t t t t t'=+--=+-+,(1)0h '=,令22()ln 2ln 22m t t t t t =+-+,22ln 22()42(ln 12)t m t t t t t t t t'=+-+=+-+,(1)0m '=, 令2()ln 12n t t t t =+-+,1()41n t t t '=-+,0t >时,()n t '是减函数,所以1t >时,()(1)20n t n ''<=-<,所以()n t 是减函数,()(1)0n t n <=,即()0m t '<(1t >), 所以()m t 是减函数,()(1)0m t m <=,所以()0h t '<,()h t 在1t >时是减函数,()(1)0h t h <=,即()0g t '<,所以()g t 在(1,)+∞上是减函数,()(1)0g t g <=,所以33ln (1)0t t t --<,即33ln (1)t t t <-,综上,122ln ln 0x x +<成立.【名师点睛】本题考查用导数求函数最值,用导数证明有关函数零点的不等式,掌握导数与单调性的关系是解题基础.证明不等式关键在于转化与化归,如转化为研究函数的最值,研究函数的单调性可能需要多次求导才能得出结论.在需要引入新函数时,应对不等式进行变形,使新函数越来越简单.属于难题. 11.已知函数sin2()(n )l 1f x x x =-+,sin )2(g x x x =-. (1)求证:()g x 在区间(0,]4π上无零点;(2)求证:()f x 有且仅有2个零点.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)求出()2cos21g x x '=-,再求出函数()g x 的单调区间,从而分析其图象与x 轴无交点即可.(2)显然0x =是函数()f x 的零点,再分析()f x 在0,4π⎛⎤ ⎥⎝⎦上和在3,4π⎛⎫+∞⎪⎝⎭上无零点,在3,44ππ⎛⎫⎪⎝⎭上有一个零点,从而得证.【解析】(1)sin )2(g x x x =-,()2cos21g x x '=-.当0,6x π⎛⎫∈ ⎪⎝⎭时,()0g x '>;当,64x ππ⎛⎫∈⎪⎝⎭时,()0g x '<, 所以()g x 在0,6π⎛⎫ ⎪⎝⎭上单调递增,在,64ππ⎛⎫⎪⎝⎭上单调递减. 而(0)0g =,04g π⎛⎫> ⎪⎝⎭, 所以当0,4x π⎛⎤∈ ⎥⎝⎦时,()0>g x , 所以()g x 在区间0,4π⎛⎤ ⎥⎝⎦上无零点.(2)()f x 的定义域为(1,)-+∞.①当(1,0)x ∈-时,sin 20x <,ln(1)0x +<,所以()sin 2ln(1)0f x x x =++<,从而()f x 在(1,0)-上无零点. ②当0x =时,()0f x =,从而0x =是()f x 的一个零点. ③当0,4x π⎛⎤∈ ⎥⎝⎦时,由(1)知()0>g x ,所以sin2x x >,又ln(1)x x +,所以()sin 2ln(1)0f x x x =-+>,从而()f x 在0,4π⎛⎤ ⎥⎝⎦上无零点.④当3,44x ππ⎛⎤∈ ⎥⎝⎦时,()sin 2ln(1)f x x x =-+,1()2cos201f x x x '=-<+, 所以()f x 在3,44ππ⎛⎫⎪⎝⎭上单调递减. 而04f π⎛⎫> ⎪⎝⎭,304f π⎛⎫< ⎪⎝⎭,从而()f x 在3,44ππ⎛⎤ ⎥⎝⎦上有唯一零点.⑤当3,4x π⎛⎫∈+∞⎪⎝⎭时,ln(1)1x +>,所以()0f x <,从而()f x 在3,4π⎛⎫+∞ ⎪⎝⎭上无零点. 综上,()f x 有且仅有2个零点.【名师点睛】本题主要考查利用导数判断函数单调性的方法和函数零点的概念,属于难题.12.已知函数()2,()ln x f x e x g x x x =+-=+,若1x 是函数()f x 的零点,2x 是函数()g x 的零点.(1)比较1x 与2x 的大小; (2)证明:()()210f x g x +<. 【答案】(1)12x x <,见解析(2)见解析【分析】方法一:利用()20=+-=xf x e x ,利用2=-x e x 对不等式进行放缩,可得()111111ln 2ln 12ln 10x x e x x x x -+-++=-+≤,进而利用()g x 单调递增,且()10g x <和()20g x =,即可比较1x 与2x 的大小方法二:设()11111ln ln 2xH x x x x e =+=-+,令函数()ln 2,0tH t t e t =-+>,从而判断出函数()g x 的单调性,即可利用函数的单调性即可比较1x 与2x 的大小(2) 令函数()()()h x f x g x =-,则()()()()1122,h x g x h x f x =-=,要证()()210f x g x +<,即证()()21f x g x <-,只要证:()()21h x h x <,最后通过证明函数()h x 在区间[]12,x x 上的单调性进行证明即可.【解析】(1)()11120xf x e x =+-=,()11111ln ln 2xg x x x x e =+=-+,方法一:()111111ln 2ln 12ln 10xx e x x x x -+-++=-+≤,因为11x ≠,所以11ln 10x x -+<,所以()10g x <. 因为()20g x =,且()g x 单调递增,所以12x x <, 方法二:设()11111ln ln 2xH x x x x e =+=-+,令函数()ln 2,0tH t t e t =-+>,则1()t H t e t '=-,则()0010t H t e t '=-=, 则函数()H t 在区间()00,t 上单调递增,()H t 在区间()0,t +∞上单调递减,所以()0max 00001()ln 220t H t H t t e t t ==-+=--+< 所以()10g x '<,因为()20g x =,且()g x 单调递增,所以12xx <(2)令函数()()()h x f x g x =-,则()()()()1122,h x g x h x f x =-=. 要证()()210f x g x +<,即证()()21f x g x <-只要证:()()21h x h x <,只要证:函数()h x 在区间[]12,x x 上单调递减.由题意得()()()ln 2xh x f x g x e x =-=--,()22211(),x xh x e h x e x x ''=-=-, 因为()222ln 0g x x x =+=,所以2221ln lnx x x =-=, 所以()2222211,0x x e h x e x x '==-=, 因为()h x '单调递增,所以在区间[]12,x x 上,()0h x '所以()h x 在区间[]12,x x 上单调递减.所以原命题得证. 13.已知函数()ln(1)sin f x x x ax =++-,0a >. (1)当2a =时,证明:()0f x ≤;(2)若()f x 在()1,-+∞只有一个零点,求a . 【答案】(1)证明见解析;(2)2【分析】(1)当2a =时,()()ln 1sin 2f x x x x =++-,其定义域为()1,-+∞,利用导函数可求得()f x 在()1,-+∞上的单调性,进而可证明()()00f x f ≤=;(2)若2a >或02a <<,利用导数研究函数的单调性,可证明函数()f x 的零点个数不唯一,与已知条件矛盾;若2a =时,由(1)可知,()f x 在()1,-+∞只有一个零点.【解析】(1)当2a =时,()()ln 1sin 2f x x x x =++-,其定义域为()1,-+∞, 令()()1cos 21g x f x x x'==+-+,则()()21sin 1g x x x '=--+, 若10x -<≤,则()211sin 1x x ≥>-+,则0g x,则()g x 在1,0上单调递减,又()00g =,故()()0g x f x '=≥,故()f x 在1,0上单调递增,又()00f =,故对任意()1,0x ∈-,()0f x <恒成立; 若0x >,因为111x<+且c o s 1x ≤,所以0f x,则()f x 在0,上单调递减,又()00f =,故对任意()0,+x ∈∞,()0f x <恒成立. 综上,当2a =时,对任意()1,x ∈-+∞,()0f x ≤恒成立. (2)①若2a >时,令()()1cos 1T x f x x a x'==+-+,则()()21sin 1T x x x '=--+, 易知10x -<≤时,()211sin 1x x ≥>-+,则0Tx ,即f x 在1,0上单调递减,由1110a -<-<,且11(1)cos(1)0f a a'-=->,()020f a '=-<, 结合零点存在性定理知在1,0内存在实数1x 使得()10f x '=,故()11,x x ∈-时,()f x 单调递增,()1,0x x ∈时,()f x 单调递减.由()00f =,可知()10f x >.因为2a >,所以e 1a -<,即1e 10a --<-<, 所以()()()()sin e1e 1e 10e 1e 0aa a a a f a a a a a --------<-=-=-+-+-<-,因为()1,0x x ∈时,()0f x >,所以()1e 11,ax --∈-,因为()10f x >,0(e )1af --<,所以()f x 在()11,x -上存在一个不为0的零点,因为()00f =,所以2a >时,函数()f x 的零点个数不唯一,与题意矛盾,所以()2a ,∉+∞; ②若02a <<时,1()cos 1f x x a x'=+-+,易知f x 在[0,]π上单调递减,又()1π101πf a '=--<+,(0)cos0201f a a '=+-=->, 结合零点存在性定理知,存在()0,πm ∈使得()0f m '=, 故当[)0,x m ∈时,()0f x '>,(],πx m ∈时,()0f x '<, 即()f x 在[)0,m 上单调递增,()f x 在(],πm 上单调递减, 又()00f =,故()0f m >; 构造函数211()1e 22x F x x x =++-,1x ≥,则1()()e 2x G x F x x '==+-,则()1e x G x '=-,显然1x ≥时,()0G x '<, 故()G x 在[1,)+∞单调递减,又3(1)e 02G =-<,故()0G x <,故()F x 在[)1,+∞单调递减,又(1)2e 0F =-<,故()0F x <,即2111e 022x x x ++-<,对任意1x ≥恒成立,因为02a <<,所以21a >,故20F a ⎛⎫< ⎪⎝⎭,即22211e 0a a a ++-<,故2211e 0a a a ⎛⎫++-< ⎪⎝⎭恒成立,所以2222221sin 1111e 0e e e a a a a f a a a a ⎛⎫⎛⎫⎛⎫⎛⎫-=+---≤++-< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,因为()0,x m ∈时,()0f x >,而2e 1e 10a->->,21e 0a f ⎛⎫-< ⎪⎝⎭,所以()2e 10,a m -∉,即2e 1a m ->,所以()f x 在2,e 1a m ⎛⎫- ⎪⎝⎭上存在一个大于0的零点,因为()00f =,所以02a <<时,函数()f x 的零点个数不唯一, 与题意矛盾,所以()0,2a ∉; 若2a =时,由(1)知,()f x 在1,0上单调递增,在0,上单调递减,且()00f =,显然函数()f x 在()1,-+∞只有一个零点. 综上,要使()f x 在(1,)-+∞只有一个零点,则2a =.【名师点睛】本题考查利用导数研究函数的单调性、最值、零点,考查不等式的证明,考查分类讨论的思想在解题中的应用,考查学生的推理能力与计算求解能力,属于难题. 14.已知函数()32113f x x ax bx =+++(a ,b R ∈). (1)若0b =,且()f x 在()0,∞+内有且只有一个零点,求a 的值;(2)若20a b +=,且()f x 有三个不同零点,问是否存在实数a 使得这三个零点成等差数列?若存在,求出a 的值,若不存在,请说明理由;(3)若1a =,0b <,试讨论是否存在0110,,122x ⎛⎫⎛⎫∈ ⎪⎪⎝⎭⎝⎭,使得()012f x f ⎛⎫= ⎪⎝⎭.【答案】(1)1334⎛⎫- ⎪⎝⎭(2)存在;a 的值为1335⎛⎫- ⎪⎝⎭(3)答案不唯一,具体见解析【解析】(1)若0b =,则()32113f x x ax =++,()22f x x ax '=+, 若0a ≥,则在()0,∞+,则()0f x '>,则()f x 在()0,∞+上单调递增, 又()010f =>,故()f x 在()0,∞+上无零点,舍;若0a <,令()220f x x ax '=+=,得()0f x '=,10x =,22x a =-,在()0,2a -上,()0f x '<,()f x 在上单调递减, 在()0,2a -上,()0f x '>,()f x 在上单调递增, 故()()33384241133f x f a a a a =-=-++=+极小值, 若34103a +>,则()20f a ->,()f x 在()0,∞+上无零点,舍; 若34103a +>,则()20f a -=,()f x 在()0,∞+上恰有一零点,此时1334a ⎛⎫=- ⎪⎝⎭;若34103a +<,则()20f a -<,()010f =>,()()()23310f a a a a -=--++>, 则()f x 在()0,2a -和()2,3a a --上有各有一个零点,舍; 故a 的值为1334⎛⎫- ⎪⎝⎭.(2)因为20a b +=,则()322113f x x ax a x =+-+,若()f x 有三个不同零点,且成等差数列,可设 ()()()()()()322232113333f x x m d x m x m d x mx m d x m md =----+=-+--+, 故m a -=,则()0f a -=,故3331103a a a -+++=,3513a =-,335a =-.此时,335m =,d =,故存在三个不同的零点.故符合题意的a 的值为1335⎛⎫- ⎪⎝⎭.(3)若1a =,0b <,()32113f x x x bx =+++, ()3232000011111111233222f x f x x bx b ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=+++-+++⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦()323220000001111114147123222122x x b x x x x b ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-+++⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦所以若存在0110,,122x ⎛⎫⎛⎫∈ ⎪⎪⎝⎭⎝⎭,使得()012f x f ⎛⎫= ⎪⎝⎭,必须2004147120x x b +++=在110,,122⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭上有解. 0b <,()()21416712421480b b ∴∆=-+=->=00x >,0x ∴只能是74-+,依题意7014-<<,即711<,492148121b ∴<-<,即2571212b -<<-,又由7142-+=,得54b =-,故欲使满足题意的0x 存在,则54b ≠-, 所以当25557,,124412b ⎛⎫⎛⎫∈---- ⎪ ⎪⎝⎭⎝⎭时,存在唯一的0110,,122x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭满足()012f x f ⎛⎫= ⎪⎝⎭,当2575,,012124b ⎛⎤⎡⎫⎧⎫∈-∞---⎨⎬ ⎪⎥⎢⎝⎦⎣⎭⎩⎭时,不存在0110,,122x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭使()012f x f ⎛⎫= ⎪⎝⎭. 15.设函数()ln e x f x x a =+,()x g x axe =(10ea <<). (1)若()y f x =在1x =处的切线平行于直线2y x =,求实数a 的值; (2)设函数()()()h x f x g x =-,判断()y h x =的零点的个数;(3)设1x 是()h x 的极值点,2x 是()h x 的一个零点,且12x x <,求证:1232x x ->. 【答案】(1)1e;(2)2;(3)证明见解析. 【解析】(1)由题可知,()()ln 0xf x x ae x =+>,则1()x f x ae x'=+,得切线的斜率为()11k f ae ==+', 因为()y f x =在1x =处的切线平行于直线2y x =,∴12k ae =+=,解得1a e =,∴实数a 的值为1e. (2)令()()()xxh x f x g x lnx ae axe =-=+-,可知()h x 的定义域为(0,)+∞,且211()(1)x x xax e h x ae a x e x x-=+-+'=,令2()1xm x ax e =-,得2()(2)xxm x a xe x e =-+',而10a e<<,0x >得()0m x '<,可知()m x 在(0,)+∞内单调递减, 又()110m ae =->,且221111()1()1()0m ln a ln ln a a a a=-⋅=-<,故()0m x =在(0,)+∞内有唯一解,从而()0h x '=在(0,)+∞内有唯一解,不妨设为0x , 则011x lna <<,当0(0,)x x ∈时,0()()()0m x m x h x x x>'==, ()h x ∴在0(0,)x 内单调递增;当0(x x ∈,)+∞时,0()()()0m x m x h x x x<'==, ()h x ∴在0(x ,)+∞内单调递减,0x ∴是()h x 的唯一极值点,令()1x lnx x ϕ=-+, 则当1x >时,1()10x xϕ'=-<,故()ϕx 在(1,)+∞内单调递减, ∴当1x >时,()x ϕϕ<(1)0=,即1lnx x <-,从而1111111()(1)1()0ln a h ln lnln a ln e lnln ln ln a a a a a aϕ=+-=-+=<,又()0()10h x h >=,()h x ∴在0(x ,)+∞内有唯一零点,又()h x 在0(0,)x 内有唯一零点1,从而()h x 在(0,)+∞内恰有两个零点.()y h x ∴=的零点的个数为2.(3)已知1x 是()h x 的极值点,2x 是()h x 的一个零点,且12x x <,由(2)及题意,12()0()0h x h x '=⎧⎨=⎩,即1221221(1)x x ax e lnx a x e⎧=⎨=-⎩, ∴2122211x x x lnx e x --=,∴2121221x x x lnx e x -=-, 由(2)知当1x >时,1lnx x <-,又211x x >>, 故21221212(1)1x x x x ex x --<=-,两边取对数,得2121xx lne lnx -<,于是211122(1)x x lnx x -<<-,整理得1232x x ->,命题得证.【名师点睛】本题考查利用导数的几何意义求参数值,考查利用导数研究函数的零点个数问题以及利用导数证明不等式,通过构造新函数及通过导数研究考查函数的单调性和极值是解题的关键,考查分类讨论和转化思想,以及化简运算能力,属于难题. 16.已知函数()()ln()f x x a ax =-(0a >且1a ≠)的零点是12,x x .(1)设曲线()y f x =在零点处的切线斜率分别为12,k k ,判断12k k +的单调性; (2)设0x 是()f x 的极值点,求证:1202x x x +>. 【答案】(1)在(0,1)单调递增,在(1,)+∞递减(2)见解析 【解析】由题可知函数()f x 的定义域为()0,∞+ (1)由()()ln()0f x x a ax =-=,得11x a=,2x a =. 则()21111k f x f a a ⎛⎫''===-+⎪⎝⎭,()22()2ln k f x f a a ''===, 所以2122ln 1k k a a +=-+.令2()2ln 1g x x x =-+.则222(1)()2x g x x x x-'=-=,所以当01x <<时,()0g x '>;当1x >时()0g x '<, 故()g x 在(0,1)单调递增,在(1,)+∞递减.(2)()ln()1ln ln 1a af x ax x a x x'=-+=-++, 又21()af x x x''=+在0x >,∴()0f x ''>恒成立,由题知0x 为()f x 的极值点, 所以00ln 10aax x -+=且()f x 在()00,x 单调递减,在()0,x +∞单调递增, 故0x x =为()f x 的极小值点.令()()00()F x f x x f x x =+--, 则()()00()F x f x x f x x '''=++-()()()()0000ln ln 2ln 2a ax x x x a x x x x =+-+--+++-,故()()()()()022222220000001124()a a x ax xF x x x x x x x x x x x x x --''=+--=++--+--,因为00x x <<,所以()0F x ''<,所以()F x '在()00,x 单调递减,所以0000()(0)ln ln 2ln 20a aF x F x x a x x ''<=-+-++= 所以()F x 在()00,x 单调递减,所以()(0)0F x F <= 所以()()00f x x f x x +<-,不妨设1020x x x <<<,()()()()()()()()21100001001012f x f x f x x x f x x x f x x x f x x ==-+=-->+-=-所以()()2012f x f x x >-,又()f x 在()00,x 单调递减,在()0,x +∞单调递增, 所以2012x x x >-,即1202x x x +>.【名师点睛】本题考查导数几何意义的应用、导数研究函数的单调性、证明不等式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意问题的本质是极值点偏移问题.17.已知函数2()2ln f x ax a x x =--(a R ∈) (1)讨论()f x 的单调性(2)当1a =时,若函数()f x 的两个零点为1212,0()x x x x <<,判断122x x +是否其导函数()'f x 的零点?并说明理由【答案】(1)当0a =时,()f x 在(0,)+∞上单调递减;当0a >时,()f x在⎛ ⎝⎭上单调递减;()f x在⎫+∞⎪⎪⎝⎭上单调递增;当0a <时,()f x在0⎛ ⎝⎭上单调递增;()f x在1,4a ⎛⎫+∞⎝ ⎪⎪⎭上单调递减;(2)不是,理由见解析; 【解析】(1)函数2()2ln f x ax a x x =--,定义域为(0,)+∞求导2222()21a ax x af x ax x x--'=--=(1)当0a =时,()f x x =-,()f x 在(0,)+∞上单调递减;当0a ≠时,令2()22g x ax x a =--,其()214221160a a a ∆=-⨯⨯-=+>令()0f x '=,得1x =,2x =(2)当0a >时,1>0x ,20x <(舍去),当1(0,)x x ∈时,()0f x '<,()f x 在1(0,)x 上单调递减;当1(,)x x ∈+∞时,()0f x '>,()f x 在1(,)x +∞上单调递增;(3)当0a <时,20x >,10x <(舍去),当2(0,)x x ∈时,()0f x '>,()f x 在2(0,)x 上单调递增;当2(,)x x ∈+∞时,()0f x '<,()f x 在2(,)x +∞上单调递减;综上可知,当0a =时,()f x 在(0,)+∞上单调递减;当0a >时,()f x在10,4a ⎛⎫+ ⎪ ⎪⎝⎭上单调递减;()f x在⎫+∞⎪⎪⎝⎭上单调递增;当0a <时,()f x在0⎛ ⎝⎭上单调递增;()f x 在。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
含参导函数零点问题的几种处理方法 方法一:直接求出,代入应用
对于导函数为二次函数问题,可以用二次函数零点的基本方法来求。
(1)因式分解求零点 例1 讨论函数)(12)2
1
(31)(23R a x x a ax x f ∈+++-=
的单调区间 解析:即求)('x f 的符号问题。
由)2)(1(2)12()('2
--=++-=x ax x a ax x f 可以因式分
方法二:猜出特值,证明唯一
对于有些复杂的函数,有些零点可能是很难用方程求解的方法求出的,这时我们可以考虑用特殊值去猜出零点,再证明该函数的单调性而验证其唯一性。
例4 讨论函数ax x a x e a x x f x
++-+
--=23)1(2
1
31)1()(,R a ∈,的极值情况 解析:)1)(()1()()('2
-+-=++-+-=x e a x a x a x e a x x f x
x
,只能解出)('x f 的一个零点为a ,其它的零点就是01=-+x e x
的根,不能解。
例5(2011高考浙江理科)设函数R a x a x x f ∈-=,ln )()(2
(Ⅰ)若e x =为)(x f y =的极值点,求实数a
(Ⅱ)求实数a 的取值范围,使得对任意的],3,0(e x ∈恒有2
4)(e x f ≤成立(注:e 为自然对数),
方法三:锁定区间,设而不求
对于例5,也可以直接设函数来求,
①当10≤<x 时,对于任意的实数a ,恒有2
40)(e x f <≤成立②当e x 31≤<,由题意,首先有
,4)3ln(3()3(22
e e a e e
f ≤-=)解得)
3ln(23)
3ln(23e e e a e e e +
≤≤-
由'()()(2ln 1)a
f x x a x x
=-+-,但这时
会发现0)('=x f 的解除了a x =外还有x
a
x -+1ln 2=0的解,显然无法用特殊值猜出。
令()2ln 1a
h x x x
=+-
,注意到01)1(<-=a h ,0ln 2)(>=a a h ,
且(3)2ln(3)12ln(3)13a
h e e e e
=+-≥+-
=2(ln 30e 。
故0)('=x f 在),1(a 及(1,3e )至少还有一个零点,又()h x 在(0,+∞)内单调递增,所以函数()h x 在]3,1(e 内有唯一零点,但此时无法求出此零点怎么办。
我们可以采取设而不求的方法,记此零点为0x ,则a x <<01。
从
而,当0(0,)x x ∈时,'()0f x ;当0(,)x x a ∈时,'()
f x a ;当(,)x a ∈+∞时,'()
0f x ,即()f x 在0(0,)
x 内单调递增,在0,()x a 内单调递减,在(,)a +∞内单调递增。
所以要使2
()4f x e ≤对](1,3x e
∈恒成立,只要
22
00022
()()ln 4,(1)
(3)(3)ln(3)4,(2)
f x x a x e f e e a e e ⎧=-≤⎪⎨=-≤⎪⎩成立。
000
()2ln 10a
h x x x =+-
=,知002ln a x x =+(3)将(3)代入(1)得232004ln 4x x e ≤,又01x ,注意到函
数2
3
ln x x 在[1,+∞)内单调递增,故01
x e ≤。
再由(3)以及函数x x x +ln 2在(1.+ +∞)内单调递增,可得
13a e ≤。
由(2
)解得,33e a e ≤≤+
33e a e ≤≤综上,a
的取值范围为33e a e ≤≤。
例6 已知函数||ln )(b x x ax x f ++=是奇函数,且图像在))(,(e f e (e 为自然对数的底数)处的切线斜率为3 (1) 求b a ,的值 (2) 若Z k ∈,且1
)
(-<
x x f k 对任意1>x 恒成立,求k 的最大值。
例7 (2009高考全国Ⅱ理科)设函数()()2
1f x x aIn x =++有两个极值点12x x 、, 且12x x <,
(I )求a 的取值范围,并讨论()f x 的单调性;(II )证明:()2122
4
In f x ->
方法四:避开求值,等价替换。
对于有些函数的零点问题,可能用方法一、二、三都无法解决,这是我们可以考虑回避求其零点。
避开方法:放缩不等式
例8 设函数2
1)(ax x e x f x
---= (Ⅰ)若0=a ,求)(x f 的单调区间
(Ⅱ)若当,0)(,0≥≥x f x 时求a 的取值范围。
与例8类似,下面的2010高考全国Ⅱ理科的最后一题,也是这样的处理方法。
设函数()1x f x e -=-.
(Ⅰ)证明:当x >-1时,()1
x
f x x ≥+; (Ⅱ)设当0x ≥时,()x
f x ≤
,求a 的取值范围.
.
.
.
——知识就是力量,学海无涯苦作舟!——
不要担心知识没有用,知识多了,路也好选择,也多选择。
比如高考,高分的同学,填报志愿的时候选择学校的范围大,而在分数线左右的就为难了,分数低的就更加不要说了。
再比如,有了知识,你也可以随时炒老板。