【校级联考】山西省阳泉市盂县2020-2021学年八年级(上)人教版期末数学试题

合集下载

山西省2020-2021学年第一学期八年级期末质量评估试题·数学(人教人)试题+答题卡+答案

山西省2020-2021学年第一学期八年级期末质量评估试题·数学(人教人)试题+答题卡+答案

22.(本题 12 分)综合与实践 问题探究:数学课上,老师在黑板上展示了一个探究性问题(见图示):
小丽同学的做法是:如图 1,延长 AD 到 E,使 DE=AD,连接 BE,从而证明△BED≌△CAD,
再经过推理和计算,使问题得到解决,这种作辅助线的方法称为“倍长中线法”.
A
如图,在△ABC 中,AD 是
(3)(1,0) …………………………………………………………………………… 8 分
八年级数学 (人教版) 答案 第 1 页 (共 4 页)
A
A
它的中线,AB=6,AC=4,
求 AD 的取值范围 .
B
图示
B
D
C
E
F
D
C
E
B
D
C
图1
图2
问题回答:(1)小丽证明△BED≌△CAD 的基本事实是

(2)AD 的取值范围是

实践运用:(3)已知:如图 2,AD 是△ABC 的中线,点 B,E,F 在同一条直线上,其中点 E
在 AD 上,点 F 在 AC 上,且 AF=EF. 求证:BE=AC.
三、解答题(本大题共 8 小题,共 75 分) 16. 解(: 1)原式=(x2y-x3y2-x3y2+x2y)÷2x2y ……………………………………………… 2 分
=(2x2y-2x3y2)÷2x2y ……………………………………………………… 4 分 =1-xy. …………………………………………………………………… 5 分 (2)原式=2b(2ab-a2-b2) …………………………………………………………… 7 分 =-2b(a2-2ab+b2) …………………………………………………………… 9 分 =-2b(a-b)2. ……………………………………………………………… 10 分

人教版2020---2021学年度八年级数学(上)期末考试卷及答案

人教版2020---2021学年度八年级数学(上)期末考试卷及答案

密线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期八年级数学(上)期末测试卷及答案(满分:100分 时间: 100分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.下列长度的三条线段不能组成三角形的是( ) A .3,4,5 B .1,,2 C .6,8,10 D .1.5,2.5,4 2.在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是( )A .B .C .D .3.下列运算正确的是( )A .a 2﹣a =a B .ax +ay =axy C .m 2•m 4=m 6D .(y 3)2=y 54.泰勒斯是古希腊哲学家,相传他利用三角形全等的方法求出岸上一点到海中一艘船的距离.如图,B 是观察点,船A 在B 的正前方,过B 作AB 的垂线,在垂线上截取任意长BD ,C 是BD 的中点,观察者从点D 沿垂直于BD 的DE 方向走,直到点E 、船A 和点C 在一条直线上,那么△ABC ≌△EDC ,从而量出DE 的距离即为船离岸的距离AB ,这里判定△ABC ≌△EDC 的方法是( )A .SASB .ASAC .AASD .SSS5.近期,受不良气象条件影响,我市接连出现重污染天气,细颗粒物(PM 2.5)平均浓度持续上升,严重威胁人民群众的身体健康,PM 2.5是直径小于或等于2.5微米(1微米相当于1毫米的千分之一)的颗粒物,可直接进入肺部把2.5微米用科学记数法表示为( )A .2.5×10﹣6米 B .25×10﹣5米 C .0.25×10﹣4米D .2.5×10﹣4米6.如图,在△ABC 中,AB =AC ,∠BAC =100°,AB 的垂直平分线DE 分别交AB 、BC 于点D 、E ,则∠BAE =( )题号一 二 三 总分 得分不 得 答A .80°B .60°C .50°D .40°7.已知点P (3,﹣2)与点Q 关于x 轴对称,则Q 点的坐标为( ) A .(﹣3,2)B .(﹣3,﹣2)C .(3,2)D .(3,﹣2) 8.下列运算正确的是( ) A . B .C .D .9.如图,在△ABC 中,∠B 、∠C 的平分线BE ,CD 相交于点F ,∠A =60°,则∠BFC =( )A .118°B .119°C .120°D .121°10.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( )A .m >2B .m ≥2C .m ≥2且m ≠3D .m >2且m ≠3 二、填空题(本大题共6个小题,每小题3分,共18分) 11.正五边形每个外角的度数是 .12.如果分式的值为0,则x 的值是 .13.将矩形ABCD 沿AE 折叠,得到如图的图形.已知∠=50°,则∠AEB ′= °.14.已知AD 是△ABC 的高,∠BAD =72°,∠CAD =21BAC 的度数是 .15.边长分别为a 和b (m >b 式摆放,则图中阴影部分的面积是 .16.如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于D ,BE 分∠ABC 交AC 于E ,交AD 于F ,FG ∥BC ,FH ∥AC 论:①AE =AF ;②AF =FH ;③AG =CE ;④AB +FG =BC 正确的结论有 .(填序号)三、解答题(本大题共7小题,共52分)密线学校 班级 姓名 学号密 封 线 内 不 得 答 题17.计算:(1)﹣2z •(2)(a 2b ﹣2ab 2﹣b 3)÷b ﹣(a +b )(a ﹣b )18.因式分解: (1)4x 2﹣1(2)2m (a ﹣b )﹣6n (a ﹣b )19.尺规作图:过直线l 外一点P 作这条直线的平行线(不要求写作法,保留作图痕迹)20.因汽车尾气污染引发的雾霾天气备受关注,经市大气污染防治工作领导组研究决定,在市区范围实施机动车单双号限行措施限行期间为方便市民出行,某路公交车每天比原来的运行增加20车次.经调研得知,原来这路公交车平均每天共运送乘客5600人,限行期间这路公交车平均每天共运送乘客7000人,且平均每车次运送乘客与原来的数量基本相同,问限行期间这路公交车每天运行多少车次?21.如图,在△ABC 中,AB =AC ,点D 是BC 的中点,点E 在AD 上,求证:∠1=∠2.22.阅读下列材料,并完成相应的任务:求根分解法是多项式因式分解的一种方法,是用求多项式对应的方程的根分离出多项式的一次因式.设f (x )是一元多项式,若方程f (x )=0有一个根为x =a ,则多项式必有一个一次因式x ﹣a ,于是f (x )=(x ﹣a )g (x ).例如,设多项式7x 2﹣x ﹣6为f (x ),则有f (x )=7x 2﹣x ﹣6,令7x 2﹣x ﹣6=0,容易看出,此方程有一根为x =1,则f (x )必有一个一次因式x ﹣1,那么得到7x 2﹣x ﹣6=(x ﹣1)(mx +n )(m 、n 为常数)而(x ﹣1)(mx +n )=mx 2+(n ﹣m )x ﹣n ,所以7x 2﹣x ﹣6=mx 2+(n ﹣m )x ﹣n ,由系数对应相等可得m =7,n =6,所以7x 2﹣x ﹣6=(x ﹣1)(7x +6). 任务:(1)方程x 3﹣3x 2+4=0的一根为 . (2)请你根据上面的材料因式分解多项式:x 3﹣3x 2+4= .密 封 题23.综合与实践已知,在Rt △ABC 中,AC =BC ,∠C =90°,D 为AB 边的中点,∠EDF =90°,∠EDF 绕点D 旋转,它的两边分别交AC ,CB (或它们的延长线)于点E ,F .(1)【问题发现】如图1,当∠EDF 绕点D 旋转到DE ⊥AC 于点E 时(如图1), ①证明:△ADE ≌△BDF ;②猜想:S △DEF +S △CEF = S △ABC . (2)【类比探究】如图2,当∠EDF 绕点D 旋转到DE 与AC 不垂直时,且点E 在线段AC 上,试判断S △DEF +S △CEF 与S △ABC 的关系,并给予证明. (3)【拓展延伸】如图3,当点E 在线段AC 的延长线上时,此时问题(2)中的结论是否成立?若成立,请给予证明;若不成立,S △DEF ,S△CEF,S △ABC 又有怎样的关系?(写出你的猜想,不需证明)参考答案与试题解析一.选择题(共10小题)1.下列长度的三条线段不能组成三角形的是( )A .3,4,5B .1,,2C .6,8,10D .1.5,2.5,4 三边,进行判定即可.【解答】解:A ,∵3+4>5∴能构成三角形;B ,∵1+>2∴能构成三角形;C ,∵8+6>10∴能构成三角形;D ,∵1.5+2.5=4∴不能构成三角形.故选:D .2.在下列“禁毒”、“和平”、“志愿者”、中,属于轴对称图形的是( )A .B .C .D .【分析】根据轴对称图形的概念进行判断即可. 【解答】解:A 、不是轴对称图形,故选项错误;密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题B 、是轴对称图形,故选项正确;C 、不是轴对称图形,故选项错误;D 、不是轴对称图形,故选项错误.故选:B .3.下列运算正确的是( )A .a 2﹣a =a B .ax +ay =axy C .m 2•m 4=m 6D .(y 3)2=y 5【分析】结合选项分别进行幂的乘方与积的乘方、合并同类项、同底数幂的乘法等运算,然后选择正确答案. 【解答】解:A 、a 2和a 不是同类项,不能合并,故本选项错误;B 、ax 和ay 不是同类项,不能合并,故本选项错误;C 、m 2•m 4=m 6,计算正确,故本选项正确;D 、(y 3)2=y 6≠y 5,故本选项错误.故选:C .4.泰勒斯是古希腊哲学家,相传他利用三角形全等的方法求出岸上一点到海中一艘船的距离.如图,B 是观察点,船A 在B 的正前方,过B 作AB 的垂线,在垂线上截取任意长BD ,C 是BD 的中点,观察者从点D 沿垂直于BD 的DE 方向走,直到点E 、船A 和点C 在一条直线上,那么△ABC ≌△EDC ,从而量出DE 的距离即为船离岸的距离AB ,这里判定△ABC ≌△EDC 的方法是( )A .SASB .ASAC .AASD .SSS【分析】根据题目确定出△ABC 和△EDC全等的条件,然后根据全等三角形的判定方法解答. 【解答】解:∵C 是BD 的中点, ∴BC =DC ,∵AB ⊥BD ,DE ⊥BD , ∴∠ABC =∠EDC =90°, ∵在△ABC 和△EDC 中,,∴△ABC ≌△EDC (ASA ), ∴DE =AB . 故选:B .5.近期,受不良气象条件影响,我市接连出现重污染天气,细颗粒物(PM 2.5)平均浓度持续上升,严重威胁人民群众的身体健康,PM 2.5是直径小于或等于2.5微米(1微米相当于1毫米的千分之一)的颗粒物,可直接进入肺部把2.5微米用科学记数法表示为()A.2.5×10﹣6米B.25×10﹣5米C.0.25×10﹣4米D.2.5×10﹣4米【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:∵1微米=0.000001米=1×10﹣6米,∴2.5微米=2.5×1×10﹣6米=2.5×10﹣6米.故选:A.6.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=()A.80°B.60°C.50°D.40°【分析】首先利用三角形的内角和定理和等腰三角形的性质∠B,利用线段垂直平分线的性质易得AE=BE,∠BAE=∠B.【解答】解:∵AB=AC,∠BAC=100°,∴∠B=∠C=(180°﹣100°)÷2=40°,∵DE是AB的垂直平分线,∴AE=BE,∴∠BAE=∠B=40°,故选:D.7.已知点P(3,﹣2)与点Q关于x轴对称,则Q ()A.(﹣3,2)B.(﹣3,﹣2)C.(3,2D.(3,﹣2)【分析】利用关于x为相反数的性质来求解.【解答】解:根据轴对称的性质,得点P(3,﹣2轴对称的点的坐标为(3,2).故选:C.8.下列运算正确的是()A .B.C.D.选项的值,做出判断即可得解.【解答】解:A、原式=,故A错误;B、原式=,故B错误;密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题C 、原式=﹣,故C 错误;D 、原式=,故D 正确.故选D .9.如图,在△ABC 中,∠B 、∠C 的平分线BE ,CD 相交于点F ,∠A =60°,则∠BFC =( )A .118°B .119°C .120°D .121°【分析】根据角平分线的定义可得出∠CBF =∠ABC 、∠BCF =∠ACB ,再根据内角和定理结合∠A =60°即可求出∠BFC 的度数.【解答】解:∵∠ABC 、∠ACB 的平分线BE 、CD 相交于点F , ∴∠CBF =∠ABC ,∠BCF =∠ACB , ∵∠A =60°,∴∠ABC +∠ACB =180°﹣∠A =120°,∴∠BFC =180°﹣(∠CBF +BCF )=180°﹣(∠ABC +∠ACB )=120°. 故选:C .10.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( )A .m >2B .m ≥2C .m ≥2且m ≠3D .m >2且m≠3【分析】分式方程去分母转化为整式方程,求出整式方程的解表示出x ,根据方程的解为非负数求出m 的范围即可. 【解答】解:分式方程去分母得:m ﹣3=x ﹣1, 解得:x =m ﹣2,由方程的解为非负数,得到m ﹣2≥0,且m ﹣2≠1,解得:m ≥2且m ≠3. 故选:C .二.填空题(共6小题)11.正五边形每个外角的度数是 72° .【分析】利用正五边形的外角和等于360度,除以边数即可求出答案.【解答】解:360°÷5=72°. 故答案为:72°. 12.如果分式的值为0,则x 的值是 1 .【分析】根据分式的值为零的条件可以求出x 的值. 【解答】解:根据题意得:解x 2﹣1=0得x =±1, 解2x +2≠0得x ≠﹣1.密 封 线 内 不 则x =1, 故答案为:1.13.将矩形ABCD 沿AE 折叠,得到如图的图形.已知∠CEB ′=50°,则∠AEB ′= 65 °.【分析】根据折叠前后对应部分相等得∠AEB ′=∠AEB ,再由已知求解.【解答】解:∵∠AEB ′是△AEB 沿AE 折叠而得, ∴∠AEB ′=∠AEB .又∵∠BEC =180°,即∠AEB ′+∠AEB +∠CEB ′=180°, 又∵∠CEB ′=50°,∴∠AEB ′==65°,故答案为:65.14.已知AD 是△ABC 的高,∠BAD =72°,∠CAD =21°,则∠BAC 的度数是 51°或93° .【分析】分高AD 在△ABC 内部和外部两种情况讨论求解即可. 【解答】解:①如图1,当高AD 在△ABC 的内部时, ∠BAC =∠BAD +∠CAD =72°+21°=93°;②如图2,当高AD 在△ABC 的外部时, ∠BAC =∠BAD ﹣∠CAD =72°﹣21°=51°, 综上所述,∠BAC 的度数为51°或93°, 故答案为:51°或93°.15.边长分别为a 和b (m >b )的两个正方形按如图所示的样式摆放,则图中阴影部分的面积是a 2+b 2﹣ab .积的+小正方形的面积﹣直角三角形的面积.【解答】解:阴影部分的面积=大正方形的面积+的面积﹣直角三角形的面积 =a 2+b 2﹣(a +b )×a =a 2+b 2﹣a 2﹣ab =a 2+b 2﹣ab .故答案为:a 2+b 2﹣ab .16.如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于D ,BE密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题分∠ABC 交AC 于E ,交AD 于F ,FG ∥BC ,FH ∥AC ,下列结论:①AE =AF ;②AF =FH ;③AG =CE ;④AB +FG =BC .其中正确的结论有 ①②③④ .(填序号)【分析】只要证明∠AFE =∠AEF ,四边形FGCH 是平行四边形,△FBA ≌△FBH 即可解决问题;【解答】解:∵∠FBD =∠ABF ,∠FBD +∠BFD =90°,∠ABF +∠AEB =90°, ∴∠BFD =∠AEB , ∴∠AFE =∠AEB , ∴AF =AE ,故①正确, ∵FG ∥BC ,FH ∥AC ,∴四边形FGCH 是平行四边形, ∴FH =CG ,FG =CH ,∠FHC =∠C ,∵∠BAD +∠DAC =90°,∠DAC +∠C =90°, ∴∠BAF =∠BHF ,∵BF =BF ,∠FBA =∠FBH , ∴△FBA ≌△FBH (AAS ), ∴FA =FH ,故AB =BH ,②正确,∵AF =AE ,FH =CG , ∴AE =CG ,∴AG =CE ,故③正确,∵BC =BH +HC ,BH =BA ,CH =FG ,∴BC =AB +FG ,故④正确.故答案为①②③④. 三.解答题(共7小题) 17.计算: (1)﹣2z •(2)(a 2b ﹣2ab 2﹣b 3)÷b ﹣(a +b )(a ﹣b )【分析】(1)根据分式的乘除法的法则进行解答即可; (2)根据整式的乘除法法则和平方差公式进行解答即可. 【解答】解:(1)﹣2z •=×=﹣xyz ;(2)(a 2b ﹣2ab 2﹣b 3)÷b ﹣(a +b )(a ﹣b ) =a 2﹣2ab ﹣b 2﹣(a 2﹣b 2) =a 2﹣2ab ﹣b 2﹣a 2+b 2=﹣2ab . 18.因式分解: (1)4x 2﹣1内(2)2m(a﹣b)﹣6n(a﹣b)【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式即可得到结果.【解答】解:(1)原式=(2x+1)(2x﹣1);(2)原式=2(a﹣b)(m﹣3n).19.尺规作图:过直线l外一点P作这条直线的平行线(不要求写作法,保留作图痕迹)【分析】过点P作直线EF交直线l于E.作∠EPM=∠EFG,直线PM即为所求.【解答】解:如图,直线PM即为所求.20.因汽车尾气污染引发的雾霾天气备受关注,经市大气污染防治工作领导组研究决定,在市区范围实施机动车单双号限行措施限行期间为方便市民出行,某路公交车每天比原来的运行增加20共运送乘客5600乘客7000同,问限行期间这路公交车每天运行多少车次?【分析】设限行期间这路公交车每天运行x均每车次运送乘客与原来的数量基本相同”【解答】解:设限行期间这路公交车每天运行x车次,=,解得,x=100,经检验x=100是原分式方程的根,答:限行期间这路公交车每天运行100车次.21.如图,在△ABC中,AB=AC,点D是BC的中点,点EAD上,求证:∠1=∠2.【分析】由等腰三角形的性质可得∠BAD=∠CAD,由“第21页,共26页 第22页,共26页密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题可证△ABE ≌△ACE ,可得结论.【解答】证明:∵AB =AC ,点D 是BC 的中点, ∴∠BAD =∠CAD , ∵AB =AC ,AE =AE ,∴△ABE ≌△ACE (SAS ) ∴∠1=∠2.22.阅读下列材料,并完成相应的任务:求根分解法是多项式因式分解的一种方法,是用求多项式对应的方程的根分离出多项式的一次因式.设f (x )是一元多项式,若方程f (x )=0有一个根为x =a ,则多项式必有一个一次因式x ﹣a ,于是f (x )=(x ﹣a )g (x ).例如,设多项式7x 2﹣x ﹣6为f (x ),则有f (x )=7x 2﹣x ﹣6,令7x 2﹣x ﹣6=0,容易看出,此方程有一根为x =1,则f (x )必有一个一次因式x ﹣1,那么得到7x 2﹣x ﹣6=(x ﹣1)(mx +n )(m 、n 为常数)而(x ﹣1)(mx +n )=mx 2+(n ﹣m )x ﹣n ,所以7x 2﹣x ﹣6=mx 2+(n ﹣m )x ﹣n ,由系数对应相等可得m =7,n =6,所以7x 2﹣x ﹣6=(x ﹣1)(7x +6). 任务:(1)方程x 3﹣3x 2+4=0的一根为 x =﹣1 . (2)请你根据上面的材料因式分解多项式:x 3﹣3x 2+4= (x +1)(x ﹣2)2.【分析】(1)根据阅读材料即可求解; (2)根据阅读材料进行计算即可. 【解答】解:(1)x 3﹣3x 2+4=0 (x +1)(x ﹣2)2=0, 所以x =﹣1, 故答案为﹣1.(2)x 3﹣3x 2+4=(x +1)(x ﹣m )2=(x +1)(x 2﹣2mx +m 2) =x 3﹣2mx 2+m 2x +x 2﹣2mx +m 2=x 3+(﹣2m +1)x 2+(m 2﹣2m )x +m 2所以﹣2m +1=﹣3,解得m =2,所以因式分解多项式:x 3﹣3x 2+4=(x +1)(x ﹣m )2故答案为(x +1)(x ﹣m )2. 23.综合与实践已知,在Rt △ABC 中,AC =BC ,∠C =90°,D 为AB 边的中点,∠EDF =90°,∠EDF 绕点D 旋转,它的两边分别交AC ,CB (或它们的延长线)于点E ,F .(1)【问题发现】如图1,当∠EDF 绕点D 旋转到DE ⊥AC 于点E 时(如图1), ①证明:△ADE ≌△BDF ;②猜想:S△DEF+S△CEF=S△ABC.(2)【类比探究】如图2,当∠EDF绕点D旋转到DE与AC不垂直时,且点E在线段AC上,试判断S△DEF+S△CEF与S△ABC的关系,并给予证明.(3)【拓展延伸】如图3,当点E在线段AC的延长线上时,此时问题(2)中的结论是否成立?若成立,请给予证明;若不成立,S△DEF,S△CEF,S△ABC又有怎样的关系?(写出你的猜想,不需证明)【分析】(1)①先判断出DE∥AC得出∠ADE=∠B,再用同角的余角相等判断出∠A=∠BDF,即可得出结论;②当∠EDF绕D点旋转到DE⊥AC时,四边形CEDF是正方形,边长是AC的一半,即可得出结论;(2)成立;先判断出∠DCE=∠B,进而得出△CDE≌△BDF,即可得出结论;(3)不成立;同(2)得:△DEC≌△DBF,得出S△DEF=S五边形DBFEC=S△CFE+S△DBC=S△CFE+S△ABC.【解答】解:(1)①∵∠C=90°,∴BC⊥AC,∵DE⊥AC,∴DE∥BC,∴∠ADE=∠B,∵∠EDF=90°,∴∠ADE+∠BDF=90°,∵DE⊥AC,∴∠AED=90°,∴∠A+∠ADE=90°,∴∠A=∠BDF,∵点D是AB的中点,∴AD=BD,在△ADE和△BDF中,,∴△ADE≌△BDF(SAS);②如图1中,当∠EDF绕D点旋转到DE⊥AC时,四边形是正方形.第23页,共26页第24页,共26页第25页,共26页 第26页,共26页密线学校 班级 姓名 学号密 封 线 内 不 得 答 题设△ABC 的边长AC =BC =a ,则正方形CEDF 的边长为a . ∴S △ABC =a 2,S 正方形DECF =(a )2=a 2即S △DEF +S △CEF =S △ABC ; 故答案为.(2)上述结论成立;理由如下:连接CD ;如图2所示:∵AC =BC ,∠ACB =90°,D 为AB 中点,∴∠B =45°,∠DCE =∠ACB =45°,CD ⊥AB ,CD =AB =BD ,∴∠DCE =∠B ,∠CDB =90°, ∵∠EDF =90°, ∴∠CDE =∠BDF , 在△CDE 和△BDF 中,,∴△CDE ≌△BDF (ASA ), ∴S △DEF +S △CEF =S △ADE +S △BDF =S △ABC ;(3)不成立;S △DEF ﹣S △CEF =S △ABC ;理由如下:连接CD , 如图3所示:同(2)得:△DEC ≌△DBF ,∠DCE =∠DBF =135° ∴S △DEF =S 五边形DBFEC , =S △CFE +S △DBC , =S △CFE +S △ABC , ∴S △DEF ﹣S △CFE =S △ABC .∴S △DEF 、S △CEF 、S △ABC 的关系是:S △DEF ﹣S △CEF =S △ABC .。

人教版2020---2021学年度八年级数学(上)期末考试卷及答案(含三套题)

人教版2020---2021学年度八年级数学(上)期末考试卷及答案(含三套题)

密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期八年级数学(上)期末测试卷及答案(满分:150分 时间: 120分钟)第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.若代数式4xx -有意义,则实数x 的取值范围是( ) A .x =0 B .x =4C .x ≠0D .x ≠42.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.0000007平方毫米,将数字0.0000007用科学记数法可以表示为( ) A .6710-⨯ B .60.710-⨯C .7710-⨯D .87010-⨯3.下列式子,成立的是( ) A .a 2·a 3=a 6 B .(a 2)3=a 5C .a –1=–aD .(–a +b )(–a –b )=a 2–b 24.如果把分式xyx y+中的x 和y 都扩大2倍,那么分式的值( )A .扩大4倍B .扩大2倍C .不变D .缩小2倍5.若等腰三角形中有两边长分别为3和7,则这个三角形的周长为( ) A .13 B .13或17C .10D .176.在平面直角坐标系中,将点A (–1,2)向右平移4个单位长度得到点B ,则点B 关于y 轴的对称点B ′的坐标为( ) A .(–3,2) B .(3,–2) C .(3,2)D .(2,–3)7.如图,在△ABC 和△BDE 中,点C在边BD 上,边AC 交边BE 于点F ,若AC =BD ,AB =ED ,BC =BE ,则∠ACB 等于( )A .∠DB .∠EC .∠EBDD .∠ABF8.点O 在ABC △(非等边三角形)内,且OA OB OC ==,则点O为( )A .ABC △的三条角平分线的交点题号一 二 三 总分 得分B .ABC △的三条高线的交点C .ABC △的三条边的垂直平分线的交点D .ABC △的三条边上的中线的交点9.如图,AE ∥DF ,AE =DF ,则添加下列条件还不能使△EAC≌△FDB 的为( )A .AB =CD B .CE ∥BFC .∠E =∠FD .CE =BF10.如图,AD 是△ABC 的角平分线,DE ⊥AB 于E ,△ABC 的面积为10,AB =6,DE =2,则AC 的长是( )A .4B .4.5C .4.8D .5 11.从3-,2-,1-,32-,1,3这六个数中,随机抽取一个数,记为a .关于x 的方程211x ax +=-的解是正数,那么这6个数中所有满足条件的a 的值有( ) A .3个B .2个C .1个D .4个12.如图,在等边三角形ABC 中,BC 边上的中线AD =6,是AD 上的一个动点,F 是边AB 上的一个动点,在点F 运动的过程中,EB +EF 的最小值是A .5B .6C .7D .8第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.若23a b =,则a b b -=__________.14.若3a b +=,1ab =,则22ab +=__________.15.若一个多边形的内角和是900º,则这个多边形是__________边形.16.如图,依据尺规作图的痕迹,计算α∠=__________°.17.已知ABC ∆中,它的三边长a 、b 、c 都是正整数,其中a 是最长边,且满足22106340a b a b +--+=,则符合条件的c密线学校 班级 姓名 学号密 封 线 内 不 得 答 题值为__________.18.如图,∠ABC =∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF .以下结论:①AD∥BC ;②∠ACB =2∠ADB ;③∠ADC =90°−12∠ABC ;④BD 平分∠ADC ;⑤∠BDC =12∠BAC .其中正确的结论有__________(填序号)三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分) (1)解方程:22+11x x x x+=+;(2)解方程:2227361x x x x x -=+--. 20.(本小题满分6分)(1)因式分解22(2)(22)1a ab b a b -++-++;(2)先化简,再求值24512(1)(),11a a a a a a-+-÷----其中1a =-. 21.(本小题满分6分)如图,点B 、C 、D 、E 在同一条直线上,已知AB =FC ,AD =FE ,BC =DE . (1)求证:△ABD ≌△FCE .(2)AB 与FC 的位置关系是_________(请直接写出结论)22.(本小题满分8分)如图,在△ABC 中,AB =AC ,∠A =36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC . (1)求∠ECD 的度数; (2)若CE =5,求BC 的长.23.(本小题满分8分)超市用2500元购进某品牌苹果,以每千克8元的单价试销.销售良好,超市又安排4500元补货.补货进价比上次每千克少0.5元,数量是上次的2倍.(1)求两次进货的单价分别是多少元.(2)当售出大部分后,余下200千克按7.5折售完,求两次销售苹果的毛利.24.(本小题满分10分)如图,△ABC 中,∠BAC =90°,AD⊥BC ,垂足为D .(1)求作∠ABC 的平分线,分别交AD ,AC 于E ,F 两点;(要求:尺规作图,保留作图痕迹,不写作法)(2)证明:AE=AF.25.(本小题满分10分)如图,网格中有格点△ABC与△DEF.(1)△ABC与△DEF是否全等?(不说理由.)(2)△ABC与△DEF是否成轴对称?(不说理由)(3)若△ABC与△DEF成轴对称,请画出它的对称轴l.并在直线l上画出点P,使PA+PC最小.26.(本小题满分12分)探究下面的问题:(1)如图甲,在边长为a的正方形中去掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图乙的一个长方形,通过计算两个图形(阴影部分)的面积,验证了一个等式,这个等式是________(用式子表示),即乘法公式中的___________公式.(2)运用你所得到的公式计算:①10.7×9.3;②(23)(23)x y z x y z+---.27.(本小题满分12分)在△ABC中,∠BAC=100°,∠∠ACB,点D在直线BC上运动(不与点B、C点E在射线AC上运动,且∠ADE=∠AED,设∠DAC=(1)如图①,当点D在边BC上时,且n=36°BAD=__________,∠CDE=__________;(2)如图②,当点D运动到点B变,请猜想∠BAD和∠CDE(3)当点D运动到点C的右侧时,其他条件不变,∠和∠CDE还满足(2)中的数量关系吗?请画出图形,明理由.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题参考答案一1 2 3 4 5 6 7 8 9 10 11 12 DCDBDACCDABB二、13.【答案】3-【解析】∵23a b =,∴设a =2k ,b =3k (k ≠0),则23133a b k k b k --==-, 故答案为:13-.14.【答案】7【解析】∵a +b =3,ab =1,∴22a b +=(a +b )2–2ab =9–2=7;故答案为7. 15.【答案】七【解析】设这个多边形是n 边形,根据题意得,()2180900n -⋅︒=︒,解得7n =.故答案为:7. 16.【答案】56【解析】如图,∵四边形ABCD 是长方形,∴AD ∥BC ,∴∠DAC =∠ACB =68°, ∵由作法可知,AF 是∠DAC 的平分线,∴∠EAF =12∠DAC =34°,∵由作法可知,EF 是线段AC 的垂直平分线,∴∠AEF =90°, ∴∠AFE =90°−34°=56°,∴∠α=56°.故答案为:56.17.【答案】6或7【解析】a 2+b 2–10a –6b +34=0, a 2–10a +25+b 2–6b +9=0,(a –5)2+(b –3)2=0, 则a –5=0,b –3=0,解得,a =5,b =3, 则5–3<c <3+5,即2<c <8,∴△ABC 的最大边c 的值为6或7, 故答案为:6或7. 18.【答案】①②③⑤【解析】∵AD 平分∠EAC ,∴∠EAC =2∠EAD , ∵∠EAC =∠ABC +∠ACB ,∠ABC =∠ACB ,∴∠EAD =∠ABC ,∴AD ∥BC ,∴①正确; ∵AD ∥BC ,∴∠ADB =∠DBC ,∵BD 平分∠ABC ,∠ABC =∠ACB ,∴∠ABC =∠ACB =2∠DBC ,∴∠ACB =2∠ADB ,∴②正确;∵AD平分∠EAC,CD平分∠ACF,∴∠DAC=12∠EAC,∠DCA=12∠ACF,∵∠EAC=∠ABC+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=180°,∴∠ADC=180°−(∠DAC+∠ACD)=180°−12(∠EAC+∠ACF)=180°−12(∠ABC+∠ACB+∠ABC+∠BAC)=180°−12(180°+∠ABC)=90°−12∠ABC,∴③正确;∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠ADB=∠DBC,∠ADC=90°−12∠ABC,∴∠ADB不一定等于∠CDB,∴④错误;∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC,∴∠BAC=2∠BDC,∴∠BDC=12∠BAC,∴⑤正确;故答案为:①②③⑤.三、19.【解析】(1)方程两边都乘x(x+1),得x2+x2+x=2(x+1)2,解得:x=−23,检验:当x=−23时,x(x+1)≠0,∴x=−23是原方程的解.(3分)(2)去分母得:7x−7+3x+3=6x,解得:x=1,经检验x=1是增根,分式方程无解.(6分)20.【解析】(1)原式=(a2–2ab+b2)–(2a–2b)+1=(a–b)2–2(a–b)+1=(a–b–1)2.(3分)(2)原式()()()211452(2)111a a a a aa a a a+--+--=÷=---•()12a aa-=-a(a–2当a=–1时,原式=–1×(–1–2)=3.(6分)21.【解析】(1)∵BC=DE,∴BC+CD=DE+CD,即BD=CE.在△ABD和△FCE中,AB FCAD FEBD CE=⎧⎪=⎨⎪=⎩,∴△ABD≌△FCE(SSS).(4分)(2)AB∥FC.(6分)由(1)可知△ABD≌△FCE,∴∠B=∠FCE(全等三角形的对应角相等),∴AB∥FC(同位角相等,两直线平行).22.【解析】(1)∵DE垂直平分AC,∠A=36°,∴CE=AE,∴∠ECD=∠A=36°;(4分)(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴∠BEC =∠A +∠ECD =72°,∴∠BEC =∠B ,∴BC =EC =5.(8分)23.【解析】(1)设第一次进货的单价是x 元,则第二次进货的单价是(0.5)x -元,根据题意,得2500450020.5x x ⨯=-,解得5x =. 经检验:5x =是原方程的解.第二次进货的单价是:50.5 4.5()-=元.答:第一次进货的单价是5元,第二次进货的单价是4.5元.(4分)(2)两次销售苹果的毛利:25004500200820080.752500450046005 4.5⎛⎫+-⨯+⨯⨯--=⎪⎝⎭(元). 答:两次销售苹果的毛利为4600元.(8分) 24.【解析】(1)如图所示,射线BF 即为所求:(4分)(2)证明:∵AD ⊥BC ,∴∠ADB =90°,∴∠BED +∠EBD =90°,∵∠BAC =90°,∴∠AFE +∠ABF =90°,(7分) ∵∠EBD =∠ABF ,∴∠AFE =∠BED ,∵∠AEF =∠BED ,∴∠AEF =∠AFE ,∴AE =AF .(10分) 25.【解析】(1)全等.(3分)根据坐标系可以看出AB DEBC EFAC DF =⎧⎪=⎨⎪=⎩,∴△ABC ≅△DEF ;(2)成轴对称.(6分)根据坐标系可以看出△ABC 与△DEF 关于直线l 成轴对称; (3)如图所示:点P 即为所求.(10分)26.【解析】(1)a 2–b 2=(a +b )(a −b );平方差.(6分)由图知:大正方形减小正方形剩下的部分面积为a 2–b 2; 拼成的长方形的面积:(a +b )×(a −b ),所以得出:a 2–b 2=(a +b )(a −b );故答案为:a 2–b 2=(a +b )(a −b );平方差. (2)①原式=(10+0.7)×(10–0.7) =102–0.72 =100–0.49 =99.51.(9分)②原式=(x –3z +2y )(x –3z –2y ) =(x –3z )2–(2y )2 =x 2–6xz +9z 2–4y 2.(12分)27.【解析】(1)∠BAD =∠BAC –∠DAC =100°–36°=64°.∵在△ABC 中,∠BAC =100°,∠ABC =∠ACB , ∴∠ABC =∠ACB =40°,∴∠ADC =∠ABC +∠BAD =40°+64°=104°. ∵∠DAC =36°,∠ADE =∠AED , ∴∠ADE =∠AED =72°,∴∠CDE =∠ADC –∠ADE =104°–72°=32°. 故答案为64°,32°;(4分)(2)∠BAD =2∠CDE ,理由如下:(5分) 如图②,在△ABC 中,∠BAC =100°, ∴∠ABC =∠ACB =40°. 在△ADE 中,∠DAC =n ,∴∠ADE =∠AED =1802n︒-.(6分)∵∠ACB =∠CDE +∠AED ,∴∠CDE =∠ACB –∠AED =40°–1802n ︒-=1002n -︒. ∵∠BAC =100°,∠DAC =n , ∴∠BAD =n –100°,∴∠BAD =2∠CDE ;(8分) (3)∠BAD =2∠CDE ,理由如下: 如图③,在△ABC 中,∠BAC =100°,∴∠ABC =∠ACB =40°,∴∠ACD =140°.(9分) 在△ADE 中,∠DAC =n , ∴∠ADE =∠AED =1802n︒-.(10分)∵∠ACD =∠CDE +∠AED , ∴∠CDE =∠ACD –∠AED =140°–1802n ︒-=1002n︒+. ∵∠BAC =100°,∠DAC =n , ∴∠BAD =100°+n , ∴∠BAD =2∠CDE .(12分)密线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期八年级数学(上)期末测试卷及答案(满分:100分 时间: 100分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.下列长度的三条线段不能组成三角形的是( ) A .3,4,5 B .1,,2 C .6,8,10 D .1.5,2.5,4 2.在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是( )A .B .C .D .3.下列运算正确的是( )A .a 2﹣a =a B .ax +ay =axy C .m 2•m 4=m 6D .(y 3)2=y 54.泰勒斯是古希腊哲学家,相传他利用三角形全等的方法求出岸上一点到海中一艘船的距离.如图,B 是观察点,船A 在B 的正前方,过B 作AB 的垂线,在垂线上截取任意长BD ,C 是BD 的中点,观察者从点D 沿垂直于BD 的DE 方向走,直到点E 、船A 和点C 在一条直线上,那么△ABC ≌△EDC ,从而量出DE 的距离即为船离岸的距离AB ,这里判定△ABC ≌△EDC 的方法是( )A .SASB .ASAC .AASD .SSS5.近期,受不良气象条件影响,我市接连出现重污染天气,细颗粒物(PM 2.5)平均浓度持续上升,严重威胁人民群众的身体健康,PM 2.5是直径小于或等于2.5微米(1微米相当于1毫米的千分之一)的颗粒物,可直接进入肺部把2.5微米用科学记数法表示为( )A .2.5×10﹣6米 B .25×10﹣5米 C .0.25×10﹣4米D .2.5×10﹣4米6.如图,在△ABC 中,AB =AC ,∠BAC =100°,AB 的垂直平分线DE 分别交AB 、BC 于点D 、E ,则∠BAE =( )题号一 二 三 总分 得分不 得 答A .80°B .60°C .50°D .40°7.已知点P (3,﹣2)与点Q 关于x 轴对称,则Q 点的坐标为( ) A .(﹣3,2)B .(﹣3,﹣2)C .(3,2)D .(3,﹣2) 8.下列运算正确的是( ) A . B .C .D .9.如图,在△ABC 中,∠B 、∠C 的平分线BE ,CD 相交于点F ,∠A =60°,则∠BFC =( )A .118°B .119°C .120°D .121°10.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( )A .m >2B .m ≥2C .m ≥2且m ≠3D .m >2且m ≠3 二、填空题(本大题共6个小题,每小题3分,共18分) 11.正五边形每个外角的度数是 .12.如果分式的值为0,则x 的值是 .13.将矩形ABCD 沿AE 折叠,得到如图的图形.已知∠=50°,则∠AEB ′= °.14.已知AD 是△ABC 的高,∠BAD =72°,∠CAD =21BAC 的度数是 .15.边长分别为a 和b (m >b 式摆放,则图中阴影部分的面积是 .16.如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于D ,BE 分∠ABC 交AC 于E ,交AD 于F ,FG ∥BC ,FH ∥AC 论:①AE =AF ;②AF =FH ;③AG =CE ;④AB +FG =BC 正确的结论有 .(填序号)三、解答题(本大题共7小题,共52分)密线学校 班级 姓名 学号密 封 线 内 不 得 答 题17.计算:(1)﹣2z •(2)(a 2b ﹣2ab 2﹣b 3)÷b ﹣(a +b )(a ﹣b )18.因式分解: (1)4x 2﹣1(2)2m (a ﹣b )﹣6n (a ﹣b )19.尺规作图:过直线l 外一点P 作这条直线的平行线(不要求写作法,保留作图痕迹)20.因汽车尾气污染引发的雾霾天气备受关注,经市大气污染防治工作领导组研究决定,在市区范围实施机动车单双号限行措施限行期间为方便市民出行,某路公交车每天比原来的运行增加20车次.经调研得知,原来这路公交车平均每天共运送乘客5600人,限行期间这路公交车平均每天共运送乘客7000人,且平均每车次运送乘客与原来的数量基本相同,问限行期间这路公交车每天运行多少车次?21.如图,在△ABC 中,AB =AC ,点D 是BC 的中点,点E 在AD 上,求证:∠1=∠2.22.阅读下列材料,并完成相应的任务:求根分解法是多项式因式分解的一种方法,是用求多项式对应的方程的根分离出多项式的一次因式.设f (x )是一元多项式,若方程f (x )=0有一个根为x =a ,则多项式必有一个一次因式x ﹣a ,于是f (x )=(x ﹣a )g (x ).例如,设多项式7x 2﹣x ﹣6为f (x ),则有f (x )=7x 2﹣x ﹣6,令7x 2﹣x ﹣6=0,容易看出,此方程有一根为x =1,则f (x )必有一个一次因式x ﹣1,那么得到7x 2﹣x ﹣6=(x ﹣1)(mx +n )(m 、n 为常数)而(x ﹣1)(mx +n )=mx 2+(n ﹣m )x ﹣n ,所以7x 2﹣x ﹣6=mx 2+(n ﹣m )x ﹣n ,由系数对应相等可得m =7,n =6,所以7x 2﹣x ﹣6=(x ﹣1)(7x +6). 任务:(1)方程x 3﹣3x 2+4=0的一根为 . (2)请你根据上面的材料因式分解多项式:x 3﹣3x 2+4= .密 封 题23.综合与实践已知,在Rt △ABC 中,AC =BC ,∠C =90°,D 为AB 边的中点,∠EDF =90°,∠EDF 绕点D 旋转,它的两边分别交AC ,CB (或它们的延长线)于点E ,F .(1)【问题发现】如图1,当∠EDF 绕点D 旋转到DE ⊥AC 于点E 时(如图1), ①证明:△ADE ≌△BDF ;②猜想:S △DEF +S △CEF = S △ABC . (2)【类比探究】如图2,当∠EDF 绕点D 旋转到DE 与AC 不垂直时,且点E 在线段AC 上,试判断S △DEF +S △CEF 与S △ABC 的关系,并给予证明. (3)【拓展延伸】如图3,当点E 在线段AC 的延长线上时,此时问题(2)中的结论是否成立?若成立,请给予证明;若不成立,S △DEF ,S△CEF,S △ABC 又有怎样的关系?(写出你的猜想,不需证明)参考答案与试题解析一.选择题(共10小题)1.下列长度的三条线段不能组成三角形的是( )A .3,4,5B .1,,2C .6,8,10D .1.5,2.5,4 三边,进行判定即可.【解答】解:A ,∵3+4>5∴能构成三角形;B ,∵1+>2∴能构成三角形;C ,∵8+6>10∴能构成三角形;D ,∵1.5+2.5=4∴不能构成三角形.故选:D .2.在下列“禁毒”、“和平”、“志愿者”、中,属于轴对称图形的是( )A .B .C .D .【分析】根据轴对称图形的概念进行判断即可. 【解答】解:A 、不是轴对称图形,故选项错误;密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题B 、是轴对称图形,故选项正确;C 、不是轴对称图形,故选项错误;D 、不是轴对称图形,故选项错误.故选:B .3.下列运算正确的是( )A .a 2﹣a =a B .ax +ay =axy C .m 2•m 4=m 6D .(y 3)2=y 5【分析】结合选项分别进行幂的乘方与积的乘方、合并同类项、同底数幂的乘法等运算,然后选择正确答案. 【解答】解:A 、a 2和a 不是同类项,不能合并,故本选项错误;B 、ax 和ay 不是同类项,不能合并,故本选项错误;C 、m 2•m 4=m 6,计算正确,故本选项正确;D 、(y 3)2=y 6≠y 5,故本选项错误.故选:C .4.泰勒斯是古希腊哲学家,相传他利用三角形全等的方法求出岸上一点到海中一艘船的距离.如图,B 是观察点,船A 在B 的正前方,过B 作AB 的垂线,在垂线上截取任意长BD ,C 是BD 的中点,观察者从点D 沿垂直于BD 的DE 方向走,直到点E 、船A 和点C 在一条直线上,那么△ABC ≌△EDC ,从而量出DE 的距离即为船离岸的距离AB ,这里判定△ABC ≌△EDC 的方法是( )A .SASB .ASAC .AASD .SSS【分析】根据题目确定出△ABC 和△EDC全等的条件,然后根据全等三角形的判定方法解答. 【解答】解:∵C 是BD 的中点, ∴BC =DC ,∵AB ⊥BD ,DE ⊥BD , ∴∠ABC =∠EDC =90°, ∵在△ABC 和△EDC 中,,∴△ABC ≌△EDC (ASA ), ∴DE =AB . 故选:B .5.近期,受不良气象条件影响,我市接连出现重污染天气,细颗粒物(PM 2.5)平均浓度持续上升,严重威胁人民群众的身体健康,PM 2.5是直径小于或等于2.5微米(1微米相当于1毫米的千分之一)的颗粒物,可直接进入肺部把2.5微米用科学记数法表示为()A.2.5×10﹣6米B.25×10﹣5米C.0.25×10﹣4米D.2.5×10﹣4米【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:∵1微米=0.000001米=1×10﹣6米,∴2.5微米=2.5×1×10﹣6米=2.5×10﹣6米.故选:A.6.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=()A.80°B.60°C.50°D.40°【分析】首先利用三角形的内角和定理和等腰三角形的性质∠B,利用线段垂直平分线的性质易得AE=BE,∠BAE=∠B.【解答】解:∵AB=AC,∠BAC=100°,∴∠B=∠C=(180°﹣100°)÷2=40°,∵DE是AB的垂直平分线,∴AE=BE,∴∠BAE=∠B=40°,故选:D.7.已知点P(3,﹣2)与点Q关于x轴对称,则Q ()A.(﹣3,2)B.(﹣3,﹣2)C.(3,2D.(3,﹣2)【分析】利用关于x为相反数的性质来求解.【解答】解:根据轴对称的性质,得点P(3,﹣2轴对称的点的坐标为(3,2).故选:C.8.下列运算正确的是()A .B.C.D.选项的值,做出判断即可得解.【解答】解:A、原式=,故A错误;B、原式=,故B错误;密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题C 、原式=﹣,故C 错误;D 、原式=,故D 正确.故选D .9.如图,在△ABC 中,∠B 、∠C 的平分线BE ,CD 相交于点F ,∠A =60°,则∠BFC =( )A .118°B .119°C .120°D .121°【分析】根据角平分线的定义可得出∠CBF =∠ABC 、∠BCF =∠ACB ,再根据内角和定理结合∠A =60°即可求出∠BFC 的度数.【解答】解:∵∠ABC 、∠ACB 的平分线BE 、CD 相交于点F , ∴∠CBF =∠ABC ,∠BCF =∠ACB , ∵∠A =60°,∴∠ABC +∠ACB =180°﹣∠A =120°,∴∠BFC =180°﹣(∠CBF +BCF )=180°﹣(∠ABC +∠ACB )=120°. 故选:C .10.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( )A .m >2B .m ≥2C .m ≥2且m ≠3D .m >2且m≠3【分析】分式方程去分母转化为整式方程,求出整式方程的解表示出x ,根据方程的解为非负数求出m 的范围即可. 【解答】解:分式方程去分母得:m ﹣3=x ﹣1, 解得:x =m ﹣2,由方程的解为非负数,得到m ﹣2≥0,且m ﹣2≠1,解得:m ≥2且m ≠3. 故选:C .二.填空题(共6小题)11.正五边形每个外角的度数是 72° .【分析】利用正五边形的外角和等于360度,除以边数即可求出答案.【解答】解:360°÷5=72°. 故答案为:72°. 12.如果分式的值为0,则x 的值是 1 .【分析】根据分式的值为零的条件可以求出x 的值. 【解答】解:根据题意得:解x 2﹣1=0得x =±1, 解2x +2≠0得x ≠﹣1.密 封 线 内 不 则x =1, 故答案为:1.13.将矩形ABCD 沿AE 折叠,得到如图的图形.已知∠CEB ′=50°,则∠AEB ′= 65 °.【分析】根据折叠前后对应部分相等得∠AEB ′=∠AEB ,再由已知求解.【解答】解:∵∠AEB ′是△AEB 沿AE 折叠而得, ∴∠AEB ′=∠AEB .又∵∠BEC =180°,即∠AEB ′+∠AEB +∠CEB ′=180°, 又∵∠CEB ′=50°,∴∠AEB ′==65°,故答案为:65.14.已知AD 是△ABC 的高,∠BAD =72°,∠CAD =21°,则∠BAC 的度数是 51°或93° .【分析】分高AD 在△ABC 内部和外部两种情况讨论求解即可. 【解答】解:①如图1,当高AD 在△ABC 的内部时, ∠BAC =∠BAD +∠CAD =72°+21°=93°;②如图2,当高AD 在△ABC 的外部时, ∠BAC =∠BAD ﹣∠CAD =72°﹣21°=51°, 综上所述,∠BAC 的度数为51°或93°, 故答案为:51°或93°.15.边长分别为a 和b (m >b )的两个正方形按如图所示的样式摆放,则图中阴影部分的面积是a 2+b 2﹣ab .积的+小正方形的面积﹣直角三角形的面积.【解答】解:阴影部分的面积=大正方形的面积+的面积﹣直角三角形的面积 =a 2+b 2﹣(a +b )×a =a 2+b 2﹣a 2﹣ab =a 2+b 2﹣ab .故答案为:a 2+b 2﹣ab .16.如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于D ,BE密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题分∠ABC 交AC 于E ,交AD 于F ,FG ∥BC ,FH ∥AC ,下列结论:①AE =AF ;②AF =FH ;③AG =CE ;④AB +FG =BC .其中正确的结论有 ①②③④ .(填序号)【分析】只要证明∠AFE =∠AEF ,四边形FGCH 是平行四边形,△FBA ≌△FBH 即可解决问题;【解答】解:∵∠FBD =∠ABF ,∠FBD +∠BFD =90°,∠ABF +∠AEB =90°, ∴∠BFD =∠AEB , ∴∠AFE =∠AEB , ∴AF =AE ,故①正确, ∵FG ∥BC ,FH ∥AC ,∴四边形FGCH 是平行四边形, ∴FH =CG ,FG =CH ,∠FHC =∠C ,∵∠BAD +∠DAC =90°,∠DAC +∠C =90°, ∴∠BAF =∠BHF ,∵BF =BF ,∠FBA =∠FBH , ∴△FBA ≌△FBH (AAS ), ∴FA =FH ,故AB =BH ,②正确,∵AF =AE ,FH =CG , ∴AE =CG ,∴AG =CE ,故③正确,∵BC =BH +HC ,BH =BA ,CH =FG ,∴BC =AB +FG ,故④正确.故答案为①②③④. 三.解答题(共7小题) 17.计算: (1)﹣2z •(2)(a 2b ﹣2ab 2﹣b 3)÷b ﹣(a +b )(a ﹣b )【分析】(1)根据分式的乘除法的法则进行解答即可; (2)根据整式的乘除法法则和平方差公式进行解答即可. 【解答】解:(1)﹣2z •=×=﹣xyz ;(2)(a 2b ﹣2ab 2﹣b 3)÷b ﹣(a +b )(a ﹣b ) =a 2﹣2ab ﹣b 2﹣(a 2﹣b 2) =a 2﹣2ab ﹣b 2﹣a 2+b 2=﹣2ab . 18.因式分解: (1)4x 2﹣1内(2)2m(a﹣b)﹣6n(a﹣b)【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式即可得到结果.【解答】解:(1)原式=(2x+1)(2x﹣1);(2)原式=2(a﹣b)(m﹣3n).19.尺规作图:过直线l外一点P作这条直线的平行线(不要求写作法,保留作图痕迹)【分析】过点P作直线EF交直线l于E.作∠EPM=∠EFG,直线PM即为所求.【解答】解:如图,直线PM即为所求.20.因汽车尾气污染引发的雾霾天气备受关注,经市大气污染防治工作领导组研究决定,在市区范围实施机动车单双号限行措施限行期间为方便市民出行,某路公交车每天比原来的运行增加20共运送乘客5600乘客7000同,问限行期间这路公交车每天运行多少车次?【分析】设限行期间这路公交车每天运行x均每车次运送乘客与原来的数量基本相同”【解答】解:设限行期间这路公交车每天运行x车次,=,解得,x=100,经检验x=100是原分式方程的根,答:限行期间这路公交车每天运行100车次.21.如图,在△ABC中,AB=AC,点D是BC的中点,点EAD上,求证:∠1=∠2.【分析】由等腰三角形的性质可得∠BAD=∠CAD,由“密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题可证△ABE ≌△ACE ,可得结论.【解答】证明:∵AB =AC ,点D 是BC 的中点, ∴∠BAD =∠CAD , ∵AB =AC ,AE =AE ,∴△ABE ≌△ACE (SAS ) ∴∠1=∠2.22.阅读下列材料,并完成相应的任务:求根分解法是多项式因式分解的一种方法,是用求多项式对应的方程的根分离出多项式的一次因式.设f (x )是一元多项式,若方程f (x )=0有一个根为x =a ,则多项式必有一个一次因式x ﹣a ,于是f (x )=(x ﹣a )g (x ).例如,设多项式7x 2﹣x ﹣6为f (x ),则有f (x )=7x 2﹣x ﹣6,令7x 2﹣x ﹣6=0,容易看出,此方程有一根为x =1,则f (x )必有一个一次因式x ﹣1,那么得到7x 2﹣x ﹣6=(x ﹣1)(mx +n )(m 、n 为常数)而(x ﹣1)(mx +n )=mx 2+(n ﹣m )x ﹣n ,所以7x 2﹣x ﹣6=mx 2+(n ﹣m )x ﹣n ,由系数对应相等可得m =7,n =6,所以7x 2﹣x ﹣6=(x ﹣1)(7x +6). 任务:(1)方程x 3﹣3x 2+4=0的一根为 x =﹣1 . (2)请你根据上面的材料因式分解多项式:x 3﹣3x 2+4= (x +1)(x ﹣2)2.【分析】(1)根据阅读材料即可求解; (2)根据阅读材料进行计算即可. 【解答】解:(1)x 3﹣3x 2+4=0 (x +1)(x ﹣2)2=0, 所以x =﹣1, 故答案为﹣1.(2)x 3﹣3x 2+4=(x +1)(x ﹣m )2=(x +1)(x 2﹣2mx +m 2) =x 3﹣2mx 2+m 2x +x 2﹣2mx +m 2=x 3+(﹣2m +1)x 2+(m 2﹣2m )x +m 2所以﹣2m +1=﹣3,解得m =2,所以因式分解多项式:x 3﹣3x 2+4=(x +1)(x ﹣m )2故答案为(x +1)(x ﹣m )2. 23.综合与实践已知,在Rt △ABC 中,AC =BC ,∠C =90°,D 为AB 边的中点,∠EDF =90°,∠EDF 绕点D 旋转,它的两边分别交AC ,CB (或它们的延长线)于点E ,F .(1)【问题发现】如图1,当∠EDF 绕点D 旋转到DE ⊥AC 于点E 时(如图1), ①证明:△ADE ≌△BDF ;②猜想:S△DEF+S△CEF=S△ABC.(2)【类比探究】如图2,当∠EDF绕点D旋转到DE与AC不垂直时,且点E在线段AC上,试判断S△DEF+S△CEF与S△ABC的关系,并给予证明.(3)【拓展延伸】如图3,当点E在线段AC的延长线上时,此时问题(2)中的结论是否成立?若成立,请给予证明;若不成立,S△DEF,S△CEF,S△ABC又有怎样的关系?(写出你的猜想,不需证明)【分析】(1)①先判断出DE∥AC得出∠ADE=∠B,再用同角的余角相等判断出∠A=∠BDF,即可得出结论;②当∠EDF绕D点旋转到DE⊥AC时,四边形CEDF是正方形,边长是AC的一半,即可得出结论;(2)成立;先判断出∠DCE=∠B,进而得出△CDE≌△BDF,即可得出结论;(3)不成立;同(2)得:△DEC≌△DBF,得出S△DEF=S五边形DBFEC=S△CFE+S△DBC=S△CFE+S△ABC.【解答】解:(1)①∵∠C=90°,∴BC⊥AC,∵DE⊥AC,∴DE∥BC,∴∠ADE=∠B,∵∠EDF=90°,∴∠ADE+∠BDF=90°,∵DE⊥AC,∴∠AED=90°,∴∠A+∠ADE=90°,∴∠A=∠BDF,∵点D是AB的中点,∴AD=BD,在△ADE和△BDF中,,∴△ADE≌△BDF(SAS);②如图1中,当∠EDF绕D点旋转到DE⊥AC时,四边形是正方形.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题设△ABC 的边长AC =BC =a ,则正方形CEDF 的边长为a . ∴S △ABC =a 2,S 正方形DECF =(a )2=a 2即S △DEF +S △CEF =S △ABC ; 故答案为.(2)上述结论成立;理由如下:连接CD ;如图2所示:∵AC =BC ,∠ACB =90°,D 为AB 中点,∴∠B =45°,∠DCE =∠ACB =45°,CD ⊥AB ,CD =AB =BD ,∴∠DCE =∠B ,∠CDB =90°, ∵∠EDF =90°, ∴∠CDE =∠BDF , 在△CDE 和△BDF 中,,∴△CDE ≌△BDF (ASA ), ∴S △DEF +S △CEF =S △ADE +S △BDF =S △ABC ;(3)不成立;S △DEF ﹣S △CEF =S △ABC ;理由如下:连接CD , 如图3所示:同(2)得:△DEC ≌△DBF ,∠DCE =∠DBF =135° ∴S △DEF =S 五边形DBFEC , =S △CFE +S △DBC , =S △CFE +S △ABC , ∴S △DEF ﹣S △CFE =S △ABC .∴S △DEF 、S △CEF 、S △ABC 的关系是:S △DEF ﹣S △CEF =S △ABC .人教版2020—2021学年度上学期八年级数学(上)期末测试卷及答案(满分:150分 时间: 120分钟)第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.下列图形中,是轴对称图形的是( )A .B .C .D .2.下列分式中,属于最简分式的是( )A .1113xB .221xx +C .211x x +-D .11x x --3.以下列各组线段为边,能组成三角形的是( ) A .2cm ,5cm ,8cm B .3cm ,3cm ,6cm C .3cm ,4cm ,5cmD .1cm ,2cm ,3cm4.如果一个多边形的每一个内角都是108°是( ) A .五边形 B .六边形C .七边形D .八边形5.下列运算正确的是( ) A .236a a a ⋅= B .220a a ÷=C .2353()a b a b =D .752a a a ÷=6.下列各式分解因式正确的是( ) A .()()2919191x x x -=+- B .()()422111a a a -=+- C .()()228199a b a b a b --=--+D .()()()32a ab a a b a b -+=-+-7.已知ab ≠0,则坐标平面内四个点A (a ,b ),B (a ,–b C (–a ,b ),D (–a ,–b )中关于y 轴对称的是( )A .A 与B ,C 与D B .A 与D ,B 与C C .A 与C ,B 与DD .A 与B ,B 与C8.如图,△ABC ≌△ADE ,若∠E =70°,∠D =30°,∠CAD则∠BAD 的度数为( )A .40°B .45°C .50°D .55°密线学校 班级 姓名 学号密 封 线 内 不 得 答 题9.光明家具厂生产一批学生课椅,计划在30天内完成并交付使用.若每天多生产100把,则23天完成且还多生产200把.设原计划每天生产x 把,根据题意,可列分式方程为( )A .3020023100x x +=+B .3020023100x x -=+C .3020023100x x +=- D .3020023100x x -=- 10.解关于x 的方程6155x mx x -+=--(其中m 为常数)产生增根,则常数m 的值等于( ) A .–2 B .2C .–1D .111.如图,△ABC 中,AB 的垂直平分线交AC 于D ,如果AC =5cm ,BC =4cm ,那么△DBC 的周长是( )A .6cmB .7cmC .8cmD .9cm12.如图,BP 平分ABC ∠交CD 于点F ,DP 平分ADC ∠交AB 于点E ,若40A ∠=︒,38P ∠=︒,则C ∠的度数为( )A .36︒B .39︒C .38︒D .40︒ 第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分) 13.一种细菌的半径是0.00003厘米,数据0.00003用科学记数法表示为_________. 14.计算:2232a a a a ---=_________. 15.若分式33x x --的值为零,则x =_________.16.如图,ABC ∆中,90C ∠=︒,30A ∠=︒,AB 的垂直平分线交AC于D ,交AB 于E ,2CD =,则AC =_________.17.在等腰ABC ∆中,一腰上的高与另一腰的夹角为26︒,则底角的度数为__________.18.如图,在△ABC 中,AB =AC ,∠BAC =50°,∠BAC 的平分线与AB 的垂直平分线交于点O ,将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,则∠CFE 为________度.封线内不得答题三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分6分)计算:(1)()()22x y x y x---;(2)2344(1)11x xxx x++-+÷++.20.(本小题满分6分)因式分解:(1)4x2–16;(2)(x+y)2–10(x+y)+25.21.(本小题满分6分)如图,AD与BC交于E,∠1=∠2=∠3,∠4=∠5.求证:BD=E C.22.(本小题满分8分)如图,五边形ABCDE的内角都相等,EF平分∠AED.求证:EF⊥BC.23.(本小题满分8分)如图,△ABC(1)分别写出点A,点B,点C的坐标.(2)若△A'B'C'与△ABC关于y轴对称,在图中画出△A'B'并写出相应顶点的坐标.24.(本小题满分10分)如图,ABC∆与DCB∆中,AC与于点E,且A D∠=∠,AB DC=.(1)求证:ABC DCB∆≅∆;(2)当50AEB∠=︒,求EBC∠的度数.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题25.(本小题满分10分)嘉嘉同学动手剪了如图①所示的正方形与长方形卡片若干张.(1)他用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是________. (2)如果要拼成一个长为(a +2b ),宽为(a +b )的大长方形,则需要1号卡片________张,2号卡片________张,3号卡片________张.26.(本小题满分12分)市区某中学美化校园招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要30天;若由甲队先做10天,剩下的工程由甲、乙合做12天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元,若该工程计划在35天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱,还是由甲乙两队全程合作完成该工程省钱?27.(本小题满分12分)如图,在ABC ∆中,已知45ABC ∠=,过点C 作CD AB ⊥于点D ,过点B 作BM AC ⊥于点M ,连接MD ,过点D 作DN MD ⊥,交BM 于点N .(1)求证:DBN ∆≌DCM ∆;(2)设CD 与BM 相交于点E ,若点E 是CD 的中点,试探究线段NE ,ME ,CM 之间的数量关系,并证明你的结论. 参考答案 一、1 2 3 4 5 6 7 8 9 10 11 12 DBCADDCBACDA二、13.【答案】3×10–5【解析】0.00003=3×10–5,故答案为:3×10–5. 14.【答案】11a -- 【解析】原式=()()()213211a a a a a a ----- ()()()21321a a a a ---=- =()1aa a --封线内不=11a--.故答案为:11a--.15.【答案】–3【解析】依题意,得|x|–3=0且x–3≠0,解得x=–3.故答案是:–3.16.【答案】6【解析】连接BD,∵在△ABC中,∠C=90°,∠A=30°,∴∠ABC=60°,∵AB的垂直平分线交AC于D,交AB于E,∴AD=BD,DE⊥AB,∴∠ABD=∠A=30°,∴∠DBC=30°,∵CD=2,∴BD=2CD=4,∴AD=4,∴AC=6.17.【答案】58°或32°【解析】①如图①,∵AB=AC,∠ABD=26°,BD⊥AC,∴∠A=64°,∴∠ABC=∠C=(180°–64°)÷2=58°;②如图②,∵AB=AC,∠ABD=26°,BD⊥AC,∴∠BAC=26°+90°=116°,∴∠ABC=∠C=(180°–116°)÷2=32°,故答案为:58°或32°.18.【答案】50°【解析】如图,连接OB,OC,∵∠BAC=50°,AO为∠BAC的平分线,∴∠BAO=12∠12×50°=25°.又∵AB=AC,∴∠ABC=∠ACB=65°.∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=25°,∴∠OBC=∠ABC–∠ABO=65°–25°=40°.∵AO为∠BAC的平分线,AB=AC,∴直线AOBC,∴OB=OC,∴∠OCB=∠OBC=40°,密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题∵将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,∴OE =CE .∴∠COE =∠OCB =40°;在△OCE 中,∠OEC =180°–∠COE –∠OCB =180°–40°–40°=100°,∴∠CEF =12∠CEO =50°. 故答案为:50°. 三、19.【解析】(1)原式=22222x xy y xy x -+-+=2233x xy y -+;(3分)(2)原式=231x+11(2)x x x x --+⨯++()(1)=223111(2)x x x x -++⨯++ =2(2)(2)11(2)x x x x x -++⨯++=22xx -+.(6分)20.【解析】(1)4x 2–16=4(x 2–4)=4(x +2)(x –2);(3分) (2)(x +y )2–10(x +y )+25 =(x +y –5)2.(6分) 21.【解析】1=2314,43AEC ABD ∠∠=∠∠=∠+∠∠=∠+∠,,∴AEC ABD ∠=∠.(2分)45∠=∠,AB AE =∴.在ABD △和AEC 中1=2AB AE ABD AEC ∠∠⎧⎪=⎨⎪∠=∠⎩,(4分)∴ABD AEC ≅.∴BD =EC .(6分)22.【解析】∵五边形ABCDE 的内角都相等,∴∠C =∠D =∠AED =180°×(5–2)÷5=108°,(2分) 又EF 平分∠AED ,∴°1542FED AED ∠=∠=,(4分)∴在四边形DEFC 中360EFC D C FED ︒∠=-∠-∠-∠=90°,∴EF ⊥BC .(8分)23.【解析】(1)点A (3,4),B (1,2),C (5,1);(3分)(2)如图所示,△A 'B 'C '即为所求,(5分)点A ′(﹣3,4),B ′(﹣1,2),C ′(﹣5,1).(8分)24.【解析】(1)在△ABE和△DCE中,A DAEB DEC AB DC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△DCE(AAS),∴BE=EC,∠ABE=∠DCE,(4分)∴∠EBC=∠ECB,∵∠EBC+∠ABE=∠ECB+∠DCE,∴∠ABC=∠DBC,(6分)在△ABC和△DCB中,A DAB DCABC DBC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC≌△DCB(ASA);(8分)(2)∵∠AEB=50°,∴∠EBC+∠ECB=50°,∵∠EBC=∠ECB,∴∠EBC=25°.(10分)25.【解析】(1)这个乘法公式是(a+b)2=a2+2ab+b2,故答案为:(a+b)2=a2+2ab+b2;(4分)(2)要拼成一个长为(a+2b),宽为(a+b)的大长方形,根据(a+2b)(a+b)=a2+3ab+2b2,则需要1号卡片1张,2号卡片2张,3号卡片3张.故答案为:1;2;3.(10分)26.【解析】(1)设乙队单独完成这项工程需要x天,依题意,得:101212130x++=,解得x=45,经检验,x=45是所列分式方程的解,且符合题意.答:乙队单独完成这项工程需要45天.(6分)(2)甲乙两队全程合作需要1÷(11+3045)=18(天),甲队单独完成该工程所需费用为3.5×30=105∵乙队单独完成该工程需要45天,超过35天的工期,∴不能由乙队单独完成该项工程;甲、乙两队全程合作完成该工程所需费用为(3.5+2)×(万元).∵105>99全程合作完成该工程省钱.(12分)27.【解析】(1)∵45ABC∠=,CD AB⊥,∴45ABC DCB∠=∠=,∴BD DC=,∵90BDC MDN∠=∠=,∴BDNCDM∠=∠,(3分)∵CD AB⊥,BM AC⊥,∴90ABM A ACD∠=-∠=∠,。

人教版2020---2021学年度八年级数学(上)期末考试卷及答案

人教版2020---2021学年度八年级数学(上)期末考试卷及答案

密封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期八年级数学(上)期末测试卷及答案(满分:150分 时间: 120分钟)第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.下列图形中,是轴对称图形的是( )A .B .C .D .2.下列分式中,属于最简分式的是( )A .1113xB .221xx +C .211x x +-D .11x x --3.以下列各组线段为边,能组成三角形的是( ) A .2cm ,5cm ,8cm B .3cm ,3cm ,6cm C .3cm ,4cm ,5cmD .1cm ,2cm ,3cm4.如果一个多边形的每一个内角都是108°,那么这个多边形是( ) A .五边形 B .六边形C .七边形D .八边形5.下列运算正确的是( ) A .236a a a ⋅= B .220a a ÷=C .2353()a b a b =D .752a a a ÷=6.下列各式分解因式正确的是( ) A .()()2919191x x x -=+- B .()()422111a a a -=+- C .()()228199a b a b a b --=--+D .()()()32a ab a a b a b -+=-+-7.已知ab ≠0,则坐标平面内四个点A (a ,b ),B (a ,–b ),C (–a ,b ),D (–a ,–b )中关于y 轴对称的是( ) A .A 与B ,C 与DB .A 与D ,B 与C C .A 与C ,B 与DD .A 与B ,B 与C8.如图,△ABC ≌△ADE ,若∠E =70°,∠D =30°,∠CAD =35°,则∠BAD 的度数为( )A .40°B .45°C .50°D .55°9.光明家具厂生产一批学生课椅,计划在30天内完成并交付题号一 二 三 总分 得分不得答题使用.若每天多生产100把,则23天完成且还多生产200把.设原计划每天生产x把,根据题意,可列分式方程为( )A.3020023100xx+=+B.3020023100xx-=+C.3020023100xx+=-D.3020023100xx-=-10.解关于x的方程6155x mx x-+=--(其中m为常数)产生增根,则常数m的值等于( )A.–2 B.2C.–1 D.111.如图,△ABC中,AB的垂直平分线交AC于D,如果AC=5cm,BC=4cm,那么△DBC的周长是( )A.6cm B.7cmC.8cm D.9cm12.如图,BP平分ABC∠交CD于点F,DP平分ADC∠交AB于点E,若40A∠=︒,38P∠=︒,则C∠的度数为( )A.36︒B.39︒C.38︒D.40︒第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.一种细菌的半径是0.00003厘米,数据0.00003数法表示为_________.14.计算:2232aa a a---=_________.15.若分式33xx--的值为零,则x=_________.16.如图,ABC∆中,90C∠=︒,30A∠=︒,AB的垂直平分线交于D,交AB于E,2CD=,则AC=_________.17.在等腰ABC∆中,一腰上的高与另一腰的夹角为26︒角的度数为__________.18.如图,在△ABC中,AB=AC,∠BAC=50°,∠BAC线与AB的垂直平分线交于点O,将∠C沿EF(E在上,F在AC上)折叠,点C与点O恰好重合,则∠为________度.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分)计算:(1)()()22x y x y x ---;(2)2344(1)11x x x x x ++-+÷++.20.(本小题满分6分)因式分解:(1)4x 2–16;(2)(x +y )2–10(x +y )+25.21.(本小题满分6分)如图,AD 与BC 交于E ,∠1=∠2=∠3,∠4=∠5.求证:BD =E C .22.(本小题满分8分)如图,五边形ABCDE 的内角都相等,EF 平分∠AED .求证:EF ⊥BC .23.(本小题满分8分)如图,△ABC 的顶点均在格点上.(1)分别写出点A ,点B ,点C 的坐标.(2)若△A 'B 'C '与△ABC 关于y 轴对称,在图中画出△A 'B 'C ',并写出相应顶点的坐标.24.(本小题满分10分)如图,ABC ∆与DCB ∆中,AC 与BD 交于点E ,且A D ∠=∠,AB DC =.(1)求证:ABC DCB ∆≅∆;(2)当50AEB ∠=︒,求EBC ∠的度数.25.(本小题满分10分)嘉嘉同学动手剪了如图①所示的正方形与长方形卡片若干张.(1)他用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是________. (2)如果要拼成一个长为(a +2b ),宽为(a +b )的大长方形,则需要1号卡片________张,2号卡片________张,3号卡片________张.26.(本小题满分12分)市区某中学美化校园招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要30天;若由甲队先做10天,剩下的工程由甲、乙合做12天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元,若该工程计划在35天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱,还是由甲乙两队全程合作完成该工程省钱?27.(本小题满分12分)如图,在ABC ∆中,已知45ABC ∠=,过点C 作CD AB ⊥于点D ,过点B 作BM AC ⊥于点M ,连接MD ,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题故答案为:11a --.15.【答案】–3【解析】依题意,得|x |–3=0且x –3≠0,解得x =–3.故答案是:–3.16.【答案】6【解析】连接BD ,∵在△ABC 中,∠C =90°,∠A =30°,∴∠ABC =60°, ∵AB 的垂直平分线交AC 于D ,交AB 于E ,∴AD =BD ,DE ⊥AB ,∴∠ABD =∠A =30°,∴∠DBC =30°, ∵CD =2,∴BD =2CD =4,∴AD =4,∴AC =6.17.【答案】58°或32°【解析】①如图①,∵AB =AC ,∠ABD =26°,BD ⊥AC ,∴∠A =64°,∴∠ABC =∠C =(180°–64°)÷2=58°;②如图②,∵AB =AC ,∠ABD =26°,BD ⊥AC , ∴∠BAC =26°+90°=116°,∴∠ABC =∠C =(180°–116°)÷2=32°,故答案为:58°或32°.18.【答案】50°【解析】如图,连接OB ,OC ,∵∠BAC =50°,AO 为∠BAC 的平分线,∴∠BAO =12∠BAC =12×50°=25°.又∵AB =AC ,∴∠ABC =∠ACB =65°.∵DO 是AB 的垂直平分线,∴OA =OB ,∴∠ABO =∠BAO =25°,∴∠OBC =∠ABC –∠ABO =65°–25°=40°.∵AO 为∠BAC 的平分线,AB =AC ,∴直线AO 垂直平分BC ,∴OB =OC ,∴∠OCB =∠OBC =40°,∵将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,题∴OE =CE .∴∠COE =∠OCB =40°;在△OCE 中,∠OEC =180°–∠COE –∠OCB =180°–40°–40°=100°,∴∠CEF =12∠CEO =50°.故答案为:50°. 三、19.【解析】(1)原式=22222x xy y xy x -+-+=2233x xy y -+;(3分)(2)原式=231x+11(2)x x x x --+⨯++()(1)=223111(2)x x x x -++⨯++=2(2)(2)11(2)x x x x x -++⨯++=22xx -+.(6分)20.【解析】(1)4x 2–16=4(x 2–4)=4(x +2)(x –2);(3分) (2)(x +y )2–10(x +y )+25 =(x +y –5)2.(6分) 21.【解析】1=2314,43AEC ABD ∠∠=∠∠=∠+∠∠=∠+∠,,∴AEC ABD ∠=∠.(2分)45∠=∠,AB AE =∴.在ABD △和AEC 中1=2AB AE ABD AEC ∠∠⎧⎪=⎨⎪∠=∠⎩,(4分)∴ABD AEC ≅.∴BD =EC .(6分)22.【解析】∵五边形ABCDE 的内角都相等,∴∠C =∠D =∠AED =180°×(5–2)÷5=108°,(2分)又EF 平分∠AED , ∴°1542FED AED ∠=∠=,(4分)∴在四边形DEFC 中360EFC D C FED ︒∠=-∠-∠-∠=90°,∴EF ⊥BC .(8分)23.【解析】(1)点A (3,4),B (1,2),C (5,1(3分)(2)如图所示,△A 'B 'C '即为所求,(5分)点A ′(﹣3,4),B ′(﹣1,2),C ′(﹣5,1).(8密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题24.【解析】(1)在△ABE 和△DCE中,A D AEB DEC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCE (AAS ),∴BE =EC ,∠ABE =∠DCE ,(4分)∴∠EBC =∠ECB ,∵∠EBC +∠ABE =∠ECB +∠DCE ,∴∠ABC =∠DBC ,(6分)在△ABC 和△DCB中,A DAB DC ABC DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DCB (ASA );(8分) (2)∵∠AEB =50°,∴∠EBC +∠ECB =50°, ∵∠EBC =∠ECB ,∴∠EBC =25°.(10分)25.【解析】(1)这个乘法公式是(a +b )2=a 2+2ab +b 2,故答案为:(a +b )2=a 2+2ab +b 2;(4分)(2)要拼成一个长为(a +2b ),宽为(a +b )的大长方形,根据(a +2b )(a +b )=a 2+3ab +2b 2,则需要1号卡片1张,2号卡片2张,3号卡片3张.故答案为:1;2;3.(10分)26.【解析】(1)设乙队单独完成这项工程需要x 天,依题意,得:101212130x ++=,解得x =45,经检验,x =45是所列分式方程的解,且符合题意. 答:乙队单独完成这项工程需要45天.(6分) (2)甲乙两队全程合作需要1÷(11+3045)=18(天),甲队单独完成该工程所需费用为3.5×30=105(万元); ∵乙队单独完成该工程需要45天,超过35天的工期, ∴不能由乙队单独完成该项工程;甲、乙两队全程合作完成该工程所需费用为(3.5+2)×18=99(万元).∵105>99,∴在不超过计划天数的前提下,由甲、乙两队全程合作完成该工程省钱.(12分) 27.【解析】(1)∵45ABC ∠=,CD AB ⊥,∴45ABC DCB ∠=∠=,∴BD DC =,∵90BDC MDN ∠=∠=,∴BDN CDM ∠=∠,(3分) ∵CD AB ⊥,BM AC ⊥, ∴90ABM A ACD ∠=-∠=∠,在DBN ∆和DCM ∆中,BDN CDM BD DCDBN DCM ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴DBN ∆≌DCM ∆;(6分) (2)结论:NEME CM ,证明:由(1)DBN ∆≌DCM ∆可得DM DN =. 作DF MN ⊥于点F , 又ND MD ⊥,∴DF FN =,在DEF ∆和CEM ∆中,DEF CEM DFE CMEDE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴DEF ∆≌CEM∆, ∴EF EM =,DF CM =,∴CM DF FN NE FE NE ME ===-=-.(12分)。

2020—2021年人教版八年级数学上册期末考试卷及答案【精编】

2020—2021年人教版八年级数学上册期末考试卷及答案【精编】

2020—2021年人教版八年级数学上册期末考试卷及答案【精编】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.一次函数()224y k x k =++-的图象经过原点,则k 的值为( )A .2B .2-C .2或2-D .32.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-3.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .||4a >B .0c b ->C .0ac >D .0a c +>4.如图,在四边形ABCD 中,∠A=140°,∠D=90°,OB 平分∠ABC ,OC 平分∠BCD ,则∠BOC=( )A .105°B .115°C .125°D .135°5.下列说法中,错误的是( )A .不等式x <5的整数解有无数多个B .不等式x >-5的负整数解集有有限个C .不等式-2x <8的解集是x <-4D .-40是不等式2x <-8的一个解6.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,给出下列结论:①BE=DG ;②BE ⊥DG ;③DE 2+BG 2=2a 2+2b 2,其中正确结论有( )A .0个B .1个C .2个D .3个7.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A .12B .10C .8D .68.如图,小华剪了两条宽为1的纸条,交叉叠放在一起,且它们较小的交角为60,则它们重叠部分的面积为( )A .1B .2C 3D .23 39.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-10.如图,Rt △ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D ,AB=10,S △ABD =15,则CD 的长为( )A .3B .4C .5D .6二、填空题(本大题共6小题,每小题3分,共18分)1.若0xy >,则二次根式2y x x -化简的结果为________. 2.计算:82-=_______.3.如果22(1)4x m x +-+是一个完全平方式,则m =__________.4.如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则∠AFE 的度数为_____________.5.如图,四边形ABCD 中,点M ,N 分别在AB ,BC 上, 将BMN △沿MN 翻折,得△FMN ,若MF ∥AD ,FN ∥DC ,则∠B =________°.6.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第_____块。

2020—2021年人教版八年级数学上册期末试卷及参考答案

2020—2021年人教版八年级数学上册期末试卷及参考答案

2020—2021年人教版八年级数学上册期末试卷及参考答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .0k <2.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .03.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .||4a >B .0c b ->C .0ac >D .0a c +>4.把函数y x =向上平移3个单位,下列在该平移后的直线上的点是( )A .()2,2B .()2,3C .()2,4D .(2,5)5.方程组33814x y x y -=⎧⎨-=⎩的解为( ) A .12x y =-⎧⎨=⎩ B .12x y =⎧⎨=-⎩ C .21x y =-⎧⎨=⎩ D .21x y =⎧⎨=-⎩6.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.在同一坐标系中,一次函数y=ax+2与二次函数y=x 2+a 的图象可能是( )A .B .C .D .9.如图,五边形ABCDE 中有一正三角形ACD ,若AB=DE ,BC=AE ,∠E=115°,则∠BAE 的度数为何?( )A .115B .120C .125D .13010.如图在△ABC 中,BO ,CO 分别平分∠ABC ,∠ACB ,交于O ,CE 为外角∠ACD 的平分线,BO 的延长线交CE 于点E ,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是( )A .①②③B .①③④C .①④D .①②④二、填空题(本大题共6小题,每小题3分,共18分)181________.2.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________.3.4的平方根是 .4.如图,△ABC 中,∠BAC =90°,∠B =30°,BC 边上有一点P (不与点B ,C 重合),I 为△APC 的内心,若∠AIC 的取值范围为m °<∠AIC <n °,则m +n=________.5.如图,在Rt△BAC和Rt△BDC中,∠BAC=∠BDC=90°,O是BC的中点,连接AO、DO.若AO=3,则DO的长为________.6.如图,在ABC中,点D是BC上的点,40BAD ABC︒∠=∠=,将ABD∆沿着AD翻折得到AED,则CDE∠=______°.三、解答题(本大题共6小题,共72分)1.解下列分式方程:(1)32111x x=+--(2)2531242x x x-=---2.先化简,再从﹣1、2、3、4中选一个合适的数作为x的值代入求值.2222444424x x xx x x x⎛⎫---÷⎪-+--⎝⎭.3.已知关于x的方程x2 -(m+1)x+2(m-1)=0,(1)求证:无论m取何值时,方程总有实数根;(2)若等腰三角形腰长为4,另两边恰好是此方程的根,求此三角形的另外两条边长.4.如图,在四边形ABCD中,AB DC,AB AD=,对角线AC,BD交于点O,AC平分BAD⊥交AB的延长线于点E,连接OE.∠,过点C作CE AB(1)求证:四边形ABCD是菱形;(2)若5BD=,求OE的长.AB=,25.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动,(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC (图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、B4、D5、D6、C7、C8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±32、k<6且k≠33、±2.4、255.5、36、20三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)32 x=-2、x+2;当1x=-时,原式=1.3、()1略()24和24、(1)略;(2)2.5、(1)略;(2)MB=MC.理由略;(3)MB=MC还成立,略.6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。

2020—2021年人教版八年级数学上册期末考试及完整答案

2020—2021年人教版八年级数学上册期末考试及完整答案

2020—2021年人教版八年级数学上册期末考试及完整答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>2.估计7+1的值( )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .108°B .90°C .72°D .60°4.已知a 为实数,则代数式227122a a -+的最小值为( )A .0B .3C .33D .9 5.已知实数x 满足()()2224120x x x x ----=,则代数式21x x -+的值是( )A .7B .-1C .7或-1D .-5或36.如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=3,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A .362B .332C .6D .37.如图,在▱ABCD 中,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE ,若△CED 的周长为6,则▱ABCD 的周长为( )A .6B .12C .18D .248.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中90E ∠=,90C ∠=,45A ∠=,30D ∠=,则12∠+∠等于( )A .150B .180C .210D .2709.如图,把一个矩形纸片ABCD 沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置,若∠EFB=65°,则∠AED ′为( ).A .70°B .65°C .50°D .25°10.如图,直线a ∥b ,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为( )A .30°B .32°C .42°D .58°二、填空题(本大题共6小题,每小题3分,共18分)1.若a ,b 都是实数,b =12a -+21a -﹣2,则a b 的值为________.2.已知AB//y 轴,A 点的坐标为(3,2),并且AB=5,则B 的坐标为________.3.若关于x 的一元二次方程x 2+mx +2n =0有一个根是2,则m +n =________.4.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.5.如图,在平面直角坐标系中,△AOB ≌△COD ,则点D 的坐标是__________.6.如图,∠AOB=60°,OC 平分∠AOB ,如果射线OA 上的点E 满足△OCE 是等腰三角形,那么∠OEC 的度数为________。

2020—2021年人教版八年级数学上册期末考试卷【及参考答案】

2020—2021年人教版八年级数学上册期末考试卷【及参考答案】

2020—2021年人教版八年级数学上册期末考试卷【及参考答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-2.到三角形三个顶点的距离相等的点是三角形( )的交点.A .三个内角平分线B .三边垂直平分线C .三条中线D .三条高3.若关于x 的一元二次方程(k ﹣1)x 2+2x ﹣2=0有两个不相等的实数根,则k 的取值范围是( )A .k >12B .k ≥12C .k >12且k ≠1D .k ≥12且k ≠1 4.下列各数:-2,0,13,0.020020002…,π,9,其中无理数的个数是( )A .4B .3C .2D .1 5.代数式131x x -+-中x 的取值范围在数轴上表示为( ) A .B .C .D .6.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A .4B .6C .7D .107.若a 72b 27a 和b 互为( )A .倒数B .相反数C .负倒数D .有理化因式8.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°9.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A .0.7米B .1.5米C .2.2米D .2.4米10.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA二、填空题(本大题共6小题,每小题3分,共18分)1.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.2.如果一个直角三角形的两条直角边的长分别为5、12,则斜边上的高的长度为__________.3.若a 、b 、c 为三角形的三边,且a 、b 满足229(2)0a b -+-=,则第三边c 的取值范围是_____________.4.如图,AB ∥CD ,则∠1+∠3—∠2的度数等于 _________.5.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点A 作AH BC ⊥于点H ,已知BO=4,S 菱形ABCD =24,则AH =________.6.如图,长为8 cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3 cm 到点D ,则橡皮筋被拉长了_____ cm.三、解答题(本大题共6小题,共72分)1.解不等式:11123x x +--≤2.先化简()222a 2a 1a 1a 1a 2a 1+-÷++--+,然后a 在﹣1、1、2三个数中任选一个合适的数代入求值.3.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.4.如图,在Rt △ABC 中,∠ACB =90°,过点C 的直线MN ∥AB ,D 为AB 边上一点,过点D 作DE ⊥BC ,交直线MN 于E ,垂足为F ,连接CD 、BE .(1)求证:CE =AD ;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.5.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.6.为支援灾区,某校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品共1000件.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品的件数与用120元购买A型学习用品的件数相同.(1)求A、B两种学习用品的单价各是多少元?(2)若购买这批学习用品的费用不超过28000元,则最多购买B型学习用品多少件?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、C4、C5、A6、B7、D8、C9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、7或-12、60 133、1<c<5.4、180°5、24 56、2.三、解答题(本大题共6小题,共72分)1、1x≤2、53、(1)12,32-;(2)略.4、(1)略;(2)四边形BECD是菱形,理由略;(3)当∠A=45°时,四边形BECD是正方形,理由略5、(1)略(2)略6、(1)A型学习用品20元,B型学习用品30元;(2)800.。

2020—2021年人教版八年级数学上册期末试卷【及参考答案】

2020—2021年人教版八年级数学上册期末试卷【及参考答案】

2020—2021年人教版八年级数学上册期末试卷【及参考答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.函数1y x =-的自变量x 的取值范围是( )A .1x >B .1x <C .1x ≤D .1≥x 2.若a b c d ,,,满足a b c d b c d a ===,则2222ab bc cd da a b c d ++++++的值为( ) A .1或0 B .1- 或0 C .1或2- D .1或1-3.下列说法不一定成立的是( )A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >4.若点1(3,)A y -,2(2,)B y -,3(1,)C y 都在反比例函数12y x=-的图象上,则1y ,2y ,3y 的大小关系是( ) A .213y y y << B .312y y y << C .123y y y << D .321y y y <<5.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是( )A .12x x ≠B .21120x x -=C .122x x +=D .122x x ⋅=6.估计()-⋅1230246的值应在( ) A .1和2之间 B .2和3之间 C .3和4之间 D .4和5之间7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.下列关于一次函数()0,0y kx b k b =+<>的说法,错误的是( )A .图象经过第一、二、四象限B .y 随x 的增大而减小C .图象与y 轴交于点()0,bD .当b x k >-时,0y > 9.如图,CB =CA ,∠ACB =90°,点D 在边BC 上(与B ,C 不重合),四边形ADEF 为正方形,过点F 作FG ⊥CA ,交CA 的延长线于点G ,连接FB ,交DE 于点Q ,给出以下结论:①AC =FG ;②S △FAB ∶S 四边形CBFG =1∶2;③∠ABC =∠ABF ;④AD 2=FQ ·AC ,其中正确结论的个数是( )A .1个B .2个C .3个D .4个10.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为( )A .x y 50{x y 180=-+=B .x y 50{x y 180=++=C .x y 50{x y 90=++=D .x y 50{x y 90=-+= 二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2.已知34(1)(2)x x x ---=1A x -+2B x -,则实数A=__________. 3.若2|1|0a b -++=,则2020()a b +=_________.4.如图,在△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点F ,若BF =AC ,则∠ABC =________度.5.如图,平行四边形ABCD 中,60BAD ∠=︒,2AD =,点E 是对角线AC 上一动点,点F 是边CD 上一动点,连接BE 、EF ,则BE EF +的最小值是____________.6.如图,已知点E 在正方形ABCD 的边AB 上,以BE 为边向正方形ABCD 外部作正方形BEFG ,连接DF ,M 、N 分别是DC 、DF 的中点,连接MN.若AB=7,BE=5,则MN=________.三、解答题(本大题共6小题,共72分)1.解方程组(1)327413x y x y +=⎧⎨-=⎩ (2)143()2()4x y x y x y ⎧-=-⎪⎨⎪+--=⎩2.先化简,再求值:(a ﹣2b )(a+2b )﹣(a ﹣2b )2+8b 2,其中a=﹣2,b=12.3.已知方程组137x y a x y a-=+⎧⎨+=--⎩中x 为非正数,y 为负数. (1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?4.如图,点E 、F 在BC 上,BE=CF ,AB=DC ,∠B=∠C ,AF 与DE 交于点G ,求证:GE=GF .5.如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC 于F.(1)说明BE=CF的理由;(2)如果AB=5,AC=3,求AE、BE的长.6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、C4、B5、D6、B7、C8、D9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、1002、13、14、4556、13 2三、解答题(本大题共6小题,共72分)1、(1)31xy=⎧⎨=-⎩;(2)4989xy⎧=-⎪⎪⎨⎪=⎪⎩.2、4ab,﹣4.3、(1)a的取值范围是﹣2<a≤3;(2)当a为﹣1时,不等式2ax+x>2a+1的解集为x<1.4、略.5、(1)略;(2)AE=4,BE=1.6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。

2020—2021年人教版八年级数学上册期末考试及答案【全面】

2020—2021年人教版八年级数学上册期末考试及答案【全面】

2020—2021年人教版八年级数学上册期末考试及答案【全面】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.下列二次根式中,最简二次根式的是( )A .15B .0.5C .5D .502.将抛物线23y x =-平移,得到抛物线23(1)2y x =---,下列平移方式中,正确的是( )A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位3.语句“x 的18与x 的和不超过5”可以表示为( ) A .58x x +≤ B .58x x +≥ C .855x ≤+ D .58x x += 4.若m n >,下列不等式不一定成立的是( )A .33m n ++>B .33m n ﹣<﹣C .33m n >D .22m n >5.如图,a ,b ,c 在数轴上的位置如图所示,化简22()a a c c b -++-的结果是( )A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b6.如图,PA 、PB 是⊙O 切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于( )A .55°B .70°C .110°D .125°7.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图,在△ABC 中,AB=AC ,∠BAC=100°,AB 的垂直平分线DE 分别交AB 、BC 于点D 、E ,则∠BAE=( )A .80°B .60°C .50°D .40°9.往直径为52cm 的圆柱形容器内装入一些水以后,截面如图所示,若水面宽48AB cm =,则水的最大深度为( )A .8cmB .10cmC .16cmD .20cm10.如图,在平面直角坐标系中,矩形ABCD 的顶点A 点,D 点分别在x 轴、y 轴上,对角线BD ∥x 轴,反比例函数(0,0)ky k x x=>>的图象经过矩形对角线的交点E ,若点A(2,0),D(0,4),则k 的值为( )A .16B .20C .32D .40二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a 1-,4.则a 的取值范围是________.2.已知AB//y 轴,A 点的坐标为(3,2),并且AB=5,则B 的坐标为________.3.分解因式:2a 3﹣8a=________.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D,且OD=4,△ABC的面积是________.5.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=_________.6.如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的垂直平分线,点E、N在BC上,则∠EAN=________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)257320x yx y-=⎧⎨-=⎩(2)134342x yx y⎧-=⎪⎨⎪-=⎩2.先化简,再求值:(x+y)(x-y)-(4x3y-8xy3)÷2xy,其中x=-1,y=12.3.已知:关于x的方程2x(k2)x2k0-++=,(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰三角形ABC的一边长a=1,两个边长b,c恰好是这个方程的两个根,求△ABC的周长.4.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.5.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.6.重百江津商场销售AB两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元?(2)由于需求量大A、B两种商品很快售完,重百商场决定再次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A种商品?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、A4、D5、A6、B7、C8、D9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1a4<<2、(3,7)或(3,-3)3、2a(a+2)(a﹣2)4、425、40°6、32°三、解答题(本大题共6小题,共72分)1、(1)55xy=⎧⎨=⎩;(2)64xy=⎧⎨=⎩.2、223x y-+,14-.3、(1)略;(2)△ABC的周长为5.4、(1)略;(25、24°.6、(1)200元和100元(2)至少6件。

2020—2021年部编人教版八年级数学上册期末考试卷及答案【完美版】

2020—2021年部编人教版八年级数学上册期末考试卷及答案【完美版】

2020—2021年部编人教版八年级数学上册期末考试卷及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211xx-+的值为0,则x的值为()A.0 B.1 C.﹣1 D.±12.已知多项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c的值为().A.b=3,c=-1 B.b=-6,c=2C.b=-6,c=-4 D.b=-4,c=-63.已知三角形的三边长分别为2,a-1,4,则化简|a-3|+|a-7|的结果为()A.2a-10 B.10-2aC.4 D.-44.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣345.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是( )A.7086480x yx y+=⎧⎨+=⎩B.7068480x yx y+=⎧⎨+=⎩C.4806870x yx y+=⎧⎨+=⎩D.4808670x yx y+=⎧⎨+=⎩6.下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是()A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根7.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE ⊥AB 于 E ,PF ⊥AC 于 F ,M 为 EF 中点,则 AM 的最小值为( )A .1B .1.3C .1.2D .1.58.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°9.往直径为52cm 的圆柱形容器内装入一些水以后,截面如图所示,若水面宽48AB cm =,则水的最大深度为( )A .8cmB .10cmC .16cmD .20cm10.若b >0,则一次函数y =﹣x +b 的图象大致是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)181________.2.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________.3.分解因式:3x -x=__________.4.如图,点A 在双曲线1y=x 上,点B 在双曲线3y=x上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为________.5.如图,E 、F 分别是平行四边形ABCD 的边AB 、CD 上的点,AF 与DE 相交于点P,BF 与CE 相交于点Q,若215APD S cm ∆=,225BQC S cm ∆=,则阴影部分的面积为__________2cm .6.如图,在平面直角坐标系中,在x 轴、y 轴的正半轴上分别截取OA 、OB ,使OA=OB ;再分别以点A 、B 为圆心,以大于12AB 长为半径作弧,两弧交于点P .若点C 的坐标为(,23a a -),则a 的值为________.三、解答题(本大题共6小题,共72分)1.解下列方程组(1)203216x y x y -=⎧⎨+=⎩(2)410211x y x y -=⎧⎨+=⎩2.先化简,再求值:(1﹣11a -)÷2244a a a a-+-,其中a=2+2.3.已知关于x ,y 的方程组325x y a x y a -=+⎧⎨+=⎩. (1)若x ,y 为非负数,求a 的取值范围;(2)若x y >,且20x y +<,求x 的取值范围.4.如图,在▱ABCD 中,AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F ,且BE=DF(1)求证:▱ABCD 是菱形;(2)若AB=5,AC=6,求▱ABCD 的面积.5.如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD ,等边△ABE ,已知∠BAC=30°,EF ⊥AB ,垂足为F ,连接DF(1)试说明AC=EF ;(2)求证:四边形ADFE 是平行四边形.6.某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、C4、B5、A6、A7、C8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±32、k<6且k ≠33、x (x+1)(x -1)4、25、406、3三、解答题(本大题共6小题,共72分)1、(1)42x y =⎧⎨=⎩;(2)61x y =⎧⎨=-⎩.2、原式=2aa -+1.3、(1)a ≥2;(2)-5<x <14、(1)略;(2)S 平行四边形ABCD =245、略.6、(1)A 型机器人每小时搬运150千克材料,B 型机器人每小时搬运120千克材料;(2)至少购进A 型机器人14台.。

2020—2021年人教版八年级数学上册期末考试卷及答案【完美版】

2020—2021年人教版八年级数学上册期末考试卷及答案【完美版】

2020—2021年人教版八年级数学上册期末考试卷及答案【完美版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.函数y =x 的取值范围是( )A .1x >B .1x <C .1x ≤D .1≥x2.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-3.已知三角形的三边长分别为2,a -1,4,则化简|a -3|+|a -7|的结果为( )A .2a -10B .10-2aC .4D .-44.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <05.在平面直角坐标系中,将点A (1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A ′,则点A ′的坐标是( )A .(﹣1,1)B .(﹣1,﹣2)C .(﹣1,2)D .(1,2)6.已知关于x 的不等式组221x a b x a b -≥⎧⎨-<+⎩的解集为3≤x <5,则a ,b 的值为( ).A .a =-3,b =6B .a =6,b =-3C .a =1,b =2D .a =0,b =37.下面是一位同学做的四道题:①222()a b a b +=+;②224(2)4a a -=-;③532a a a ÷=;④3412a a a ⋅=,其中做对的一道题的序号是( )A .①B .②C .③D .④8.如图,小华剪了两条宽为1的纸条,交叉叠放在一起,且它们较小的交角为60,则它们重叠部分的面积为( )A .1B .2C 3D .23 39.如图1,点F 从菱形ABCD 的顶点A 出发,沿A →D →B 以1cm/s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )A .5B .2C .52D .25 10.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为( )A .x y 50{x y 180=-+=B .x y 50{x y 180=++=C .x y 50{x y 90=++=D .x y 50{x y 90=-+= 二、填空题(本大题共6小题,每小题3分,共18分)1.若a 、b 为实数,且b =22117a a a --++4,则a+b =________. 2.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______. 3.计算:))201820195-252的结果是________.4.如图,在平行四边形ABCD 中,P 是CD 边上一点,且AP 和BP 分别平分∠DAB 和∠CBA ,若AD=5,AP=8,则△APB 的周长是________.5.如图,OP 平分∠MON ,PE ⊥OM 于点E ,PF ⊥ON 于点F ,OA =OB ,则图中有__________对全等三角形.6.如图,已知OA OB =,数轴上点A 对应的数是__________。

2020-2021学年八年级上学期期末数学试题(2)

2020-2021学年八年级上学期期末数学试题(2)

山西省阳泉市2020-2021学年八年级上学期期末数学试题 学校:___________姓名:___________班级:___________考号:___________一、单选题1.若分式5x x -有意义,则实数x 的取值范围是( ) A .x =0 B .x =5 C .x≠5 D .x≠0 2.计算(﹣ab 2)3的结果是( )A .﹣a 3b 5B .﹣a 3b 6C .﹣ab 6D .﹣3ab 2 3.如图,已知△ABC ≌△ADE ,若∠B =40°,∠C =75°,则∠EAD 的度数为( )A .65°B .70°C .75°D .85° 4.把8a 3﹣8a 2+2a 进行因式分解,结果正确的是( )A .2a (4a 2﹣4a +1)B .8a 2(a ﹣1)C .2a (2a ﹣1)2D .2a (2a +1)2 5.若阿光以四种不同的方式连接正六边形ABCDEF 的两条对角线,连接后的情形如下列选项中的图形所示,则下列哪一个图形不是轴对称图形( )A .B .C .D . 6.下列各式中,正确的是( )A .1a b b ab b++= B .()222x y x y x y x y +-=-- C .23193x x x -=-- D .22x y x y -++= 7.如图,在△ABC 中,以点C 为圆心,以AC 长为半径画弧交边BC 于点D ,连接AD .若∠B =36°,∠C =40°,则∠BAD 的度数是( )A .70°B .44°C .34°D .24° 8.如图,在Rt △ABC 中,∠ABC =90°,∠A =65°,将其折叠,使点A 落在边CB 上A′处,折痕为BD ,则∠A′DC =( )A .40°B .30°C .25°D .20°9.如图所示,在ABC ∆中,AD 平分BAC ∠,DE AB ⊥于E ,15ABC S ∆=,3DE =,6AB =,则AC 长是( )A .4B .5C .6D .710.如图,在△ABC 中,BC 的垂直平分线EF 交∠ABC 的平分线BD 于E ,如果∠BAC =60°,∠ACE =24°,那么∠ABC 的大小是( )A .32°B .56°C .64°D .70°二、填空题 11.若二次三项式4x 2+ax+9是一个完全平方式,则a =_____.12.如图,BD 是△ABC 的中线,AB=8,BC=6,△ABD 和△BCD 的周长的差是_____.13.某种钢管随着温度每变化1℃,每米钢管的长度就会变化0.0000118m ,把0.0000118用科学记数法表示为______.14.某物流仓储公司用如图A ,B 两种型号的机器人搬运物品,已知A 型机器人比B型机器人每小时多搬运20kg ,A 型机器人搬运1000kg 所用时间与B 型机器人搬运800kg 所用时间相等,设B 型机器人每小时搬运x kg 物品,列出关于x 的方程为_____.15.有些数学题,表面上看起来无从下手,但根据图形的特点,可补全成为特殊的图形,然后根据特殊几何图形的性质去考虑,常常可以获得简捷解法.根据阅读,请解答问题:如图所示,已知△ABC的面积为16cm2,AD平分∠BAC,且AD⊥BD于点D,则△ADC 的面积为___________cm2.三、解答题16.(1)计算:(﹣2ab)2+a2(a+2b)(a﹣2b)+a6÷a2;(2)化简:22423 6939a aa a a-+÷-+++17.解方程:44xx+-﹣64x+=118.如图所示,在平面直角坐标系中,△ABC各顶点的坐标分别为A(4,0),B(-1,4),C(-3,1).(1)作出△A′B′C′,使△A′B′C′和△ABC关于x轴对称;(2)写出点A′,B′,C′的坐标;(3)求△ABC的面积.19.阅读与思考x2+(p+q)x+pq型式子的因式分解x2+(p+q)x+pq型式子是数学学习中常见的一类多项式,如何将这种类型的式子分解因式呢?我们通过学习,利用多项式的乘法法则可知:(x+p)(x+q)=x2+(p+q)x+pq,因式分解是整式乘法相反方向的变形,利用这种关系可得x2+(p+q)x+pq=(x+p)(x+q).利用这个结果可以将某些二次项系数是1的二次三项式分解因式,例如,将x2﹣x﹣6分解因式.这个式子的二次项系数是1,常数项﹣6=2×(﹣3),一次项系数﹣1=2+(﹣3),因此这是一个x2+(p+q)x+pq型的式子.所以x2﹣x﹣6=(x+2)(x﹣3).上述过程可用十字相乘的形式形象地表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数,如图所示.这样我们也可以得到x2﹣x﹣6=(x+2)(x﹣3).这种分解二次三项式的方法叫“十字相乘法”.请同学们认真观察,分析理解后,解答下列问题:(1)分解因式:y2﹣2y﹣24.(2)若x2+mx﹣12(m为常数)可分解为两个一次因式的积,请直接写出整数m的所有可能值.20.如图,已知正五边形ABCDE,AF∥CD交DB的延长线于点F,交DE的延长线于点G.求证:FD=FG.21.某超市在2021年“双11”,销售一批用16800元购进的中老年人保暖内衣,发现供不应求.为了备战“双12”,积极参与支付宝扫码领红包活动,超市又用36400元购进了第二批这种保暖内衣,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该超市购进的第一批保暖内衣是多少件?(2)两批保暖内衣按相同的标价销售,最后剩下的50件按六折优惠卖出,两批保暖内衣全部售完后利润没有低于进价的20%(不考虑其他因素),请计算每件保暖内衣的标价至少是多少元?22.动手操作:如图,已知AB∥CD,点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以点E,F为圆心,大于12EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M.问题解决:(1)若∠ACD=78°,求∠MAB的度数;(2)若CN⊥AM,垂足为点N,求证:△CAN≌△CMN.实验探究:(3)直接写出当∠CAB的度数为多少时?△CAM分别为等边三角形和等腰直角三角形. 23.在自习课上,小明拿来如下框的一道题目(原问题)和合作学习小组的同学们交流.如图1,已知△ABC,∠ACB=90°,∠ABC=45°,分别以AB,BC为边向外作△ABD 与△BCE,且DA=DB,EB=EC,∠ADB=∠BEC=90°,连接DE交AB于点F.探究线段DF与EF的数量关系.小红同学的思路是:过点D作DG⊥AB于点G,构造全等三角形,通过推理使问题得解.小华同学说:我做过一道类似的题目,不同的是∠ABC=30°,∠ADB=∠BEC=60°.请你参考小明同学的思路,探究并解决以下问题:(1)写出原问题中DF与EF的数量关系为.(2)如图2,若∠ABC=30°,∠ADB=∠BEC=60°,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明.参考答案1.C【解析】【分析】根据分式有意义,分母不等于0列不等式求解即可.【详解】解:由题意得,x﹣5≠0,解得x≠5.故选:C.【点睛】本题主要考查分式有意义的条件:分母不为零,掌握分式有意义的条件是解题的关键. 2.B【解析】【分析】根据积的乘方和幂的乘方运算法则计算可得.【详解】解:(﹣ab2)3=(﹣a)3•(b2)3=﹣a3b6,故选:B.【点睛】本题主要考查幂的乘方与积的乘方,解题的关键是掌握积的乘方和幂的乘方运算法则.3.A【分析】根据全等三角形的性质求出∠D和∠E,再根据三角形内角和定理即可求出∠EAD的度数.【详解】解:∵△ABC≌△ADE,∠B=40°,∠C=75°,∴∠B=∠D=40°,∠E=∠C=75°,∴∠EAD=180°﹣∠D﹣∠E=65°,故选:A.【点睛】本题主要考查了全等三角形的性质及三角形内角和,掌握全等三角形的性质是解题的关键.4.C【分析】首先提取公因式2a ,进而利用完全平方公式分解因式即可.【详解】解:8a 3﹣8a 2+2a=2a(4a 2﹣4a+1)=2a(2a ﹣1)2,故选C.【点睛】本题因式分解中提公因式法与公式法的综合运用.5.D【解析】分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.详解:A 、是轴对称图形,故此选项错误;B 、是轴对称图形,故此选项错误;C 、是轴对称图形,故此选项错误;D 、不是轴对称图形,故此选项正确;故选D .点睛:本题考查了轴对称图形,解题的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.6.B【分析】根据分式的基本性质进行变形,再进行判断即可.【详解】A 选项:11a b a abb ++=,故不正确; B 选项:()222()()()()x y x y x y x y x y x y x y x y ++--==----,故正确; C 选项:23319(3)(3)3x x x x x x --==-+-+,故错误;D 选项:22x y x y -+-=-,故错误; 故选:B. 【点睛】考查利用分式的基本性质对分式进行变形,解题关键是利用了分式的基本性质. 7.C【分析】由AC =CD ,∠C =40°得到∠ADC =70°,再根据三角形的外角的性质即可得到结论.【详解】解:∵AC =CD ,∠C =40°,∴∠ADC =70°,∵∠B =36°,∴∠BAD =∠ADC ﹣∠B =34°.故选:C .【点睛】本题主要考查了等腰三角形的性质及三角形外角的性质,能够根据题意得出∠ADC =70°是解题的关键.8.A【分析】根据折叠的性质得到∠BA′D =∠A =65°,根据三角形的外角的性质计算即可.【详解】解:由折叠的性质可知,∠BA′D =∠A =65°,∵∠ABC =90°,∠A =65°,∴∠C =25°,∴∠A′DC =∠BA′D ﹣∠C =40°,故选:A .【点睛】本题主要考查折叠问题及三角形外角的性质,根据折叠得出∠BA′D =∠A =65°是解题的关键.9.A【分析】做DF ⊥AC ,垂直为F ,先证明DE=DF =3,再根据ABC ABD ACD S S S ∆∆∆=+构造方程问题得解.【详解】解:如图,做DF ⊥AC ,垂直为F ,∵AD 平分BAC ∠,DE AB ⊥,DF ⊥AC ,∴DE=DF =3,由题意得ABC ABD ACD S S S ∆∆∆=+, ∴111522AB DE AC DF +=, 即116331522AC ⨯⨯+⨯=, ∴4AC =.故选:A【点睛】本题考查了角平分线的性质,利用面积法构造方程解决问题.根据题意添加辅助线,从而构造方程是解决问题的关键.10.C【分析】根据线段垂直平分线的性质得到EB =EC ,得到∠EBC =∠ECB ,根据角平分线的定义得到∠EBC =∠EBA ,根据三角形内角和定理列出算式,计算即可.【详解】解:∵EF 是BC 的垂直平分线,∴EB =EC ,∴∠EBC =∠ECB ,∵BD 是∠ABC 的平分线,。

山西省2020-2021学年第一学期八年级期末质量评估试题·数学(人教版)答案

山西省2020-2021学年第一学期八年级期末质量评估试题·数学(人教版)答案

-2
-2
-3
-3
-4
-4
-5
-5
答图 1
答图 2
19.(1)证明:∵CE⊥AD,
∴∠AEC=90°,
∴∠CAE+∠ACE=90°. ………………………………………………………………… 1 分
∵∠ACB=90°,∴∠ACE+∠BCF=90°,
∴∠CAE=∠BCF,即∠CAD=∠BCF. ………………………………………………… 2 分
(3)(1,0) …………………………………………………………………………… 8 分
八年级数学 (人教版) 答案 第 1 页 (共 4 页)
y
5
C
4
3A 2
y
C1
5
A1
4 3
A
C
2
1B -5 -4 -3 -2 --11 O 1 2 3 4 5 x
-5
-4
-3
B1 1 -2 --11
O
1
B 2
3
45x
E DF
答图
B
∴∠FCG=∠ACB-∠ACF=60°.
∵CF=CG,
∴△CFG 是等边三角形, ………………………………………………………… 10 分
∴CG=GF,∠CGF=60°.
∵△CDE 是等边三角形,
∴CD=CE,∠DCE=60°,
∴∠FCG=∠DCE,
∴∠DCF=∠ECG, ………………………………………………………………… 11 分
在△DCF 和△ECG 中,
{CD = CE,
∠DCF = ∠ECG, CF = CG,
∴△DCF≌△ECG(SAS),
∴∠CGE=∠CFD=90°, ∴EG⊥BC. ………………………………………………………………………… 12 分 ∵∠CGF=60°,∠ABC=30°, ∴∠GFB=30°, ∴∠ABC=∠GFB, ∴FG=BG, ∴BG=CG, ∴GE 垂直平分 BC, ∴BE=CE. ………………………………………………………………………… 13 分

2020年阳泉市盂县八年级上数学期末试卷有答案

2020年阳泉市盂县八年级上数学期末试卷有答案

( 1)以上三个命题是真命题的为(直接作答)

( 2)请选择一个真命题进行证明(先写出所选命题,然后证明)

命题Ⅱ“如果
21.( 7 分)下面是某同学对多项式( 解:设 2﹣ 4=y ,
2﹣ 4+2)( 2﹣ 4+6) +4 进行因式分解的过程.
原式 =( y+2)( y+6)+4 (第一步) =y2+8y+16 (第二步) =( y+4) 2(第三步) =( 2﹣4+4) 2(第四步)
5分
――――――――――――――――― 1 分
( 2)选择命题Ⅱ “如果 ①③ 成立,那么 ② 成立 ”; 证明:∵ AB=AC, ∴∠B=∠C, 在△ABD 和 △ACE 中,

∴ △ABD ≌ △ACE( SAS),
∴ AD =AE .
――――――――――――――――――――――――――――――
23
题图
第一学期期末练兵题
八年级数学试题答案
一、 BCBCA
CAABC
二、 11. 3.4× 10﹣10 12.
15. 4 16.120 度 三、 17. ( 12 分)
4<< 12 13
m=﹣1, n=3 14 、 185y5+3y3;
( 1)原式 =1﹣ + =1; ----------------------------------------------------------------------------3
( 1)该同学第二步到第三步运用了因式分解的

A .提取公因式
B.平方差公式
C.两数和的完全平方公式

2020-2021学年八年级第一学期期末大联考数学试题

2020-2021学年八年级第一学期期末大联考数学试题
3.A
【分析】
将x=-2代入一次函数解析式中求出y值,此题得解.
【详解】
当x=-2时,y=- ×(-2)=1,
∴m=1.
9.如图,将一根长 的筷子,置于底面半径为 ,高为 的圆柱形水杯中,设筷子露在杯子外面的长度为 ,则 的取值范围是( )
A. B.
C. D.
10.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )
A.乙前4秒行驶的路程为48米
B.在0到8秒内甲的速度每秒增加4米/秒
C.两车到第3秒时行驶的路程相等
( )求 与 之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升.
23.综合与探究:
如图,直线 与 轴, 轴分别交于 , 两点,其中 .
(1)求 的值;
(2)若点 是直线 上的一个动点,当点 仅在第一象限内运动时,试写出 的面积 与 的函数关系式;
(3)探索:
①在(2)条件下,当点 运动到什么位置时, 的面积是 ;
【详解】
解:A、 的平方根为± ,故本选项错误;
B、-16没有算术平方根,故本选项错误;
C、(-4)2=16,16的平方根是±4,故本选项错误;
D、0的平方根和算术平方根都是0,故本选项正确.
故选D.
【点睛】
本题考查了平方根和算术平方根的定义,一个正数有两个平方根,其中正的平方根称为算术平方根,负数没有平方根,0的平方根和算术平方根都是0.
A. 的平方根是 B. 的算术平方根是4
C. 的平方根是 D.0的平方根和算术平方根都是0
3.若点 在函数 的图象上,则 的值是( )
A. B. C. D.
4.某一次函数的图象经过点(,2),且函数的值随自变量x的增大而减小,则下列函数符合条件的是( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)若二次三项式x2﹣5x+6可分解为(x﹣2)(x+a),则a=;
(2)若二次三项式2x2+bx﹣5可分解为(2x﹣1)(x+5),则b=;
(3)仿照以上方法解答下面问题:若二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.
24.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.
C.x2﹣6x+5=(x﹣5)(x﹣1)D.x2+y2=(x﹣y)2+2x
5.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()
A.8或10B.8C.10D.6或12
6.解分式方程 时,在方程的两边同时乘以(x﹣1)(x+1),把原方程化为x+1+2x(x﹣1)=2(x﹣1)(x+1),这一变形过程体现的数学思想主要是( )
A.类比思想B.转化思想C.方程思想D.函数思想
7.下列各式① ,② ,③ ,④ 中,是分式的有( )
A.①④B.①③④C.①③D.①②③④
8.如图,小林从P点向西直走12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了108米回到点P,则α=( )
A.30°B.40°C.80°D.不存在
【校级联考】山西省阳泉市盂县2020-2021学年八年级(上)人教版期末数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.京剧和民间剪纸是我国的两大国粹,这两者的结合无疑是最能代表中国特色的艺术形式之一.下列四个京剧脸谱的剪纸中,是轴对称图形的是( )
A. B.
C. x8=x﹣4B.a•a2=a2C.(a3)2=a6D.(3a)3=9a3
3.若分式 的值为0,则x的值等于
A.0B.3C. D.
4.下列各式中,从左到右的变形是因式分解的是( )
A.2a2﹣2a+1=2a(a﹣1)+1B.(x+y)(x﹣y)=x2﹣y2
9.如图,AD是△ABC的角平分线,点O在AD上,且OE⊥BC于点E,∠BAC=60°,∠C=80°,则∠EOD的度数为( )
A.20°B.30°C.10°D.15°
10.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为( )
(2)(ab﹣1)2+a(2b﹣1).
18.解方程 ﹣1= .
19.将一副直角三角板如图摆放,等腰直角板ABC的斜边BC与含30°角的直角三角板DBE的直角边BD长度相同,且斜边BC与BE在同一直线上,AC与BD交于点O,连接CD.
求证:△CDO是等腰三角形.
20.先化简,再求值: ,其中 .
21.有这样一道题:用四块如图甲所示的瓷砖拼成一个正方形,形成轴对称图案,和你的同伴比一比,看谁的拼法多.某同学设计了如图的两个图案,请你也用如图乙所示的瓷砖拼成一个正方形,形成轴对称图案.(至少设计四种图案)
A.6B.8C.10D.12
二、填空题
11.若an=3,则a2n=_____.
12.一个n边形的内角和为1080°,则n=________.
13.分解因式:x2y﹣4xy+4y=_____.
14.等腰三角形一腰上的高与另一腰的夹角为40°,则等腰三角形底角的度数是________________°.
23.仔细阅读下面例题,解答问题
例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.
解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n),
则x2﹣4x+m=x2+(n+3)x+3n

解得:n=﹣7,m=﹣21.
∴另一个因式为(x﹣7),m的值为﹣21.
问题:
(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC= ,其中 为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.
22.一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.
(1)甲,乙两公司单独完成此项工程,各需多少天?
(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?
参考答案
1.C
【解析】
【分析】
根据轴对称图形的概念进行判断即可.
【详解】
A、不是轴对称图形;
B、不是轴对称图形;
C、是轴对称图形;
D、不是轴对称图形;
故选C.
【点睛】
本题考查的是轴对称图形的概念.掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合是解题的关键.
2.C
【分析】
根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.
【详解】
A、底数不变指数相减,故A错误;
B、底数不变指数相加,故B错误;
C、底数不变指数相乘,故C正确;
D、积的乘方等于乘方的积,故D错误;
故选C.
【点睛】
本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.
3.C
【解析】
【分析】
直接利用分式的值为0的条件以及分式有意义的条件进而得出答案.
15.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:_____,使△AEH≌△CEB.
16.如图,在平面直角坐标系xOy中,A(2,1)、B(4,1)、C(1,3).若△ABC与△ABD全等,则点D坐标为_____.
三、解答题
17.计算:
(1)(x+4)(x﹣4)﹣x2;
相关文档
最新文档