pkpm柱配筋计算

合集下载

最新PKPM构件配筋详解

最新PKPM构件配筋详解

P K P M构件配筋详解功能说明这项菜单主要以图形方式显示各构件设计及验算结果,可以直接输出DWG图形文件。

图8.6.4 构件计算配筋简图8.6.4.1 各构件设计及验算结果功能说明简图上各构件的配筋结果表达方式如下:(1)钢筋混凝土梁和型钢混凝土梁(RC-Beam、SRC-Beam)图中:Asul-Asum-Asur:为梁上部左端、跨中、右端配筋面积(cm2);Asdl-Asdm-Asdr:为梁下部左端、跨中、右端配筋面积(cm2);GAsv:为梁加密区抗剪箍筋面积和剪扭箍筋面积的较大值(cm2);GAsvm:为梁非加密区抗剪箍筋面积和剪扭箍筋面积的较大值(cm2);VTAst :为梁受扭纵筋面积(cm2);VTAst1 :为梁抗扭箍筋的单肢箍面积(cm2);G、VT :为箍筋及剪扭配筋标志。

注意事項(1)梁配筋简图如下:图8.6.4.1-1 梁配筋示意图(2)加密区和非加密区箍筋都是按用户输入的箍筋间距计算的,当输入的箍筋间距为加密区间距时,梁端箍筋加密区的计算结果可直接使用;如果非加密区与加密区的箍筋间距不同时,需要对非加密区的箍筋面积按非加密区的间距进行换算后再使用。

当梁受扭时,配置的箍筋单肢面积不应小于VTAst1。

(3)输出的箍筋面积为箍筋间距范围内所有肢的总面积,在确定单肢箍筋的面积时,需要除以箍筋肢数。

(4)输出的纵筋及箍筋面积都满足规范要求的最小配筋率要求,如果计算出的配筋面积小于最小配筋率时,按最小配筋面积来输出。

(5)VTAst和VTAst1都为零时,该行不输出。

功能说明(2)矩形钢筋混凝土柱和型钢混凝土柱(RC-Column、SRC-Column)图中:Asc :为柱1根角筋的总面积(cm2);Asy、Asz:分别为柱B边和H边的单边面积,包括两根角筋面积(cm2);Asvj:为柱节点域抗剪箍筋面积(cm2);GAsv :为柱加密区抗剪箍筋面积(cm2);GAsvm :为柱非加密区抗剪箍筋面积(cm2);Uc :为非地震作用效应荷载组合下柱的轴压比;Ucs :为地震作用效应荷载组合下柱的轴压比;G :为箍筋配筋标志。

PKPM构件配筋详解

PKPM构件配筋详解

功能说明这项菜单主要以图形方式显示各构件设计及验算结果,可以直接输出DWG图形文件。

图8.6.4 构件计算配筋简图8.6.4.1 各构件设计及验算结果功能说明简图上各构件的配筋结果表达方式如下:(1)钢筋混凝土梁和型钢混凝土梁(RC-Beam、SRC-Beam)图中:Asul-Asum-Asur:为梁上部左端、跨中、右端配筋面积(cm2);Asdl-Asdm-Asdr:为梁下部左端、跨中、右端配筋面积(cm2);GAsv:为梁加密区抗剪箍筋面积和剪扭箍筋面积的较大值(cm2);GAsvm:为梁非加密区抗剪箍筋面积和剪扭箍筋面积的较大值(cm2);VTAst :为梁受扭纵筋面积(cm2);VTAst1 :为梁抗扭箍筋的单肢箍面积(cm2);G、VT :为箍筋及剪扭配筋标志。

注意事項(1)梁配筋简图如下:图8.6.4.1-1 梁配筋示意图(2)加密区和非加密区箍筋都是按用户输入的箍筋间距计算的,当输入的箍筋间距为加密区间距时,梁端箍筋加密区的计算结果可直接使用;如果非加密区与加密区的箍筋间距不同时,需要对非加密区的箍筋面积按非加密区的间距进行换算后再使用。

当梁受扭时,配置的箍筋单肢面积不应小于VTAst1。

(3)输出的箍筋面积为箍筋间距范围内所有肢的总面积,在确定单肢箍筋的面积时,需要除以箍筋肢数。

(4)输出的纵筋及箍筋面积都满足规范要求的最小配筋率要求,如果计算出的配筋面积小于最小配筋率时,按最小配筋面积来输出。

(5)VTAst和VTAst1都为零时,该行不输出。

功能说明(2)矩形钢筋混凝土柱和型钢混凝土柱(RC-Column、SRC-Column)图中:Asc :为柱1根角筋的总面积(cm2);Asy、Asz:分别为柱B边和H边的单边面积,包括两根角筋面积(cm2);Asvj:为柱节点域抗剪箍筋面积(cm2);GAsv :为柱加密区抗剪箍筋面积(cm2);GAsvm :为柱非加密区抗剪箍筋面积(cm2);Uc :为非地震作用效应荷载组合下柱的轴压比;Ucs :为地震作用效应荷载组合下柱的轴压比;G :为箍筋配筋标志。

pkpm柱配筋计算

pkpm柱配筋计算

pkpm柱配筋计算(最新版)目录1.PKPM 柱配筋计算概述2.PKPM 柱配筋计算流程3.PKPM 柱配筋计算参数设置4.PKPM 柱配筋计算结果分析5.PKPM 柱配筋计算的应用实例正文一、PKPM 柱配筋计算概述PKPM(Program for Knee-Spring Model)是我国自主研发的一款建筑结构设计软件,广泛应用于土木工程领域。

PKPM 柱配筋计算是该软件中的一项重要功能,可以对混凝土柱的钢筋配置进行精确计算,为结构设计提供科学依据。

二、PKPM 柱配筋计算流程1.建立模型:首先,根据设计要求,在 PKPM 软件中建立混凝土柱的三维模型,包括柱的截面尺寸、材料性能等参数。

2.设置参数:在进行柱配筋计算前,需要对计算参数进行设置,包括混凝土强度等级、钢筋种类、箍筋间距等。

3.计算:设置好参数后,启动 PKPM 柱配筋计算功能,软件将自动进行计算,并输出配筋结果。

4.结果分析:根据计算结果,分析柱的受力状况、钢筋配置是否合理等,如有需要,可进行调整并重新计算。

5.输出图纸:最后,将计算结果以图纸形式输出,以便于设计人员进行后续设计工作。

三、PKPM 柱配筋计算参数设置在进行 PKPM 柱配筋计算时,需要设置一些参数,主要包括:1.混凝土参数:包括混凝土强度等级、弹性模量等。

2.钢筋参数:包括钢筋种类、直径、间距等。

3.箍筋参数:包括箍筋种类、直径、间距等。

4.荷载参数:包括荷载类型、荷载大小、荷载作用方向等。

四、PKPM 柱配筋计算结果分析PKPM 柱配筋计算结果主要包括钢筋面积、钢筋根数、箍筋面积等。

设计人员需要根据这些结果分析柱的受力状况、钢筋配置是否合理,如有需要,可进行调整并重新计算。

五、PKPM 柱配筋计算的应用实例假设某工程需要设计一根高 20m、截面尺寸为 400mm×400mm 的混凝土柱,设计人员可以使用 PKPM 软件进行柱配筋计算。

首先,建立柱的三维模型,设置好相关参数,然后进行计算,最后根据计算结果进行设计。

PKPM构件配筋详解(DOC)

PKPM构件配筋详解(DOC)
GAsvm:为柱非加密区抗剪箍筋面积(cm2);
Uc:为非地震作用效应荷载组合下柱的轴压比;
Ucs:为地震作用效应荷载组合下柱的轴压比;G:为箍筋配筋标志。
注意事項
(1)圆柱是按等效矩形截面来计算箍筋面积的;
(2)柱子的箍筋是按用户输入的箍筋间距计算的,并满足加密区内最小体积 配箍率的要求控制。柱子的体积配箍率是按普通箍和复合箍的要求取值的。输出 的箍筋面积为箍筋间距范围内所有肢的总面积,在确定单肢箍筋的面积时,需要 除以箍筋肢数;
Aswvl:为地下室外墙或人防临空墙,每延米单侧竖向分布筋面积
(cm2/m)。
功能说明
(5)墙梁(RC Wall-Beam)
墙梁的配筋及输出格式与框架梁一致。需要特别说明的是:墙梁除混
凝土强度等级与剪力墙一致外,其它参数:主筋强度、箍筋强度、墙梁的箍筋间 距等均与框架梁一致。
注意事項
当墙梁的跨高比ln/h》时,墙梁按框架梁来设计;墙梁的跨高比In/h<5时,
(3)Asvj取计算的Asvjz与Asvjy的大值;Asv取计算的Asvz和Asvy的大 值;Asvm取Asvzm与Asvym的大值;
(4)输出的柱子纵筋面积满足规范规定的最小配筋率要求。
图中:
Asw:为墙柱端部边缘构件Lc范围内配筋面积(cm2);
Aswh:为墙柱水平分布筋间距范围内水平分布筋面积(cm2);
Ucs:为地震作用效应荷载组合下柱的轴压比;
G:为箍筋配筋标志。
注意事項
(1)柱配筋简图如下:
图8.641-3柱箍筋简图
(2) 柱子全截面配筋面积计算方法:As=2*( Asx+Asy)-4*Asc
(3)柱子的箍筋是按用户输入的箍筋间距计算的,并满足加密区内最小体积 配箍率的要求控制。柱子的体积配箍率是按普通箍和复合箍的要求取值的。输出 的箍筋面积为箍筋间距范围内所有肢的总面积,在确定单肢箍筋的面积时,需要 除以箍筋肢数。

PKPM计算结果图示说明

PKPM计算结果图示说明

11墙-梁
Asu1-Asu2-Asu3-----为梁上部左端、跨中、右端配筋面积(cm)。 Asd1-Asd2-Asd3-----为梁下部左端、跨中、右端配筋面积(cm)。 Asv----为梁加密区抗剪箍筋面积和扭剪箍筋面积的较大值(cm)。 Asv0----为梁非加密区抗。剪箍筋面积和扭剪箍筋面积的较大值(cm)。 Ast、Ast1----为梁受扭纵筋面积和抗扭箍筋沿周边布置的单肢箍的面积 (cm)。 G、VT----为箍筋和剪扭配筋标志。

8混凝土支撑
AsxAsy----支撑X、Y边单边配筋面积(含两根角筋)。 Asv----支撑箍筋面积。 G----为箍筋标志。 支撑配筋的看法是:把支撑向Z方向投影,即可看到柱图一样的配筋形式。
9刚支撑
R1----表示支撑正应力强度与抗拉、抗压强度设计值的比值F1/f。 R2----表示支撑X向稳定应力强度与抗拉、抗压强度设计值的比值F2/f。 R3----表示支撑Y向稳定应力强度与抗拉、抗压强度设计值的比值F3/f。
异形柱按双向受力计算配筋,程序按整截面进行配筋计算,每根柱的配 筋标,在一条引出线上,三个数分别为Asz、Asf、Asv。 Asz----表示异形柱固定钢筋位置的配筋面积,即位于直线柱肢端部和相 交处的配筋面积之合(cm)。 Asf----表示分布钢筋的配筋面积,即除Asz之外的钢筋面积(cm)。当柱外 伸大于200时,间距按200布置 。Asv----异形柱按双剪计算的箍筋面积(cm)。
6钢柱和方钢管混凝土柱
Uc----为柱的轴压比。 R1----表示钢柱正应力强度与抗拉、抗压强度设计值的比值F1/f。 R2----表示钢柱X向稳定应力强度与抗拉、抗压强度设计值的比值F2/f。 R3----表示钢柱Y向稳定应力强度与抗拉、抗压强度设计值的比值F3/f。

(完整版)PKPM手工配筋(根据SATWE配筋简图)

(完整版)PKPM手工配筋(根据SATWE配筋简图)

(完整版)PKPM⼿⼯配筋(根据SATWE配筋简图)根据SATWE计算结果⼿⼯配筋⼀、SATWE梁的计算结果的含义:1、加密区和⾮加密区箍筋都是按⽤户输⼊的箍筋间距计算的,并按沿梁全长箍筋的⾯积配筋率要求控制。

若输⼊的箍筋间距为加密区间距,则加密区的箍筋计算结果可直接参考使⽤,如果⾮加密区与加密区的箍筋间距不同,则应按⾮加密区箍筋间距对计算结果进⾏换算;1)⽤户输⼊的箍筋间距信息在SATWE参数设置框中2)沿梁全长箍筋的⾯积配筋率要求,见《混规》11.3.9 梁端设置的第⼀个箍筋距框架节点边缘不应⼤于50mm。

⾮加密区的箍筋间距不宜⼤于加密区箍筋间距的2倍。

沿梁全长箍筋的⾯积配筋率ρsv应符合下列规定:3)如何进⾏换算?保持总的配箍率不变,当加密区间距为100,⾮加密区间距为200,则应对⾮加密区箍筋⾯积进⾏换算,假设换算前后⾯积分别为ASV1、ASV2,间距分别为S1、S2,则有:ASV1/ S1= ASV2/ S2.[即Asv/S保持不变,原因见《混规》-2010中式(4.3.2-2)]2、算例下⾯的梁为百盛⽶⼚第三层右边数过来第四根边梁。

该梁有关信息如下:截⾯参数(m) B*H = 0.250*0.600保护层厚度(mm) Cov = 30.0箍筋间距(mm) SS = 100.0混凝⼟强度等级RC = 30.0主筋强度(N/mm2) FYI = 360.0箍筋强度(N/mm2) FYJ = 210.0抗震构造措施的抗震等级NF = 41、梁顶纵筋和梁底纵筋(bxh=250mmx600mm)1)配置原则:框架梁、次梁单侧纵筋不得多于两层,底筋根数不少于3根;同侧纵筋布置中,不同直径的钢筋,直径相差不⼤于2级;框架梁、次梁通长纵筋直径可⼩于⽀座短筋直径。

尽量使通长⾯筋(钢筋⾯积)不⼤于⽀座纵筋⾯积的60%,但不宜⼩于30%。

2)⼿⼯配置:梁⾯(右):AS=12cm2=1200 mm2, 实配4根HRB400级直径20(1257),保护层C=20,2x(20+8)+3x25+4x20=211<250, 放置⼀排,满⾜(见《混凝》P102和P115)梁底(左)(:AS=13cm2=1300 mm2, 实配5根HRB400级直径20(1571),保护层C=20,2x(20+8)+4x25+5x20=256>250, 放置两排,上排2根,下排3根。

(整理)PKPM设计基础时的参数分析和最小配筋率使用注意事项.

(整理)PKPM设计基础时的参数分析和最小配筋率使用注意事项.

PKPM设计基础时的参数分析和最小配筋率使用注意独立基础的最小配筋率问题比较复杂,有以下资料供参考:1.当独立基础底板厚度有规定:挑出长度与高度比值小于2.5。

因此不能当做一般的卧于地基上的板来看待2.满足1的要求是基础底面反力可以看作是线性的。

也就是说不考虑基础底板的弯曲或剪切变形。

3.基础底版有最小配筋要求即10@200,这比原来的8@200已经提高。

4.基础底版是非等厚度板,计算配筋率只能按全面积计算,不能按单位长度计算。

本人认为独立基础底板配筋不用按最小配筋率控制。

JCCAD程序中作了选项,如果输入最小配筋率则会按全截面演算最小配筋率。

当进行等强代换后程序还会重新演算最小配筋率。

我院总工要求结构设计人员的一些注意事项6、对小塔楼的界定应慎重,当塔楼高度对房屋结构适宜高度有影响时,小塔楼应报院结构专业委员会确定7、施工图涉及到钢网架、电梯及其它设备予留的孔洞、机坑、基础、予埋件等一定要写明:“有关尺寸在浇筑混凝土之前必须得到设备厂家签字认可方可施工。

”8、砌体结构不允许设转角飘窗。

9、钢结构工程设计必须注明:焊缝质量等级,耐火等级,除锈等级,及涂装要求。

10、砌体工程设计必须注明设计采用的施工质量控制等级。

(一般采用B级)。

11、砌体结构不宜设置少量的钢筋混凝土墙。

12、砌体结构楼面有高差时,其高差不应超过一个梁高(一般不超过500mm)。

超过时,应将错层当两个楼层计入总楼层中。

二.结构计算13、结构整体计算总体信息的取值:(1)混凝土容重(KN/m3)取26~27,全剪结构取27,若取25,对于剪力墙需输入双面粉层荷载。

(2)地下室层数,取实际地下室层数,当含有地下室计算时,不指定地下室层数是不对的,请审核人把关(3)计算振型数,取3的倍数,高层建筑应至少取9个,考虑扭转耦联计算时,振型应不少于15个,对多塔结构不应少于塔数×9。

计算时要检查Cmass-x及Cmass-y两向质量振型参与系数,均要保证不小于90%,达不到时,应增加振型数,重新计算。

pkpm剪力墙端柱计算问题_secret

pkpm剪力墙端柱计算问题_secret

pkpm剪⼒墙端柱计算问题_secret端柱计算商榷SATWE ⽤户⼿册边缘构件说明有:“…第五种(L 形 + 柱):取为端柱计算配筋量与两个直段墙肢的底部计算配筋量的三者之和…”。

端柱计算配筋量为何?⽆有交代。

配筋简图端柱同其它独⽴柱,给出柱b 边、h 边配筋量。

通常认为柱配筋量为(b 边配筋 + h 边配)×2 – ⾓筋。

经查,发现柱配筋计算有问题:端柱如有配筋值,是处于⼩偏拉受⼒状态(拉⼒很⼤,弯矩很⼩)。

混凝⼟不能承受拉⼒,拉⼒均由钢筋承受。

如按单向偏拉计算Asx 、Asy,拉⼒计算重复。

应按双向偏拉⼀次计算。

总配筋量⼩很多。

某⼯程端柱(SATWE )电算值如下:1#1#4# 2.625H10.3263219H 2.5G0.0-0.00.0(0.24)查配筋⽂件:----------------------------------------------------------------------------N-C= 1 ( 1)B*H(mm)= 600* 700Cover= 25(mm) Cx= 0.75 Cy= 0.75 Lc= 4.15(m) Nfc= 2 Rcc= 45.0 Fy= 360. Fyv= 360.RLIVEC= 1.00 混凝⼟柱边框柱⾓柱矩形截⾯ ( 29)Nu= -2215. Uc= 0.25 Rs= 2.44(%) Rsv= 0.00(%) Asc= 254.0( 36)N= 1430. Mx= -44. My= 96. Asxt= 2326. Asxt0= 2326.( 36)N= 1463. Mx= -26. My= 126. Asyt= 2895. Asyt0= 2895.Asxb0= 2535.( 28)N= 565. Vx= 131. Vy= 22. Ts= 15. Asvx= 0. Asvx0= 0.( 28)N= 565. Vx= 131. Vy= 22. Ts= 15. Asvy= 0. Asvy0= 0.抗剪承载⼒: CB_XF= 425.4 CB_YF= 461.6----------------------------------------------------------------------------如按双向⼩偏拉计算,N = 1463.、Mx = 77.、My = -160. 总配筋为4812.04㎜2(为地震组合)。

pkpm柱配筋计算

pkpm柱配筋计算

pkpm柱配筋计算摘要:1.PKPM 软件简介2.柱配筋计算的重要性3.PKPM 柱配筋计算的基本步骤4.PKPM 柱配筋计算的注意事项5.PKPM 柱配筋计算的实际应用案例正文:1.PKPM 软件简介PKPM(Powerful Kernel-based Planar Management)是一款我国自主研发的建筑结构设计与分析软件。

该软件凭借其强大的计算能力、丰富的功能和易用的操作界面,在建筑结构设计与分析领域取得了广泛的应用,成为了我国建筑行业不可或缺的重要工具。

2.柱配筋计算的重要性在建筑结构设计中,柱是承载楼板、屋顶和梁等荷载的关键构件。

柱的配筋计算是保证柱具有足够承载力和抗震性能的重要环节。

合理的柱配筋设计不仅可以确保结构的安全性、稳定性和耐久性,还能节约材料、降低成本,提高经济效益。

3.PKPM 柱配筋计算的基本步骤(1)创建模型:首先,在PKPM 软件中建立建筑模型,包括柱、梁、板等构件的几何尺寸和材料属性。

(2)设定荷载:根据设计要求,输入柱所承受的荷载,如楼板荷载、屋面荷载和地震作用等。

(3)计算内力:PKPM 软件会自动计算柱在各种荷载作用下的内力,如弯矩、剪力等。

(4)配置钢筋:根据计算结果,按照规范要求配置钢筋,包括钢筋的种类、规格、间距和锚固长度等。

(5)检查校核:完成柱配筋设计后,需要对设计结果进行检查和校核,确保设计满足规范要求。

4.PKPM 柱配筋计算的注意事项(1)正确选择模型:根据实际工程需求,选择合适的建筑模型和材料属性。

(2)准确输入荷载:确保输入的荷载数据准确无误,以免影响计算结果。

(3)合理配置钢筋:在配置钢筋时,应遵循规范要求,确保钢筋具有足够的抗拉强度和抗震性能。

(4)认真检查校核:完成设计后,要认真检查设计结果,确保设计满足规范要求。

5.PKPM 柱配筋计算的实际应用案例某五层框架结构住宅楼,柱网尺寸为6m×6m,柱截面尺寸为400mm×400mm。

结构设计PKPM柱配筋详解

结构设计PKPM柱配筋详解
边框梁 BKL
13、需要BKL、AL时,要在剪力墙平法施工图中绘制暗梁或边框梁的框支剪力墙为框支梁顶面标高。
在平面不知图中注写非阴影区内布置的拉筋。
14、梁最优配筋率为1.5左右。
15、LL、AL、BKL梁宽大于350为φ8拉筋
小于等于350为φ6拉筋
拉筋间距为两倍箍筋间距
竖向沿侧面水平拉一隔一
16、洞口连梁截面宽度不小于150,可用交叉斜筋或对角暗撑。
2014年7月14日
1、柱大样配筋
一根角筋面积
轴压比
柱节点域 H边配筋面积(包括角筋)
抗剪箍筋
面积
B边配筋面积 加密抗剪箍筋面积-非加密抗剪箍筋配筋面积
(包括角筋)
2、后浇带
1.后浇带混凝土宜采用补偿收缩混凝土。
2.贯通钢筋的后浇带宽度大于等于800,L1为搭接长度。
3、局部神将版升高或降低的高度>300时,设计应补充绘制截面配筋图,局部升降板配置双向贯通纵筋。
仅截面与轴线不同时可编为同一编号,要注明与轴线关系。
排数规定:抗震:墙厚不大于400应双排,400~700三排,大于700四排。
非抗震:墙厚大于160双排,小于160最好双排。
12、墙梁:①连梁 LL
连梁(对角暗撑) LL(JC)
连梁(交叉斜筋) LL(JX)
连梁(集中对角斜筋) LL(DX)
暗梁 AL
②构造边缘构件GBZ------>构造边缘暗柱,构造边缘端柱,构造边缘翼墙,构造边缘转角墙。
③非边缘暗柱
④扶壁柱
约束边缘构件一般用于下部抗震结构,其抗震受力作用大于构造边缘构件 (抗规P63~P66)
11、墙身编号:墙身--Q、水平与竖向分布钢筋的排数组成,排数写在括号内:Qxx(x排) 双排可不注

柱双偏压配筋计算差异问题

柱双偏压配筋计算差异问题

柱双偏压配筋计算差异问题例1:17512问题用户问题:yjk、pkpm算出的柱子配筋完全相反,yjk柱子配筋见第一张图,PKPM配筋见第二张图。

比较急,麻烦您尽快回复我,非常感谢。

邮件回复:角柱均是自动按双偏压方式进行配筋,双偏压为多解,YJK的配筋结果输入到PKPM中也是满足双偏压验算要求的。

分析下为YJK和PKPM的计算配筋简图下图为YJK和PKPM柱施工图的配筋,这里YJK采用1.4.3版设计,与用户传来的柱施工图稍有不同。

我们在PKPM中,修改柱的配筋,使之与YJK相同,然后再点取“双偏压”菜单进行柱双偏压验算,可见屏幕下提示:双偏压验算全部满足要求。

柱的双偏压配筋结果是个多解的结果,本例说明,虽然YJK 与PKPM 结果不同,但都是计算正确的结果。

另一方面,从YJK 和PKPM 结果比较来说,YJK 在柱的长边配置较多钢筋,短边配置较少钢筋,结果更加合理。

例2:17822问题我有个学校 7度0.1g ,三级框架;在5层11M 跨度中间的柱子;PKPM 算下来点角筋是6.2短边配筋是37;YJK 算下来角筋是4.9短边配筋只有27了 我是苏州江南意造的倪工。

十分感谢!分析该例用户选择对柱按双偏压配筋。

下为5层YJK和PKPM的计算配筋简图。

以左起第2根柱为例,下图分别为YJK和PKPM柱施工图的配筋。

但是,我们在PKPM柱施工图中,修改柱配筋使之与YJK相同,再点双偏压菜单进行柱的双偏压验算,结果是按照新改的配筋双偏压验算不过。

为此,我们从前面对比柱的内力,用“构件信息”菜单查看各自的内力结果。

从下图可以看出,该柱恒载下的弯矩、剪力差别大,YJK为540、194,而PKPM为649、232。

为什么差别这么大?经查,原因为YJK与PKPM在按照施工模拟3计算时使用了不同的楼层施工次序,由于第5层为梁托柱楼层,YJK判断梁托柱楼层并自动合并5、6两层为一个施工次序,可见YJK的施工次序表。

而PKPM对5、6层分为2个施工次序,这种差别导致5层柱的恒载计算结果差别大。

PKPM软件关于混凝土柱计算长度系数的计算

PKPM软件关于混凝土柱计算长度系数的计算

PKPM软件关于混凝土柱计算长度系数的计算PKPM软件是一种常用的结构分析和设计软件,用于计算混凝土柱的长度系数能够快速、准确地评估柱的侧向稳定性。

混凝土柱的长度系数是判断柱的侧向稳定性的重要参数,计算它可以帮助工程师优化柱的设计,确保柱能够承受设计载荷而不发生不稳定失效。

混凝土柱的长度系数是指在垂直于柱轴方向的力作用下,柱在稳定状态下承受力的能力与其极限稳定状态承受力的比值。

它的计算公式为: \[\lambda = \frac{N_{Ed}}{N_c}\]其中,N_{Ed}是柱设计作用力,N_c是柱的极限稳定状态承受力。

在PKPM软件中,计算柱长度系数需要定义柱的几何参数、材料强度和截面性质等输入数据。

具体的计算步骤如下:1.输入柱的几何参数:包括柱的截面面积、高度、宽度、厚度等参数。

这些参数可以通过PKPM软件的绘图工具进行输入,或者直接从CAD软件中导入。

2.定义混凝土柱的材料强度:PKPM软件中提供了混凝土材料的标准强度参数,可以根据实际情况进行选择和修改。

3.输入柱截面性质:该步骤中需要输入柱的截面形状和截面惯性矩等参数。

可以通过软件提供的自动计算功能或手动输入来完成。

4.设定柱的边界条件:柱的边界条件包括支撑情况及配筋方式等。

需要在PKPM软件中定义柱的支撑类型,例如固支、简支或其他特殊类型。

5.输入柱的设计载荷:根据实际工程需要,输入柱的设计荷载,并考虑可能的设计组合情况。

6.进行柱的长度系数计算:在输入完以上参数后,PKPM软件会自动根据中国规范的计算方法,计算出柱的长度系数。

该计算结果可以用来评估柱的侧向稳定性和优化设计。

需要注意的是,在柱的长度系数计算中,需要考虑到柱的几何参数、材料强度和边界条件等因素,以及柱的设计荷载。

实际工程中,根据设计要求及规范的要求,可能还需要进行柱的验算等其他计算。

总结来说,PKPM软件可以根据中国规范的要求,快速准确地计算出混凝土柱的长度系数,从而帮助工程师评估柱的侧向稳定性,指导设计优化。

pkpm柱箍筋计算

pkpm柱箍筋计算

pkpm柱箍筋计算在结构设计和计算中,PKPM柱箍筋计算是一项重要的工作。

柱箍钢筋的作用是加固和约束混凝土柱,以增加其抗剪和抗弯的能力。

本文将详细介绍PKPM柱箍筋计算的步骤和相关要点。

一、PKPM柱箍筋计算的步骤PKPM柱箍筋计算的过程主要包括以下几个步骤:1. 确定柱断面尺寸和箍筋类型。

根据结构设计要求和受力情况,确定柱断面的高度、宽度等尺寸。

同时,确定箍筋的类型,如普通箍筋、扭转钢丝、带扣钢筋等。

2. 计算柱的受力情况。

根据结构设计荷载和柱节点处的受力特点,计算柱在受力状态下的剪力、弯矩等参数。

3. 按照规范确定箍筋配筋率。

根据相关规范,确定柱箍筋的配筋率。

国家标准中一般规定柱箍筋的最小配筋率为0.8%~1.6%。

4. 计算柱箍筋的截面积。

根据箍筋配筋率和柱截面的几何尺寸,计算出柱所需箍筋的截面积。

5. 确定箍筋的数量和间距。

根据柱截面的尺寸和箍筋的截面积,计算出所需的箍筋的数量。

然后,根据箍筋的数量和箍筋的截面积,确定箍筋的间距。

6. 验算箍筋的抗剪和抗弯能力。

分别计算箍筋的抗剪和抗弯能力,满足结构设计要求。

7. 绘制轴力-弯矩图和箍筋布置图。

根据柱的受力情况和箍筋的布置要求,绘制出柱的轴力-弯矩图和箍筋的布置图。

二、PKPM柱箍筋计算的要点在进行PKPM柱箍筋计算时,需注意以下几个要点:1. 合理选择箍筋类型。

箍筋的类型根据实际情况来确定,一般根据受力情况和构造要求选择。

例如,在有扭转荷载的柱中,需要选用扭转钢丝作为箍筋,以增加抗扭能力。

2. 保证箍筋的完整性。

柱箍筋应该连续、完整地绕制在柱身上,不得存在断裂或缺失的情况。

同时,柱箍筋的连接要采用可靠的方式,如用焊接或扣件等。

3. 控制箍筋的间距。

箍筋的间距要符合规范的要求,并根据柱的截面尺寸和受力情况进行合理的调整。

过大的间距可能导致箍筋的作用不充分,而过小的间距则会增加工程难度和成本。

4. 注意柱顶部和底部的箍筋设置。

柱顶部和底部的箍筋要设置得合理稳固,以保证柱的抗剪和抗弯能力。

pkpm柱配筋计算

pkpm柱配筋计算

pkpm柱配筋计算摘要:1.PKPM 软件介绍2.柱配筋计算的重要性3.PKPM 柱配筋计算的原理和方法4.PKPM 柱配筋计算的步骤5.PKPM 柱配筋计算的优点和局限性正文:1.PKPM 软件介绍PKPM(Powerful K-Frame Programming Method)是一款我国自主研发的建筑结构设计与计算软件,广泛应用于建筑设计、施工图设计、结构计算、施工组织设计等多个领域。

PKPM 软件凭借其强大的功能、简便的操作和较高的计算精度,已经成为我国建筑结构设计行业的重要工具之一。

2.柱配筋计算的重要性在建筑结构设计中,柱是承担竖向荷载的关键构件。

柱配筋计算就是根据建筑结构的受力特点、材料性能和设计规范,合理配置柱内的钢筋,以确保柱在承受荷载时不发生破坏。

柱配筋计算是建筑结构设计中的重要环节,对于保证结构的安全性、稳定性和耐久性具有至关重要的作用。

3.PKPM 柱配筋计算的原理和方法PKPM 柱配筋计算是基于我国现行的建筑结构设计规范进行的,其原理和方法主要包括以下几个方面:(1)根据结构的受力特点,采用弹性力学理论进行内力分析,计算出柱在各个位置的弯矩、剪力等内力。

(2)根据现行设计规范,确定柱的配筋率、保护层厚度等设计参数。

(3)根据设计参数,采用数值方法(如矩阵法、直接法等)计算柱内的钢筋配置,使柱在承受荷载时满足强度、刚度和耐久性等设计要求。

4.PKPM 柱配筋计算的步骤使用PKPM 软件进行柱配筋计算,一般需要进行以下几个步骤:(1)建立模型:根据设计图纸,在PKPM 软件中建立建筑结构的三维模型,包括柱、梁、板等构件。

(2)材料性能输入:输入建筑结构的材料性能参数,如混凝土强度、钢筋强度、保护层厚度等。

(3)荷载输入:输入建筑结构各部位的荷载,如恒荷载、活荷载等。

(4)计算分析:选择适当的计算方法和设计规范,进行柱配筋计算。

(5)查看结果:查看计算结果,如柱内钢筋配置、弯矩、剪力等。

pkpm柱配筋计算

pkpm柱配筋计算

pkpm柱配筋计算【原创版】目录1.PKPM 柱配筋计算概述2.PKPM 柱配筋计算的基本原理3.PKPM 柱配筋计算的具体步骤4.PKPM 柱配筋计算的优点与局限性正文一、PKPM 柱配筋计算概述PKPM 柱配筋计算是一款基于计算机的结构设计与计算软件,主要用于混凝土柱的配筋计算。

该软件能够根据用户的需求,自动完成混凝土柱的各种参数计算,为用户提供方便、快捷的设计方案。

本文将对 PKPM 柱配筋计算的基本原理、具体步骤以及优点与局限性进行详细介绍。

二、PKPM 柱配筋计算的基本原理PKPM 柱配筋计算的基本原理主要依据我国现行的混凝土结构设计规范,如《混凝土结构设计规范》(GB 50010-2010)等。

软件通过内置的公式和算法,根据用户输入的柱的截面尺寸、混凝土强度等级、弯矩、剪力等参数,自动计算出柱的配筋量和钢筋直径等设计参数。

三、PKPM 柱配筋计算的具体步骤1.打开 PKPM 软件,选择“柱配筋计算”功能模块。

2.输入柱的截面尺寸,包括柱宽、柱高、混凝土保护层厚度等。

3.输入混凝土强度等级。

4.输入柱的弯矩、剪力等荷载参数。

5.根据计算结果,调整钢筋直径、排数、间距等参数,以满足设计要求。

6.输出配筋图和计算报告。

四、PKPM 柱配筋计算的优点与局限性优点:1.计算速度快,提高了设计效率。

2.计算准确,减少了人为错误。

3.可根据不同设计要求,自动调整钢筋参数,便于满足各种设计需求。

局限性:1.软件依赖于计算机,需要一定的操作技能。

2.软件的算法和公式可能无法涵盖所有的设计情况,需要人工干预和补充。

(整理)PKPM设计基础时的参数分析和最小配筋率使用注意事项.

(整理)PKPM设计基础时的参数分析和最小配筋率使用注意事项.

(整理)PKPM设计基础时的参数分析和最小配筋率使用注意事项.PKPM设计基础时的参数分析和最小配筋率使用注意独立基础的最小配筋率问题比较复杂,有以下资料供参考:1.当独立基础底板厚度有规定:挑出长度与高度比值小于2.5。

因此不能当做一般的卧于地基上的板来看待2.满足1的要求是基础底面反力可以看作是线性的。

也就是说不考虑基础底板的弯曲或剪切变形。

3.基础底版有最小配筋要求即10@200,这比原来的8@200已经提高。

4.基础底版是非等厚度板,计算配筋率只能按全面积计算,不能按单位长度计算。

本人认为独立基础底板配筋不用按最小配筋率控制。

JCCAD程序中作了选项,如果输入最小配筋率则会按全截面演算最小配筋率。

当进行等强代换后程序还会重新演算最小配筋率。

我院总工要求结构设计人员的一些注意事项6、对小塔楼的界定应慎重,当塔楼高度对房屋结构适宜高度有影响时,小塔楼应报院结构专业委员会确定7、施工图涉及到钢网架、电梯及其它设备予留的孔洞、机坑、基础、予埋件等一定要写明:“有关尺寸在浇筑混凝土之前必须得到设备厂家签字认可方可施工。

”8、砌体结构不允许设转角飘窗。

9、钢结构工程设计必须注明:焊缝质量等级,耐火等级,除锈等级,及涂装要求。

10、砌体工程设计必须注明设计采用的施工质量控制等级。

(一般采用B级)。

11、砌体结构不宜设置少量的钢筋混凝土墙。

12、砌体结构楼面有高差时,其高差不应超过一个梁高(一般不超过500mm)。

超过时,应将错层当两个楼层计入总楼层中。

二.结构计算13、结构整体计算总体信息的取值:(1)混凝土容重(KN/m3)取26~27,全剪结构取27,若取25,对于剪力墙需输入双面粉层荷载。

(2)地下室层数,取实际地下室层数,当含有地下室计算时,不指定地下室层数是不对的,请审核人把关(3)计算振型数,取3的倍数,高层建筑应至少取9个,考虑扭转耦联计算时,振型应不少于15个,对多塔结构不应少于塔数×9。

pkpm柱配筋计算

pkpm柱配筋计算

pkpm柱配筋计算摘要:1.Pkpm柱配筋计算简介2.柱配筋计算的基本原理3.Pkpm软件的操作步骤4.柱配筋计算实例演示5.注意事项及实用技巧正文:一、Pkpm柱配筋计算简介Pkpm是一款国内常用的结构设计软件,其中的柱配筋计算功能为广大工程师提供了便利。

通过该功能,用户可以快速、准确地计算出柱子的配筋量,为后续的构件设计和施工提供依据。

二、柱配筋计算的基本原理柱配筋计算主要包括以下几个方面:1.确定柱子的受力情况,包括轴力、弯矩等;2.计算柱子的抗弯承载力,根据材料性能、截面尺寸等因素确定;3.依据国家规范,确定柱子的配筋率、最小配筋面积等;4.计算钢筋的面积、长度和锚固长度等,以确保柱子的安全性。

三、Pkpm软件的操作步骤1.打开Pkpm软件,创建新项目;2.导入建筑模型,包括柱子的位置、尺寸等信息;3.定义柱子的材料性能、受力情况等参数;4.进入柱配筋计算模块,进行计算;5.查看计算结果,包括钢筋面积、长度等数据。

四、柱配筋计算实例演示以一个实际工程为例,假设柱子的尺寸为400mm×400mm,混凝土强度等级为C30,受力情况为两层框架结构。

通过Pkpm软件进行柱配筋计算,可以得到如下结果:柱子的最小配筋率为0.2%,钢筋直径为16mm,锚固长度为35d(其中d为钢筋直径)。

五、注意事项及实用技巧1.在进行柱配筋计算时,应充分考虑建筑物的使用功能、结构形式、材料性能等因素;2.遵循国家相关规范进行配筋计算,确保结构安全性;3.熟练掌握Pkpm软件的操作技巧,提高工作效率;4.定期对软件进行更新和学习,了解最新的设计理念和技术动态。

通过以上步骤和注意事项,我们可以充分利用Pkpm软件进行柱配筋计算,为工程设计提供准确、可靠的数据支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

pkpm柱配筋计算
摘要:
一、PKPM柱配筋计算简介
1.PKPM柱配筋计算的背景与意义
2.PKPM柱配筋计算的基本原理
二、PKPM柱配筋计算的方法与步骤
1.准备工作
a.了解PKPM软件
b.熟悉柱配筋计算的基本概念
2.输入参数
a.结构类型及层数
b.柱的截面性能指标
c.混凝土强度等级
d.钢筋类型与规格
3.计算过程
a.计算柱的正截面受力
b.计算柱的斜截面受力
c.计算柱的挠度和转角
d.计算柱的钢筋数量与位置
4.结果分析
a.查看计算结果
b.分析柱的配筋情况
c.检查计算过程是否有误
三、PKPM柱配筋计算在实际工程中的应用
1.工程案例介绍
2.利用PKPM柱配筋计算优化设计方案
3.提高工程质量和安全性
四、PKPM柱配筋计算的发展趋势与展望
1.计算方法的改进与优化
2.智能化与自动化的发展趋势
3.对我国建筑行业的积极影响
正文:
一、PKPM柱配筋计算简介
随着我国建筑行业的飞速发展,结构设计软件的应用越来越广泛。

PKPM (Probabilistic Analysis of Structure System)是一款非常受欢迎的结构分析软件,其中柱配筋计算功能可以帮助工程师快速、准确地完成柱子的配筋设计。

了解PKPM柱配筋计算的背景与意义,掌握其基本原理,有助于更好地利用这款软件提高设计效率与质量。

二、PKPM柱配筋计算的方法与步骤
1.准备工作
首先,需要了解PKPM软件的基本操作界面和功能,熟悉柱配筋计算的基本概念,以便更好地进行后续计算。

2.输入参数
在柱配筋计算中,需要输入以下参数:结构类型及层数、柱的截面性能指标、混凝土强度等级、钢筋类型与规格等。

这些参数的准确输入对于计算结果至关重要。

3.计算过程
PKPM柱配筋计算主要包括以下几个方面:
a.计算柱的正截面受力:根据输入参数,计算柱子在正截面受力情况下的弯矩、剪力等。

b.计算柱的斜截面受力:根据输入参数,计算柱子在斜截面受力情况下的弯矩、剪力等。

c.计算柱的挠度和转角:根据输入参数,计算柱子在受力情况下的挠度和转角。

d.计算柱的钢筋数量与位置:根据计算结果,自动生成柱子的钢筋配置方案。

4.结果分析
在计算完成后,需要对结果进行分析,查看计算结果是否合理,分析柱的配筋情况,检查计算过程是否有误。

三、PKPM柱配筋计算在实际工程中的应用
PKPM柱配筋计算在实际工程中具有广泛的应用。

例如,在某个工程案例中,工程师利用PKPM柱配筋计算优化了设计方案,既提高了工程质量,又确
保了工程安全。

这充分展示了PKPM柱配筋计算在实际工程中的重要价值。

四、PKPM柱配筋计算的发展趋势与展望
随着计算机技术的不断发展,PKPM柱配筋计算将不断改进与优化,呈现出智能化与自动化的趋势。

相关文档
最新文档