遗传学第三章连锁遗传分析
【学习】第四章连锁遗传分析与染色体作图-第三章连锁遗传分析与染色体作图(1)

要点:
(1). 减数分裂前期的粗线期,非姊妹染色 单体之间由于在粗线期发生交换(crossing over) 而在双线期出现交叉(chiasma)。
整理课件
整理课件
(2). 相互连锁的两个基因之间如发生交换,会 导致这两个基因发生重组。
A
4、互引相和互斥相
(1)相引是两个基因位于同一条染色体上, 相斥则反之。
(2)同源染色体在减数分裂时发生交换 ( crossing-over )
(3)位置相近的因子相互连锁。(孟德尔遗传 的随机分离与相引Science,191134.384)
整理课件
5、 交换
1).交换的机制: Janssens, 1909
人类 果蝇
整理课件
7、连锁交换定律
摩尔根
遗传学第三大定律:连锁交换定律。
内容:
处在同一染色体上的两个或多个基因联合 在一起传入子代的频率大于重新组合的频率. 重组类型的产生是由于配子形成时,同源染色 体的非姊妹染色单体间发生了局部交换的结果。
整理课件
8、三大遗传定律的关系
1. 分离定律是自由组合定律和连锁交换定律的基础; 2. 自由组合定律和连锁交换定律是生物体遗传性状发 生变异的主要机制; 3. 自由组合与连锁交换的区别:
B 交换 A
b
a
b
a
B
发生过交换的性母细胞产生的配子,只有一半是 重组子,另一半是亲组合型。
A
B
复制
A A
B 交换 B
A A
B b
a
b
a
b
aB
a
b
a
b
交换的特点: 整理课件
普通遗传学 第三章 连锁互换与基因作图

ab为亲本型配子,在F2中的比例=1/2(1-p) 双隐性个体(aabb)在F2中的比例 = 1/4(1-p)2
F2双隐性个体观察值比例 =双隐性个体数/ 个体总数 = 1/4(1-p)2
2、相斥相中:
ab为重组型配子,在F2中的比例=1/4p2
例:香豌豆P-L基因间重组值测定
= 1- 2 ×0.4387 =12.26% 所以:相引相中重组值为12%
2. 有一杂交实验获得如下结果:
AaBb × aabb
Aabb aaBb
AaBb
aabb
42%
42%
8%
8%
请问:(1)哪些是亲本型配子,哪些是交换型配子?
(2)两基因间的交换值是多少?
(3)减数分裂时发生交换的孢母细胞的频率是多少?
答案
1. 解: • 测交后代4种表现型不是1:1:1:1的比例,表明两对基因连锁。 • 交换值=(42+38)/(209+211+42+38)=16% • 根据测交后代,灰身、长翅和黑身、残翅是亲本型。所以F1基因
= 2 ×0.04885 = 9.77% 所以:相斥相中重组值为9.8%
三、重组值与遗传距离
1. 两个连锁基因间重组值的变化范围是[0, 50%], 反映基因间的连锁强度、基因间的相对距离.
两基因间的距离越远,基因间的连锁强度越小, 重组频率就越大;反之,基因间的距离越近,基因间的 连锁强度越大,重组频率就越小。
1、赫钦森(C. B. Hutchinson, 1922)玉米测交试验
籽粒颜色: 显性性状:有色(C) 隐性性状:无色(c)
籽粒饱满程度: 显性性状:饱满(Sh) 隐性性状:凹陷(sh)
玉 米 相 引 相 测 交 实 验
genetics 5 连锁分析2

双交换的方式
二线双交换
中央标记基因
三线双交换
四线双交换
最大重组率50%
由此可见,尽管A-C 基因间发生过双交换,最终 其最大重组率仍为50%。若非姊妹染色单体参与交 换的机会相等,在特定的两个基因座间产生重组 型与亲本型的比率总是1:1,如果在特定的两个基 因座间同时发生两次以上的交换,即可看到两个 以上的交叉时,从理论上可以推论,偶数次交换 的结果与非交换相同,奇数次交换与单交换的结 果相同,因此,最终其最大重组值也是0.5。
两点测验的3个测交结果
两点测验:步骤(2/3)
2. 计算三对基因两两间的重组率 估计基因间的遗传距离。
重组率
重组率
重组率
两点测验:步骤(3/3)
3. 根据基因间的遗传距离确定基因间的排列 次序并作连锁遗传图谱。 Wx-Sh: 20 C-Sh: 3.6 Wx-C: 22
现在第三组图距为22cM,与23.6cM较为接 近,所以第一种较为正确。
两点测验:局限性
1. 工作量大,需要作三次杂交,三次测交;
2. 不能排除双交换的影响,当两基因位点间 超过5个遗传单位时,两点测验的准确性就 不够高。
三点测验:步骤(1/7-2/7)
仍以玉米C/c、Sh/sh、Wx/wx三对基因连锁分析为例,在描述时用 “+”代表各基因对应的显性基因。
1. 用三对性状差异的两纯合亲本杂交、并测交:
3个基因间发生双交换时(如;第一次交换 发生在a-b之间,第二次交换发生在b-c 之间),两侧基因(a-c)的相对位置不变, 中间位置的基因(b)相对于两侧基因的位置 却可能发生改变。所以:两侧基因之间的 重组值低于其实际交换值
交换率(值)与重组率(值)的关系
遗传学 连锁遗传

♣ 不完全连锁(部分连锁):F1可产生多种配子,后代出现新性状的组
合,但新组合较理论数为少。
完 全 连 锁
非等位基因A和B相当于一个基因
图5-5 果蝇的完全连锁
二、交换
1.交换:成对染色体非姐妹染色单体间基因的互换。
2.交换的过程:杂种减数分裂时期(前期I的粗线期)。
长花粉:短花粉 ������ (226+97):(95+1)=323:96 ≈ 3:1
以上结果都受分离规律支配,但不符合独立分配规律。
������
F2不符合9:3:3:1,则说明F1产生的四种配子不等数。
可用测交法加以验证,∵测交后代的表现型种类以及比例可反映
出F1配子的种类和比例。
证实F1所成的四种配子数不等
P 紫花、圆花粉粒(PPll) × 红花、长花粉粒(ppLL)
↓ F1 F2 实际个体数 按9:3:3:1推算 紫、长 P_L_ 226 235.8 紫、长PpLl ↓⊗ 紫、圆 P_ll 95 78.5 红、长 ppL_ 97 78.5 红、圆 ppll 1 26.2 总数 419 419
结果与第一个试验情况相同。
二点测验、三点测验;
连锁群、连锁遗传图。 五、性别决定:
与性别有关的一个或一对染色体称性染色体;
成对性染色体往往异型:XY型、ZW型; 性连锁。
1900年孟德尔遗传规律被重新发现以后,引起生物学界的广泛重视。 人们以更多的动物和植物为材料进行杂交试验。 其中属于两对性状 遗传的结果,有的符合独立分配规律,有的不符合,因此不少学者对于 孟德尔的遗传规律曾一度发生怀疑。 就在这个时期,摩尔根以果蝇为试验材料对此问题开展了深入细致 的研究,最后确认所谓不符合独立遗传规律的一些例证,实际上不属于 独立遗传,而属于另一类遗传,即连锁(linkage)遗传。 成为遗传学中 的第三个遗传规律。 摩尔根还根据自己研究成果创立了基因论(theory of the gene),把 抽象的基因概念落实在染色体上,大大地发展了遗传学。由此可见,摩 尔根的工作对孟德尔的遗传规律不是一种简单的修正,而是具有重大意 义的补充和发展。
连锁遗传分析与染色体的结构课件

THANKS
感谢观看
02
染色体的基本结构
染色体的形态与组成
形态
染色体在细胞分裂期间呈现为可见的线状结构,由DNA和蛋白质组成。
组成
染色体主要由DNA链、组蛋白、非组蛋白和其他相关蛋白质组成。DNA链携带 了遗传信息,而蛋白质则起到支撑和保护DNA的作用。
染色体的主要区域
01
02
03
着丝粒区
位于染色体中央,是染色 体分离时纺锤丝附着的区 域。
交换
同源染色体的非姐妹染色单体之 间发生的局部片段互换,称为交 叉互换或基因重组。此过程可产
生新的遗传组合。
重组
重组广义上包括交换引起的重组和 减数第一次分裂后期非同源染色体 的自由组合;狭义上指交换引起的 基因重组。
影响因素
交换与重组的频率受多种因素影响, 如染色体区域、遗传距离、环境因 素等。
连锁遗传的分子机制
基于连锁分析的基因定位技术
连锁不平衡分析
利用群体中连锁不平衡的原理,检测与 疾病或表型关联的多个基因区域。通过 连锁不平衡分析,可以确定与疾病相关 的候选基因区域。
VS
单倍型分析
基于连锁分析的单倍型分析方法可利用单 倍型块的结构和连锁关系,将基因座位间 的连锁信息与单倍型关联起来,提高基因 定位的准确性。
连锁遗传分析与染色体的结构课件
目 录
• 连锁遗传分析概述 • 染色体的基本结构 • 连锁遗传的分子基础 • 连锁遗传分析方法与应用
contents
01
连锁遗传分析概述
连锁遗传定义
遗传学-第三章-连锁遗传分析

(二)剂量补偿效应与lyon假说 1、剂量补偿效应(dosage compensation effect) 2、 lyon假说 (1)主要内容 (2)实验证据 (3)分子机制
可编辑版
10
四、连锁交换与重组
(一)果蝇的完全连锁与不完全连锁 P94 • 连锁(linkage)
处于同一条染色体上的基因遗传时较多的联系 在一起的现象。 • 完全连锁(complete linkage)
两个连锁基因之间的物理距离很近,在传递过程 中不能分开。 • 连锁群( linkage group)
位于同一染色体上的基因群,称为一个连锁群。
可编辑版
11
五、遗传学第三定律
(一)交换的细胞学证据
第三章 连锁遗传分析
一、性染色体与性别决定 (一)人类的性染色体
X染色体; Y染色体
假常染色体区1
(X染色体特异区)
可编辑版
假常染色体区2
1
(二)、性染色体性别决定的几种类型
• 1、XX-XY型 • 2、ZZ-ZW型 • 3、XO型 • 4、植物的性别决定
(三) 环境因子与性别决定
1、爬行类的温度性别决定 2、后缢的位置性别决定
可编辑版
12
可编辑版
13
可编辑版
14
可编辑版
15
(二)遗传学第三定律
• 连锁定律:指位于同一染色体上的基因联合在一起伴同 遗传的频率大于重组合的频率,重组(recombinant)的
产生是由于在配子形成过程中同源染色体的非姊妹染色 单体间发生了局部交换。 1、重组率的测定 重组率(recombination frequency, RF)
遗传学第3章连锁交换定律

1
本章内容
第一节 连锁交换定律的实质 第二节 重组率及其测定 第三节 基因定位 第四节 连锁和交换定律的意义
2
背景
1900年孟德尔遗传规律重新发现以后,生物界广 泛重视,进行了大量试验。
其中有些属于两对性状的遗传结果不符合自由组 合定律→ 摩尔根以果蝇为材料进行深入细致研究→ 提出连锁遗传定律→ 创立基因论→认为基因成直线排 列在染色体上,进一步发展为细胞遗传学。
20
在全部孢母细胞中,各联会的同源染色体在C与Sh基因间 不可能全部都发生交换,故重组率<50%;
例如玉米F1的100个孢母细胞中,交换发生在Cc和Shsh相 连区段之内的有7个,则重组率为3.5 %。 亲本组合=((193+193)/400)×100%=96.5% 重新组合=((7+7)/400)×100%=3.5%
14
三、 完全连锁和不完全连锁
(一)完全连锁 (complete linkage)
同源染色体上非等位基因间不能发生 非姐妹染色单体之间的交换→ F1只产生两 种亲型配子、其自交或测交后代个体的表 现型均为亲本组合。
15
(a)F1代自交,F2代表现 1:2:1的分离比 ;
(b)F1代的测交,测交后 代表现1:1的分离比
例如第一节中的香豌豆资料:
F2有4种表现型 F1有4种配子 设各配子的比例为
紫长 紫圆 红长 红圆
PL Pl pL pl
a
b cd
F2组合为
(aPL bPl cpL dpl)2
♣ 其中F2中纯合双隐性ppll个体数即为d2;
组成F2表现型ppll的F1配子必然是pl,其频率d 。
26
已知香豌豆ppll个体数为1338株(相引组); ∴ 表现型比率= d2 =1338/6952×100%=19.2%。
遗传学研究中的遗传连锁分析

遗传学研究中的遗传连锁分析遗传连锁是指遗传物质在染色体中的排列顺序被固定下来,使得先前两个连锁位点距离近的基因相对稳定地遗传给后代。
因此,遗传连锁分析是一种研究基因间相互关系的方法,通过分析两个或多个特定的基因之间的遗传连锁,来推断基因组内不同部位之间的连接情况。
一、遗传连锁的概念和应用当遗传物质在染色体上的相邻两个位点上的两个基因的位置越近,它们就越容易一起遗传给下一代。
这种情况称为遗传连锁。
由于不同的基因在遗传物质上的定位是不同的,所以根据不同基因之间的遗传连锁关系,可以得到遗传物质的排列顺序,并确定相对靠近的基因。
这样就能识别出一些在表观上几乎相同的基因或基因组。
通过遗传连锁分析,可以确定疾病与某些基因的关联,开发疾病预防或治疗药物。
例如,人类有基因突变导致某些遗传病,如视网膜色素变性、高血压、唐氏综合症、多发性硬化等。
在科学家们对这些繁杂的遗传病进行研究的过程中,需要寻找与疾病有关的基因,并确定它的位置。
在这个基础上,通过对不同家族中同病种成员的基因组进行遗传连锁分析,最终得出可能发生突变的位点,这些位点是导致遗传病的基因。
借助这些基因定位信息,科学家们将疾病基因克隆出来,从而实现疾病药物的开发。
遗传连锁分析还可以用于了解家族成员的家族遗传史。
通过对家族成员的遗传连锁位点进行分析,可以预测这个家族有哪些基因是突变的或异常的,这样家族成员可以选择生育和结婚的方案,避免遗传病的发生。
二、遗传连锁分析的方法遗传连锁分析的方法主要涉及三个方面:基因定位、基因克隆和关联分析。
1、基因定位前提是先知道哪些物质是受到某种疾病影响的——在不同家族成员中,一些物质会发生变异,这导致了疾病的发生。
科学家们通过已知的基因位置组成一张基因地图,摆放在基因组上。
这张地图具有特定的目的,是为了精确定位突变的基因。
通常,基因地图给出了一些作为基准物质的点。
这些点只会有一种类型,对人类来说是基于染色体的位点。
当科学家想要确定某个基因的位置时,他们就从这些标记点开始寻找其他的位点,找到基因突变的位置。
连锁遗传规律讲义

连锁遗传规律讲义连锁遗传是指遗传物质在基因组中通过染色体的连锁现象传递给下一代的过程。
它是遗传学的重要理论之一,对于人类和许多其他生物的遗传现象有着重要的指导意义。
连锁遗传最早由美国遗传学家摩尔根在20世纪初发现,并由此获得诺贝尔奖。
他通过研究果蝇的眼色突变体,并发现不同位点上的基因间存在一种连锁,这些基因在染色体上位于同一条染色体上。
这意味着这些基因在遗传过程中会一起遗传给下一代,相互之间难以独立地进行重新组合。
连锁遗传可通过遗传映射来研究。
遗传映射是指将基因在染色体上的位置与遗传行为之间的关系进行定量化的过程。
通过将遗传物质在不同染色体上的基因与它们的表型联系起来,可以测定这些基因之间的连锁程度。
连锁遗传规律主要包括连锁分离和连锁重组两种情况。
连锁分离是指在连锁群体中,经常表现为一组对基因座的情况,也就是一组相连的基因。
这是因为这些基因在遗传过程中很少或几乎不会发生重组。
与此相关的是连锁重组,即在连锁基因的基础上发生一系列的重组事件。
重组是指两个基因座之间的某些位点进行了交换,导致基因座在染色体上重新排列的过程。
连锁重组的频率可以用连锁分离的概率来衡量。
连锁遗传的原因主要是由于基因位点在染色体上的靠近程度。
基因在染色体上的相对位置越近,它们之间发生重组的机会就越小,因此它们在遗传过程中更可能连锁的概率就越大。
另一方面,基因在染色体上的距离越远,它们之间发生重组的机会就越多,连锁的概率就越低。
连锁遗传的应用非常广泛。
首先,它可以用来研究染色体结构和功能。
通过连锁分离和重组的测定,可以了解不同基因座在染色体上的相对位置,进而探索染色体的结构和功能。
其次,连锁遗传也可以用于遗传疾病的研究。
一些遗传疾病往往与染色体上的特定基因突变相关,通过研究连锁遗传情况,可以确定这些基因的位置,从而更好地了解和治疗相应的疾病。
最后,连锁遗传还可以应用于亲缘关系的确定。
通过研究不同人群中基因连锁方式的差异,可以确定不同组织或个体之间的亲缘关系。
第三章连锁遗传

染色体作图的条件:
染色体作图的过程:
第四节 性别决定与性连锁
一、性别决定类型
1、遗传因素决定性别
(1)性染色体决定性别
① XY型性别决定
全部哺乳动物、大部分爬行类和两栖类、部分鱼类和昆虫以及女娄菜、 菠菜、大麻、棕榈、菠菜 等雌雄异株的植物。
雄性:XY; 雌性:XX Y染色体在这种性别决定类型中起主导作用,其上具有SRY(睾丸决定 因子基因),其表达产物锌脂蛋白,具有抑制雌性发育途径、启动雄性发 育途径的调控性别分化的作用。含有Y染色体的受精卵发育为雄性,不含 有Y染色体的受精卵发育为雌性。
二、性相关遗传
1、 伴性遗传
性染色体上基因控制的性状,总是跟性别联系在一起遗传的现象。 如人类红绿色盲、血友病遗传,为伴X隐性遗传,呈交叉遗传。
女娄菜:宽叶(B)、窄叶(b),B(b)位于X染色体上,基因b使雄 配子致死。 (1)若后代全为宽叶雄株个体,则亲本基因型为? (2)若后代全为宽叶、雌雄各一半,则亲本基因型为?
3种情况: 三对都独立:Ft有8种表型,比例相等; 两对连锁,一对独立:Ft有8种表型,2组比例; 三对都连锁:Ft有8种表型,4组比例。
(2)确定三对基因的顺序
方法:双交换配子与亲本型配 子中不同的基因位于中间
sWC Swc
SW c swC
饱满非糯无色 凹陷糯性有色
WCs wcS
wCS Wcs
(2)基因决定性别
①复等位基因决定性别
葫芦科的喷瓜也存在雌雄同株、 雌株和雄株三种性别类型,其性别 由复等位基因决定。
②二对等位基因决定性别
玉米通常为雌雄同株,雌花序长在叶腋,由显性基因Ba控制;雄花序 长在顶端,由显性基因Ts控制,其基因型、性别和表现型的关系如下表:
遗传学_连锁基因的交换和重组

第六节连锁基因的交换和重组一、连锁现象的发现正如T.H.Morgan发现例外白眼雄蝇提出了性连锁遗传,以及Bridges 关于果蝇白眼遗传的研究中发现了初级例外和次级例外,促使他注意到染色体不分开现象,直到最终证明了遗传的染色体学说一样,人们从两对基因的杂交实验的F2分离比与预期的9∶3∶3∶1出现的例外,发现了连锁遗传的现象。
遗传学的深入研究不仅证明了染色体带有许多基因,而且证明了这些基因在染色体上是以直线排列的。
这便是遗传学的第三定律——基因的连锁与交换定律。
W.Bateson和R.C.Punnett他们所研究的香豌豆的花有紫色和红色的,花粉粒的形状有长形和圆形的。
将紫花、长花粉粒和红花、圆花粉粒的植株作亲本进行杂交,F1都是紫花、长花粉粒,可见紫、长为显性。
但是F2的4种表型的比率却不符合9∶3∶3∶1,其中紫长和红圆的比率远远超出9/16和1/16,而相应的紫、圆和红、长却大大少于3/16(表3-2)。
上述结果进行x2检验时,x2=3 371.58。
如此可观的x2数值,无疑说明实计频数与预计频数的极其显著的差异不可能由随机原因所造成。
科学的态度是重复实验,视其同类现象是否稳定再现,如果仍旧出现异常,则应提出新的理论(或假设)来加以合理的解释并设计新的实验来验证其假设的正确性。
Beteson又把亲本的性状组合调换,进行重复实验,用紫花、圆形花粉粒和红花、长形花粉粒的植株杂交,F1自然还是紫、长,F2仍然不符合孟德尔的自由组合定律,但这里的紫、圆和红、长都高出预期的数目(表3-3),其中x2=32.40,证明它仍是显著不符合9∶3∶3∶1的。
从这两个实验的数据可以看出一种共同的倾向:即与自由组合定律所预期结果相比较,F2中性状的亲本组合类型远远多于重组组合的类型,这等于说,在F1杂种形成配子时两对基因可能发生的4种类型中,有更多保持亲代原来组合的倾向,而且这种倾向与显隐性无关。
这是在自由组合定律方面第一次出现的显著的例外,无疑,这是一个重要的发现。
遗传学中的连锁分析与关联分析

遗传学中的连锁分析与关联分析遗传学是生物学中非常重要的一个分支,研究传递给后代的遗传信息及其变异的规律。
遗传学的发展至今已经有百余年的历史,其中连锁分析与关联分析是其中最重要的研究方法之一。
一、连锁分析连锁分析是一种研究基因间遗传关系的方法。
其基本原理是通过对同一染色体上一组基因进行组合分析,确定它们之间的相对距离和相对位置,从而推断它们之间的遗传关系。
连锁分析主要应用于把某种遗传性状与其所在染色体上其他形态不同的基因定位在染色体上的某个区域,即寻找“连锁基因”。
通过在大量家系中对亲缘关系分析,确定特定基因间的连锁关系和距离,从而得出这些基因位于同一条染色体上的某一区域内。
20世纪初,莫尔根等人首次提出基因连锁的概念,使用果蝇作为研究对象,成功的证明了基因分布不随机的现象。
随着研究的不断深入,连锁分析在其他生物中也逐渐被应用。
二、关联分析关联分析也是遗传学中常用的一种研究方法。
主要应用于确定单个基因对某一遗传性状表现的影响,即寻找“关联基因”。
关联分析通过对不同个体某一性状的表现和基因多态性的关联分析,找出与该性状相关的基因。
这种相关性通常需要在统计学上得到证明,因此关联分析常使用大规模的人群,包括正常人群和患者,来进行研究。
随着基因组学的发展,关联分析也不断地向全基因组方向发展,并成为潜在的基因疾病发现手段之一。
关联分析在人类基因组研究中得到了广泛的应用,可以为基因疾病的防治提供丰富的信息。
三、连锁分析与关联分析的比较连锁分析和关联分析作为研究基因间关系的常用方法,在其自身表现、应用范围和适用条件等方面存在差异。
连锁分析可以解决多基因遗传病的定位问题,一般适用于孟德尔遗传的单基因疾病、染色体隐性遗传病,其优点在于可对大多数物种进行研究,包括人类和实验宠物。
然而,连锁分析所需的亲属数据有一定限制,需要大量的亲属络绎不绝的进出实验室,远程合作也常常遇到亲属的不愿意配合等问题,因而往往具有较弱的操作性。
遗传的基本规律(三)—连锁遗传

30
• 重组值反映了基因在染色体上的相对 位置。根据重组值确定不同基因在染 色体上的相对位置和排列顺序的过程 称为基因定位(gene mapping)
31
• 依据基因之间的 交换值(或重组值) 确定连锁基因在染色体上的相对位置, 绘制出来的简单线性示意图称为染色 体图(chromosome map)又称基因连 锁图(linkage map)或遗传图(genetic map)两个基因在染色体上相对距离的 的数量单位称为图距(map distance)。 后人为了纪念现代遗传学奠基人摩尔 根(Morgan),将一个图距单位定义 为“厘摩”(centimorgan,cM)。
个连锁基因的重组(recombination)。
15
图 配 对 的 同 源 染 色 体 上 的 交 叉
16
这个学说的核心:
• 交叉是交换的结果,而不是交换的原因,也就是说遗传学上的交换发生在细胞学上的 交叉出现之前。如果交换发生在两个特定的所研究的基因之间,则出现染色体内重组 (intrachromosomal recombination)形成的交换产物。若交换发生在所研究的基因之外, 则得不到特定基因的染色体内重组的产物。
• 测交试验的结果表明: a和b基因间的实际双交换值为0.09%,低于理论双交换值,这是由于a-c间或c-b间一 旦发生一次交换后就会影响另一个区域交换的发生,使双交换的频率下降。
• 这种现象称为干扰(interference),或干涉: 一个交换发生后,它往往会影响其邻近交换的发生。其结果是使实际双交换值不 等于理论双交换值。
a (b) c 2125 非重 + (+) + 2207 组
a (+) c 273 重组 + (b) + 265
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可编辑ppt
26
七、人类的基因定位 • (一)系谱分析定位法
可编辑ppt
3
可编辑ppt
4
(三)果蝇性别决定的染色体机制
可编辑ppt
5
二、人类的性连锁遗传分析
• (一)、X连锁遗传 • 1、血友病
普鲁士 可编辑ppt 俄罗斯
西班牙 6
可编辑ppt
7
2、DMD (Duchenne肌营养不良)
可编辑ppt
8
(二)、Y连锁遗传(限雄遗传)
可编辑ppt
9
三、剂量补偿效应及其分子机制
•
↓
•
(ywec/+++) 4685/4759
•
(y++/+wec) 80/70
•
(yw+/++ec) 193/207
•
(y+ec/+w+) 3/3
•
────
•
10000
可编辑ppt
20
◇列表计算重组值:
可编辑ppt
21
• ◇ 遗传学图:
•
y
w
ec
•
┴───┴────────┴
•
1.56
4.06
交换(cross-over):由于同源染色体间的断裂和重接, 使相应部分的连锁基因不再伴同传递,是基因不 完全连锁的结果。包括: • 单交换(single cross-over) • 双交换(double cross-over):双交换包括二线 (Two-strand)双交换、三线(Three-strand)双交 换和四线(Four-strand)双交换。 • 多交换(multiple cross-over):两基因间发生两次以 上的交换。通过多交换的分析可决定染色体上的基因顺序。
可编辑ppt
2
•
大多数爬行类中,性别是由性染色体决定的,如蛇
类的ZZ/ZW,蜥蜴类的为XX/XY和ZZ/ZW。
• 所有鳄鱼,大多数龟鳖和一些蜥蜴的性别决定则取决 于胚胎发育的关键时期卵的孵化温度。
• 温度对性别分化的效应在于温度影响类固醇激素的合 成。如aromatase能将雄性激素如睾酮转变为雌性激素 如雌二醇,温度敏感因子介导爬行类中aromatase基因 的转录,从而导致温度性别决定。
•
┃←5.62-(2×0.06)=5.5→ ┃
可编辑ppt
22
3、遗传干涉与并发系数
(1)干涉 连锁的非等位基因之间一个单交换发生后对邻近位
置上发生第二个单交换的影响,即干涉。
正干涉:第一次交换发生后,引起邻近区域发生第二次交 换的机会降低的现象。
负干涉:第一次交换发生后,引起邻近区域发生第二次交 换的机会增加的现象。
• (一)性染色体(sex-chromatin body) 又名巴氏小体
(二)剂量补偿效应与lyon假说 1、剂量补偿效应(dosage compensation effect) 2、 lyon假说 (1)主要内容 (2)实验证据 (3)分子机制
可编辑ppt
10
四、连锁交换与重组
(一)果蝇的完全连锁与不完全连锁 P94 • 连锁(linkage)
(2)并发系数(C)
并发系数 实 理际 论双 双交 交换 换两 观 值 值个 察单 到交 的换 双率 交的 换乘 值
可编辑ppt
23
(3)染色单体干涉
(4)连锁图(linkage map) 也称为遗传学图(genetic map):由遗传重组实验所
得重组值推算出的一条染色体上的基因座或遗传标记的直 线排列以及相互间的距离。图距单位为厘摩(cM),1 cM =1%重组值,去掉百分号,1cM≈1000kb。
重组 (% 率 亲 ) 组 重 合 组 的 重 合 类 组 的 型 合 类 数 1 类 型 0% 型 0 数数
可编辑ppt
16
• 重组率的测定 二倍体生物中,以杂种F1进行测交,根据测交后代表
型比计算重组率。重组率的范围:0-50%;一般而言, 两基因间距离小,重组率小,连锁强;两基因间距离大, 重组率大,连锁弱。 • 相引相 、互斥相
可编辑ppt
12
可编辑ppt
13
可编辑ppt
14
可编辑ppt
15
(二)遗传学第三定律
• 连锁定律:指位于同一染色体上的基因联合在一起伴同 遗传的频率大于重组合的频率,重组(recombinant)的
产生是由于在配子形成过程中同源染色体的非姊妹染色 单体间发生了局部交换。 1、重组率的测定 重组率(recombination frequency, RF)
第三章 连锁遗传分析
一、性染色体与性别决定 (一)人类的性染色体
X染色体; Y染色体
假常染色体区1
(X染色体特异区)
可编辑ppt
假常染色体区2
1
(二)、性染色体性别决定的几种类型
• 1、XX-XY型 • 2、ZZ-ZW型 • 3、XO型 • 4、植物的性别决定
(三) 环境因子与性别决定
1、爬行类的温度性别决定 2、后缢的位置性别决定
(二)基因定位的方法 1、两点测交(two-point testcross)
Hale Waihona Puke 可编辑ppt18可编辑ppt
19
2、三点测交(three-point testcross)
• 作图程序∶
• ◇杂交:p 三隐性雌蝇(yywwecec)×野生型雄蝇(+++)
• ◇测交 : F1(ywec/+++)♀×(ywec)♂
处于同一条染色体上的基因遗传时较多的联系 在一起的现象。 • 完全连锁(complete linkage)
两个连锁基因之间的物理距离很近,在传递过程 中不能分开。 • 连锁群( linkage group)
位于同一染色体上的基因群,称为一个连锁群。
可编辑ppt
11
五、遗传学第三定律
(一)交换的细胞学证据
(2)交换率与重组率的关系 (3)多线交换与最大交换值 P99 图5-15
可编辑ppt
17
六、染色体作图
(一)基因的直线排列原理及其相关概念 P100 基因定位(gene mapping) 染色体作图(chromsome map) 图距(map distance): 其单位为 cM。 基因的直线排列:基因在染色体上的位置是相对恒定的。
黑腹果蝇的部分遗传学图
可编辑ppt
24
可编辑ppt
25
4、利用作图函数计算大图距
重组是交换的结果,两个基因间距离较小时,重组率与 交换率基本一致,但随着距离的增大,发生多交换的可 能增加,重组率往往小于交换率,以致低估图距。可用 作图函数(mapping function)进行校正。(e 为自然 对数的底,约为2.7, m为发生交换数。)