电容失效分析

合集下载

电容失效切片分析流程

电容失效切片分析流程

电容失效切片分析流程
电容失效切片分析通用流程
万用表测量是否短路
金相观察
外观是否完好

裂纹

优先选择破损侧面切片
平行于电极层


继续切
转90°切

贯穿裂纹从侧面切
优先选裂纹面切


是否存在板级裂纹


板级应力导致
寻找烧毁点,必要时转90°
是否存在板级裂纹


板级应力导致
寻找烧毁点,必要时转90°

从侧面切

是否存在板级裂纹
板级原因导致失效

平行于电极层



继续切找烧毁点
转90°切找烧毁点
失效背景收集
收样
创见未来。

电容阻值降低、漏电失效分析

电容阻值降低、漏电失效分析

电容阻值降低、漏电失效分析2014-08-02摘要:本文通过无损分析、电性能测试、结构分析和成分分析,得出导致电容阻值下降、电容漏电是多方面原因共同作用的结果:(1)MLCC本身内部存在介质空洞(2)端电极与介质结合处存在机械应力裂纹(3)电容外表面存在破损。

1.案例背景MLCC电容在使用过程中出现阻值降低、漏电失效现象。

2.分析方法简述透视检查NG及OK样品均未见裂纹、孔洞等明显异常。

图1.样品X射线透视典型照片从PCBA外观来看,组装之后的电容均未受到严重污染,但NG样品所受污染程度比OK样品严重,说明电容表面的污染可能是引起电容失效的潜在原因。

EDS能谱分析可知,污染物主要为助焊剂与焊锡的混合物,金属锡所占的比例约为16(wt.)%。

从电容外观来看,所有样品表面均未见明显异常,如裂纹等。

图2.电容典型外观照片利用数字万用表分别测试NG电容和OK电容的电阻,并将部分失效样品机械分离、清洗后测试其电阻,对电容进行失效验证。

电学性能测试表明,不存在PCB上两焊点间导电物质(污染物)引起失效的可能性,失效部位主要存在于电容内部。

对样品进行切片观察,OK样品和NG样品内部电极层均连续性较差,且电极层存在孔洞,虽然电极层孔洞的存在会影响电容电学性能,但不会造成电容阻值下降,故电极层孔洞不是电容漏电的原因。

对NG样品观察,发现陶瓷介质中存在孔洞,且部分孔洞贯穿多层电极,孔洞内部可能存在水汽或者离子(外来污染),极易导致漏电,而漏电又会导致器件内局部发热,进一步降低陶瓷介质的绝缘性从而导致漏电的增加,形成恶性循环;左下角端电极与陶瓷介质结合处存在机械应力裂纹,可导电的污染物可夹杂于裂纹中,导致陶瓷介质的介电能力下降而发生漏电,使绝缘阻值下降,此外裂纹内空气中的电场强度较周边高,而其击穿电场强度却远比周边绝缘介质低,从而电容器在后续工作中易被击穿,造成漏电;除此之外,电容表面绝缘层存在严重破损,裂纹已延伸至内电极,加之表面污染物的存在,在恶劣潮湿环境下就会与端电极导通,形成漏电。

电容器失效模式和失效机理

电容器失效模式和失效机理
B、引线断裂失效
金属化纸介电容器在高湿环境中工作时,电容器正端引线根部会遭到严重腐蚀,这种电解性腐蚀导致引线机械强度降低,严重时可造成引线断裂失效.
(6)、铝电解电容器的失效机理
铝电解电容器正极是高纯铝,电介质是在金属表面形成的三氧化二铝膜,负极是黏稠状的电解液,工作时相当一个电解槽.铝电解电容器常见失效模式有:漏液、爆炸、开路、击穿、电参数恶化等,有关失效机理分析如下.
产生低电平失效的原因主要在于电容器引出线与电容器极板接触不良,接触电阻增大,造成电容器完全开路或电容量幅度下降.
精密聚苯乙烯薄膜电容器一般采用铝箔作为极板,铜引出线与铝箔极板点焊在一起.铝箔在空气中极易氧化;极板表面生成一层氧化铝半导体薄膜,在低电平条件下氧化膜层上的电压不足以把它击穿,因而铝箔间形成的间隙电容量的串联等效容量,间隙电容量愈小,串联等效容量也愈小.因此,低电平容量取决于极板表面氧化铝层的厚薄,氧化铝层愈厚,低电平条件下电容器的电容量愈小.此外,电容器在交流电路中工作时,其有效电容量会因接触电阻过大而下降,接触电阻很大时有效电容量可减小到开路的程度.即使极板一引线间不存在导电不良的间隔层,也会产生这种后果.
② 电解液沿引线渗漏,使引线遭受化学腐蚀;
③ 引线在电容器制造过程中受到机械损伤;
④ 引线的机械强度不够.
(6) 引起电容器绝缘子破裂的主要原因
① 机械损伤;
② 玻璃粉绝缘子烧结过程中残留热力过大;
③ 焊接温度过高或受热不均匀.
(7) 引起绝缘子表面飞弧的主要原因
① 绝缘了表面受潮,使表面绝缘电阻下降;
⑧ 在机械应力作用下电介质瞬时短路.
(2) 引起电容器开路的主要失效机理
① 引线部位发生“自愈“,使电极与引出线绝缘;

电容失效分析

电容失效分析

陶瓷电容失效分析:多层片状陶介电容器由陶瓷介质、端电极、金属电极三种材料构成,失效形式为金属电极和陶介之间层错,电气表现为受外力(如轻轻弯曲板子或用烙铁头碰一下)和温度冲击(如烙铁焊接)时电容时好时坏。

多层片状陶介电容器具体不良可分为:1、热击失效2、扭曲破裂失效3、原材失效三个大类(1)热击失效模式:热击失效的原理是:在制造多层陶瓷电容时,使用各种兼容材料会导致内部出现张力的不同热膨胀系数及导热率。

当温度转变率过大时就容易出现因热击而破裂的现象,这种破裂往往从结构最弱及机械结构最集中时发生,一般是在接近外露端接和中央陶瓷端接的界面处、产生最大机械张力的地方(一般在晶体最坚硬的四角),而热击则可能造成多种现象:第一种是显而易见的形如指甲狀或U-形的裂縫第二种是隐藏在内的微小裂缝第二种裂缝也会由裸露在外的中央部份,或陶瓷/端接界面的下部开始,并随温度的转变,或于组装进行时,顺着扭曲而蔓延开来(见图4)。

第一种形如指甲狀或U-形的裂縫和第二种隐藏在内的微小裂缝,两者的区别只是后者所受的张力较小,而引致的裂缝也较轻微。

第一种引起的破裂明显,一般可以在金相中测出,第二种只有在发展到一定程度后金相才可测。

(2)扭曲破裂失效此种不良的可能性很多:按大类及表现可以分为两种:第一种情况、SMT阶段导致的破裂失效当进行零件的取放尤其是SMT阶段零件取放时,取放的定中爪因为磨损、对位不准确,倾斜等造成的。

由定中爪集中起来的压力,会造成很大的压力或切断率,继而形成破裂点。

这些破裂现象一般为可见的表面裂缝,或2至3个电极间的内部破裂;表面破裂一般会沿着最强的压力线及陶瓷位移的方向。

真空检拾头导致的损坏或破裂﹐一般会在芯片的表面形成一个圆形或半月形的压痕面积﹐并带有不圆滑的边缘。

此外﹐这个半月形或圆形的裂缝直经也和吸头相吻合。

另一个由吸头所造成的损环﹐因拉力而造成的破裂﹐裂缝会由组件中央的一边伸展到另一边﹐这些裂缝可能会蔓延至组件的另一面﹐并且其粗糙的裂痕可能会令电容器的底部破损。

电子产品组装中陶瓷电容常见失效模式及改善建议

电子产品组装中陶瓷电容常见失效模式及改善建议

电子产品组装中陶瓷电容常见失效模式及改善建议电子产品中常见的陶瓷电容失效模式有漏电、断线、破裂等。

以下是对这些失效模式的分析以及改善建议。

1.漏电:陶瓷电容的漏电是指电容器在工作过程中出现电流通过绝缘材料,导致电容器失效。

这可能是由于陶瓷电容的绝缘层质量不良引起的,也可能是由于电容器使用环境中的湿度过高引起的。

改善建议:a.选择高质量的陶瓷电容器,确保陶瓷材料具有良好的绝缘性能。

b.控制电容器使用环境中的湿度,避免湿度过高导致漏电。

2.断线:陶瓷电容器的断线通常发生在电容器的引线位置。

这可能是由于工艺不良引起的,也可能是由于电容器的引线材料质量不良引起的。

改善建议:a.提高制造工艺的质量控制,确保电容器引线与电容体之间的连接牢固可靠。

b.选择高质量的引线材料,确保引线的连接性能良好。

3.破裂:陶瓷电容器的破裂通常发生在电容器的外壳上。

这可能是由于外界应力过大引起的,也可能是由于制造工艺不良引起的。

改善建议:a.设计和选择合适尺寸的陶瓷电容器,以满足实际应用场景的需求,避免外界应力过大。

b.提高制造工艺的质量控制,确保电容器外壳的强度满足要求。

此外,还有几个改善建议适用于以上三种常见失效模式:a.进行多次的温度循环测试,以确保陶瓷电容能够在不同温度范围下稳定工作。

b.对陶瓷电容器进行严格的耐压测试,以确保其能够在额定电压范围内正常工作。

c.对陶瓷电容器进行振动和冲击测试,以确保其能够在不同振动和冲击条件下正常工作。

综上所述,在电子产品的组装中,陶瓷电容常见的失效模式是漏电、断线和破裂。

为了改善这些失效模式,应选择质量优良的陶瓷材料和引线材料,改善制造工艺的质量控制,并进行必要的温度循环、耐压、振动和冲击测试等。

这些措施可以确保陶瓷电容器在电子产品中的可靠性和稳定性。

AVX钽电容失效原因分析

AVX钽电容失效原因分析

A VX 钽电容失效原因分析
1.车间在DF1725调试过程中有3块主控板上出现A VX TAJC-106E (批号T0751)钽电容烧毁现象。

该钽电容用于5V 的集成电路电源稳压滤波,且极性没有错误。

证明不是使用方法有错误。

2.咨询深圳华光代理商,代理声称:“该标称25V 的钽电容,可以在标称的1.2-1.3倍电压下使用。

3.从库房领取10只批号T0751的TAJC-106E 进行耐压实验。

3.1 第一只在20V 长期加电,没有问题,但在电压加到22.5V 电容烧毁。

3.2 其余在30V (25*1.2)长期加电,没有问题。

3.3 将其中一只加5V 反向电压,钽电容缓慢烧毁。

4.将车间调试过程中烧毁的3只电容及加30V 电压能正常工作的电容外面封装打开,通过对比发现烧毁的3只电容为内部封装极性装反了。

5.下面为打开后的图片
5.1钽电容图片
5.2 正常的钽电容刨面
5.3 失效电容刨面
6.结论: 通过对比未失效钽电容和失效钽电容的刨面,发现失效电容为内封装极性反了,导致上电后烧毁。

电容器的常见失效模式和失效机理

电容器的常见失效模式和失效机理

电容器的常见失效模式和失效机理电容器的常见失效模式有――击穿短路;致命失效――开路;致命失效――电参数变化(包括电容量超差、损耗角正切值增大、绝缘性能下降或漏电流上升等;部分功能失效――漏液;部分功能失效――引线腐蚀或断裂;致命失效――绝缘子破裂;致命失效――绝缘子表面飞弧;部分功能失效引起电容器失效的原因是多种多样的。

各类电容器的材料、结构、制造工艺、性能和使用环境各不相同,失效机理也各不一样。

各种常见失效模式的主要产生机理归纳如下。

3.1失效模式的失效机理3.1.1引起电容器击穿的主要失效机理①电介质材料有疵点或缺陷,或含有导电杂质或导电粒子;②电介质的电老化与热老化;③电介质内部的电化学反应;④银离子迁移;⑤电介质在电容器制造过程中受到机械损伤;⑥电介质分子结构改变;⑦在高湿度或低气压环境中极间飞弧;⑧在机械应力作用下电介质瞬时短路。

3.1.2引起电容器开路的主要失效机理①引线部位发生“自愈“,使电极与引出线绝缘;②引出线与电极接触表面氧化,造成低电平开路;③引出线与电极接触不良;④电解电容器阳极引出箔腐蚀断裂;⑤液体电解质干涸或冻结;⑥机械应力作用下电介质瞬时开路。

3.1.3引起电容器电参数恶化的主要失效机理①受潮或表面污染;②银离子迁移;③自愈效应;④电介质电老化与热老化;⑤工作电解液挥发和变稠;⑥电极腐蚀;⑦湿式电解电容器中电介质腐蚀;⑧杂质与有害离子的作用;⑨引出线和电极的接触电阻增大。

3.1.4引起电容器漏液的主要原因①电场作用下浸渍料分解放气使壳内气压上升;②电容器金属外壳与密封盖焊接不佳;③绝缘子与外壳或引线焊接不佳;④半密封电容器机械密封不良;⑤半密封电容器引线表面不够光洁;⑥工作电解液腐蚀焊点。

3.1.5引起电容器引线腐蚀或断裂的主要原因①高温度环境中电场作用下产生电化学腐蚀②电解液沿引线渗漏,使引线遭受化学腐蚀;③引线在电容器制造过程中受到机械损伤;④引线的机械强度不够。

贴片电容失效分析

贴片电容失效分析

由于贴片电容的材质是高密度、硬质、易碎和研磨的MLCC,所以在使用过程中,需要十分谨慎。

经有关工程师分析,以下几种情况容易造成贴片电容的断裂及失效:1、贴片电容在贴装过程中,若贴片机吸嘴头压力过大发生弯曲,容易产生变形导致裂纹产生;2、如该颗料的位置在边缘部份或靠近边源部份,在分板时会受到分板的牵引力而导致电容产生裂纹最终而失效.建议在设计时尽可能将贴片电容与分割线平行排放.当我们处理线路板时,建议采用简单的分割器械处理,如我们在生产过程中,因生产条件的限制或习惯用手工分板时,建议其分割槽的深度控制在线路板本身厚度的1/3~1/2之间,当超过1/2时,强烈建议采用分割器械处理,否则,手工分板将会大大增加线路板的挠曲,从而会对相关器件产生较大的应力,损害其可靠性.3、焊盘布局上与金属框架焊接端部焊接过量的焊锡在焊接时受到热膨胀作用力,使其产生推力将电容举起,容易产生裂纹.4、在焊接过程中的热冲击以及焊接完后的基板变形容易导致裂纹产生:电容在进行波峰焊过程中,预热温度,时间不足或者焊接温度过高容易导致裂纹产生,5、在手工补焊过程中.烙铁头直接与电容器陶瓷体直接接触,容量导致裂纹产生。

焊接完成后的基板变型(如分板,安装等)也容易导致裂纹产生。

多层陶瓷电容(MLCC)应用注意事项一、储存为了保持MLCC的性能,防止对MLCC的不良影响储存时注意以下事项:1.室内温度5~40℃,温度20%~70%RH;2.无损害气体:含硫酸、氨、氢硫化合物或氢氯化合物的气体;3.如果MLCC不使用,请不要拆开包装。

如果包装已经打开,请尽可能地重新封上。

缩带装产品请避免太阳光直射,因为太阳光直射会使MLCC老化并造成其性能的下降。

请尽量在6个月内使用,使用之前请注意检查其可焊性。

二、物工操作MLCC是高密度、硬质、易碎和研磨的材质,使用过程中,它易被机械损伤,比如开裂和碎裂(内部开裂需要超声设备检测)。

MLCC在手持过程中,请注意避免污染和损伤。

MLCC电容失效分析总结

MLCC电容失效分析总结

MLCC Capacitor Failure Analysis Summary WANG Tianwu
( National Testing and Inspection Center for Radio & TV Products of Chinaꎬ Beijing 100015ꎬ China) Abstract:In the of this document based on the construction of MLCC ( Multi - layer Ceramic Capacitors) ꎬ expounded the SOP of its manufacturing techniqueꎬ especially the invalid mode and the principle ꎬ summarized the methods of FA( failure analysis) . Key words:the construction of MLCCꎻ the SOP of its manufacturing techniqueꎻ the invalid mode and the principleꎻ the methods of FA
1 引言
2016 年 9 月至今ꎬ 我司陆续收到客户退 还 的 AP130 失效样品ꎬ经供应商和公司内部分析发现ꎬ 绝大多数的样品 失 效 由 MLCC ( Multiple Layer Ce ̄ ramic Capacitor) 失效引起ꎮ
MLCC 因其优良的电气性能ꎬ在电路设计中得 到了广泛的使用ꎬ因其产品的自身特点具有十分优 良的可靠性ꎬ可以长时间稳定工作ꎮ 但在实际产品 的使用中ꎬMLCC 电容确也是常见的电子电路中失 效率相对较高的一种电子元器件ꎮ

电容阻值降低漏电失效分析

电容阻值降低漏电失效分析

电容阻值降低漏电失效分析电容阻值的降低和漏电失效是电容器在使用过程中可能出现的一些问题,下面将对这两个问题进行分析。

一、电容阻值降低电容阻值的降低可能由以下原因引起:1.电容器老化:长时间使用后,电容器内部的电解液可能会发生变质,导致电容器内部的电极和电介质之间的电阻值增加,从而导致电容阻值降低。

2.温度变化:电容器的温度变化会导致电容极板的线性膨胀或收缩,进而导致电容极板之间的距离变化,从而改变了电容阻值。

3.电压过高:当电容器所承受的电压超过其耐压范围时,电容器可能会发生击穿,导致电容阻值降低。

4.外部电磁干扰:电容器的阻值可能会受到外部电磁干扰的影响,例如强磁场或高频电磁波等,导致电容阻值降低。

5.安装不当:如果电容器的安装方式不正确,例如固定方式不稳定、引线接触不良等,都可能导致电容阻值降低。

针对以上原因,可以采取以下措施来避免电容阻值的降低:1.定期检测:定期检测电容器的阻值情况,一旦发现阻值降低,应及时更换电容器。

2.选择合适温度范围:根据使用环境选择合适的电容器,以避免温度变化对电容阻值的影响。

3.控制电压范围:确保电容器所承受的电压不超过其额定值,避免电容击穿。

4.防止电磁干扰:采取相应的屏蔽措施,以减小外部电磁干扰对电容器的影响。

5.安装稳固:确保电容器的固定方式牢固可靠,引线接触良好,以避免安装不当对电容阻值的影响。

二、漏电失效电容器的漏电失效指的是电容器内部电介质的绝缘性能下降,导致漏电现象的发生。

漏电失效可能由以下原因引起:1.电容器老化:长时间使用后,电容器的绝缘性能可能会降低,导致电容器内部发生漏电。

2.温度变化:电容器的温度变化会导致电容极板的线性膨胀或收缩,进而导致电容极板之间的绝缘距离变化,从而增加了电容器的漏电风险。

3.电压过高:电容器所承受的电压超过其耐压范围时,电容器内部电介质可能会被击穿,导致漏电失效。

4.湿度变化:电容器工作环境的湿度变化可能导致电容器绝缘性能下降,进而导致漏电现象的发生。

贴片电容裂纹失效原因分析

贴片电容裂纹失效原因分析

贴片电容裂纹失效原因分析贴片电容是电子设备中常见的电子元器件之一,它广泛应用于电子电路中,主要用于过滤、耦合、绝缘电容等方面。

然而,在使用过程中,贴片电容有时会出现裂纹失效的情况。

本文将对贴片电容裂纹失效的原因进行分析。

一、外力作用:贴片电容在使用过程中容易受到外界的机械振动、冲击等力的作用。

当贴片电容所承受的应力超过其材料的耐力极限时,就会发生裂纹失效。

例如,在运输、组装、焊接等过程中,贴片电容可能受到机械冲击而导致裂纹失效。

二、热膨胀不匹配:贴片电容由多种材料组成,如电极材料、介质材料等。

这些材料在使用过程中产生热膨胀时,可能会存在不匹配的情况。

当贴片电容的不同部分存在热膨胀不匹配时,就会产生应力集中,从而导致裂纹失效。

此外,贴片电容在焊接过程中也会受到高温的影响,当焊接温度过高或焊接时间过长时,可能会导致贴片电容内部的材料发生热膨胀不一致,从而引发裂纹失效。

三、环境因素:贴片电容的失效与环境因素密切相关。

在高温、高湿度、高盐度、高气压等特殊环境下,贴片电容的材料容易产生膨胀或腐蚀,导致内部应力积累,从而引发裂纹失效。

另外,在一些粗糙表面的基板上安装贴片电容,其间发生微小位移时,也会形成应力集中而导致裂纹失效。

四、焊接过程:贴片电容在焊接过程中容易受到过温或焊接不良的影响,从而导致裂纹失效。

焊接温度过高或焊接时间过长,可能会引起焊点附近的材料热膨胀,产生应力集中;焊接温区宽度不均匀、接触不良或焊接剂残留等因素,也会对贴片电容产生不良影响。

五、材料质量:贴片电容的材料质量是决定其裂纹失效的重要因素之一、如果材料本身质量不稳定、工艺控制不当或混入杂质,就容易降低贴片电容的抗裂性能和可靠性。

六、设计问题:贴片电容的设计问题也会引发裂纹失效。

例如,结构设计不合理、焊盘过小、应力集中等因素,都可能导致贴片电容裂纹失效。

综上所述,贴片电容裂纹失效的原因主要包括外力作用、热膨胀不匹配、环境因素、焊接过程、材料质量和设计问题。

MLCC电容烧损失效机理分析及改善建议

MLCC电容烧损失效机理分析及改善建议

MLCC电容烧损失效机理分析及改善建议1.失效背景马达产品在客户端运行一段时间后,发生功能失效。

经过初步检测,新阳检测中心(下文简称中心)判断该问题是组件中的MLCC电容发生失效导致的。

2.检测分析2.1失效样品的外观分析电容有明显开裂现象,但电容表面整体未见烧损碳化痕迹。

2.2电容切片断面的分析经过边研磨边观察的方式分析得出,在电容电极两端均检出有约45°的裂纹。

同时,在PCB层有烧损与碳化的现象。

并且电容内部电极之间有打火烧损异常。

电容研磨至陶瓷层刚去掉的位置时观察,烧损主要集中于PCB的PAD 位置,电容面未见明显烧灼异常,电容两端有明显的约45°裂纹异常。

电容研磨至约1/3位置时观察,PCB烧黑碳化、分层,电容面未见明显烧灼异常,电容两端有明显的约45°裂纹异常,且呈现碎裂状态。

电容研磨至约1/2位置时观察,PCB烧黑碳化、分层,电容面有明显开裂,烧损区域,电容两端有明显的约45°裂纹异常,且呈现碎裂状态。

根据电容断面烧损区域局部图显示,说明层间发生了短路异常。

根据烧损区域SEM分析图显示,说明异常位置存在开裂状态。

3.失效机理分析3.1不良分析电容失效特征:①电容端电极位置从外向内贯穿性45°裂纹,且裂纹延伸至内电极层;②电容内部烧损位置,有贯穿性裂纹;③PCB基材位置受到了高热影响,发生烧损、碳化、分层,电容没有比较严重的爆裂及烧灼点。

失效原因分析:①电容端电极45°裂纹,是典型的应力裂纹。

且该裂纹从外向内贯穿,电容烧损点呈现非聚集性、非点扩散性特征。

因此,判断该电容先前已有裂纹产生。

②裂纹在后续的过程中延展、贯穿,导致内部电极层错位短路,形成电阻效应,产生高热,使PCB基材高温碳化、分层。

③电容内部在电流作用下发生烧损,造成内部电极片层产生裂纹及烧损点。

3.2改善建议针对电容失效机理的分析,电容应力裂纹可能是失效的根本原因。

电解电容寿命的失效分析

电解电容寿命的失效分析
. 通过采用整体绕注有电极的酚醛塑料盖和双重的特制的封垫与铝壳紧密咬合,可大大减少电解液的损失。
电解液通过密封垫的蒸发决定了长寿命的电解电容工作时间。当电容的电解液蒸发到一定程度,电容将最终失效(这个结果会因内部温升而加速)。Evox Rifa公司设计的双层密封系统可减缓电解液蒸发速度,使电容达到其最长的工作寿命。
通过降低ESR值,可减少电容内由纹波电流引起的内部温升。这可通过采用多个电极引接片、激光焊接电极等措施实现。
ESR值和纹波电流决定了电容的温升。促使电容能有满意的ESR值的主要措施之一是:通常用一个或多个金属电极引接片连接外部电极和芯包,降低芯包和引脚之间的阻抗。芯包上的电极引接片越多,电容的ESR值越低。借助于激光焊接技术,可在芯包上加上更多的电极引接片,因此使电容能达到较低的ESR值。这也意味着电容能经受更高的纹波电流和具有较低内部温升,也就是说更长的工作寿命。这样做也有利于提高电容抗击震动的能力,否则有可能导致内部短路、高的漏电流、容值损失、ESR值的上升和电路开路。
另外将延长的阴极铝箔与电容器铝壳直接接触,也是很好的降低热阻的方法。同时应注意铝壳会因此带负电,不能作负极连接。
电容必须正确安装才能达到它的设计工作寿命。例如:RIFA PEH169系列和PEH200系列应该竖直向上安装或者水平安装。同时确保安全阀朝上,这样热的电解液及蒸气才能在电容失效的情况下,从安全阀顺利排出。
结语
综上所述,在避免非正常失效的情况下,选择正确的应用条件和环境,电解电容的寿命是可以保障的。
Lop = A x 2 Hours (3)
B = 参考温度值(典型值为85 ℃)
A = 参考温度下的电容寿命(根据电容器直径的不同而变化)
C = 导致电容寿命减少一半所需的温升度数

电容失效的原因分析

电容失效的原因分析

电容失效的原因分析
电容失效的原因可能有以下几种:
热击穿:电容器内部的电解液、电极材料、以及由这些材料组成的连接部分都会在运行过程中产生热量,若散热不良,会导致热击穿而失效。

电击穿:电容器本身的绝缘性能不好,或者存在机械损伤、化学腐蚀等情况,会导致电介质分解、气体生成等,降低电容器的击穿强度,最终导致失效。

机械损坏:电容器在使用过程中,受到各种应力的作用,比如机械振动、冲击、挤压等,可能会导致电容器内部结构出现缺陷,降低电容器的性能和寿命。

介质老化:电容器中的电解液、电极材料等在长期使用过程中会发生老化,导致电容器性能下降,最终失效。

过压击穿:当电容器的工作电压超过其额定电压时,会导致电容器内部结构损坏,降低电容器的性能和寿命。

欠压击穿:当电容器的工作电压低于其额定电压时,会导致电容器内部的电解液分解、气体生成等,降低电容器的击穿强度,最终导致失效。

引线断裂:电容器中的引线部分若存在焊接不良、机械应力等问题,会导致引线断裂,最终导致电容失效。

短路:电容器内部的电极板之间发生短路现象,导致电容器无法正常工作。

以上是电容失效的主要原因,为了提高电容器的可靠性和寿命,需要在设计、制造、使用和维护等环节中加强质量控制和检测。

陶瓷电容失效分析

陶瓷电容失效分析

一.样品讯息如下:1、品名:1210F226M250NT2、样品数量:若干3、不良模式:产品短路失效二.分析如下:1、外观确认:对客户提供不良样品任取2pcs样品进行外观确认,具体现象如下:1#样品2#样品确认结果:2pcs样品外观存在裂纹。

2、电性能测试:对2pcs样品及5pcs其他品牌样品进行电性能测量,具体测量数据见下表:NO Cap(uF)DF(%)IR(MΩ)Spec 17.6~26.4 ≤5.0≥22.71#不良品--- ---- OVCURR2#不良品--- ---- OVCURRTest equipment: Cap/DF: HP4288A;IR: Agilent 4339BTest condition: Cap/DF: 0.5Vrms, 120Hz;IR: 25V, 60sec测量结果:2pcs样品电性能均不合格;客户提供5pcs其他品牌样品电性能均合格。

3、DPA分析:对2pcs不良样品、取1pcs其他品牌样品进行DPA研磨,具体研磨结果如下:1#样品1#样品DPA研磨结果:2pcs样品经过研磨发现样品内部均存在烧毁的痕迹(镍熔融形成的金属球),从研磨的DPA样式看,内部存在裂纹,1#样品的裂纹在该切片位置未跨越烧毁区域,2#样品跨越烧毁区域。

造成此类不良的原因可能为机械应力导致产品内部产生裂纹,进而通电烧毁失效。

4、机械应力裂纹产生原理MLCC的陶瓷体是一种脆性材料。

如果PCB板受到弯曲时,它会受到一定的机械应力冲击。

当应力超过MLCC的瓷体强度时,弯曲裂纹就会出现。

因此,这种弯曲造成的裂纹只出现在焊接之后。

在Bending测试中的典型失效模式:PCB板弯曲时在不同位置受到的应力大小不同:元件装配接近分板点:应力大小对比:1>2≈3>4>5PCB板弯曲导致的开裂(产品摆放方向):开裂产生于产品接近或者垂直于分板:分板线焊锡量过多引起PCB板弯曲导致开裂:过多的焊锡量5、结论:5.1、2pcs样品外观存在裂纹;5.2、2pcs样品电性能均不合格;5.3、2pcs样品经过研磨发现样品内部存在烧毁痕迹,造成此类不良的原因可能为机械应力导致产品内部产生裂纹,进而通电烧毁失效。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电容失效分析
电子元件的失效主要由于电应力(电压、电流、功率、频率、脉冲宽度等),
环境应力(高温、低温、潮湿、气压等)及电磁干扰等。

而电容失效在原因很多很多时候并不是电容的质量不好而是有很多因素造成以下是一人之言请各位指正并探讨:
1 失效主要原因:
大电流冲击失效、高电压、热击穿、高温、高潮、噪声干扰。

2 电容质量控制要求:
(1) 注意降额使用,降额值应根据不同电容和工作状态选取,注意低电平失效
和交流工作状态下的失效。

(2) 对于高效或高稳定要求的电路中,选择电容要注意选漏电流小的电容。

(3)在潮湿环境下,不要使用云母电容器,易受潮。

(4)在高频条件下,应选取电容介质损耗小的电容器。

(5)在高温环境中,最好不用铝电解电容,而用聚丙涤烯纶或云母电容器。

相关文档
最新文档