史上最全半导体—导带价带禁带宽度一览表

合集下载

导带、价带、禁带

导带、价带、禁带

【半导体】(1)导带conduction bandA解释导带是由自由电子形成的能量空间。

即固体结构内自由运动的电子所具有的能量范围。

对于金属,所有价电子所处的能带就是导带。

对于半导体,所有价电子所处的能带是所谓价带,比价带能量更高的能带是导带。

在绝对零度温度下,半导体的价带(valence band)是满带(见能带理论),受到光电注入或热激发后,价带中的部分电子会越过禁带(forbidden band/band gap)进入能量较高的空带,空带中存在电子后即成为导电的能带——导带。

B导带的涵义:导带是半导体最外面(能量最高)的一个能带,是由许多准连续的能级组成的;是半导体的一种载流子——自由电子(简称为电子)所处的能量范围。

导带中往往只有少量的电子,大多数状态(能级)是空着的,则在外加作用下能够发生状态的改变,故导带中的电子能够导电,即为载流子。

导带底是导带的最低能级,可看成是电子的势能,通常,电子就处于导带底附近;离开导带底的能量高度,则可看成是电子的动能。

当有外场作用到半导体两端时,电子的势能即发生变更,从而在能带图上就表示出导带底发生倾斜;反过来,凡是能带发生倾斜的区域,就必定存在电场(外电场或者内建电场)。

导带底到真空中自由电子能级的间距,称为半导体的亲和能,即是把一个电子载流子从半导体内部拿到真空中去所需要的能量。

这是半导体的一个特征参量。

(2)价带与禁带价带(valence band)或称价电带,通常是指半导体或绝缘体中,在0K时能被电子占满的最高能带。

对半导体而言,此能带中的能级基本上是连续的。

全充满的能带中的电子不克不及在固体中自由运动。

但若该电子受到光照,它可吸收足够能量而跳入下一个容许的最高能区,从而使价带酿成部分充填,此时价带中留下的电子可在固体中自由运动。

价带中电子的自由运动对于与晶体管有关的现象是很重要的。

被价电子占据的允带(低温下通常被价电子占满)。

禁带,英文名为:Forbidden Band 在能带结构中能态密度[1]为零的能量区间。

禁带宽度

禁带宽度

半导体禁带宽度(1)能带和禁带宽度的概念:对于包括半导体在内的晶体,其中的电子既不同于真空中的自由电子,也不同于孤立原子中的电子。

真空中的自由电子具有连续的能量状态,即可取任何大小的能量;而原子中的电子是处于所谓分离的能级状态。

晶体中的电子是处于所谓能带状态,能带是由许多能级组成的,能带与能带之间隔离着禁带,电子就分布在能带中的能级上,禁带是不存在公有化运动状态的能量范围。

半导体最高能量的、也是最重要的能带就是价带和导带。

导带底与价带顶之间的能量差即称为禁带宽度(或者称为带隙、能隙)。

禁带中虽然不存在属于整个晶体所有的公有化电子的能级,但是可以出现杂质、缺陷等非公有化状态的能级——束缚能级。

例如施主能级、受主能级、复合中心能级、陷阱中心能级、激子能级等。

顺便也说一句,这些束缚能级不只是可以出现在禁带中,实际上也可以出现在导带或者价带中,因为这些能级本来就不属于表征晶体公有化电子状态的能带之列。

(2)禁带宽度的物理意义:禁带宽度是半导体的一个重要特征参量,其大小主要决定于半导体的能带结构,即与晶体结构和原子的结合性质等有关。

半导体价带中的大量电子都是价键上的电子(称为价电子),不能够导电,即不是载流子。

只有当价电子跃迁到导带(即本征激发)而产生出自由电子和自由空穴后,才能够导电。

空穴实际上也就是价电子跃迁到导带以后所留下的价键空位(一个空穴的运动就等效于一大群价电子的运动)。

因此,禁带宽度的大小实际上是反映了价电子被束缚强弱程度的一个物理量,也就是产生本征激发所需要的最小能量。

Si的原子序数比Ge的小,则Si的价电子束缚得较紧,所以Si的禁带宽度比Ge的要大一些。

GaAs的价键还具有极性,对价电子的束缚更紧,所以GaAs的禁带宽度更大。

GaN、SiC等所谓宽禁带半导体的禁带宽度更要大得多,因为其价键的极性更强。

Ge、Si、GaAs、GaN和金刚石的禁带宽度在室温下分别为0.66eV、1.12 eV、1.42 eV、3.44 eV和5.47 eV。

[资料]禁带、导带、价带

[资料]禁带、导带、价带

禁带、价带和导带一、禁带、禁带宽度及其物理意义1.1 基本信息禁带是指在能带结构中能态密度为零的能量区间。

常用来表示价带和导带之间的能态密度为零的能量区间。

禁带宽度的大小决定了材料是具有半导体性质还是具有绝缘体性质。

半导体的禁带宽度较小,当温度升高时,电子可以被激发传到导带,从而使材料具有导电性。

绝缘体的禁带宽度很大,即使在较高的温度下,仍是电的不良导体。

禁带宽度(Band gap)是指一个能带宽度(单位是电子伏特(ev)),固体中电子的能量是不可以连续取值的,而是一些不连续的能带,要导电就要有自由电子存在,自由电子存在的能带称为导带(能导电),被束缚的电子要成为自由电子,就必须获得足够能量从而跃迁到导带,这个能量的最小值就是禁带宽度。

例如:锗的禁带宽度为0.66ev;硅的禁带宽度为1.12ev;砷化镓的禁带宽度为1.46ev;氧化亚铜的禁带宽度为2.2eV。

禁带非常窄的一般是金属,反之一般是绝缘体。

半导体的反向耐压,正向压降都和禁带宽度有关。

1.2 禁带宽度的物理意义禁带宽度是半导体的一个重要特征参量,其大小主要决定于半导体的能带结构,即与晶体结构和原子的结合性质等有关。

半导体价带中的大量电子都是价键上的电子[1],不能够导电,即不是载流子。

只有当价电子跃迁到导带(即本征激发)而产生出自由电子和空穴[2],才能够导电。

空穴实际上也就是价电子跃迁到导带以后所留下的价键空位(一个空穴的运动就等效于一大群价电子的运动)。

因此,禁带宽度的大小实际上是反映了价电子被束缚强弱程度的一个物理量,也就是产生本征激发所需要的最小能量。

[1] 价电子,指原子核外电子中能与其他原子相互作用形成化学键的电子。

主族元素的价电子就是主族元素原子的最外层电子;过渡元素的价电子不仅是最外层电子,次外层电子及某些元素的倒数第三层电子也可成为价电子,如有时也包括次外层的D电子,对于镧系元素,还有倒数第三层的F电子[2] 自由电子和空穴称为载流子,在电场力作用下的运动称为漂移运动,载流子定向的漂移运动形成了电流。

(完整版)半导体禁带宽度

(完整版)半导体禁带宽度

半导体禁带宽度目录(1)能带和禁带宽度的概念:(2)禁带宽度的物理意义:(1)能带和禁带宽度的概念:对于包括半导体在内的晶体,其中的电子既不同于真空中的自由电子,也不同于孤立原子中的电子。

真空中的自由电子具有连续的能量状态,即可取任何大小的能量;而原子中的电子是处于所谓分离的能级状态。

晶体中的电子是处于所谓能带状态,能带是由许多能级组成的,能带与能带之间隔离着禁带,电子就分布在能带中的能级上,禁带是不存在公有化运动状态的能量范围。

半导体最高能量的、也是最重要的能带就是价带和导带。

导带底与价带顶之间的能量差即称为禁带宽度(或者称为带隙、能隙)。

禁带中虽然不存在属于整个晶体所有的公有化电子的能级,但是可以出现杂质、缺陷等非公有化状态的能级——束缚能级。

例如施主能级、受主能级、复合中心能级、陷阱中心能级、激子能级等。

顺便也说一句,这些束缚能级不只是可以出现在禁带中,实际上也可以出现在导带或者价带中,因为这些能级本来就不属于表征晶体公有化电子状态的能带之列。

(2)禁带宽度的物理意义:禁带宽度是半导体的一个重要特征参量,其大小主要决定于半导体的能带结构,即与晶体结构和原子的结合性质等有关。

半导体价带中的大量电子都是价键上的电子(称为价电子),不能够导电,即不是载流子。

只有当价电子跃迁到导带(即本征激发)而产生出自由电子和自由空穴后,才能够导电。

空穴实际上也就是价电子跃迁到导带以后所留下的价键空位(一个空穴的运动就等效于一大群价电子的运动)。

因此,禁带宽度的大小实际上是反映了价电子被束缚强弱程度的一个物理量,也就是产生本征激发所需要的最小能量。

Si的原子序数比Ge的小,则Si的价电子束缚得较紧,所以Si的禁带宽度比Ge的要大一些。

GaAs的价键还具有极性,对价电子的束缚更紧,所以GaAs的禁带宽度更大。

GaN、SiC等所谓宽禁带半导体的禁带宽度更要大得多,因为其价键的极性更强。

Ge、Si、GaAs、GaN和金刚石的禁带宽度在室温下分别为0.66eV、1.12 eV、1.42 eV、3.44 eV和5.47 eV。

半导体(导带价带禁带)

半导体(导带价带禁带)

【半导体】(1)导带conduction bandA解释导带是由自由电子形成的能量空间。

即固体结构内自由运动的电子所具有的能量范围。

对于金属,所有价电子所处的能带就是导带。

对于半导体,所有价电子所处的能带是所谓价带,比价带能量更高的能带是导带。

在绝对零度温度下,半导体的价带(valence band)是满带(见能带理论),受到光电注入或热激发后,价带中的部分电子会越过禁带(forbidden band/band gap)进入能量较高的空带,空带中存在电子后即成为导电的能带——导带。

B导带的涵义:导带是半导体最外面(能量最高)的一个能带,是由许多准连续的能级组成的;是半导体的一种载流子——自由电子(简称为电子)所处的能量范围。

导带中往往只有少量的电子,大多数状态(能级)是空着的,则在外加作用下能够发生状态的改变,故导带中的电子能够导电,即为载流子。

导带底是导带的最低能级,可看成是电子的势能,通常,电子就处于导带底附近;离开导带底的能量高度,则可看成是电子的动能。

当有外场作用到半导体两端时,电子的势能即发生变化,从而在能带图上就表现出导带底发生倾斜;反过来,凡是能带发生倾斜的区域,就必然存在电场(外电场或者内建电场)。

导带底到真空中自由电子能级的间距,称为半导体的亲和能,即是把一个电子载流子从半导体内部拿到真空中去所需要的能量。

这是半导体的一个特征参量。

(2)价带与禁带价带(valence band)或称价电带,通常是指半导体或绝缘体中,在0K时能被电子占满的最高能带。

对半导体而言,此能带中的能级基本上是连续的。

全充满的能带中的电子不能在固体中自由运动。

但若该电子受到光照,它可吸收足够能量而跳入下一个容许的最高能区,从而使价带变成部分充填,此时价带中留下的电子可在固体中自由运动。

价带中电子的自由运动对于与晶体管有关的现象是很重要的。

被价电子占据的允带(低温下通常被价电子占满)。

禁带,英文名为:Forbidden Band 在能带结构中能态密度[1]为零的能量区间。

导带价带禁带费米能级

导带价带禁带费米能级

导带价带禁带费米能级 The Standardization Office was revised on the afternoon of December 13, 2020(1)导带conduction band:导带是由自由电子形成的能量空间。

即固体结构内自由运动的电子所具有的能量范围。

对于金属,所有价电子所处的能带就是导带。

对于半导体,所有价电子所处的能带是所谓价带,比价带能量更高的能带是导带。

在绝对零度温度下,半导体的价带(valence band)是满带(见),受到光电注入或热激发后,价带中的部分电子会越过禁带(forbiddenband/band gap)进入能量较高的空带,空带中存在电子后即成为导电的能带——导带。

势能动能:导带底是导带的最低能级,可看成是电子的势能,通常,电子就处于导带底附近;离开导带底的能量高度,则可看成是电子的动能。

当有外场作用到半导体两端时,电子的势能即发生变化,从而在能带图上就表现出导带底发生倾斜;反过来,凡是能带发生倾斜的区域,就必然存在电场(外电场或者内建电场)。

(2)价带与禁带:价带(valence band)或称价电带,通常是指半导体或绝缘体中,在0K 时能被电子占满的最高能带。

对半导体而言,此能带中的能级基本上是连续的。

全充满的能带中的电子不能在固体中自由运动。

但若该电子受到光照,它可吸收足够能量而跳入下一个容许的最高能区,从而使价带变成部分充填,此时价带中留下的电子可在固体中自由运动。

禁带,英文名为:Forbidden Band 常用来表示价带和导带之间的能态密度为零的能量区间。

禁带宽度的大小决定了材料是具有半导体性质还是具有绝缘体性质。

半导体的禁带宽度较小,当温度升高时,电子可以被激发传到导带,从而使材料具有导电性。

绝缘体的禁带宽度很大,即使在较高的温度下,仍是电的不良导体。

无机半导体的禁带宽度从~,π-π共轭聚合物的能带隙大致在~,绝缘体的禁带宽度大于。

导带、价带、禁带

导带、价带、禁带

(1)导带conduction bandA解释导带是由自由电子形成的能量空间。

即固体结构内自由运动的电子所具有的能量范围。

对于金属,所有价电子所处的能带就是导带。

对于半导体,所有价电子所处的能带是所谓价带,比价带能量更高的能带是导带。

在绝对零度温度下,半导体的价带(valence band)是满带(见能带理论),受到光电注入或热激发后,价带中的部分电子会越过禁带(forbidden band/band gap)进入能量较高的空带,空带中存在电子后即成为导电的能带——导带。

B导带的涵义:导带是半导体最外面(能量最高)的一个能带,是由许多准连续的能量范围。

导带中往往只有少量的电子,大多数状态(能级)是空着的,则在外加作用下能够发生状态的改变,故导带中的电子能够导电,即为载流子。

导带底是导带的最低能级,可看成是电子的势能,通常,电子就处于导带底附近;离开导带底的能量高度,则可看成是电子的动能。

当有外场作用到半导体两端时,电子的势能即发生变化,从而在能带图上就表现出导带底发生倾斜;反过来,凡是能带发生倾斜的区域,就必然存在电场(外电场或者内建电场)。

导带底到真空中自由电子能级的间距,称为半导体的亲和能,即是把一个电子载流子从半导体内部拿到真空中去所需要的能量。

这是半导体的一个特征参量。

(2)价带与禁带价带(valence band)或称价电带,通常是指半导体或绝缘体中,在0K时能被电子占满的最高能带。

对半导体而言,此能带中的能级基本上是连续的。

全充满的能带中的电子不能在固体中自由运动。

但若该电子受到光照,它可吸收足够能量而跳入下一个容许的最高能区,从而使价带变成部分充填,此时价带中留下的电子可在固体中自由运动。

价带中电子的自由运动对于与晶体管有关的现象是很重要的。

被价电子占据的允带(低温下通常被价电子占满)。

禁带,英文名为:Forbidden Band 在能带结构中能态密度[1]为零的能量区间。

常用来表示价带和导带之间的能态密度为零的能量区间。

禁带、导带、价带

禁带、导带、价带

禁带、价带和导带一、禁带、禁带宽度及其物理意义1.1 基本信息禁带是指在能带结构中能态密度为零的能量区间。

常用来表示价带和导带之间的能态密度为零的能量区间。

禁带宽度的大小决定了材料是具有半导体性质还是具有绝缘体性质.半导体的禁带宽度较小,当温度升高时,电子可以被激发传到导带,从而使材料具有导电性。

绝缘体的禁带宽度很大,即使在较高的温度下,仍是电的不良导体。

禁带宽度(Band gap)是指一个能带宽度(单位是电子伏特(ev)),固体中电子的能量是不可以连续取值的,而是一些不连续的能带,要导电就要有自由电子存在,自由电子存在的能带称为导带(能导电),被束缚的电子要成为自由电子,就必须获得足够能量从而跃迁到导带,这个能量的最小值就是禁带宽度。

例如:锗的禁带宽度为0。

66ev;硅的禁带宽度为1。

12ev;砷化镓的禁带宽度为1。

46ev;氧化亚铜的禁带宽度为2。

2eV。

禁带非常窄的一般是金属,反之一般是绝缘体。

半导体的反向耐压,正向压降都和禁带宽度有关。

1.2 禁带宽度的物理意义禁带宽度是半导体的一个重要特征参量,其大小主要决定于半导体的能带结构,即与晶体结构和原子的结合性质等有关。

半导体价带中的大量电子都是价键上的电子[1],不能够导电,即不是载流子。

只有当价电子跃迁到导带(即本征激发)而产生出自由电子和空穴[2],才能够导电.空穴实际上也就是价电子跃迁到导带以后所留下的价键空位(一个空穴的运动就等效于一大群价电子的运动)。

因此,禁带宽度的大小实际上是反映了价电子被束缚强弱程度的一个物理量,也就是产生本征激发所需要的最小能量。

[1]价电子,指原子核外电子中能与其他原子相互作用形成化学键的电子.主族元素的价电子就是主族元素原子的最外层电子;过渡元素的价电子不仅是最外层电子,次外层电子及某些元素的倒数第三层电子也可成为价电子,如有时也包括次外层的D电子,对于镧系元素,还有倒数第三层的F电子[2] 自由电子和空穴称为载流子,在电场力作用下的运动称为漂移运动,载流子定向的漂移运动形成了电流。

半导体禁带宽度

半导体禁带宽度

半导体禁带宽度(1)能带和禁带宽度的概念:对于包括半导体在内的晶体,其中的电子既不同于真空中的自由电子,也不同于孤立原子中的电子。

真空中的自由电子具有连续的能量状态,即可取任何大小的能量;而原子中的电子是处于所谓分离的能级状态。

晶体中的电子是处于所谓能带状态,能带是由许多能级组成的,能带与能带之间隔离着禁带,电子就分布在能带中的能级上,禁带是不存在公有化运动状态的能量范围。

半导体最高能量的、也是最重要的能带就是价带和导带。

导带底与价带顶之间的能量差即称为禁带宽度(或者称为带隙、能隙)。

禁带中虽然不存在属于整个晶体所有的公有化电子的能级,但是可以出现杂质、缺陷等非公有化状态的能级——束缚能级。

例如施主能级、受主能级、复合中心能级、陷阱中心能级、激子能级等。

顺便也说一句,这些束缚能级不只是可以出现在禁带中,实际上也可以出现在导带或者价带中,因为这些能级本来就不属于表征晶体公有化电子状态的能带之列。

(2)禁带宽度的物理意义:禁带宽度是半导体的一个重要特征参量,其大小主要决定于半导体的能带结构,即与晶体结构和原子的结合性质等有关。

半导体价带中的大量电子都是价键上的电子(称为价电子),不能够导电,即不是载流子。

只有当价电子跃迁到导带(即本征激发)而产生出自由电子和自由空穴后,才能够导电。

空穴实际上也就是价电子跃迁到导带以后所留下的价键空位(一个空穴的运动就等效于一大群价电子的运动)。

因此,禁带宽度的大小实际上是反映了价电子被束缚强弱程度的一个物理量,也就是产生本征激发所需要的最小能量。

Si的原子序数比Ge的小,则Si的价电子束缚得较紧,所以Si的禁带宽度比Ge的要大一些。

GaAs的价键还具有极性,对价电子的束缚更紧,所以GaAs的禁带宽度更大。

GaN、SiC等所谓宽禁带半导体的禁带宽度更要大得多,因为其价键的极性更强。

Ge、Si、GaAs、GaN和金刚石的禁带宽度在室温下分别为0.66eV、1.12 eV、1.42 eV、3.44 eV和5.47 eV。

禁带宽度

禁带宽度
同时掺入受主杂质的浓度越高费米能级越靠近价带11bursteinmosseffect布尔斯坦莫斯效应由泡利不相容原理引起的当在半导体中掺杂其他元素时其带隙改变价带顶和导带内未占据能态的能量间隔改未掺杂的半导体费米能级位于导带底之下施主占据态价带顶之上
禁带宽度
求光学带宽Eg
Tauc relationship:
C is a constant for a direct transition, h is Planck’s constant, and ʋ is the frequency of the incident photon.
the absorption coefficient : α = (1/d) ln(1/T),单位:cm-1 T is the transmittance, 单位:1 d is the film thickness,单位:cm.
20
pure ZnO
3.47
0 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0
Ag:Li =0
Ag:Li=1: 20
hv(eV)
Ag:Li=1: Ag:Li=101:5Ag:Li=1: Ag:Li=
2
1:1
第二种求Eg的方法:
其中:h=4.13567×10-15 eV ·s, c=3×1017nm/s λmax是透射率的一阶导数(dT/dλ)的最大值对应的波长。 可以在origin里将透射率图谱进行微分,得到 dT/dλ曲线,通 过工具—拣峰命令,找到最大值对应的λmax。
对Eg变化的分析
Eg变小,吸收边缘向长波方向移动,光学带宽发生红移。 Eg变大,吸收边向短波方向移动,为蓝移。

名词解释满带,价带,空带,导带,禁带,本征半导体

名词解释满带,价带,空带,导带,禁带,本征半导体

名词解释满带,价带,空带,导带,禁带,本征半导体【知识】名词解释满带、价带、空带、导带、禁带和本征半导体引言:在学习半导体材料和器件时,我们经常会遇到一些关键概念,如满带、价带、空带、导带、禁带和本征半导体。

这些概念是理解半导体材料电子性质的基础,对我们深入研究半导体物理和应用至关重要。

本文将从浅入深,按照知识的深度和广度,详细解释这些概念及其相互关系,并分享一些个人观点和理解。

一、满带(Filled Band):满带是指能带(Energy Band)中填满了一定数量电子的状态。

我们知道,能带是指由一系列最小能量差区间组成的能级的集合。

在固体中,由于原子之间的相互作用和电子之间的库仑斥力,导致能带形成。

当所有可能的能级都被填满电子时,该能带就形成了满带。

满带中的电子具有最高的能量和动力学状态,不容易发生运动。

二、价带(Valence Band):价带是比满带更低的能级集合,其中填充了价电子。

在半导体中,价电子是能够参与化学键形成的电子。

在固体中,处于价带的电子通常与原子核以及其他电子相互作用,因此它们的动能较低,不容易跃迁到更高能级。

三、空带(Empty Band):空带是位于价带之上的一些能级,其能量比价带更高,但没有被电子填充。

当一个价带中的电子跃迁到空带时,将留下一个空穴(空缺的价电子),形成一个电子-空穴对(Electron-Hole Pair)。

空带中的状态可以是空的,也可以由导带中的电子填充。

四、导带(Conduction Band):导带是位于空带之上的能带,具有相对较高的能量。

在纯净的半导体中,导带中没有或几乎没有电子。

当一个电子跃迁到导带时,它具有足够的能量来在材料中自由移动,因此可以导电。

导带中的电子通常没有与原子核或其他电子的强相互作用。

五、禁带(Band Gap):禁带是指价带和导带之间的能量间隙,也称为能隙(Energy Gap)。

在这个能隙内,材料中几乎没有允许的能级存在。

禁带宽度

禁带宽度

禁带宽度(Band gap)是指一个能带宽度(单位是电子伏特(ev)),固体中电子的能量是不可以连续取值的,而是一些不连续的能带,要导电就要有自由电子存在,自由电子存在的能带称为导带(能导电),被束缚的电子要成为自由电子,就必须获得足够能量从而跃迁到导带,这个能量的最小值就是禁带宽度。

例如:锗的禁带宽度为0.66ev;硅的禁带宽度为1.12ev;砷化镓的禁带宽度为1.46ev;氧化亚铜的禁带宽度为2.2eV。

禁带非常窄的一般是金属,反之一般是绝缘体。

半导体的反向耐压,正向压降都和禁带宽度有关。

编辑本段禁带宽度的物理意义禁带宽度是半导体的一个重要特征参量,其大小主要决定于半导体的能带结构,即与晶体结构和原子的结合性质等有关。

半导体价带中的大量电子都是价键上的电子(称为价电子),不能够导电,即不是载流子。

只有当价电子跃迁到导带(即本征激发)而产生出自由电子和自由空穴后,才能够导电。

空穴实际上也就是价电子跃迁到导带以后所留下的价键空位(一个空穴的运动就等效于一大群价电子的运动)。

因此,禁带宽度的大小实际上是反映了价电子被束缚强弱程度的一个物理量,也就是产生本征激发所需要的最小能量。

Si的原子序数比Ge的小,则Si的价电子束缚得较紧,所以Si的禁带宽度比Ge的要大一些。

GaAs的价键还具有极性,对价电子的束缚更紧,所以GaAs 的禁带宽度更大。

GaN、SiC等所谓宽禁带半导体的禁带宽度更要大得多,因为其价键的极性更强。

Ge、Si、GaAs、GaN和金刚石的禁带宽度在室温下分别为0.66eV、1.12 eV、1.42 eV、3.44 eV和5.47 eV。

金刚石在一般情况下是绝缘体,因为碳(C)的原子序数很小,对价电子的束缚作用非常强,价电子在一般情况下都摆脱不了价键的束缚,则禁带宽度很大,在室温下不能产生出载流子,所以不导电。

不过,在数百度的高温下也同样呈现出半导体的特性,因此可用来制作工作温度高达500oC以上的晶体管。

导带价带禁带

导带价带禁带

【半导体】(1)导带conduction bandA解释导带是由自由电子形成的能量空间。

即固体结构内自由运动的电子所具有的能量范围。

对于金属,所有价电子所处的能带就是导带。

对于半导体,所有价电子所处的能带是所谓价带,比价带能量更高的能带是导带。

在绝对零度温度下,半导体的价带(valence band)是满带(见能带理论),受到光电注入或热激发后,价带中的部分电子会越过禁带(forbidden band/band gap)进入能量较高的空带,空带中存在电子后即成为导电的能带——导带。

B导带的涵义:导带是半导体最外面(能量最高)的一个能带,是由许多准连续的能级组成的;是半导体的一种载流子——自由电子(简称为电子)所处的能量范围。

导带中往往只有少量的电子,大多数状态(能级)是空着的,则在外加作用下能够发生状态的改变,故导带中的电子能够导电,即为载流子。

导带底是导带的最低能级,可看成是电子的势能,通常,电子就处于导带底附近;离开导带底的能量高度,则可看成是电子的动能。

当有外场作用到半导体两端时,电子的势能即发生变化,从而在能带图上就表现出导带底发生倾斜;反过来,凡是能带发生倾斜的区域,就必然存在电场(外电场或者内建电场)。

导带底到真空中自由电子能级的间距,称为半导体的亲和能,即是把一个电子载流子从半导体内部拿到真空中去所需要的能量。

这是半导体的一个特征参量。

(2)价带与禁带价带(valence band)或称价电带,通常是指半导体或绝缘体中,在0K时能被电子占满的最高能带。

对半导体而言,此能带中的能级基本上是连续的。

全充满的能带中的电子不能在固体中自由运动。

但若该电子受到光照,它可吸收足够能量而跳入下一个容许的最高能区,从而使价带变成部分充填,此时价带中留下的电子可在固体中自由运动。

价带中电子的自由运动对于与晶体管有关的现象是很重要的。

被价电子占据的允带(低温下通常被价电子占满)。

禁带,英文名为:Forbidden Band 在能带结构中能态密度[1]为零的能量区间。

导带、价带、禁带

导带、价带、禁带

【半导体】(1)导带conduction bandA解释导带是由自由电子形成的能量空间。

即固体结构内自由运动的电子所具有的能量范围。

对于金属,所有价电子所处的能带就是导带。

对于半导体,所有价电子所处的能带是所谓价带,比价带能量更高的能带是导带。

在绝对零度温度下,半导体的价带(valence band)是满带(见能带理论),受到光电注入或热激发后,价带中的部分电子会越过禁带(forbidden band/band gap)进入能量较高的空带,空带中存在电子后即成为导电的能带——导带。

B导带的涵义:导带是半导体最外面(能量最高)的一个能带,是由许多准连续的能级组成的;是半导体的一种载流子——自由电子(简称为电子)所处的能量范围。

导带中往往只有少量的电子,大多数状态(能级)是空着的,则在外加作用下能够发生状态的改变,故导带中的电子能够导电,即为载流子。

导带底是导带的最低能级,可看成是电子的势能,通常,电子就处于导带底附近;离开导带底的能量高度,则可看成是电子的动能。

当有外场作用到半导体两端时,电子的势能即发生变化,从而在能带图上就表现出导带底发生倾斜;反过来,凡是能带发生倾斜的区域,就必然存在电场(外电场或者内建电场)。

导带底到真空中自由电子能级的间距,称为半导体的亲和能,即是把一个电子载流子从半导体内部拿到真空中去所需要的能量。

这是半导体的一个特征参量。

(2)价带与禁带价带(valence band)或称价电带,通常是指半导体或绝缘体中,在0K时能被电子占满的最高能带。

对半导体而言,此能带中的能级基本上是连续的。

全充满的能带中的电子不能在固体中自由运动。

但若该电子受到光照,它可吸收足够能量而跳入下一个容许的最高能区,从而使价带变成部分充填,此时价带中留下的电子可在固体中自由运动。

价带中电子的自由运动对于与晶体管有关的现象是很重要的。

被价电子占据的允带(低温下通常被价电子占满)。

禁带,英文名为:Forbidden Band 在能带结构中能态密度[1]为零的能量区间。

导带价带禁带

导带价带禁带

【半导体】(1)导带conduction bandA解释导带是由自由电子形成的能量空间。

即固体结构内自由运动的电子所具有的能量范围。

对于金属,所有价电子所处的能带就是导带。

对于半导体,所有价电子所处的能带是所谓价带,比价带能量更高的能带是导带。

在绝对零度温度下,半导体的价带(valence band)是满带(见能带理论),受到光电注入或热激发后,价带中的部分电子会越过禁带(forbidden band/band gap)进入能量较高的空带,空带中存在电子后即成为导电的能带——导带。

B导带的涵义:导带是半导体最外面(能量最高)的一个能带,是由许多准连续的能级组成的;是半导体的一种载流子——自由电子(简称为电子)所处的能量范围。

导带中往往只有少量的电子,大多数状态(能级)是空着的,则在外加作用下能够发生状态的改变,故导带中的电子能够导电,即为载流子。

导带底是导带的最低能级,可看成是电子的势能,通常,电子就处于导带底附近;离开导带底的能量高度,则可看成是电子的动能。

当有外场作用到半导体两端时,电子的势能即发生变化,从而在能带图上就表现出导带底发生倾斜;反过来,凡是能带发生倾斜的区域,就必然存在电场(外电场或者内建电场)。

导带底到真空中自由电子能级的间距,称为半导体的亲和能,即是把一个电子载流子从半导体内部拿到真空中去所需要的能量。

这是半导体的一个特征参量。

(2)价带与禁带价带(valence band)或称价电带,通常是指半导体或绝缘体中,在0K时能被电子占满的最高能带。

对半导体而言,此能带中的能级基本上是连续的。

全充满的能带中的电子不能在固体中自由运动。

但若该电子受到光照,它可吸收足够能量而跳入下一个容许的最高能区,从而使价带变成部分充填,此时价带中留下的电子可在固体中自由运动。

价带中电子的自由运动对于与晶体管有关的现象是很重要的。

被价电子占据的允带(低温下通常被价电子占满)。

禁带,英文名为:Forbidden Band 在能带结构中能态密度[1]为零的能量区间。

导带、价带、禁带.费米能级

导带、价带、禁带.费米能级

【半导体】(1)导带conduction band导带是由自由电子形成的能量空间。

即固体结构内自由运动的电子所具有的能量范围。

对于金属,所有价电子所处的能带就是导带。

对于半导体,所有价电子所处的能带是所谓价带,比价带能量更高的能带是导带。

在绝对零度温度下,半导体的价带(valence band)是满带(见能带理论),受到光电注入或热激发后,价带中的部分电子会越过禁带(forbidden band/band gap)进入能量较高的空带,空带中存在电子后即成为导电的能带——导带。

势能动能:导带底是导带的最低能级,可看成是电子的势能,通常,电子就处于导带底附近;离开导带底的能量高度,则可看成是电子的动能。

当有外场作用到半导体两端时,电子的势能即发生变化,从而在能带图上就表现出导带底发生倾斜;反过来,凡是能带发生倾斜的区域,就必然存在电场(外电场或者内建电场)。

(2)价带与禁带价带(valence band)或称价电带,通常是指半导体或绝缘体中,在0K时能被电子占满的最高能带。

对半导体而言,此能带中的能级基本上是连续的。

全充满的能带中的电子不能在固体中自由运动。

但若该电子受到光照,它可吸收足够能量而跳入下一个容许的最高能区,从而使价带变成部分充填,此时价带中留下的电子可在固体中自由运动。

禁带,英文名为:Forbidden Band 常用来表示价带和导带之间的能态密度为零的能量区间。

禁带宽度的大小决定了材料是具有半导体性质还是具有绝缘体性质。

半导体的禁带宽度较小,当温度升高时,电子可以被激发传到导带,从而使材料具有导电性。

绝缘体的禁带宽度很大,即使在较高的温度下,仍是电的不良导体。

无机半导体的禁带宽度从0.1~2.0eV,π-π共轭聚合物的能带隙大致在1.4~4.2eV,绝缘体的禁带宽度大于4.5eV。

(3)导带与价带的关系:“电子浓度=空穴浓度”,这实际上就是本征半导体的特征,因此可以说,凡是两种载流子浓度相等的半导体,就是本征半导体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档