关于ansys非线性分析的几点忠告(20210102150700)
ANSYS非线性分析指南

非线性结构分析非线性结构的定义在日常生活中,会经常遇到结构非线性。
例如,无论何时用钉书针钉书,金属钉书钉将永久地弯曲成一个不同的形状。
(看图1─1(a))如果你在一个木架上放置重物,随着时间的迁移它将越来越下垂。
(看图1─1(b))。
当在汽车或卡车上装货时,它的轮胎和下面路面间接触将随货物重量的啬而变化。
(看图1─1(c))如果将上面例子所载荷变形曲线画出来,你将发现它们都显示了非线性结构的基本特征--变化的结构刚性.图1─1 非线性结构行为的普通例子非线性行为的原因引起结构非线性的原因很多,它可以被分成三种主要类型:状态变化(包括接触)许多普通结构的表现出一种与状态相关的非线性行为,例如,一根只能拉伸的电缆可能是松散的,也可能是绷紧的。
轴承套可能是接触的,也可能是不接触的,冻土可能是冻结的,也可能是融化的。
这些系统的刚度由于系统状态的改变在不同的值之间突然变化。
状态改变也许和载荷直接有关(如在电缆情况中),也可能由某种外部原因引起(如在冻土中的紊乱热力学条件)。
ANSYS程序中单元的激活与杀死选项用来给这种状态的变化建模。
接触是一种很普遍的非线性行为,接触是状态变化非线性类型形中一个特殊而重要的子集。
几何非线性如果结构经受大变形,它变化的几何形状可能会引起结构的非线性地响应。
一个例的垂向刚性)。
随着垂向载荷的增加,杆不断弯曲以致于动力臂明显地减少,导致杆端显示出在较高载荷下不断增长的刚性。
图1─2 钓鱼杆示范几何非线性材料非线性非线性的应力──应变关系是结构非线性名的常见原因。
许多因素可以影响材料的应力──应变性质,包括加载历史(如在弹─塑性响应状况下),环境状况(如温度),加载的时间总量(如在蠕变响应状况下)。
牛顿一拉森方法ANSYS程序的方程求解器计算一系列的联立线性方程来预测工程系统的响应。
然而,非线性结构的行为不能直接用这样一系列的线性方程表示。
需要一系列的带校正的线性近似来求解非线性问题。
应用ANSYS实现几何非线性分析方法

应用ANSYS实现几何非线性分析方法摘要:本文简要介绍了用ANSYS对杆系结构进行非线性分析时应当注意的问题及方法。
通过Williams双杆体系这个算例来介绍几何非线性全过程分析,表明ANSYS软件丰富的单元库、强大的求解器以及便捷的后处理功能,对工程结构进行非线性分析不失为一种很好的方法。
关键词:杆系结构;几何非线性ANSYS;全过程分析BEAM3对于许多工程问题,结构的刚度是变化的,必须用非线性理论解决,而几何非线问题就是非线性理论中的一类。
因几何变形引起的结构刚度变化的一类问题都属于几何非线性问题。
几何非线性理论一般可以分成大位移小应变即有限位移理论和大位移大应变理论即有限应变理论。
其核心是由于结构的几何形状或位置的改变引起结构刚度矩阵发生变化,也就是结构的平衡方程必须建立在变形后的位置上。
ANSYS程序充分考虑了这两种理论。
ANSYS所考虑的几何非线性通常分为3类:①大应变,即认为应变不再是有限的,结构本身的形状可以发生变化,结构的位移和转动可以是任意大小;②大位移,即结构发生了大的刚体转动,但其应变可以按照线性理论来计算,结构本身形状的改变可以忽略不计;③应力刚化,是指单元较大的应变使得单元在某个面内具有较大的应力状态,从而显著影响面外的刚度。
大应变包括大位移和应力刚化,此时应变不再是“小应变”,而是有限应变或“大应变”;大位移包括了其自身和应力刚化效应,但假定为“小应变”;应力刚化被激活时,程序计算应力刚度矩阵并将其添加到结构刚度矩阵中,应力刚度矩阵仅是应力和几何的函数,因此又称为“几何刚度”。
几何非线性问题一般指的是大位移问题,只有在材料发生塑性变形时,以及类似橡皮这样的材料才会遇到的大的应变,大变形一般包含大应变、大位移和应力刚化,而不加区分。
1几何非线性分析应注意的问题用ANSYS进行几何非线性分析时,首先要打开大位移选项,即(NLGEOM,ON),并设置求解控制选项,可根据问题类型而定。
ANSYS结构非线性分析指南

ANSYS结构非线性分析指南ANSYS是一个强大的工程仿真软件,能够对各种复杂的结构进行分析。
其中,结构非线性分析是其中一种重要的分析方法,它能够模拟结构在非线性载荷和变形条件下的行为。
本文将为您提供一个ANSYS结构非线性分析的指南,帮助您更好地理解和应用这个方法。
首先,我们需要明确结构非线性分析的目标。
一般来说,结构非线性分析主要用于研究结构在大变形、材料非线性、接触或摩擦等复杂条件下的响应。
例如,当结构受到极大的外力作用时,其产生的变形可能会导致材料的非线性行为,这时我们就需要进行非线性分析。
在进行非线性分析之前,我们需要进行准备工作。
首先,我们需要准备一个几何模型,可以通过CAD软件导入或者直接在ANSYS中绘制。
然后,我们需要选择合适的材料模型,这将直接影响分析结果的准确性。
ANSYS提供了多种材料模型,例如线弹性模型、塑性模型和粘弹性模型等。
接下来,我们需要定义边界条件和载荷。
边界条件指明了结构的固定边界和自由边界,这决定了结构的位移约束。
载荷是作用在结构上的外力或者外界约束,例如压力、点载荷或者摩擦力等。
在非线性分析中,载荷的大小和施加方式可能会导致结构的非线性响应,因此需要仔细选择。
接下来,我们需要选择适当的非线性分析方法。
ANSYS提供了多种非线性分析方法,例如几何非线性分析、材料非线性分析和接触非线性分析等。
几何非线性分析适用于大变形情况下的分析,材料非线性分析适用于材料的弹塑性行为分析,而接触非线性分析适用于多个结构之间的接触行为分析。
在进行非线性分析之前,我们需要对模型进行预处理,包括网格划分和解算控制参数的设置。
网格划分的精度会直接影响分析结果的准确性,因此需要进行适当的剖分。
解算控制参数的设置涉及到收敛性和稳定性的问题,需要进行合理的调整。
然后,我们可以进行非线性分析了。
ANSYS提供了多种求解器,例如Newton-Raphson方法和弧长法等。
这些求解器可以通过迭代算法来求解非线性方程组,得到结构的响应结果。
ansys 使用技巧

学习ANSYS经验总结一学习ANSYS需要认识到的几点相对于其他应用型软件而言,ANSYS作为大型权威性的有限元分析软件,对提高解决问题的能力是一个全面的锻炼过程,是一门相当难学的软件,因而,要学好ANSYS,对学习者就提出了很高的要求,一方面,需要学习者有比较扎实的力学理论基础,对ANSYS分析结果能有个比较准确的预测和判断,可以说,理论水平的高低在很大程度上决定了ANSYS使用水平;另一方面,需要学习者不断摸索出软件的使用经验不断总结以提高解决问题的效率。
在学习ANSYS的方法上,为了让初学者有一个比较好的把握,特提出以下五点建议:(1)将ANSYS的学习紧密与工程力学专业结合起来毫无疑问,刚开始接触ANSYS时,如果对有限元,单元,节点,形函数等《有限元单元法及程序设计》中的基本概念没有清楚的了解话,那么学ANSYS很长一段时间都会感觉还没入门,只是在僵硬的模仿,即使已经了解了,在学ANSYS之前,也非常有必要先反复看几遍书,加深对有限元单元法及其基本概念的理解。
作为工程力学专业的学生,虽然力学理论知识学了很多,但对许多基本概念的理解许多人基本上是只停留于一个符号的认识上,理论认识不够,更没有太多的感性认识,比如一开始学ANSYS时可能很多人都不知道钢材应输入一个多大的弹性模量是合适的。
而在进行有限元数值计算时,需要对相关参数的数值有很清楚的了解,比如材料常数,直接关系到结果的正确性,一定要准确。
实际上在学ANSYS时,以前学的很多基本概念和力学理论知识都忘得差不多了,因而遇到有一定理论难度的问题可能很难下手,特别是对结果的分析,需要用到《材料力学》,《弹性力学》和《塑性力学》里面的知识进行理论上的判断,所以在这种情况下,复习一下《材料力学》,《弹性力学》和《塑性力学》是非常有必要的,加深对基本概念的理解,实际上,适当的复习并不要花很多时间,效果却很明显,不仅能勾起遥远的回忆,加深理解,又能使遇到的问题得到顺利的解决。
ANSYS几何非线性概述

ANSYS几何非线性概述一、什么是非线性什么是非线性(non-linear)?按照百度百科的解释,非线性是指变量之间的数学关系不是直线而是曲线、曲面或不确定的属性。
而对于工程结构而言,非线性或者说非线性行为,是指外部荷载引起工程结构刚度显著改变的一种行为。
如果绘制一个非线性结构的荷载-位移曲线,则力与位移的曲线为非线性函数。
ANSYS非线性主要分为以下三大类:1、几何非线性大应变、大位移、大旋转2、材料非线性塑性、超弹性、粘弹性、蠕变3、状态改变非线性接触、单元生死其中几何非线性和材料非线性是土木工程结构计算中最为常见的两种类型。
二、结构几何非线性概念理解如果一个结构在受荷的过程经历了大变形,则变化后的几何形状能引起非线性行为。
例如,上述例子,杆梢在轻微横向作用下是柔软的,当外部横向荷载加大时,杆的几何形状发生改变,力矩臂减小,引起杆的刚化响应。
几何非线性主要分为如下三种现象:1.单元的形状改变(面积、厚度),其单独的单元刚度也将改变2.单元的取向发生转动,其局部刚度在转化为全局分量时将会发生变化。
3.单元应变产生较大的平面内应力状态引起平面法向刚度的改变。
随着垂直挠度UY 的增加,较大的膜应力SX 将会导致刚化效应。
上述三种情况的关系如下:应力刚化三、ANSYS几何非线性注意事项1、建模注意事项 (a )单元选择注意事项在定义单元类型时,应明白如果分析的过程中有几何非线性,应确保所选单元类型支持相应的几何非线性效应。
例如shell63单元支持应力刚化和大挠度,但不支持大应变;而shell181则支持所有的三类几何非线性,可在单元描述的特殊特征列表中找到类似信息。
特别是在选择接触单元的时候应慎重,有的接触单元是没有任何非线性能力,例如CONTAC52.同时应注意剪切锁定以及体积锁定等不可压缩性所带来的收敛困难。
(b )预见网格扭曲ANSYS 在第一迭代之前,会检查网格的质量;在大应变分析中,迭代计算过后的网格或许会变得严重扭曲,为防止出现不良形状,可以预见网格扭曲从而修改原始网格。
ANSYS非线性分析指南

几何非线性分析随着位移增长一个有限单元已移动的坐标可以以多种方式改变结构的刚度一般来说这类问题总是是非线性的需要进行迭代获得一个有效的解大应变效应一个结构的总刚度依赖于它的组成部件单元的方向和单刚当一个单元的结点经历位移后那个单元对总体结构刚度的贡献可以以两种方式改变变首先如果这个单元的形状改变它的单元刚度将改变看图2─1(a)其次如果这个单元的取向改变它的局部刚度转化到全局部件的变换也将改变看图2─1b)小的变形和小的应变分析假定位移小到 足够使所得到的刚度改变无足轻重这种刚度不变假定意味着使用基于最初几何形状的结构刚度的一次迭代足以计算出小变形分析中的位移什么时候使用小变形和应变依赖于特定分析中要求的精度等级 相反大应变分析说明由单元的形状和取向改变导致的刚度改变因为刚度受位移影响且反之亦然所以在大应变分析中需要迭代求解来得到正确的位移通过发出NLGEOM ON GUI 路径Main Menu>Solution>Analysis Options)来激活 大应变效应这效应改变单元的形状和取向且还随单元转动表面载荷集中载荷和惯性载荷保持它们最初的方向在大多数实体单元包括所有的大应变和超弹性单元以及部分的壳单元中大应变特性是可用的在ANSYS/Linear Plus 程序中大应变效应是不可用的图1─11 大应变和大转动大应变处理对一个单元经历的总旋度或应变没有理论限制某些ANSYS 单元类型将受到总应变的实际限制──参看下面然而应限制应变增量以保持精度 因此总载荷应当被分成几个较小的步这可以NSUBST DELTIM AUTOTS 通过GUI 路径 Main Menu>Solution>Time/Prequent)无论何时当系统是非保守系统来自动实现如在模型中有塑性或摩擦或者有多个大位移解存在如具有突然转换现象使用小的载荷增量具有双重重要性关于大应变的特殊建模讨论应力─应变在大应变求解中所有应 力─应变输入和结果将依据真实应力和真实或对数应变一维时真实应变将表求为 对于响应的小应变区真实应变和工程应变基本上是一致的要从小工程应变转换成对数应变使用 要从工程应力转换成真实应力使用 这种应力转化反对不可压缩塑性应力─应变数据是有效的为了得到可接受的结果对真实应变超过50%的塑性分析应使用大应变单元大应变与小应变分析的界定VISCO106107及108单元的形状应该认识到在大应变分析的任何迭代中低劣的单元形状也就是大的纵横比过度的顶角以及具有负面积的已扭曲单元将是有害的因此你必须和注意单元的原始形状一样注意的单元已扭曲的形状除了探测出具有负面积的单元外ANSYS程序对于求解中遇到的低劣单元形状不发出任何警告必须进行人工检查如果已扭曲的网格是不能接受的可以人工改变开始网格在容限内以产生合理的最终结果参看图2─2图2─2 在大应变分析中避免低劣单元形状的发展具有小应变的大偏移小应变大转动某些单元支持大的转动但不支持大的形状改变一种称作大挠度的大应变特性的受限形式对这类单元是适用的在一个大挠度分析中单元的转动可以任意地大但是应变假定是小的大挠度效应没有大的形状改变在ANSYS/Linear Plus程序中是可用的在ANSYS/Mechanical,以及ANSYS/Structural产品中对于支持大应变特性的单元大挠度效应不能独立于大应变效应被激活在所有梁单元和大多数壳单元中以及许多非线性单元中这个特性是可用的通过打开NLGEOM ON GUI路径Main Menu>Solution>Anolysis Options来激活那些支持这一特性的单元中的大位移效应应力刚化结构的面外刚度可能严重地受那个结构中面内应力的状态的影响面内应力和横向刚度之间的联系通称为应力刚化在薄的高应力的结构中如缆索或薄膜中是最明显的一个鼓面当它绷紧时会产生垂向刚度这是应力强化结构的一个普通的例子尽管应力刚化理论假定单元的转动和应变是小的在某些结构的系统中如在图2─3a)中刚化应力仅可以通过进行大挠度分析得到在其它的系统中如图2─3(b)中刚化应力可采用小挠度或线性理论得到图2─3 应力硬化梁要在第二类系统中使用应力硬化必须在第一个载荷步中发出SSTIF ON GUI路径Main Menu>Solution>Analysis Options)ANSYS程序通过生成和使用一个称作应力刚化矩阵的辅助刚度矩阵来考虑应力刚化效应尽管应力刚度矩阵是使用线性理论得到的但由于应力应力刚度矩阵在每次迭代之间是变化的这个事实因而它是非线性的大应变和大挠度处理包括进初始应力效应作为它们的理论的一个子集对于许多实体和壳单元当大变型效应被激活时NLGEOM ON GUI路径Main Menu>Solution>Analysis Options)自动包括进初始硬化效应在大变形分析中NLGEOM ON包含应力刚化效应SSTIF ON将把应力刚度矩阵加到主刚度矩阵上以在具有大应变或大挠度性能的大多数单元中产生一个近似的协调切向刚度矩阵例外情况包括BEAM4和SHELL63以及不把应力刚化列为特殊特点的任何单元对于BEAM4和SHELL63你可以通过设置KEYOPT2=1和NLGEOM ON在初始求解前激活应力刚化当大变形效应为ON开时这个KEYOPT 设置激活一个协调切向刚度矩阵选项当协调切向刚度矩阵被激活时也就是当KEYOPT 2=1且NLGEOM ON时SSTIF对BEAM4和SHELL63将不起作用在大变型分析中何时应当使用应力刚化对于大多数实体单元应力刚化的效应是与问题相关的在大变型分析中的应用可能提高也可能降低收敛性在大多数情况下首先应该尝试一个应力刚化效应OFF关闭的分析如果你正在模拟一个受到弯曲或拉伸载荷的薄的结构当用应力硬化OFF关时遇到收敛困难则尝试打开应力硬化应力刚化不建议用于包含不连续单元由于状态改变刚度上经历突然的不连续变化的非线性单元如各种接触单元SOLID65等等的结构对于这样的问题当应力刚化为ON开时结构刚度上的不连续线性很容易导致求解胀破对于桁梁和壳单元在大挠度分析中通常应使用应力刚化实际上在应用这些单元进行非线性屈曲和后屈曲分析时只有当打开应力刚化时才得到精确的解对于BEAM4和SHELL63你通过设置单元KEYOPT2=1激活大挠度分析中NLGEOMON的应力刚化然而当你应用杆梁或者壳单元来模拟刚性连杆耦合端或者结构刚度的大变化时你不应使用应力刚化注意无论何时使用应力刚化务必定义一系列实际的单元实常数使用不是成比例也就是人为的放大或缩小的实常数将影响对单元内部应力的计算且将相应地降低那个单元的应力刚化效应结果将是降低解的精度旋转软化旋转软化为动态质量效应调整软化旋转物体的刚度矩阵在小位移分析中这种调整近似于由于大的环形运动而导致几何形状改变的效应通常它和预应力[PSTRES]GUI路径Main Menu>Solution>Analysis Options)一起使用这种预应力由旋转物体中的离心力所产生它不应和其它变形非线性大挠度和大应变一起使用旋转软化用OMEGA命令中的KPSIN来激活GUI路径MainMenu>Preprocessor>Loads>-Loads-Apply>-Structural-Other>Angular Velotity)关于非线性分析的忠告和准则着手进行非线性分析通过比较小心地采用时间和方法可以避免许多和一般的非线性分析有关的困难下列建议对你可能是有益的了解程序的运作方式和结构的表现行为如果你以前没有使用过某一种特别的非线性特性在将它用于大的复杂的模型前构造一个非常简单的模型也就是仅包含少量单元以及确保你理解了如何处理这种特性通过首先分析一个简化模型以便使你对结构的特性有一个初步了解对于非线性静态模型一个初步的线性静态分析可以使你知道模型的哪一个区域将首先经历非线性响应以及在什么载荷范围这些非线性将开始起作用对于非线性瞬态分析一个对梁质量块及弹簧的初步模拟可以使你用最小的代价对结构的动态有一个深入了解在你着手最终的非线性瞬时动态分析前初步非线性静态线性瞬时动态和/或模态分析同样地可以有助于你理解你结构的非线性动态响应的不同的方面阅读和理解程序的输出信息和警告至少在你尝试后处理你的结果前确保你的问题收敛对于与路程相关的问题打印输出的平衡迭代记录在帮助你确定你的结果是有效还是无效方面是特别重的简化尽可能简化最终模型如果可以将3─D结构表示为2─D平面应力平面应变或轴对称模型那么这样做如果可以通过对称或反对称表面的使用缩减你的模型尺寸那么这样做然而如果你的模型非对称加载通常你不可以利用反对称来缩减非线性模型的大小由于大位移反对称变成不可用的如果你可以忽略某个非线性细节而不影响你模型的关键区域的结果那么这样做只要有可能就依照静态等效载荷模拟瞬时动态加载考虑对模型的线性部分建立子结构以降低中间载荷或时间增量及平衡迭代所需要的计算时间采用足够的网格密度考虑到经受塑性变形的区域要求一个合理的积分点密度每个低阶单元将提供和高阶单元所能提供的一样多积分点数因此经常优先用于塑性分析在重要塑性区域网格密度变得特别地重要因为大挠度要求对于一个精确的解个单元的变形弯曲不能超过30度在接触表面上提供足够的网格密度以允许接触应力以一种平滑方式分布提供足够用于分析应力的网格密度那些应力或应变关心的面与那些需要对位移或非线性解析处的面相比要求相对好的网格使用足够表征最高的重要模态形式的网格密度所需单元数目依赖于单元的假定位移形状函数以及模态形状本身使用足够可以用来分析通过结构的任何瞬时动态波传播的网格密度如果波传播是重要的那么至少提供20个单元来分析一个波长逐步加载对于非保守的与路径相关的系统你需要以足够小的增量施加载荷以确保你的分析紧紧地跟随结构的载荷响应曲线有时你可以通过逐渐地施加载荷提高保守系统的收敛特性从而使所要求的Newton_Raphson平衡迭代次数最小合理地使用平衡迭代务必允许程序使用足够多的平衡迭代NEQIT在缓慢收敛路径无关的分析中这会是特别重要的相反地在与路径严重相关的情况下可能不应该增加平衡迭代的最大次数超过程序的缺省值25如果路径相关问题在一个给定的子步内不能快速收敛那么你的解可能偏离理论载荷响应路径太多这个问题当你的时间步长太大时出现通过强迫你的分析在一个较小的迭代次数后终止你可以从最后成功地收敛的时间步重起动ANTYPE建立一个较小的时间步长然后继续求解打开二分法²AUTOTS ON会自动地用一个较小的时间步长重起动求解克服收敛性问题如果问题中出现负的主对角元计算出过度大的位移或者仅仅没能在给定的最大平衡迭代次数内达到收敛则收敛失败发生收敛失败可能表明出结构物物理上的不稳定性或者也可能仅是有限无模型中某些数值问题的结果ANSYS程序提供几种可以用来在分析中克服数值不稳性的工具如果正在模拟一个实际物理意义上不稳定的系统也就是具有零或者负的刚度那么将拥有更多的棘手问题有时你可以应用一个或更多的模拟技巧来获得这种情况下的一个解让我们来探讨一下某些你可以用来尝试提高你的分析的收敛性能的技术打开自动时间步长当打开自动时间步长时往往需要一个小的最小的时间步长或者大的最大的步长数当有接触单元如CONTACT48CONTACT12等等时使用自动时间分步程序可能趋向于重复地进行二分法直到它达到最小时间步长然后程序将在整个求解期间使用最小时间步长这样通常产生一个稳定但花费时间的解接触单元具有一个控制程序在它的时间步选择中将是多么保守的选项设置KEYOPT7这样允许你加速在这些情况下的运行时间对于其它的非线性单元你需要仔细地选择你的最小时间步如果你选择一个太小的最小时间步自动时间分步算法可能使你的运行时间太长相反地使你的最小时间步长太大可能导致不收敛务必对时间步长设置一个最大限度DELTIM或者NSUBST特别别是对于复杂的模型这确保所有重要的模态和特性将被精确地包含进这在下列情况下可能是重要的具有局部动态行为特性的问题例如涡轮叶片和轮毂部件在这些问题中系统的低频能量含量以优势压倒高频范围具有很短的渐进加载时间问题如果时间步长允许变得太大载荷历程的渐进部分可能不能被精确地表示出来包含在一个频率范围内被连续地激励的结构的问题例如地震问题当模拟运动结构具有刚体运动的系统时注意分析输入或系统驱动频率所要求的时间步通常比分析结构的频率所要求的大几个数量级采用这样粗略的一个时间步会将相当大的数值干扰引入解中求解甚至可能变得不稳定下面这些准则通常可以帮助你获得一个好的解如果实际可行采用一个至少可以分析系统的第一阶非零频率的时间步长把重要的数值阻尼在TINTP命令中0.05P1加到求解中以过滤出高频噪音特别是如果采用了一个精略的时间步长时由于阻尼质量矩阵乘子ALPHAD命令会阻碍系统的刚体运动零频率模态在一个动态运动分析中不要使用它避免强加的位移历程说明因为强加的位移输入具有理论上加速度上的无限突跃对于Newmark时间积分算法其导致稳定性问题使用二分法无论何时你打开自动时间步长AUTOTS ON二分法被自动激活这个特性通常会使你能够从由于采用一个太大的时间步导致的收敛失败中恢复它受最小时间步长限制NSUBST DELTIM二分法对于任何对加载步长敏感的分析一般是有益的对于发现一个非线性系统的屈曲临界负载它同样是有用的使用Newton-Raphson选项和自适应下降因子Newton-Raphson选项的最佳选择将依据存在于你模型中的非线性种类变化尽管通过让程序选择Newton-Raphson选项NROPT AUTO通常你会获得最佳的收敛特性但也可能偶尔遇到使用一些其它选择会更有效的情况例如如果非线性材料的行为发生在你模型的一个相对小的区域中采用修正的Newton-Raphson或者初始刚度选项可以降低分析的总体CPU代价自适应下降因子NROPT和塑性以及某些非线性单元包括接触单元同时使用在几乎没有载荷重新分配的情况下通过关闭这个特性你可以获得更快的收敛性自适应下降在仅有大挠度的非线性的问题中几乎没有效果使用线性搜索线性搜索LNSRCH作为一个对自适应下降NROPT的替代会是有用的一般地你不应同时既激活线性搜索又激活自适应下降线性搜索方法通常导致收敛但在时间上它可能是缓慢的和昂贵的特别是具有塑性时在下列情况下你可以设置线搜索为打开状态当你的结构是力加载的其与位移控制的相反时如果你正在分析一个刚度增长的薄膜结构如一根钓鱼杆如果你注意到从程序的输出信息你的分析正导致自适应下降频频被激活应用预测预测PRED基于基于前一个时间步的求解预估在这个时间步中的求解情况因此可能减少所需的平衡迭代次数如果非线性响应相对地平滑这个特性会是有益的在大转动和粘弹性分析中它一般不是有益的应用弧长方法对于许多物理意义上不稳定的结构你可以应用弧长方法ARCLEN ARCTRM来获得数值上稳定的解当应用弧长方法时请记住下列考虑事项弧长方法限制于仅具有渐进加载方式的静态分析程序由第一个子步的第一次迭代的载荷或位移增量计算出参考弧长半径采用下列公式参考弧长半径=总体载荷或位移NSBSTP这里NSBSTP是NSUBST命令中指定的子步数当选择子步数时考虑到更多的子步将导致很长的求解时间理想地你会选择一个最佳有效解所需的最小子步数或许你不得不对所需的子步数进行评诂按照需要调整后再重新求解当弧长方法是激活的时不要使用线搜索LNSRCH预测PRED自适应下降NROPT ON自动时间分步AUTOTS TIME DELTIM或时间积分效应TIMINT不要尝试将收敛建立在位移的基础上CNVTOL U使用力的收敛准则CNVTOLF要用弧长方法来帮助使求解时间最小化一个单一子步中的最大平衡迭代数应当小于或等于15如果一个弧长求解在规定的最大迭代次数内NEQIT没能收敛程序将自动进行二分且继续分析直到获得一个收敛的解或者最小的弧长半径被采用最小半径由NSUBST NSUBST和MINARC ARCLEN定义一般地你不能应用这种方法来在一个确定的载荷或位移值处获得一个解因为这个值随获得的平衡态改变沿球面弧注意图1─4中给定的载荷仅用作一个起始点收敛处的实际载荷有点小类似地当在一个非线性屈曲分析中应用弧长方法来在某些已知的容限范围内确定一个极限载荷或位移的值可能是困难的通常你不得不通过尝试─错误─再尝试调整参考弧长半径使用NSUBST来在极限点处获得一个解应用带二分AUTOTS 的标准NEWTON-RAPHSON迭代来确定非线性载荷屈曲临界负载的值可能会更方便通常你应当避免和弧长方法一起使用JCG或者PCG求解器EQSLV因为弧长方法可能会产生一个负定刚度矩阵负的主对角线用这些求解器其可能导致求解失败在任何载荷步的开始你可以从Newton-Raphson迭代方法到弧长方法自由转换然而要从弧长到Newton-Raphson迭代转换你必须终止分析然后重起动且在重起动的第一个载荷步中去杀死弧长方法ARCLEN OFF一个弧长求解在这些情况下终止当由ARCTRM或NCNV命令定义的极限达到时当在所施加的载荷范围内求解收敛时当你使用一个放弃文件时Jobname.ABT使用载荷位一移曲线作为用于评价和调整你的分析以帮助你获得所需结果的准则通常对于每一个分析都绘制你的载荷一偏移曲线采用POST26命令是一种好的作法经常地一个不成功的弧长分析可以归因于弧长半径或者太大或者太小沿载荷一偏移曲线原路返回的回漂是一种由于使用太大或太小弧长半径导致的典型难点研究载荷偏移曲线来理解这个问题然后使用NSUBST和ARCLEN命令来调整弧长半径的大小和范围为合适的值总体弧长载荷因子SOLU命令中的ALLF项或者会是正的或者会是负的类似地TIME其在弧长分析中相关于总体弧长载荷因数同样会不是正的就是负的ALLF或TIME的负值表示弧长特性正在以反方向加载以便保持结构中的稳定性负的ALLF或者TIME值一般会在各种突然转换分析中遇到当将弧长结果读入基本数据用于POSTI后处理时SET你总是应当引用由它的载荷步和子步号LSTEP和SBSTEP或者进它的数据设置号所设定的所需结果数据不要引用用TIME值的结果因为TIME值在一个弧长分析中并不总是单调增加的单一的一个TIME值可能涉及多于一个的解此外程序不能正确地解释负的TIME值C其可能在一个突然转换分析中遇到如果TIME为负的记住在产生任何POST26图形前定义一个合适的变化范围IXRANGE或者IYRANGE在你的模型响应中人为地抑制发散如果你不想使用弧长方法来分析一个在奇异零刚度形状时开始开或者通过奇异形状的力加载的结构时有时你可以使用其它的技术来人工地抑制模型响应中的发散在某些情况下你可以使用强加的位移来替代所施加的力这种方法可以用于在较靠近平衡位置处开始一个静态分析或者用于控制整个不稳定响应期间如突然转换或后翘曲的位移其它在阻止由于初始不稳定性所造成的问题时有效的技术包括使用带有强加的初始应变的应力刚化SSTIF致冷也就是增加暂时的人工热应变或者将一个静态问题执行为一个缓慢动态分析也就是在任意一个载荷步尝试使用时间积分效应阻止解发散你也可以应用控制单元如COMBIN37或者应用其它单元的出生和死亡选项对不稳定的DOFs施加暂时的人工刚度这里的想法是在中期的载荷步期间人为地约束系统以阻止不符合实际的大位移被计算出随着系统变位到稳定的形态人工刚度被移去应用雅各比共轭梯度求解器这个求解器通过EQSLV命令获得在经历某一奇异划零零刚度状态的分析中会是有用的叶ÔJCG求解器来说相对大的求解容差有时会涂抹掉这种奇异性导致载荷一位移曲线的斜度具有某些假的非零值在EQSLV中这个求解器的容限不是非线性收敛容限雅各比共轭梯度求解器仅是一种求解线性矩阵方程的替代方法这种求解器的使用不能替代任何方式的非线性处理关闭特殊的单元形状有时在非线性分析中使用无中节点单元的形状选项会产生收敛困难合理地使用出生和死亡认识到结构的刚度矩阵的任何突然改变可能会导致收敛问题当激活或杀死单元时试着将变化分散在若干子步内如果需要采用一个小的时间步长来完成这种变化也要注意到随着你激活或杀死单元可能会产生的奇异性如尖的再生角像这样的奇异性可能产生收敛问题检验你的分析结果好的有限无分析FEA过程总是要求你检验你的结果你需要自己证明你理解了程序你正在正确地使用它以及你的分析结果正确地体现出你的结构的物理特性在检验你的非线性分析时你可以使用若干标准验证技术标准分析一个确保你了解如何恰当地施加程序的特殊特性的好的方法是通过进行一个或多个标准分析在一个标准分析中一般是你对一个有理论解存在的简单结构进行独立地分析这里的想法是通过将你的FEA结果与已知结果相对照以验证你可以正确地运用程序的特性当然标准分析结构应当与要分析的完整结构非常相似ANSYS Verification Manual 是标准问题的一种较好的来源结果合理么大多数工程师在他们职业的早期就认识到要对他们的数值结果的有效性提出疑问无论这些结果是通过手工计算计算机分析还是一些其它方法得到的在你开始任何分析前你总是应当对你期望获得的结果至少具有一个粗略的概念通过经验试验标准分析等等获得如果你最终的结果似乎不合理也就是如果它们不同于你的期望值你应当确信你理解了这是为什么好的工程实际要求你总是使你的分析结果和合理的期望值相一致。
ansys非线性瞬态结构分析重要命令

Nonlinear Kinematic Hardening Material Model非线性随动硬化模型
Bilinear Isotropic Hardening Material Model双线性各向同性硬化模型
双线性各向同性硬化模型(TB,BISO)选项使用von Mises 屈服准则耦合各向同性硬化假设。该选项优先用于大形变(large strain)分析。BIOS选项可以结合Chaboche, creep, viscoplastic, and Hill anisotropy等选项来仿真复杂材料模型。
Multilinear Isotropic Hardening Material Model多线性各向同性硬化模型
Multilinear Kinematic Hardening
Nonlinear Kinematic Hardening
Bilinear Isotropic Hardening
Multilinear Isotropic Hardening
Nonlinear Isotropic Hardening
Anisotropic
其他:
Anisotropic Material Model 各向异性材料模型;Hill Anisotropy Material Model 希尔各向异性材料模型;Drucker-Prager Material Model德鲁克 - 普拉格材料模型,用于颗粒材料(土壤、岩石、水泥);Gurson Plasticity Material Model高森塑性材料模型,用于多孔金属材料;Gurson-Chaboche Material Model高森-沙博什材料模型,用于多孔金属材料;Cast Iron Material Model铸铁材料模型。
ANSYS结构非线性分析指南_第四章

第四章材料非线性分析4.1 材料非线性概述许多与材料有关的参数可以使结构刚度在分析期间改变。
塑性、非线性弹性、超弹性材料、混凝土材料的非线性应力—应变关系,可以使结构刚度在不同载荷水平下(以及在不同温度下)改变。
蠕变、粘塑性和粘弹性可以引起与时间、率、温度和应力相关的非线性。
膨胀可以引起作为温度、时间、中子流水平(或其他类似量)函数的应变。
ANSYS程序应可以考虑多种材料非线性特性:1.率不相关塑性指材料中产生的不可恢复的即时应变。
2.率相关塑性也可称之为粘塑性,材料的塑性应变大小将是加载速度与时间的函数。
3.材料的蠕变行为也是率相关的,产生随时间变化的不可恢复应变,但蠕变的时间尺度要比率相关塑性大的多。
4.非线性弹性允许材料的非线性应力应变关系,但应变是可以恢复的。
5.超弹性材料应力应变关系由一个应变能密度势函数定义,用于模拟橡胶、泡沫类材料,变形是可以恢复的。
6.粘弹性是一种率相关的材料特性,这种材料应变中包含了弹性应变和粘性应变。
7.混凝土材料具有模拟断裂和压碎的能力。
8.膨胀是指材料在中子流作用下的体积扩大效应。
4.2 塑性分析4.2.1 塑性理论简介许多常用的工程材料,在应力水平低于比例极限时,应力—应变关系为线性的。
超过这一极限后,应力—应变关系变成非线性,但却不一定是非弹性的。
以不可恢复的应变为特征的塑性,则在应力超过屈服点后开始出现。
由于屈服极限与比例极限相差很小,ANSYS程序在塑性分析中,假设这二个点相同,见图4-1。
图4-1 弹塑性应力-应变曲线塑性是一种非保守的(不可逆的),与路径相关的现象。
换句话说,荷载施加的顺序,以及什么时候发生塑性响应,影响最终求解结果。
如果用户预计在分析中会出现塑性响应,则应把荷载处理成一系列的小增量荷载步或时间步,以使模型尽可能附合荷载—响应路径。
最大塑性应变是在输出(Jobname.OUT)文件的子步信息中打印的。
在一个子步中,如果执行了大量的平衡迭代,或得到大于15%的塑性应变增量,则塑性将激活自动时间步选项[AUTOTS ](GUI :Main Menu>Solution> Sol'n Control:Basic Tab 或 MainMenu>Solution>Unabridged Menu> Time /Frequenc>Time and Substps)。
ANSYS非线性问题概述

1ANSYS非线性问题概述1.1 非线性有限元基本理论从一般的角度来说,固体力学中的所有现象都是非线性的。
对于许多工程实际问题,近似地用线性理论来处理可以使计算简单可行,并符合工程上的精度要求。
但是对于工程中的许多问题,如金属材料成形过程、切削加工过程、地震作用下结构的弹塑性动力响应、高层建筑抗风、超弹性材料不可压缩、薄壁结构失稳、装配体过盈接触等问题的研究,仅仅假设为线性问题是远远满足不了实际需求的,必须进一步考虑为非线性问题。
因此,对各种工程结构的非线性分析就显得日益迫切和重要了。
非线性系统的响应不是所施加载荷的线性函数,因此不能通过叠加来获得不同载荷情况的解答。
每种载荷情况都必须作为独立的分析进行定义和求解。
通常,把非线性问题分为三种类型:(1)材料非线性。
非线性的应力应变关系是结构非线性的常见原因,如弹塑性材料、超弹性材料等,许多因素都可以影响材料的应力应变性质,包括加载历史、温度、加载时间总量等。
(2)几何非线性。
如果结构经历大变形,则变化了的几何形状可能会引起结构的非线性响应,这又可以分为两类情形。
第一种情形,大挠度或大转动问题。
例如板、壳等薄壁结构在一定载荷作用下,尽管应变很小,甚至未超过弹性极限,但是位移较大,材料元素有较大的转动。
这时的平衡方程必须建立在变形后的构形上,同时应变表达式中应包括位移的二次项,从而平衡方程和几何方程都为非线性的。
第二种情形,大应变或有限应变问题。
例如金属成形过程的有限塑性变形,处理这类大应变问题,除了非线性的平衡方程和几何关系外,还需要引入相应的应力-应变关系。
(3)状态非线性。
由于系统刚度和边界条件的性质随物体的运动发生变化所引起的非线性响应。
例如,一根只能受拉的钢索可能是松散的,也可能是绷紧的;轴承套可能是接触的,也可能是不接触的;冻土可能是冻结的,也可能是融化的。
这些系统的刚度和边界条件由于系统状态的改变在不同的值之间突然变化。
1.1.1 弹塑性本构关系按性质分类,弹塑性问题应属于材料非线性问题。
非线性2【ANSYS非线性分析】

1几何非线性分析随着位移增长,一个有限单元已移动的坐标可以以多种方式改变结构的刚度。
一般来说这类问题总是是非线性的,需要进行迭代获得一个有效的解。
大应变效应一个结构的总刚度依赖于它的组成部件(单元)的方向和单刚。
当一个单元的结点经历位移后,那个单元对总体结构刚度的贡献可以以两种方式改变变。
首先,如果这个单元的形状改变,它的单元刚度将改变。
(看图2─1(a))。
其次,如果这个单元的取向改变,它的局部刚度转化到全局部件的变换也将改变。
(看图2─1(b))。
小的变形和小的应变分析假定位移小到 足够使所得到的刚度改变无足轻重。
这种刚度不变假定意味着使用基于最初几何形状的结构刚度的一次迭代足以计算出小变形分析中的位移。
(什么时候使用“小”变形和应变依赖于特定分析中要求的精度等级。
相反,大应变分析说明由单元的形状和取向改变导致的刚度改变。
因为刚度受位移影响,且反之亦然,所以在大应变分析中需要迭代求解来得到正确的位移。
通过发出NLGEOM ,ON (GUI 路径Main Menu>Solution>Analysis Options),来激活 大应变效应。
这效应改变单元的形状和取向,且还随单元转动表面载荷。
(集中载荷和惯性载荷保持它们最初的方向。
)在大多数实体单元(包括所有的大应变和超弹性单元),以及部分的壳单元中大应变特性是可用的。
在ANSYS/Linear Plus 程序中大应变效应是不可用的。
图1─11 大应变和大转动大应变处理对一个单元经历的总旋度或应变没有理论限制。
(某些ANSYS单元类型将受2到总应变的实际限制──参看下面。
)然而,应限制应变增量以保持精度。
因此,总载荷应当被分成几个较小的步,这可以〔NSUBST ,DELTIM ,AUTOTS 〕,通过GUI 路径 Main Menu>Solution>Time/Prequent)。
无论何时当系统是非保守系统,来自动实现如在模型中有塑性或摩擦,或者有多个大位移解存在,如具有突然转换现象,使用小的载荷增量具有双重重要性。
ANSYS结构非线性分析指南(一至三章)

ANSYS结构⾮线性分析指南(⼀⾄三章)ANSYS结构⾮线性分析指南(⼀到三章)屈服准则概念:1.理想弹性材料物体发⽣弹性变形时,应⼒与应变完全成线性关系,并可假定它从弹性变形过渡到塑性变形是突然的。
2.理想塑性材料(⼜称全塑性材料)材料发⽣塑性变形时不产⽣硬化的材料,这种材料在进⼊塑性状态之后,应⼒不再增加,也即在中性载荷时即可连续产⽣塑性变形。
3.弹塑性材料在研究材料塑性变形时,需要考虑塑性变形之前的弹性变形的材料这⾥可分两种情况:Ⅰ.理想弹塑性材料在塑性变形时,需要考虑塑性变形之前的弹性变形,⽽不考虑硬化的材料,也即材料进⼊塑性状态后,应⼒不再增加可连续产⽣塑性变形。
Ⅱ.弹塑性硬化材料在塑性变形时,既要考虑塑性变形之前的弹性变形,⼜要考虑加⼯硬化的材料,这种材料在进⼊塑性状态后,如应⼒保持不变,则不能进⼀步变形。
只有在应⼒不断增加,也即在加载条件下才能连续产⽣塑性变形。
4.刚塑性材料在研究塑性变形时不考虑塑性变形之前的弹性变形。
这⼜可分两种情况:Ⅰ.理想刚塑性材料在研究塑性变形时,既不考虑弹性变形,⼜不考虑变形过程中的加⼯硬化的材料。
Ⅱ.刚塑性硬化材料在研究塑性变形时,不考虑塑性变形之前的弹性变形,但需要考虑变形过程中的加⼯硬化材料。
屈服准则的条件:1.受⼒物体内质点处于单向应⼒状态时,只要单向应⼒⼤到材料的屈服点时,则该质点开始由弹性状态进⼊塑性状态,即处于屈服。
2.受⼒物体内质点处于多向应⼒状态时,必须同时考虑所有的应⼒分量。
在⼀定的变形条件(变形温度、变形速度等)下,只有当各应⼒分量之间符合⼀定关系时,质点才开始进⼊塑性状态,这种关系称为屈服准则,也称塑性条件。
它是描述受⼒物体中不同应⼒状态下的质点进⼊塑性状态并使塑性变形继续进⾏所必须遵守的⼒学条件,这种⼒学条件⼀般可表⽰为f(σi j)=C⼜称为屈服函数,式中C是与材料性质有关⽽与应⼒状态⽆关的常数,可通过试验求得。
屈服准则是求解塑性成形问题必要的补充⽅程。
关于ansys非线性分析的几点忠告

关于非线性分析的几点忠告了解程序的运作方式和结构的表现行为如果你以前没有使用过某一种特别的非线性特性,在将它用于大的,复杂的模型前,构造一个非常简单的模型(也就是,仅包含少量单元),以及确保你理解了如何处理这种特性。
通过首先分析一个简化模型,以便使你对结构的特性有一个初步了解。
对于非线性静态模型,一个初步的线性静态分析可以使你知道模型的哪一个区域将首先经历非线性响应,以及在什么载荷范围这些非线性将开始起作用。
对于非线性瞬态分析,一个对梁,质量块及弹簧的初步模拟可以使你用最小的代价对结构的动态有一个深入了解。
在你着手最终的非线性瞬时动态分析前,初步非线性静态,线性瞬时动态,和/或模态分析同样地可以有助于你理解你结构的非线性动态响应的不同的方面。
阅读和理解程序的输出信息和警告。
至少,在你尝试后处理你的结果前,确保你的问题收敛。
对于与路程相关的问题,打印输出的平衡迭代记录在帮助你确定你的结果是有效还是无效方面是特别重的。
简化尽可能简化最终模型。
如果可以将3─D结构表示为2─D平面应力,平面应变或轴对称模型,那么这样做,如果可以通过对称或反对称表面的使用缩减你的模型尺寸,那么这样做。
(然而,如果你的模型非对称加载,通常你不可以利用反对称来缩减非线性模型的大小。
由于大位移,反对称变成不可用的。
)如果你可以忽略某个非线性细节而不影响你模型的关键区域的结果,那么这样做。
只要有可能就依照静态等效载荷模拟瞬时动态加载。
考虑对模型的线性部分建立子结构以降低中间载荷或时间增量及平衡迭代所需要的计算时间。
采用足够的网格密度考虑到经受塑性变形的区域要求一个合理的积分点密度。
每个低阶单元将提供和高阶单元所能提供的一样多积分点数,因此经常优先用于塑性分析。
在重要塑性区域网格密度变得特别地重要,因为大挠度要求对于一个精确的解,个单元的变形(弯曲)不能超过30度。
在接触表面上提供足够的网格密度以允许接触应力以一种平滑方式分布。
提供足够用于分析应力的网格密度。
ANSYS结构非线性分析指南

ANSYS结构非线性分析指南ANSYS是一款非常强大的有限元分析软件,广泛应用于各种工程领域的结构分析。
在常规的结构分析中,通常会涉及到线性分析,但一些情况下,结构出现了非线性行为,这时就需要进行非线性分析。
非线性分析可以更准确地模拟结构的真实行为,包括材料的非线性、几何的非线性和接触非线性等。
在进行ANSYS结构非线性分析时,需要考虑以下几个方面:1.材料的非线性:在材料的应力-应变关系中,材料的性质可能会发生变化,如塑性变形、损伤、软化等。
因此在非线性分析中,需要考虑材料的非线性特性,并正确选取材料模型。
2.几何的非线性:在一些情况下,结构本身的几何形态可能会发生较大变化,如大变形、屈曲等。
这需要考虑结构的几何非线性,并在分析中充分考虑结构的形变情况。
3.接触非线性:当结构中存在接触面时,接触面之间的接触力可能是非线性的,如摩擦力、法向压力等。
在进行非线性分析时,需要考虑接触面上的非线性行为,确保接触的可靠性。
在进行ANSYS结构非线性分析时,可以按照以下步骤进行:1.建立模型:首先需要根据实际情况建立结构的有限元模型,包括几何形状、边界条件和加载条件等。
在建立模型时,需要考虑到结构的材料、几何和接触情况,并进行合理的网格划分。
2.设置分析类型:在ANSYS中,可以选择静力分析、动力分析等不同的分析类型。
在进行非线性分析时,需要选择适合的非线性分析模块,并设置相应的参数。
3.设置材料模型:根据结构的材料特性,选择合适的材料模型,如弹塑性模型、本构模型等。
根据实际情况,设置材料的材料参数,确保材料的非线性行为能够得到准确的描述。
4.设置几何非线性:考虑结构的几何非线性时,需要选择合适的几何非线性选项,并设置合适的几何参数。
在进行大变形分析时,需要选择几何非线性选项,确保结构的形变情况能够得到准确的描述。
5.设置接触非线性:当结构存在接触面时,需要考虑接触面上的非线性行为。
在ANSYS中,可以设置接触类型、摩擦系数等参数,确保接触的可靠性。
ansys的非线性命令解析

引用小健哥的ANSYS 非线性分析命令解析ANSYS应用基于问题物理特性的自动求解控制方法,把各种非线性分析控制参数设置到合适的值。
如果用户对这些设置不满意,还可以手工设置。
下列命令的缺省设置已进行了优化处理:AUTOTS PRED MONITORDELTIM NROPT NEQITNSUBST TINTP SSTIFCNVTOL CUTCONTROL KBCLNSRCH OPNCONTROL EQSLVARCLEN CDWRITE LSWRITE这些命令及其设置在将在后面讨论。
参见《ANSYS Commands Reference》。
如果用户选择自己的设置而不是ANSYS的缺省设置,或希望用以前版本的ANSYS的输入列表,则可用/ SOLU 模块的SOLCONTROL ,OFF命令,或在/ BATCH 命令后用/ CONFIG ,NLCONTROL,OFF命令。
参见SOLCONTROL 命令的详细描述。
ANSYS对下面的分析激活自动求解控制单场的非线性或瞬态结构以及固体力学分析,在求解自由度为UX、UY、UZ、ROTX、ROTY、ROTZ 的结合时;单场的非线性或瞬态热分析,在求解自由度为TEMP时;注意--本章后面讨论的求解控制对话框,不能对热分析做设置。
用户必须应用标准的ANSYS 求解命令或GUI来设置。
2.2 非线性静态分析步骤尽管非线性分析比线性分析变得更加复杂,但处理基本相同。
只是在非线形分析的过程中,添加了需要的非线形特性。
非线性静态分析是静态分析的一种特殊形式。
如同任何静态分析,处理流程主要由以下主要步骤组成:建模;设置求解控制;设置附加求解控制;加载;求解;考察结果。
2.2.1 建模这一步对线性和非线性分析基本上是一样的,尽管非线性分析在这一步中可能包括特殊的单元或非线性材料性质,参考§4《材料非线性分析》,和§6.1《单元非线性》。
如果模型中包含大应变效应,应力─应变数据必须依据真实应力和真实(或对数)应变表示。
ansys非线性分析指南

ANSYS 非线性分析指南(1) 基本过程第一章结构静力分析1. 1 结构分析概述结构分析的定义:结构分析是有限元分析方法最常用的一个应用领域。
结构这个术语是一个广义的概念,它包括土木工程结构,如桥梁和建筑物;汽车结构,如车身、骨架;海洋结构,如船舶结构;航空结构,如飞机机身、机翼等,同时还包括机械零部件,如活塞传动轴等等。
在ANSYS 产品家族中有七种结构分析的类型,结构分析中计算得出的基本未知量- 节点自由度,是位移;其他的一些未知量,如应变、应力和反力,可通过节点位移导出。
七种结构分析的类型分别是:a. 静力分析- 用于求解静力载荷作用下结构的位移和应力等。
静力分析包括线性和非线性分析。
而非线性分析涉及塑性、应力刚化、大变形、大应变、超弹性、接触面和蠕变,等。
b. 模态分析- 用于计算结构的固有频率和模态。
c. 谐波分析- 用于确定结构在随时间正弦变化的载荷作用下的响应。
d. 瞬态动力分析- 用于计算结构在随时间任意变化的载荷作用下的响应,并且可计及上述提到的静力分析中所有的非线性性质。
e. 谱分析- 是模态分析的应用拓广,用于计算由于响应谱或PSD 输入随机振动引起的应力和应变。
f. 屈曲分析- 用于计算屈曲载荷和确定屈曲模态,ANSYS 可进行线性特征值和非线性屈曲分析。
g. 显式动力分析- ANSYS/LS-DYNA可用于计算高度非线性动力学和复杂的接触问题。
除了前面提到的七种分析类型,还有如下特殊的分析应用:? 断裂力学? 复合材料? 疲劳分析? p-Method结构分析所用的单元:绝大多数的ANSYS 单元类型可用于结构分析。
单元类型从简单的杆单元和梁单元一直到较为复杂的层合壳单元和大应变实体单元1.2 结构线性静力分析静力分析的定义:静力分析计算在固定不变的载荷作用下结构的响应。
它不考虑惯性和阻尼的影响,如结构受随时间变化载荷的情况。
可是静力分析可以计算那些固定不变的惯性载荷对结构的影响,如重力和离心力;以及那些可以近似为等价静力作用的随时间变化载荷,如通常在许多建筑规范中所定义的等价静力风载和地震载荷。
ANSYS结构非线性分析指南_第三章

第三章几何非线性与屈曲分析3.1 几何非线性3.1.1 大应变效应一个结构的总刚度依赖于它的组成部件(单元)的方向和单刚。
当一个单元的结点经历位移后,那个单元对总体结构刚度的贡献可以以两种方式改变。
首先,如果这个单元的形状改变,它的单元刚度将改变(图3-1(a))。
其次,如果这个单元的取向改变,它的局部刚度转化到全局部件的变换也将改变(图3-1(b))。
小的变形和小的应变分析假定位移小到足够使所得到的刚度改变无足轻重。
这种刚度不变假定意味着使用基于最初几何形状的结构刚度的一次迭代足以计算出小变形分析中的位移(什么时候使用“小”变形和应变依赖于特定分析中要求的精度等级)。
相反,大应变分析考虑由单元的形状和取向改变导致的刚度改变。
因为刚度受位移影响,且反之亦然,所以在大应变分析中需要迭代求解来得到正确的位移。
通过发出NLGEOM,ON(GUI路径Main Menu>Solution>Analysis Options),来激活大应变效应。
这种效应改变单元的形状和取向,且还随单元转动表面载荷。
(集中载荷和惯性载荷保持它们最初的方向。
)在大多数实体单元(包括所有的大应变和超弹性单元),以及部分的壳单元中大应变特性是可用的。
在ANSYS/Linear Plus程序中大应变效应是不可用的。
图3-1 大应变和大转动大应变过程对单元所承受的总旋度或应变没有理论限制。
(某些ANSYS单元类型将受到总应变的实际限制──参看下面。
)然而,应限制应变增量以保持精度。
因此,总载荷应当被分成几个较小的步,这可用〔NSUBST,DELTIM,AUTOTS〕命令自动实现(通过GUI路径Main Menu>Solution>Time/Frequent)。
无论何时如果系统是非保守系统,如在模型中有塑性或摩擦,或者有多个大位移解存在,如具有突然转换现象,使用小的载荷增量具有双重重要性。
3.1.2 应力-应变在大应变求解中,所有应力─应变输入和结果将依据真实应力和真实(或对数)应变(一维时,真实应变将表示为 )/(0l l Ln =ε 。
ANSYS结构非线性分析指南_第六章

ANSYS结构⾮线性分析指南_第六章第六章单元⾮线性与单元死活6.1 单元⾮线性单元⾮线性指的是ANSYS中的⼀些特殊⾮线性单元在状态改变时表现出的刚度突变的⾏为。
例如,当缆索松弛的时候,它的总体刚度会突变为零,当分离的物体接触时,它们的整体刚度会急剧变化。
这些以及其它⼀些状态相关的刚度变化可以⽤⾮线性单元(如下所列)、单元死活选项(见§6.2)或修改材料特性(MPCHG)来模拟。
下⾯列出了ANSYS中的⾮线性单元,其中有些单元只可在ANSYS/Multiphysics、ANSYS/Mechanical和ANSYS/Structure产品中使⽤。
关于⾮线性单元的详细说明参见《ANSYS Element Reference》。
COMBIN7COMBIN14COMBIN37COMBIN39COMBIN40CONTAC12 and CONTAC52CONTAC26CONTAC48 and CONTAC49TARGE169, TARGE170, CONTA171, CONTA172, CONTA173, and CONTA174LINK10SHELL41SOLID656.2 单元死活6.2.1 单元死活的定义当系统中添加(或删除)材料时,在模型中某些单元可能变为“存在”(或不存在)。
在此情况下,我们可以使⽤单元的死活选项来使单元死或活。
单元的这种死活特性在许多分析中是⼗分有⽤的,例如采矿、开挖隧道、建桥系列装配等等。
只有在产品ANSYS/Multiphysics,ANSYS/Mechanical 和ANSYS/Structural中,我们才能使⽤单元的这种死活选项。
在有些情况下,单元的死活状态依赖于ANSYS程序的计算结果量,例如温度、应⼒、应变等等。
我们可以使⽤命令ETABLE 和ESEL来定义所选单元的些结果量和改变这些单元的状态(熔化、凝固、断裂)。
此过程对于模拟相变的影响、失效⾯的传播和其它与分析结果有关的单元状态变化是有⽤的(例如:在焊接过程中,当熔化的材料凝固时,相应单元应被激活)。
ANSYS中非线性收敛问题总结

ANSYS中非线性收敛问题总结[转帖]问非线性计算的收敛和速度Q:我在计算一个大型结构,地震荷载,***** 计算时间太长一个小时可能计算了1秒总共40秒而且越来越慢,不小心早上还停了电如何能使计算加快?或者怎么才能即使突然结束以后还能继续算?谢谢!A:调整优化非线性计算的收敛和速度可以说几乎是一种艺术, 即没有固定的可循规则, 呵呵.我的经验是, 你的结构的\非线性\越小, 非线性的变化越规则, 就越容易收敛. 想象一下如果你是手算这个非线性问题, 对你来讲较容易的, 对ANSYS的相应算法也会容易些. 可以把你的地震时程分析拿出几点, 做一下静态的非线性分析, 同时调整模型看看分析出来的结果是否合理. 如果这一步还没有做, 那花大量时间做出的时程分析是废品的可能性十分之大.一定要记住有限元分析是一个\简化\问题的过程. 建立一个模型一定要由浅到深. 线性的模型没有搞透不要贸然进攻非线性. 静态没有搞透不要碰时程分析.A:影响非线性收敛稳定性及其速度的因素很多,我们可以看看这几点:1、模型――主要是结构刚度的大小。
对于某些结构,从概念的角度看,我们可以认为它是几何不变的稳定体系。
但如果结构相近的几个主要构件刚度相差悬殊,或者悬索结构的索预应力过小(即它的刚度不够大),在数值计算中就可能导致数值计算的较大误差,严重的可能会导致结构的几何可变性――忽略小刚度构件的刚度贡献。
如果还不能理解,我们可以进一步说:我们有一种通用的方法判断结构的几何可变性,即det(K)=0。
在数值计算中,要得到det(K)恒等于零是不可能的,我们也就只能让它较小时即认为结构是几何可变的。
对于上述的结构,他们的K值是很小的,故而也可判断为几何可变体系。
事实上这类结构在实际工程中也的确是非常危险的。
为此,我们要看看模型有没有问题。
如出现上述的结构,要分析它,就得降低刚度很大的构件单元的刚度,可以加细网格划分,或着改用高阶单元(BEAM-SHELL,SHELL-SOLID)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于非线性分析的几点忠告了解程序的运作方式和结构的表现行为如果你以前没有使用过某一种特别的非线性特性,在将它用于大的,复杂的模型前,构造一个非常简单的模型(也就是,仅包含少量单元),以及确保你理解了如何处理这种特性。
通过首先分析一个简化模型,以便使你对结构的特性有一个初步了解。
对于非线性静态模型,一个初步的线性静态分析可以使你知道模型的哪一个区域将首先经历非线性响应,以及在什么载荷范围这些非线性将开始起作用。
对于非线性瞬态分析,一个对梁,质量块及弹簧的初步模拟可以使你用最小的代价对结构的动态有一个深入了解。
在你着手最终的非线性瞬时动态分析前,初步非线性静态,线性瞬时动态,和/ 或模态分析同样地可以有助于你理解你结构的非线性动态响应的不同的方面。
阅读和理解程序的输出信息和警告。
至少,在你尝试后处理你的结果前,确保你的问题收敛。
对于与路程相关的问题,打印输出的平衡迭代记录在帮助你确定你的结果是有效还是无效方面是特别重的。
简化尽可能简化最终模型。
如果可以将3—D结构表示为2—D平面应力,平面应变或轴对称模型,那么这样做,如果可以通过对称或反对称表面的使用缩减你的模型尺寸,那么这样做。
(然而,如果你的模型非对称加载,通常你不可以利用反对称来缩减非线性模型的大小。
由于大位移,反对称变成不可用的。
)如果你可以忽略某个非线性细节而不影响你模型的关键区域的结果,那么这样做。
只要有可能就依照静态等效载荷模拟瞬时动态加载。
考虑对模型的线性部分建立子结构以降低中间载荷或时间增量及平衡迭代所需要的计算时间。
采用足够的网格密度考虑到经受塑性变形的区域要求一个合理的积分点密度。
每个低阶单元将提供和高阶单元所能提供的一样多积分点数,因此经常优先用于塑性分析。
在重要塑性区域网格密度变得特别地重要,因为大挠度要求对于一个精确的解,个单元的变形(弯曲)不能超过30 度。
在接触表面上提供足够的网格密度以允许接触应力以一种平滑方式分布。
提供足够用于分析应力的网格密度。
那些应力或应变关心的面与那些需要对位移或非线性解析处的面相比要求相对好的网格。
使用足够表征最高的重要模态形式的网格密度。
所需单元数目依赖于单元的假定位移形状函数,以及模态形状本身。
使用足够可以用来分析通过结构的任何瞬时动态波传播的网格密度。
如果波传播是重要的,那么至少提供20 个单元来分析一个波长。
逐步加载对于非保守的,与路径相关的系统,你需要以足够小的增量施加载荷以确保你的分析紧紧地跟随结构的载荷响应曲线。
有时你可以通过逐渐地施加载荷提高保守系统的收敛特性,从而使所要求的Newton_Raphson 平衡迭代次数最小。
合理地使用平衡迭代务必允许程序使用足够多的平衡迭代〔NEQIT。
在缓慢收敛,路径无关的分析中这会是特别重要的。
相反地,在与路径严重相关的情况下,可能不应该增加平衡迭代的最大次数超过程序的缺省值(25)。
如果路径相关问题在一个给定的子步内不能快速收敛,那么你的解可能偏离理论载荷响应路径太多。
这个问题当你的时间步长太大时出现。
通过强迫你的分析在一个较小的迭代次数后终止,你可以从最后成功地收敛的时间步重起动〔ANTYPE,建立一个较小的时间步长,然后继续求解。
打开二分法2AUTOTS,ON〕会自动地用一个较小的时间步长重起动求解。
克服收敛性问题如果问题中出现负的主对角元,计算出过度大的位移,或者仅仅没能在给定的最大平衡迭代次数内达到收敛,则收敛失败发生。
收敛失败可能表明出结构物物理上的不稳定性,或者也可能仅是有限无模型中某些数值问题的结果。
ANS YSS序提供几种可以用来在分析中克服数值不稳性的工具。
如果正在模拟一个实际物理意义上不稳定的系统(也就是,具有零或者负的刚度),那么将拥有更多的棘手问题。
有时你可以应用一个或更多的模拟技巧来获得这种情况下的一个解。
让我们来探讨一下某些你可以用来尝试提高你的分析的收敛性能的技术。
打开自动时间步长当打开自动时间步长时,往往需要一个小的最小的时间步长(或者大的最大的步长数)。
当有接触单元(如CONTACT4,8 CONTACT1,2 等等)时使用自动时间分步,程序可能趋向于重复地进行二分法直到它达到最小时间步长。
然后程序将在整个求解期间使用最小时间步长,这样通常产生一个稳定但花费时间的解。
接触单元具有一个控制程序在它的时间步选择中将是多么保守的选项设置(KEYOP(T 7)),这样,允许你加速在这些情况下的运行时间。
对于其它的非线性单元,你需要仔细地选择你的最小时间步。
如果你选择一个太小的最小时间步,自动时间分步算法可能使你的运行时间太长。
相反地,使你的最小时间步长太大可能导致不收敛。
务必对时间步长设置一个最大限度(〔DELTIM或者〔NSUBST),特别别是对于复杂的模型。
这确保所有重要的模态和特性将被精确地包含进。
这在下列情况下可能是重要的。
具有局部动态行为特性的问题(例如,涡轮叶片和轮毂部件),在这些问题中系统的低频能量含量以优势压倒高频范围。
具有很短的渐进加载时间问题。
如果时间步长允许变得太大,载荷历程的渐进部分可能不能被精确地表示出来。
包含在一个频率范围内被连续地激励的结构的问题(例如,地震问题)。
当模拟运动结构(具有刚体运动的系统)时注意。
分析输入或系统驱动频率所要求的时间步通常比分析结构的频率所要求的大几个数量级。
采用这样粗略的一个时间步会将相当大的数值干扰引入解中;求解甚至可能变得不稳定。
下面这些准则通常可以帮助你获得一个好的解:如果实际可行,采用一个至少可以分析系统的第一阶非零频率的时间步长。
把重要的数值阻尼(在TINTP命令中0.05〈 P〈 1)加到求解中以过滤出高频噪音,特别是如果采用了一个精略的时间步长时,由于阻尼(质量矩阵乘子,ALPHAD命令)会阻碍系统的刚体运动(零频率模态),在一个动态运动分析中不要使用它。
避免强加的位移历程说明,因为强加的位移输入具有(理论上)加速度上的无限突跃,对于Newmark 时间积分算法其导致稳定性问题。
使用二分法无论何时你打开自动时间步长〔AUTOTS ON〕,二分法被自动激活。
这个特性通常会使你能够从由于采用一个太大的时间步导致的收敛失败中恢复。
它受最小时间步长限制(〔NSUBST,DELTIM〕)。
二分法对于任何对加载步长敏感的分析一般是有益的。
对于发现一个非线性系统的屈曲临界负载它同样是有用的。
使用Newton-Raphson选项和自适应下降因子Newton-Raphson 选项的最佳选择将依据存在于你模型中的非线性种类变化。
尽管通过让程序选择Newton-Raphson选项〔NROPT AUTO〕通常你会获得最佳的收敛特性,但也可能偶尔遇到使用一些其它选择会更有效的情况。
例如,如果非线性材料的行为发生在你模型的一个相对小的区域中,采用修正的Newton-Raphson或者初始刚度选项可以降低分析的总体CPU代价。
自适应下降因子〔NROPT和塑性以及某些非线性单元,包括接触单元同时使用。
在几乎没有载荷重新分配的情况下,通过关闭这个特性你可以获得更快的收敛性。
自适应下降在仅有大挠度的非线性的问题中几乎没有效果。
使用线性搜索线性搜索〔LNSRCH作为一个对自适应下降〔NROPT的替代会是有用的。
(一般地,你不应同时既激活线性搜索又激活自适应下降。
)线性搜索方法通常导致收敛,但在时间上它可能是缓慢的和昂贵的(特别是具有塑性时),在下列情况下你可以设置线搜索为打开状态:当你的结构是力加载的(其与位移控制的相反)时。
如果你正在分析一个刚度增长的“薄膜”结构(如一根钓鱼杆)。
如果你注意到(从程序的输出信息)你的分析正导致自适应下降频频被激活。
应用预测预测〔PRED基于基于前一个时间步的求解预估在这个时间步中的求解情况,因此可能减少所需的平衡迭代次数。
如果非线性响应相对地平滑这个特性会是有益的。
在大转动和粘弹性分析中它一般不是有益的。
应用弧长方法对于许多物理意义上不稳定的结构你可以应用弧长方法〔ARCLEN〕,〔ARCTRM来获得数值上稳定的解,当应用弧长方法时,请记住下列考虑事项:弧长方法限制于仅具有渐进加载方式的静态分析。
程序由第一个子步的第一次迭代的载荷(或位移)增量计算出参考弧长半径,采用下列公式:参考弧长半径二总体载荷(或位移)+ NSBSTP这里NSBSTP^ NSUBST命令中指定的子步数。
当选择子步数时,考虑到更多的子步将导致很长的求解时间。
理想地,你会选择一个最佳有效解所需的最小子步数。
或许你不得不对所需的子步数进行“评诂”,按照需要调整后再重新求解。
当弧长方法是激活的时,不要使用线搜索〔LNSRCH,预测〔PRED,自适应下降〔NROPT,,,ON丨自动时间分步〔AUTOTS TIME, DELTIM〕,或时间积分效应〔TIMINT〕。
不要尝试将收敛建立在位移的基础上〔CNVTOL U〕。
使用力的收敛准则(CNVTOL F〕要用弧长方法来帮助使求解时间最小化,一个单一子步中的最大平衡迭代数应当小于或等于15。
如果一个弧长求解在规定的最大迭代次数内〔NEQIT〕没能收敛,程序将自动进行二分且继续分析。
直到获得一个收敛的解,或者最小的弧长半径被采用(最小半径由NSUBST〔NSUBST 禾口MINARC〔ARCLEN 定义)。
一般地,你不能应用这种方法来在一个确定的载荷或位移值处获得一个解因为这个值随获得的平衡态改变(沿球面弧)。
类似地,当在一个非线性屈曲分析中应用弧长方法来在某些已知的容限范围内确定一个极限载荷或位移的值可能是困难的。
通常你不得不通过尝试—错误=再尝试调整参考弧长半径(使用NSUBST来在极限点处获得一个解。
应用带二分〔AUTOTS的标准NEWTON-RAPHSO迭代来确定非线性载荷屈曲临界负载的值可能会更方便。
通常你应当避免和弧长方法一起使用JCG或者PCG求解器〔EQSLV,因为弧长方法可能会产生一个负定刚度矩阵(负的主对角线),用这些求解器其可能导致求解失败。
在任何载荷步的开始你可以从Newton-Raphson 迭代方法到弧长方法自由转换。
然而,要从弧长到Newton-Raphson 迭代转换,你必须终止分析然后重起动,且在重起动的第一个载荷步中去杀死弧长方法〔ARCLEN,OFF〕。
一个弧长求解在这些情况下终止:当由ARCTRMI或NCNV命令定义的极限达到时。
当在所施加的载荷范围内求解收敛时。
当你使用一个放弃文件时(Jobname.ABT)。
使用载荷位一移曲线作为用于评价和调整你的分析以帮助你获得所需结果的准则。
通常对于每一个分析都绘制你的载荷一偏移曲线(采用POST26命令)是一种好的作法。
经常地,一个不成功的弧长分析可以归因于弧长半径或者太大或者太小。
沿载荷一偏移曲线原路返回的“回漂”是一种由于使用太大或太小弧长半径导致的典型难点。