离散数学复习题

合集下载

离散数学复习题

离散数学复习题

一、单项选择题1.对任意集合A 、B 、C ,下述论断正确的是 【 A 】(A )若A ∈B ,B ⊆C ,则 A ∈C (B )若A ∈B ,B ⊆C ,则 A ⊆C(C )若A ⊆B ,B ∈C ,则 A ∈C (D )若A ⊆B ,B ∈C ,则 A ⊆C2.设{}{}a a A ,=,则下列选项错误的是 【 B 】 (A ){})(A P a ∈ (B ){})(A P a ⊆ (C ){}{})(A P A ∈ (D ){}{})(A P A ⊆ 3.设{}c b a A ,,=上的关系如下,有传递关系的有 【 D 】(A ){}><><><><=a b b a a c c a R ,,,,,,,1 (B ){}><><=a c c a R ,,,2(C ){}><><><><=c b a b c c b a R ,,,,,,,3 (D ){},,4><=a a R4.R 是A 上的自反关系,则 【 B 】(A )R R R ⊆ (B )R R R ⊆ (C )A I R R = (D )A I R R =5.4K 中含3条边的不同构生成子图有 【 C 】(A )1个 (B )2个 (C )3个 (D )4个 6.设E V G ,=为无向图,V v u ∈,,若v u ,连通,则 【 D 】(A )0),(>v u d (B )0),(=v u d (C )0),(<v u d (D )0),(≥v u d7.欧拉回路是 【 B 】(A )路径 (B )简单回路(C )既是基本回路也是简单回路 (D )既非基本回路也非简单回路8.5阶无向完全图的边数是 【 B 】:(A )5 (B )10 (C )15 (D )209.设A ={}c b a ,, ,B ={}e d c b ,,, ,C ={}c b ,,则(A ∪B )⊕ C 为 【 C 】(A ){}b a , (B ){}c b , (C ){}e d a ,, (D ){}c b a ,,10.设{}φ=A ,))((A P P B =则下列选项错误的是 【 D 】(A )B ∈φ (B ){}B ∈φ (C ){}{}B ∈φ (D ){}{})(,A P ∈φφ 11.集合{}10,,2,1 =A 上的关系{}A y A x y x y x R ∈∈=+><=,,10|,, 则R 的性质为 【 B 】(A )自反的 (B )对称的 (C )传递的、对称的 (D )反自反的、传递的12.设R 是非空集A 上的二元关系,则R 的对称闭包s(R)= 【 B 】(A )A I R ⋃ (B )R R ~⋃ (C )A I R - (D )R R ~⋂ 13.若简单图G 与其补图G 同构,称G 为自补图,则含有5个结点不同构的无向自补图的个数为 【 C 】(A )0 (B )1 (C )2 (D )3 14.设E V G ,=为无向图,V v u ∈,,若v u ,连通,则 【 D 】(A )0),(>v u d (B )0),(=v u d (C )0),(<v u d (D )0),(≥v u d15.欧拉回路是 【 B 】(A )路径 (B )简单回路(C )既是基本回路也是简单回路 (D )既非基本回路也非简单回路16.n 个结点的无向完全图的边数是 【 D 】:(A ))1(-n n (B )2n (C )n 2 (D )2/)1(-n n17.设P:我将去镇上,Q:我有时间。

离散数学期末复习习题

离散数学期末复习习题

离散数学一、选择题1△O Y C3A^Q un ㊉iv1.设:P:张三可以作这件事,Q:李四可以作这件事,命题“张三或李四都可以做这件事”的符号化为()A、PVQB、PVi QC、P—QD、-P V -Q2.谓词公式V x(P(x)V m yR(y))fQ(x)中量词V x的作用域是()A. V x(P(x) V3yR(y))B.P(x)C. (P(x) V3yR(y)) D,P(x), Q(x)3.若个体域为整体域,下列公式中哪个值为真?()A. V x 3y(x+y=0)B. 3y V x(x+y=0)C. V x V y(x+y=0)D. n 3x 3y(x+y=0)4.空集①的幂集P (①)的基数是()A. 1B.2C.3D.45.设R、S是集合A上的任意关系,则下面命题是真命题的是()。

A.若R、S是自反的,则R・S是自反的B.若R、S是反自反的,则R・S是反自反的C.若R、S是对称的,则R・S是对称的D.若R、S是传递的,则R・S是传递的6.集合 A={1, 2,…,10}上的关系 R={(x, y)|x+y=10 且x, y£A},则 R 的性质为()A.自反的B.对称的C.传递的,对称的口.非自反的,传递的7.含有5个结点,3条边的不同构的简单图有()A.2个B.3个C.4个D.5个8.设G (n, m),且G中每个结点的度数不是K就是K+1,则G中度数为K的结点数()A.2/nB.n(n+1)C.nkD.n(k+1)-2m9.设谓词P(x) :x是奇数,Q(x):x是偶数,谓词公式m(x) (P(x) AQ(x))在下面哪个论域中是可满足的。

()A自然数集 B整数集 C实数集 D以上均不成立10.设C(x): x是运动员,G(x): x是强壮的。

命题“没有一个运动员不是强壮的”可符号化为()A. n V x(C(x) A n G(x))B. iV xOx) — G(x))C. _|m x(C(x)A_|G(x))D. im x(C(x) - 1 G(x))11.设集合 M={x|f (x) =0}, N={x|g (x) =0},则方程 f (x)・g (x) =0 的解集是()A.MANB.MUNC.M ㊉ ND.M-N12.设A=/"a}},下列选项错误的是()A. {a} e p(A)B. {a}U p(A)C. {{a}} e p(A)D. {{a}} e p(A)13.设A={1,2,3,4,5},p{<i,j>|i<j,i,j £ A}则 p 逆的性质是()A.对称的B.自反的C.反对称的D.反自反,反对称,传递的14.设R和S是集合A上的等级关系,则RUS的对称性()A. 一定成立B.一定不成立C.不一定成立D.不可能成立15. K4中含有3条边的不同构生成子图有()A.1个B.3个C.4个D.2个16.设G=<V,E>为无向图,u,v £V,若u,v连通,则()A.d(u,v)>0B.d(u,v)=0C.d(u,v)<0D.d(u,v)三0二、填空题1.命题公式I(P-Q)的主析取范式为(),主合取式的编码表示为().2.设Q(x): x是奇数,Z(x): x是整数,则语句“不是所有整数都是奇数”所对应的谓词公式为()。

离散数学期末复习题(6套)

离散数学期末复习题(6套)

《离散数学》期末考试题(A)一、填空题(每小题3分,共15分)1.设}}{},,{{c b a A =,}}{},,{},{{c c b a B =,则)(=⋃B A ,)(=⋂B A ,)()(=A P .2.集合},,{c b a A =,其上可定义( )个封闭的1元运算,( )个封闭的2元运算,( )个封闭的3元运算.3.命题公式1)(↑∧q p 的对偶式为( ).4.所有6的因数组成的集合为( ).5.不同构的5阶根树有( )棵.二、单选题(每小题3分,共15分)1.设A , B 是集合,若A B A =-,则(A)B = ∅ (B) A = ∅ (C)=⋂B A ∅ (D)A B A =⋂2.谓词公式)())()((x R y yQ x P x ∧∃→∀中量词x ∀的辖域为(A))())()((x R y yQ x P x ∧∃→∀ (B))()(y yQ x P ∃→(C))())()((x R y yQ x P ∧∃→ (D))()(y yQ x P ∃→和)(x R3.任意6阶群的子群的阶一定不为(A)4 (B)6 (C)2 (D)34.设n 是正整数,则有限布尔代数的元素个数为(A)2n (B)4n (C)n 2 (D)2n5.对于下列序列,可构成简单无向图的度数序列为(A)3, 3, 4, 4, 5 (B)0, 1, 3, 3, 3 (C)1, 1, 2, 2, 3 (D)1, 1, 2, 2, 2三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. 设N N N :⨯→f ,)1,()(+=x x x f ,则f 是满射. () 2. 5男5女圆桌交替就座的方式有2880种. () 3. 设),(≤L 是格,对于L z y x ∈,,,若z x y x ⋅=⋅且z x y x +=+,则z y =. () 4. 任何树都至少2片树叶. ()5. 无向图G 有生成树的充要条件是G 为连通图. ( )四、(10分)设C B A ,,和D 是集合,证明)()()()(D B C A D C B A ⨯-⨯⊆-⨯-,并举例说明上式中不能将⊆改为 = .五、(15分)设N 是自然数集合,定义N 上的关系R 如下:y x R y x +⇔∈),(是偶数,1.证明R 是N 上的等价关系.2.求出N 关于等价关系R 的所有等价类.3.试求出一个N 到N 的函数f ,使得)}()(,N ,|),{(y f x f y x y x R =∈=.六、(10分)在实数集合R 中证明下列推理的有效性:因为R 中存在自然数,而所有自然数是整数,所以R 中存在整数.七、(10分)设R 是实数集合,令}0,R ,|),{(≠∈=a b a b a G ,定义G 上的运算如下: 对于任意G d c b a ∈),(),,(,),(),(),(b ad ac d c b a +=⋅,证明),(⋅G 是非Abel 群.八、(10分)若简单平面图G 的节点数7=n 且边数15=m ,则G 是连通图,试证明之.《离散数学》期末考试题(B)一、填空题(每小题3分,共15分)1.设,,},,{{b a b a A =∅},则-A ∅ = ( ),-A {∅} = ( ),)(A P 中的元素个数=|)(|A P ( ).2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数.3.谓词公式))()(())()((y P y Q y x Q x P x ⌝∧∃∧→∀中量词x ∀的辖域为( ), 量词y ∃的辖域为( ).4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元.5.当n ( )时,n 阶完全无向图n K 是平面图,当n 为( )时,n K 是欧拉图.二、单选题(每小题3分,共15分)1.设R 是集合A 上的偏序关系,1-R 是R 的逆关系,则1-⋃R R 是A 上的(A)偏序关系 (B)等价关系 (C)相容关系 (D)以上结论都不成立2.由2个命题变元p 和q 组成的不等值的命题公式的个数有(A)2 (B)4 (C)8 (D)163.设p 是素数且n 是正整数,则任意有限域的元素个数为(A)n p + (B)pn (C)n p (D)pn4.设R 是实数集合,≤是其上的小于等于关系,则(R, ≤)是(A)有界格 (B)分配格 (C)有补格 (D)布尔格5.3阶完全无向图3K 的不同构的生成子图有(A)2 (B)3 (C)4 (D)5 三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1.若一个元素a 既存在左逆元l a ,又存在右逆元r a ,则r l a a =. ( )2.命题联结词→不满足结合律. ( )3.在Z 8 = {0,1,2,3,4,5,6,7}中,2关于“⋅8”的逆元为4. ( )4.整环不一定是域. ( )5.任何),(m n 平面图的面数2+-=n m r . ( )四、(10分)设B A f →:且C B g →:,若g f 是单射,证明f 是单射,并举例说明g 不一定是单射.五、(15分)设},,,{d c b a A =,A 上的关系)},(),,(),,(),,(),,(),,(),,(),,(),,{(c d b d a d c c b c a c c a b a a a R =,1.画出R 的关系图R G .2.判断R 所具有的性质.3.求出R 的关系矩阵R M .六、(10分)利用真值表求命题公式))(())((p q r r q p A →→↔→→=的主析取范式和主合取范式.七、(10分) 边数30<m 的简单平面图G ,必存在节点v 使得4)deg(≤v .八、(10分) 有六个数字,其中三个1,两个2,一个3,求能组成四位数的个数.《离散数学》期末考试题(C)一、填空题(每小题3分,共15分)1. 若n B m A ==||,||,则=⨯||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个.2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3,1)},则( )是单射,( )是满射,( )是双射.3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号).(1)q q p p →→∧)(;(2))(q p p ∨→;(3))(q p p ∧→;(4)q q p p →∨∧⌝)(;(5)q q p →→)(.4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).5. 设G 是(7, 15)简单平面图,则G 一定是( )图,且其每个面恰由( )条边围成,G 的面数为( ).二、单选题(每小题3分,共15分)1. 设A , B , C 是集合,则下述论断正确的是( ).(A)若A ⊆ B , B ∈ C ,则A ∈ C . (B)若A ⊆ B , B ∈ C ,则A ⊆ C .(C)若A ∈ B , B ⊆ C ,则A ∈ C . (D)若A ∈ B , B ⊆ C ,则A ⊆ C .2. 设R ⊆ A ⨯ A ,S ⊆ A ⨯ A ,则下述结论正确的是( ).(A)若R 和S 是自反的,则R ⋂ S 是自反的.(B)若R 和S 是对称的,则S R 是对称的.(C)若R 和S 是反对称的,则S R 是反对称的.(D)若R 和S 是传递的,则R ⋃ S 是传递的.3.在谓词逻辑中,下列各式中不正确的是( ).(A))()())()((x xB x xA x B x A x ∀∨∀=∨∀(B))()())()((x xB x xA x B x A x ∀∧∀=∧∀(C))()())()((x xB x xA x B x A x ∃∨∃=∨∃(D)),(),(y x xA y y x yA x ∀∃=∃∀4. 域与整环的关系为( ).(A)整环是域 (B)域是整环 (C)整环不是域 (D) 域不是整环5.设G 是(n , m )图,且G 中每个节点的度数不是k 就是k + 1,则G 中度数为k 的节点个数为( ). (A)2n . (B)n (n + 1). (C)nk . (D)m k n 2)1(-+. 三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1.设f : Z → Z ,x x x f 2||)(-=,则f 是单射. ( )2.设ϕ是群G 1到群G 2的同态映射,若G 1是Abel 群,则G 2是Abel 群. ( )3.设),(≤L 是格,对于L z y x ∈,,,若z x y x ⋅=⋅且z x y x +=+,则z y =. ( )4.元素个数相同的有限布尔代数都是同构的. ( )5.设G 是n (n ≥ 11)阶简单图,则G 或G 是非平面图. ( )四、(15分)设A 和B 是集合,使下列各式(1)A B A =⋂; (2)A B B A -=-;(3)A A B B A =-⋃-)()(成立的充要条件是什么,并给出理由.五、(10分) 设S 是实数集合R 上的关系,其定义如下∈=y x y x S ,|),{(R 且是3y x -是整数}, 证明: S 是R 上的等价关系. 六、(10分) 求谓词公式)))()(()(()(x xD y yC y B x xA ∀→∃⌝→→∃的前束范式.七、(10分) 若n 个人,每个人恰有3个朋友,则n 必为偶数,试证明之.八、(10分) 利用生成函数求解递归关系⎩⎨⎧=-+=-2)1(211a n a a n n .《离散数学》期末考试题(D)一、填空题(每小题3分,共15分)1. 设|A | = 5, |B | = 2, 则可定义A 到B 的函数( )个,其中有( )单射,( )个满射.2. 令G (x ): x 是金子,F (x ): x 是闪光的,则命题“金子都是闪光的,但闪光的未必是金子”符号化为( ).3. 设X 是非空集合,则X 的幂集P (X )关于集合的⋃运算的单位元是( ),零元是( ),P (X )关于集合的⋂运算的单位元是( ).4. 不同构的5阶无向树有( )棵.5. 对于n 阶完全无向图K n , 当n 为( )时是Euler 图,当n ≥ ( )时是Hamilton 图,当n ( )时是平面图.二、单选题(每小题3分,共15分)1. 幂集P (P (P (∅))) 为( )(A){{∅}, {∅, {∅}}}. (B){∅, {∅, {∅}}, {∅}}.(C){ ∅, {∅, {∅}}, {{∅}}, {∅}} (D){ ∅, {∅, {∅}}}.2. 设R 是集合A 上的偏序关系,则1-⋃R R 是( ).(A)偏序关系 (B)等价关系 (C)相容关系 (D)以上答案都不对3. 下列( )组命题公式是不等值的.(A))(B A →⌝与B A ⌝∧. (B) )(B A ↔⌝与)()(B A B A ∧⌝∨⌝∧.(C))(C B A ∨→与C B A →⌝∧)(. (D))(C B A ∨→与)(C B A ∨∧⌝.4.下列代数结构(G , *)中,( )是群.(A)G = {0, 1, 3, 5}, “*”是模7加法. (B) G = Q , “*”是数的乘法.(C)G = Z , “*”是数的减法. (D) G = {1, 3, 4, 5, 9}, “*”是模11乘法.5.4阶完全无向图4K 中含3条边的不同构的生成子图有(A)3 (B)4 (C)5 (D)2三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1.函数的复合运算“ ”满足结合律. ( )2. {→⌝,}是最小功能完备联结词集合. ( )3. 实数集R 关于数的乘法运算“⋅”阿贝尔群. ( )4. 任意有限域的元素个数为2n . ( )5. 设G 是n (n 为奇数)简单图,则G 与G 中度数为奇数的节点个数相同. ( )四、(10分)设A 和B 是集合,使B B A =-成立的充要条件是什么,并给出理由.五、(10分) 设R 和S 是集合A 上的对称关系,证明S R 对称的充要条件是R S S R =.六、(15分)分别利用(1)等值演算法和(2)真值表求命题公式))(())((r q p p q r A ∨→→→∨⌝=的主析取范式和主合取范式.七、(10分) 设G 是(n , m )无向图,若n m ≥,证明G 中必存在圈.八、(10分) 在初始条件f (1) = c 下,求解递归关系bn n f n f +⎪⎭⎫ ⎝⎛=22)(,其中b ,c 为常数且kn 2=,k 为正整数.《离散数学》期末考试题(E)一、填空题(每小题3分,共15分)1.设A = {2, {3}, 4, a }, B = {1, 3, 4, {a }}, 则{3}( )A ,{a }( )B ,{{a }}( )B .2. 设A = {1, 2, 3, 4, 5}上的关系R = {(1, 2), (3, 4), (2, 2)}, S = {(4, 2), (2, 5), (3, 1), (1, 3)}, 则=S R { }, =R S { }, =R R { }.3. gcd(36, 48) = ( ),lcm(36, 48) = ( ).4.任意有限布尔代数)1,0,,,,(⋅+B 均与集合代数( )同构,其元素个数为( ).5. 不同构的5阶无向树有( )棵,不同构的5阶根树有( )棵.二、单选题(每小题3分,共15分)1. 在有理数集合Q 上定义运算“*”如下:对于任意x , y ∈ Q ,y x * = x + y – xy ,则Q 关于*的单位元是( ).(A)x . (B)y . (C)1. (D)0.2. 设A = {1, 2, 3}, 下图分别给出了A 上的两个关系R 和S ,则S R 是( )关系.(A)自反. (B)对称. (C)传递. (D)等价.3.令T (x ): x 是火车,B (x ): x 是汽车,F (x , y ): x 比y 快,则“某些汽车比所有的火车慢”符号化为( ).(A)()()),()()(y x H x T x y B y →∀∧∃.(B)()()),()()(y x H x T x y B y ∧∀→∃.(C)()()),()()(y x H x T y B y x ∧→∃∀.(D)()()),()()(y x H x T x y B y →∀→∃.4. 整数集合Z 关于数的加法“+”和数的乘法“⋅”构成的代数结构(Z, +, ⋅)是( ). 1 1 22 3 3G S G R(A)域(B)域和整环(C)整环(D) 有零因子环G≅,则称G为自补图. 5阶不同构的自补图5.设G是简单图,G是G的补图,若G个数为( ).(A)0. (B)1. (C)2. (D)3.三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. { ∅, {∅}} ∉P(P({∅})). ( )2. 非空1元及2元联结词集合的个数为29-1. ( )3. 群可分为Abel群和非Abel群. ( )4. 元素个数相同的有限域都是同构的. ( )5. 设G是简单图,则G或G是连通图. ( )四、(15分)设C,:, 若gf 是单射,证明f是单射,并举例说明g→:f→gBBA不一定是单射.五、(10分)设A = {a, b, c, d}上的关系R = {(a, b), (b, d), (c, c), (a, c)}, 画出R的关系图,并求出R的自反闭包r(R)、对称闭包s(R)和传递闭包t(R).六、(10分)用CP规则证明下列推理.⌝∨→∨(.⇒),(⌝),→pqssrqrqp→七、(10分)求谓词公式))xyByAxA∀→∨∀∧⌝∃的前束范式.zC((x()))(z(()八、(10分)任意6个人中,一定有3个人彼此认识或有3个人彼此不认识.《离散数学》期末考试题(F)一、填空题(每小题3分,共15分)1. 设A = {1, 2, 3, {1, 2}, {3}}, B = {2, {2,3}, {1}} , 则A–B = { }, B–A = { }, A⊕B = { }.2. 实数集合R关于加法运算“+”的单位元为( ), 关于乘法运算“⋅”的单位元为( ), 关于乘法运算“⋅”的零元为( ).3. 令Z(x): x是整数,O(x): x是奇数,则“不是所有整数都是奇数”符号化为( ).4. 有限域的元素个数为( ), 其中( )且( ).5. 设G 是(7, 15)简单平面图,则G 一定 ( )连通图,其每个面恰由( )条边围成,G 的面数为( ).二、单选题(每小题3分,共15分)1. 函数的复合运算“ ”满足( )(A)交换律. (B)结合律. (C)幂等律. (D)消去律.2. 设集合A 中有4个元素,则A 上的等价关系共有( )个.(A)13 (B)14 (C)15 (D)163.下列代数结构(G , *)中,( )是群.(A)G = {0, 1, 3, 5}, “*”是模7加法. (B) G = Q , “*”是数的乘法.(C)G = Z , “*”是数的减法. (D) G = {1, 3, 4, 5, 9}, “*”是模11乘法.4. 下列偏序集,( )是格.5. 不同构的(5, 3)简单无向图有( )个.(A)4 (B)5 (C)3 (D)2三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. 设A ,B ,C 是集合,若C A B A ⊕=⊕, 则B = C . ( )2. 逻辑联结词“→”满足结合律. ( )3. 设 (L , ≤)是偏序集,若L 的任意非空子集均存在上确界和下确界,则(L , ≤)是格.( )4. 在同构意义下,有限布尔代数只有,,,),((⋂⋃X P ∅, X ). ( )5. 设G 是简单图,则G 与G 中度数为奇数的节点个数相同. ( )四、(15分) 设C B g B A f →→:,:, 若g f 是满射,证明g 是满射,并举例说明f 不一定是满射.五、(10分) 在整数集合Z 上定义关系R 如下:对于任意∈y x , Z ,y y x x R y x +=+⇔∈22),(.判断R 是否具有自反性、反自反性、对称性、反对称性及传递性.六、(10分)利用真值表求命题公式)())(q p q p A ⌝→↔→⌝=的主析取范式和主合取范式.七、(10分)证明:在至少两个人的人群中,必有两个人有相同个数的朋友.八、(10分)将6阶完全无向图K 6的边随意地涂上红色或蓝色,证明:无论如何涂法,总存在红色的K 3或蓝色的K 3.(ps :答案见离散数学期末复习题(6套)答案文档)。

离散数学期末考试复习题及参考答案

离散数学期末考试复习题及参考答案
A. B. C. D.
参考答案: B
6、 设 A. 代数系统 B. 半群 C. 群
,*为普通乘法,则<S,*>是( )
D. 都不是
参考答案: A
7、 设S={0,1},*为普通乘法,则< S , * >是( ) A. 半群,但不是独异点 B. 只是独异点,但不是群 C. 群 D. 环,但不是群
参考答案: B
A. B. C. D.
参考答案: B
3、 命题“有的人喜欢所有的花”的逻辑符号化为( ) 设D:全总个体域,F(x):x是花,M(x) :x是人,H(x,y):x喜欢y
A. B. C. D.
参考答案: D
4、 下列等价式成立的有( )
A. B. C. D.
参考答案: D
5、 下列公式是重言式的有( )
5、 ( )设S={1,2},则S在普通加法和乘法运算下都不封闭。 参考答案: 正确
8、 谓词公式
中的x是( )
A. 自由变元
B. 约束变元
C. 既是自由变元又是约束变元
D. 既不是自由变元又不是约束变元
参考答案: C
9、 设
是一个有界格,如果它也是有补格,只要满足( )
A. 每个元素都至少有一个补元
B. 每个元素都有多个补元
C. 每个元素都无补元
D. 每个元素都有一个补元
参考答案: A
10、 一棵无向树T有4度、3度、2度的分枝点各1个,其余顶点均为树叶,则T中有( )片树叶
A. 3 B. 4 C. 5 D. 6
参考答案: C
11、 设
A. {{1,2}} B. {1,2 } C. {1} D. {2}
参考答案: A
,则有( )

《离散数学》复习题及答案

《离散数学》复习题及答案

页眉内容《离散数学》试题及答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P答:(2),(3),(4),(5),(6)4、公式∀x((A(x)→B(y,x))∧∃z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。

答:x,y, x,z5、判断下列语句是不是命题。

若是,给出命题的真值。

( )(1)北京是中华人民共和国的首都。

(2) 陕西师大是一座工厂。

(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。

(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。

答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。

(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1)PP⌝P→⌝↔(4)QQ→⌝(2)QP⌝→(3)Q8、设个体域为整数集,则下列公式的意义是( )。

(1) ∀x∃y(x+y=0) (2) ∃y∀x(x+y=0)答:(1)对任一整数x存在整数 y满足x+y=0(2)存在整数y对任一整数x满足x+y=0 9、设全体域D是正整数集合,确定下列命题的真值:(1) ∀x∃y (xy=y) ( ) (2) ∃x∀y(x+y=y) ( )(3) ∃x∀y(x+y=x) ( ) (4) ∀x∃y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式∃x(P(x)∨Q(x))在哪个个体域中为真?( )(1) 自然数(2) 实数 (3) 复数(4) (1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。

离散数学复习题

离散数学复习题

《离散数学》复习题一、单项选择题1.下列句子是原子命题的是( A)A. 大熊猫产在我国;B. 2+x=5;C. 小王和小李是学生;D. 别讲话了!2. 设p:天下雨,q:我去新华书店,命题“除非天不下雨,我去新华书店”的符号化形式为( D )A.p→qB.q→pC.┐q→pD.┐p→q3. 以下命题不是重言式的有(A )⌝P B. P∨⌝PA. P∧C. (P→Q)↔(⌝Q→⌝P)D. P→P∨Q4. 以下语句中不是命题的为(B)A.明天我要上门去谢你。

B.谢谢你给了我机会。

C.如果不说,我就不谢你。

D.除非你做了,我才谢你5.与⌝(∃x) M(x) 等价的是(D)A.(∀x) M(x)B.(∃x) ⌝M(x)C.(∀x) M(x)D.(∀x) ⌝M(x)6. 设P(x)为“x是大学生”,Q(x)为“x满30岁”。

命题“所有大学生都不满30岁”写成谓词公式为( C )A. ∀x(P(x)∧Q(x))B.∃ x(P(x)∧Q(x))C.∀x(P(x)→Q(x))D.∃ x(P(x)→Q(x))7.公式(∀x) (P(x)→(∀y)R(x, y))中,∀x的辖域为(B )A.P(x)B.(P(x)→(∀y)R(x, y))C.P(x)和R(x, y)D.P(x)→(∀y)8.设S={a, b, c},则S的幂集的元素的个数有(C )A.3B.6 C. 8D.99.以下等式中不正确的是:( A ) A.A∪(B×C)=(A∪B)×(A∪C)B.A×(B∪C)=(A×B)∪(A×C)C.(A∪B)×C=(A×C)∪(A×C)D(A×B)×C=A×(B×C)10.设A={1, 2, 3, 4}, A上的等价关系R={<1, 2>, <2, 1>, <3, 4>, <4, 3>}∪I A, 则对应于R的A 的划分是( D ) A.{{1},{2, 3}, {4}}B.{{1, 2},{3}, {4}}C.{{1},{2}, {3}, {4}}D.{{1,2}, {3, 4}}11.设函数f:{1,2}→{1},则f是( B ) A.入射B.满射C.双射D.非入射非满射12.设Z-是负正整数集合,+,-,*,△是普通数的加法、减法和平方运算,则能构成代数系统是( B )A.< Z-, +> B.< Z-, ->C.< Z-, *>D< Z-, △>13.若他聪明,他用功,则“他虽聪明但不用功”,可符号化为( B )A. B.C.D.14. 若一个代数系统(A,*)满足运算封闭性及结合律,且有幺元,则它是( A ) A.独异点B.群C.格D.布尔代数15.设G为无限群,则( C ) A.G是交换群B.G是循环群C.G中每个元素都有逆元D.G中每个元素的阶都是无限的16.在有3个结点的图中,度数是奇数的结点的个数为( D ) A.1B.3C. 1或3D.0或217.在5阶图G中,若从结点v1到v4存在路,则从v1到v4的路中必存在路,其长度小于等于( D ) A.1B.2C. 3D.418.连通平面图G的面的次数之和为10,则其边数为( A ) A.5B.10C. 15D.2019. 在自然数集合上,下列哪种运算不是可交换的( D )A. B.C. D.20. 设简单图的最大结点度数为,图的结点数为,则与的关系为( B )A. B.C. D. 与没关系21.下列各项中错误的是(A)A.B.C.D.22.设,下列各式成立的是(C )A.B.C.D.23.连通平面图G中,所有面的次数之和是( C )A.边数B.边数的一半C.边数的两倍D.边数的一倍24.无向图具有一条欧拉回路,那么图的所有结点的度数都是(B )A.奇数B.偶数C.素数D.125. 下列集合哪个是最小联结词集( D )A. B.C. D.26. 设简单图的最大结点度数为,图的结点数为,则与的关系为(B)A. B.C. D. 与没关系27. 设集合A={1,2,3},B={2,3,4,5},C={2,4,8,16},D={1,2,3,4},设“|”是集合上的“整除”关系,则下列偏序集中能构成格的是( C )A. <A,|>;B. <B,|>;C. <C,|>;D. <D,|>;28.设上的二元关系,则关系具有的性质是哪一个(B)A. 自反性B. 对称性C. 传递性D. 反对称性29.判断下列各式中不是合式公式的是哪一个( C)A. B.C. D.30. 代数系统(S, )中以下断言正确的是( C )A. 单位元与零元总是不相等;B. 可能有二个左单位元和一个右单位元;C. 单位元总有逆元;D. 若S' S,则(S', )是(S, )的子代数31. 指出下列语句中哪个是原子命题( A)A. 苏州是中国的首都。

离散数学复习题及答案

离散数学复习题及答案

总复习题(一)一.单选题1 (C)。

一连通的平面图,5个顶点3个面,则边数为()。

、4 、5 、6 、72、 (A)。

如果一个简单图,则称为自补图,非同构的无向4阶自补图有()个。

、1 、2 、3 、43、 (D)。

为无环有向图,为的关联矩阵,则()。

、是的终点、与不关联、与关联、是的始点4、 (B)。

一连通的平面图,8个顶点4个面,则边数为。

、9 、10 、11 、125、 (D)。

如果一个简单图,则称为自补图,非同构的3阶有向完全图的子图中自补图有个。

、1 、2 、3 、46、21条边,3个4度顶点,其余顶点为3度的无向图共有个顶点。

、13 、12 、11 、107、 (D)。

有向图的通路包括。

、简单通路、初级通路、复杂通路、简单通路、初级通路和复杂通路8、 (D)。

一连通的平面图,9个顶点5个面,则边数为。

、9 、10 、11 、12A B C D G G ≅G A B C D E ,V D =[]m n ij m ⨯D 1m ij =A i v j e B i v j e C i v j e D i v j e A B C D G G ≅G A B C D A B C D A B C D A B C D9、21条边,3个4度顶点,其余顶点为3度的无向图共有个顶点。

、13 、12 、11 、1010、 (D)。

有向图的通路包括。

、简单通路、初级通路、复杂通路、简单通路、初级通路和复杂通路11、 (D)。

一连通的平面图,9个顶点5个面,则边数为。

、9 、10 、11 、1212、 (B)。

为有向图,为的邻接矩阵,则。

、邻接到的边的条数是5、接到的长度为4的通路数是5、长度为4的通路总数是5、长度为4的回路总数是513、 (C)。

在无向完全图中有个结点,则该图的边数为()。

A 、B 、C 、D 、14、 (C)。

任意平面图最多是()色的。

A 、3B 、4C 、5D 、615、 (A)。

对与10个结点的完全图,对其着色时,需要的最少颜色数为()。

离散数学复习题

离散数学复习题

离散数学复习题第⼀套题⼀、填空题1设集合A,B,其中A={1,2,3}, B= {1,2},则A - B=____________________;ρ(A) - ρ(B)=_________________ .答案:{3};{{3},{1,3},{2,3},{1,2,3}}.2. 设有限集合A, |A| = n,则|ρ(A×A)| = ____________.答案:22n.3. 已知命题公式G=?(P→Q)∧R,则G的主析取范式是____________.答案:(P∧?Q∧R).4. 设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A?B=_____; A?B=_____;A-B=_____.答案:{4};{1, 2, 3, 4};{1, 2}.5. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______, ________, ________.答案:⾃反性;对称性;传递性.6. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R1 = {(2,1),(3,2),(4,3)},则R1?R2=________;R2?R1 =________;R12=___________.答案:{(1,3),(2,2),(3,1)};{(2,4),(3,3),(4,2)};{(2,2),(3,3)}.7. 设有限集A, B,|A| = m, |B| = n,则| |ρ(A?B)| = ___________.则R以集合形式(列举法)记为______________.答案:{(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)}.9. 设G是具有8个顶点的树,则G中增加_________条边才能把G变成完全图。

答案:21.10. 设谓词的定义域为{a, b},将表达式?xR(x)→?xS(x)中量词消除,写成与之对应的命题公式是_____________.答案:(R(a)∧R(b))→(S(a)∨S(b)).11. 设集合A={1, 2, 3, 4},A上的⼆元关系R={(1,1),(1,2),(2,3)},S={(1,3),(2,3),(3,2)}。

《离散数学》考试复习题

《离散数学》考试复习题

《离散数学》考试复习题《离散数学》复习题⼀、填空题: 1、“明年的10⽉1⽇。

”是真命题。

(对、错) 2、命题可分为三类,则P ∧(P ∨Q )是式。

3、P ↑Q= (在{?,∨}中表⽰)。

4、P ∧(P ∨Q )的对偶式是。

5、若A 为任意⼀公式,若A 中⽆⾃由出现的个体变项,则称A 为。

6、??xA (x )? A (x )。

7、P ({?,{1}})= 。

8、若A ?B 且B ?A ,则A B 。

9、│A ⊕B │= 。

10、A 、B 、C 分别为集合,则(A ×B )×C A ×(B ×C )。

(=、≠)11、设F={(x ,y )│x ,y ∈N ∧y=x 2},则F ↑{1,2}= 。

12、设F ,G ,H 为任意的关系,则有F ?(G ?H ) F ?G ∩F ?H 。

(关系) 13、若R 具有⾃反性、、,则R 是等价关系。

14、序列(3,4,4,1,0)是⽆向简单图的度数序列。

(对、错)⼆、选择题:1、设P:我们划船,Q:我们跑步。

命题“我们不能既划船⼜跑步”符号化为() A 、P Q ?∧? B 、P Q ?∨? C 、()P Q ?? D 、P Q ??2、下⾯哪个联结词运算不可交换?()3、谓词公式(()())()x P x yR y Q x ?∨?→中量词x ?的作⽤域是() A 、∧ B 、→ C 、∨ D 、?4、在0 ?之间填上正确的符号。

() A .?B .∈C .?D .=5、幂集()()()P P P ?为() A .{}{}{}{}{}{},,,B .{}{}{}{},,,C .{}{}{}{},, D .{}{}{},,6、集合{}1,2,10A = 上的关系{},|10,,R x y x y x A y A =+=∈∈,则R 的性质为() A .⾃反的 B .传递的,对称的 C .对称的 D .反⾃反的,传递的7、设R 和S 是集合A 上的任意关系,则下列命题为真的是() A .若R 和S 是传递的,则R S 也是传递的 B .若R 和S 是反⾃反的,则R S 也是反⾃反的C .若R 和S 是对称的,则R S 也是对称的D .若R 和S 是⾃反的,则R S 也是⾃反的8、设R 和S 是集合A 上的等价关系,则R S ?的对称性() A .不可能成⽴ B .⼀定不成⽴ C .不⼀定成⽴ D .⼀定成⽴9、集合A 上的关系R 是相容关系的必要条件是() A .⾃反、反对称的 B .反⾃反、对称的 C .传递、⾃反的 D .⾃反、对称的10、设集合A 中有4个元素,则A 上的不同的等价关系的个数为() A .11个 B .14个 C .15个 D .17个 11、下⾯哪个是最⼩命题联结词集()A 、{,}??B 、{,,}?∧∨C 、{}↑D 、{,}∧→ 12、重⾔式的否定式是()A 、重⾔式B 、⽭盾式C 、可满⾜式D 、蕴含式 13、下⾯哪个是真命题?()A 、1+2=5B 、雪是⿊的C 、如果1+2=3,那么雪是⿊的D 、如果1+2=5,那么雪是⿊的 14、任何⽆向图中结点间的连通关系是() A .偏序关系 B .相容关系 C .等价关系 D .拟序关系 15、设1,,V D VE = 是强连通图,当且仅当()A .D 中有通过每个结点⾄少⼀次的回路B .D 中⾄少有⼀条回路C .D 中有通过每个结点⾄少⼀次的通路 D . D 中⾄少有⼀条通路 16、含5个结点、3条边的不同构的简单图有() A .2个 B .3个 C .4个 D .5个17、给定下列序列,可构成⽆向简单图的结点度数序列是() A .(1,1,2,2,2) B .(1,1,2,2,3) C .(0,1,3,3,3) D .(1,3,4,4,5)18、图G 和图G '的结点和边分别存在⼀⼀对应关系是G 和G '同构的() A .充分条件 B .既不充分也不必要条件C .充要条件D .必要条件19、K 4中含3条边的不同构⽣成⼦图有() A .1个 B .4个 C .3个 D .2个 20、在有n 个结点的连通图中,其边数()A .最多有1n -条B .到少有n 条C .最多有n 条D .到少有1n -条 21、欧拉回路是() A .简单回路 B .路径 C .既是基本回路也是简单回路 D .既⾮基本回路也⾮简单回路22、哈密尔顿回路是()A .路径B .简单回路C .既是基本回路也是简单回路D .既⾮基本回路也⾮简单回路23、设集合{}1,2,3,10A = ,半序关系≤是A 上的整除关系,则半序集(),A ≤上元素10是集合A 的()A .最⼤元B .最⼩元C .极⼩元D .极⼤元24、设R 1,R 2是集合{}1,2,3,4A =上的两个关系,基中 ()()()(){}11,1,2,2,2,34,4R = ()()()()(){}21,1,2,2,2,3,3,24,4R = 则R 2是R 1的()闭包。

离散数学复习题参考带答案

离散数学复习题参考带答案

一、选择题:(每题2’)1、下列语句中不是命题的有()。

A.离散数学是计算机专业的一门必修课。

B.鸡有三只脚。

C.太阳系以外的星球上有生物。

D.你打算考硕士研究生吗2、命题公式A与B是等价的,是指()。

A.A与B有相同的原子变元B.A与B都是可满足的C.当A的真值为真时,B的真值也为真D.A与B有相同的真值3、所有使命题公式P∨(Q∧R)为真的赋值为()。

A.010,100,101,110,111 B.010,100,101,111C.全体赋值D.不存在4、合式公式(P∧Q)R的主析取范式中含极小项的个数为()。

A.2 B.3 C.5 D.05、一个公式在等价意义下,下面哪个写法是唯一的()。

A.析取范式B.合取范式C.主析取范式D.以上答案都不对6、下述公式中是重言式的有()。

A.(P∧Q) (P∨Q) B.(PQ) (( PQ)∧(QP))C.(P Q)∧Q D.P (P∧Q)7、命题公式(PQ) (Q∨P) 中极小项的个数为(),成真赋值的个数为()。

A.0 B.1 C.2 D.38、若公式(P∧Q)∨(P∧R) 的主析取范式为m001∨m011∨m110∨m111则它的主合取范式为()。

A.m001∧m011∧m110∧m111B.M000∧M010∧M100∧M101C.M001∧M011∧M110∧M111D.m000∧m010∧m100∧m1019、下列公式中正确的等价式是()。

A.(x)A(x) (x)A(x) B.(x) (y)A(x, y) (y) (x) A(x, y)C.(x)A(x) (x)A(x) D.(x) (A(x) ∧B(x)) (x) A(x) ∨(x) B(x)10、下列等价关系正确的是()。

A.x ( P(x) ∨Q(x) ) x P(x) ∨x Q(x) B.x ( P(x) ∨Q(x) ) x P(x) ∨x Q(x)C.x ( P(x) Q ) x P(x) Q D.x ( P(x) Q ) x P(x) Q11、设个体域为整数集,下列真值为真的公式是()。

离散数学试题总汇及答案

离散数学试题总汇及答案

离散数学试题总汇及答案一、单项选择题(每题2分,共20分)1. 在集合{1,2,3}和{3,4,5}的笛卡尔积中,元素(2,4)是否存在?A. 存在B. 不存在C. 无法确定D. 以上都不对2. 函数f: A→B是单射的,当且仅当对于任意的a1, a2∈A,若f(a1)=f(a2),则a1=a2。

A. 正确B. 错误C. 无法确定D. 以上都不对3. 以下哪个命题是真命题?A. 所有的狗都会游泳。

B. 有些狗不会游泳。

C. 所有的狗都不会游泳。

D. 以上都不是真命题。

4. 如果p蕴含q为假,那么p和q的真值可以是?A. p为真,q为假B. p为假,q为真C. p为真,q为真D. p为假,q为假5. 以下哪个图是连通图?A. 一个孤立点B. 两个不相连的点C. 一个包含三个点且每对点都相连的图D. 以上都不是连通图6. 在有向图中,如果存在从顶点u到顶点v的路径,那么称v是u的后继顶点。

A. 正确B. 错误C. 无法确定D. 以上都不对7. 以下哪个等价关系是集合{1,2,3}上的?A. {(1,1), (2,2), (3,3)}B. {(1,2), (2,1), (2,2), (3,3)}C. {(1,1), (2,3), (3,2), (3,3)}D. {(1,1), (2,2), (3,3), (1,3)}8. 以下哪个命题是假命题?A. 所有的鸟都有羽毛。

B. 有些鸟不会飞。

C. 所有的哺乳动物都是温血动物。

D. 以上都不是假命题。

9. 在图论中,一个图的生成树是包含图中所有顶点的最小连通子图。

A. 正确B. 错误C. 无法确定D. 以上都不对10. 如果命题p和q互为逆否命题,那么它们具有相同的真值。

A. 正确B. 错误C. 无法确定D. 以上都不对二、填空题(每题2分,共20分)1. 集合{1,2,3}和{3,4,5}的并集是________。

2. 函数f: A→B是满射的,当且仅当对于任意的b∈B,存在a∈A,使得f(a)=________。

《离散数学》复习题及答案

《离散数学》复习题及答案

《离散数学》复习题及答案《离散数学》试题及答案⼀、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)?Q=>Q→P (2)?Q=>P→Q (3)P=>P→Q (4)?P∧(P∨Q)=>?P答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→?R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)3、设有下列公式,请问哪⼏个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ?(P→Q)=>P (6) ?P∧(P∨Q)=>?P答:(2),(3),(4),(5),(6)4、公式?x((A(x)→B(y,x))∧?z C(y,z))→D(x)中,⾃由变元是( ),约束变元是( )。

答:x,y, x,z5、判断下列语句是不是命题。

若是,给出命题的真值。

( )(1)北京是中华⼈民共和国的⾸都。

(2) 陕西师⼤是⼀座⼯⼚。

(3) 你喜欢唱歌吗? (4) 若7+8>18,则三⾓形有4条边。

(5) 前进! (6) 给我⼀杯⽔吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在⼀些⼈是⼤学⽣”的否定是( ),⽽命题“所有的⼈都是要死的”的否定是( )。

答:所有⼈都不是⼤学⽣,有些⼈不会死7、设P:我⽣病,Q:我去学校,则下列命题可符号化为( )。

(1) 只有在⽣病时,我才不去学校 (2) 若我⽣病,则我不去学校(3) 当且仅当我⽣病时,我才不去学校(4) 若我不⽣病,则我⼀定去学校答:(1)PP?P→(4)QQ→→(3)Q8、设个体域为整数集,则下列公式的意义是( )。

(1) ?x?y(x+y=0) (2) ?y?x(x+y=0)答:(1)对任⼀整数x存在整数 y满⾜x+y=0(2)存在整数y对任⼀整数x满⾜x+y=0 9、设全体域D是正整数集合,确定下列命题的真值:(1) ?x?y (xy=y) ( ) (2) ?x?y(x+y=y) ( )(3) ?x?y(x+y=x) ( ) (4) ?x?y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式?x(P(x)∨Q(x))在哪个个体域中为真?( )(1) ⾃然数(2) 实数 (3) 复数(4) (1)--(3)均成⽴答:(1)11、命题“2是偶数或-3是负数”的否定是()。

离散数学复习题

离散数学复习题

离散数学复习题一、填空1、命题中的否定联接词;析取联接词;蕴含联接词。

2、一个命题公式,若在所有赋值下取值为真,则称此公式为永真式;若……假,则……..为永假式;若至少存在一组赋值,其命题为真,则…….为可满足式。

3、有限布尔代数只能有2n个元素。

4、R是定义在集合上的二元关系,若R满足自反性、对称性、传递性,则称R是A上的等价关系。

5、全序集(A,≤)必是偏序集,且是链。

6、n阶m条边无向图G是树,当且仅当G是连通点,且m= n-1。

7、若有向树G中,有一个顶点的入度为0,其余点的入度均1,则称G为根树。

8、有序对<x,y>具有以下性质(1)当x不等于y时,<x,y> ≠<y,x>(2)<x,y>=<u,r>的充要条件是x= u 且y= r。

9、关系的性质五自反、反自反、对称、反对称、传递。

10、图中顶点作为边的端点的条数称为此顶点的度数。

11、设X是格,并对交运算时可分配的,则格中的并运算对交运算是可分配的且格中的交运算对并运算是可分配的。

12、有向图按连通图分为三类强连通图、单向连通图、弱连通图。

13、T 为一颗根树,若T的每个分支点的儿子数都为r,则称T为r元正则树。

14、设A、B是集合,求A与B之间关系(属于、不属于、包含…)如果A={1},B={1,{1,2}},则A 不属于B、A 不包含 B15、若R是定义在集合A上的一个二元关系,若R满足自反性、反对称性、可传递性则称R是偏序关系。

16、设集合A={1,2,3,4},A上二元关系R={<1,1> <1,3> <2,1> <3,3> <3,4><4,3>},则逆序关系R−1= {<1,1> <3,1> <1,2> <3,3> <4,3> <3,4> }。

离散数学-期末复习题及答案

离散数学-期末复习题及答案

离散数学-期末复习题及答案课程名称:《离散数学》一、单项选择题1、 (D)。

下列句子是命题的为。

A 、这朵花多好看呀!B 、明天下午有会吗?C 、5y x >+D 、地球外的星球上也有人。

2、 (A)。

李平不是不聪明,而是不用功。

p:李平聪明q:李平用功。

符号化为。

A 、 q )p (??∧ B 、q p ??∧ C 、q )p (∧?? D 、q )p (?∨ 3、 (A)。

与)q p (∨?命题公式等值的是。

A 、q p ??∧ B 、q p ??∨ C 、q p ∧ D 、q)(p ∧?4、 (D)。

含有3个命题变项的简单和取式中一定可形成种不同的极小项。

A 、2 B 、4 C 、6 D 、85、 (C)。

q )q p (∧→?此公式的类型为。

A 、重言式B 、永真式C 、矛盾式D 、可满足式 6、 (C)。

q )q )q p ((→∧→此公式的类型为。

A 、矛盾式B 、可满足式C 、重言式D 、永假式7、 (A)。

设A 是含有3个命题变项的公式,若它的主析取范式中含有8个极小项,则它是。

A 、重言式B 、矛盾式C 、可满足式D 、永假式8、 (B)。

只有天下大雨,他才乘公共汽车上班.p:天下大雨q:他乘车上班,符号化为。

A 、q p → B 、p q → C 、q p →?D 、p q →?9、 (B)。

不经一事,不长一智p:经一事q:长一智,符号化为。

A 、p q →B 、q p ??→C 、p q ??→ D 、q p → 10、 (B)。

R Q P →∧?)(成真赋值为。

A 、 000,001,110B 、 001,011,101,110,111C 、全体赋值D 、无11、 (B)。

公式Q P→的主析取范式为)3,1,0(∑,则公式的主合取范式为。

A 、)2(TB 、)2(∏C 、)3,1,0(∏D 、)3,2,1,0(∏12、 (A)。

R Q P →∧?成假赋值为。

A 、 100,B 、 001,011,101,110,111C 、全体赋值D 、无13、 (B)。

离散数学期末复习题

离散数学期末复习题

离散数学期末复习题第一章集合论一、判断题(1)空集是任何集合的真子集. ( 错 )(2){}φ是空集. ( 错 ) (3){}{}a a a },{∈ ( 对 ) (4)设集合{}{}{}{}AA 22,1,2,1,2,1⊆=则. ( 对 ) (5)如果B A a ⋃∉,则A a ∉或B a ∉. ( 错 )解 B A a ⋃∉则B A B A a ⋂=⋃∈,即A a ∈且B a ∈,所以A a ∉且B a ∉(6)如果A ∪.,B A B B ⊆=则 ( 对 )(7)设集合},,{321a a a A =,},,{321b b b B =,则},,,,,{332211><><><=⨯b a b a b a B A ( 错 )(8)设集合}1,0{=A ,则}1},0{,0},0{,1,,0,{><><><><=φφρ是A2到A 的关系. ( 对 )解 A 2}},1{},0{,{A φ=, =⨯A A 2}1,,0,,1},1{,0},1{,1},0{,0},0{,1,,0,{><><><><><><><><A A φφ(9)关系的复合运算满足交换律. ( 错 )(10).条件具有传递性的充分必要上的关系是集合ρρρρA = ( 错 )(11)设.~,上的传递关系也是则上的传递关系是集合A A ρρ ( 对 ) (12)集合A 上的对称关系必不是反对称的. ( 错 )(13)设21,ρρ为集合A 上的等价关系, 则21ρρ⋂也是集合A 上的等价关系( 对 )(14)设ρ是集合A 上的等价关系, 则当ρ>∈<b a ,时, ρρ][][b a = ( 对 )(15)设21,ρρ为集合 A 上的等价关系, 则 ( 错 )二、单项选择题(1)设R 为实数集合,下列集合中哪一个不是空集 ( A )A. {}R x x x ∈=-且,01|2 B .{}R x x x ∈=+且,09|2C. {}R x x x x ∈+=且,1|D. {}R x x x ∈-=且,1|2(2)设B A ,为集合,若φ=B A \,则一定有 ( C )A. φ=B B .φ≠B C. B A ⊆ D. B A ⊇(3)下列各式中不正确的是 ( C )A. φφ⊆ B .{}φφ∈ C. φφ⊂ D. {}}{,φφφ∈ (4)设{}}{,a a A =,则下列各式中错误的是 ( B )A. {}A a 2∈ B .{}A a 2⊆ C. {}A a 2}{∈ D. {}Aa 2}{⊆ (5)设{}2,1=A ,{}c b a B ,,=,{}d c C ,=,则)(C B A ⨯为 ( B ) A. {}><><c c ,2,1, B .{}><><c c ,2,,1C. {}><><2,,,1c cD. {}><><2,,1,c c(6)设{}b A ,0=,{}3,,1b B =,则B A 的恒等关系为 ( A ) A. {}><><><><3,3,,,1,1,0,0b b B .{}><><><3,3,1,1,0,0C. {}><><><3,3,,,0,0b bD. {}><><><><0,3,3,,,1,1,0b b(7)设{}c b a A ,,=上的二元关系如下,则具有传递性的为 ( D )A. {}><><><><=a b b a a c c a ,,,,,,,1ρB . {}><><=a c c a ,,,2ρC. {}><><><><=c b a b c c b a ,,,,,,,3ρD. {}><=a a ,4ρ(8)设ρ为集合A 上的等价关系,对任意A a ∈,其等价类[]ρa 为 ( B )A. 空集; B .非空集; C. 是否为空集不能确定; D. }|{A x x ∈.(9)映射的复合运算满足 ( B )A. 交换律 B .结合律 C. 幂等律 D. 分配律(10)设A ,B 是集合,则下列说法中( C )是正确的.A .A 到B 的关系都是A 到B 的映射B .A 到B 的映射都是可逆的C .A 到B 的双射都是可逆的D .B A ⊂时必不存在A 到B 的双射(11)设A 是集合,则( B )成立.A .A A #22#=B .A X X A⊆↔∈2 C .{}A2∈φ D .{}AA 2∈ (12)设A 是有限集(n A =#),则A 上既是≤又是~的关系共有(B ).A .0个B .1个C .2个D .n 个三、填空题1. 设}}2,1{,2,1{=A ,则=A2____________.填}}},2,1{,2{}},2,1{,1{},2,1{}},2,1{{},2{},1{,{2A A φ=2.设}}{,{φφ=A ,则A 2= . 填}}},{{},{,{2A A φφφ=3.设集合B A ,中元素的个数分别为5#=A ,7#=B ,且9)(#=⋃B A ,则集合B A ⋂中元素的个数=⋂)(#B A .34.设集合}4,1001|{Z x x x x A ∈≤≤=的倍数,是,}5,1001|{Z x x x x B ∈≤≤=的倍数,是,则B A 中元素的个数为 .405.设 },{b a A =, ρ 是 A2 上的包含于关系,,则有ρ= .},,},{,}{},{,},{,}{},{,,,}{,,}{,,,{><><><><><><><><><A A A b b b A a a a A b a φφφφφ6.设21,ρρ为集合 A 上的二元关系, 则=21ρρ .~1~2ρρ7.集合A 上的二元关系ρ为传递的充分必要条件是 .ρρρ⊆8. 设集合{}{}><><==0,2,2,02,1,01ρ上的关系A 及集合A 到集合{}4,2,0=B 的关系=2ρ{><b a ,|><b a ,A b a B A ∈⨯∈,且∩}=21,ρρ 则B ___________________. 填 }2,2,0,2,2,0,0,0{><><><><四、解答题1. 设 A d c b a A },,,,{=上的关系 },,,,,,,,,,,,,,,{><><><><><><><><=c d d c a b b a d d c c b b a a ρ(1)写出ρ的关系矩阵;(2)验证ρ是A 上的等价关系;(3)求出A 的各元素的等价类。

离散数学-复习题

离散数学-复习题

离散数学试题1一、单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.下列句子为命题的是( )A.走,看电影去B.x+y>0C.空集是任意集合的真子集D.你明天能来吗?2.下列式子不是..谓词合式公式的是( ) A.(∀x)(P(x)→(∃x)(Q(x) ∧A(x ,y)))B.(∀x)∧(∃y)∨P(x ,y)C.(∀x)P(x)→R(y)D.(∃x)P(x)∧Q(y ,z)3.下列式子为重言式的是( )A.P →P ∨QB.(﹁P ∧Q)∧(P ∨﹁Q)C.﹁ (P Q)D.(P ∨Q) (P →Q) 4.设个体域为实数集,特定元素a=0,函数f(x ,y)=x-y ,特定谓词F(x ,y)为x<y ,下列公式真值为真的是( )A.(∀x)(∀y)F(x ,f(f(x ,y),y))B.(∀x)(∀y)(﹁F(f(x ,y),x))C.(∀x)(∀y)(∀z)(F(x ,y)→F(f(x ,z),f(y ,z)))D.(∀x)F(f(a ,x),a)5.对于公式(∀x)(∀y)P(x ,y)∨Q(x ,z)∧(∃x)P(x ,y),下列说法正确的是( )A.x 是自由变元B.x 是约束变元C.( ∀x)的辖域是P(x ,y)∨Q(x ,z)D.(∀x)的辖域是P(x ,y)6.设论域为{1,2},与公式(∀x)﹁A(X)等价的是( )A. ﹁A(1) ∨﹁A(2)B. ﹁A(1)→﹁(A2)C. ﹁A(1) ∧﹁A(2)D. A(1) →A(2)7.设Z +是正整数集,f :Z +×Z +→Z +,f(n ,m)=n m ,则f( )A.仅是单射B.仅是满射C.是双射D.不是函数8.下列哪个关系矩阵所对应的关系具有自反性( )A.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001111101B.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101110001C.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001100100D.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡00101010110.在整数集上,下面哪个运算不是..二元运算( )A.加法B.减法C.乘法D.除法二、填空题请在每小题的空格中填上正确答案。

离散数学复习题及答案

离散数学复习题及答案

1. 写出命题公式 ﹁(P →(P ∨ Q ))的真值表。

答案:2.证明 答案:3. 证明以下蕴涵关系成立: 答案:4. 写出下列式子的主析取范式: 答案:)()(Q P Q P Q P ⌝∧⌝∨∧⇔↔Q)P (Q)(P P)(Q P)P (Q)(Q Q)P (P)Q)P ((Q)Q)P (P)Q (Q)P (Q P ⌝∧⌝∨∧⇔∧∨∧⌝∨⌝∧∨⌝∧⌝⇔∧∨⌝∨⌝∧∨⌝⇔∨⌝∧∨⌝⇔↔Q Q P P ⇒∨∧⌝)()()(R P Q P ∨∧∧⌝5. 构造下列推理的论证:p ∨q, p →Ør, s→t, Øs→r, Øt Þ q 答案:①s →t 前提 ②t 前提③s ①②拒取式I12 ④s →r 前提⑤r ③④假言推理I11 ⑥p →r 前提⑦p ⑤⑥拒取式I12 ⑧p ∨q 前提⑨q ⑦⑧析取三段论I106. 用反证法证明:p →(Ø(r∧s)→Øq), p, Øs Þ Øq)()(R P Q P ∨∧∧⌝)()(R P Q P ∨∧⌝∨⌝⇔))(())(R Q P P Q P ∧⌝∨⌝∨∧⌝∨⌝⇔)()()()(R Q R P P Q P P ∧⌝∨∧⌝∨∧⌝∨∧⌝⇔)()()(Q R P R P Q R P Q ∧∧⌝∨⌝∧∧⌝∨∧∧⌝⇔)()()(P R Q P R Q Q R P ⌝∧∧⌝∨∧∧⌝∨⌝∧∧⌝∨)()()(Q R P R P Q R P Q ∧∧⌝∨⌝∧∧⌝∨∧∧⌝⇔)(Q R P ⌝∧∧⌝∨7. 请将下列命题符号化:所有鱼都生活在水中。

答案:令 F( x ):x 是鱼 W( x ):x 生活在水中))((W(x)F(x)x →∀8. 请将下列命题符号化:存在着不是有理数的实数。

答案:令 Q ( x ):x 是有理数 R ( x ):x 是实数Q(x))x)(R(x)(⌝∧∃9. 请将下列命题符号化:尽管有人聪明,但并非一切人都聪明。

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案一、单项选择题(每题5分,共20分)1. 在离散数学中,以下哪个概念不是布尔代数的基本元素?A. 逻辑与B. 逻辑或C. 逻辑非D. 逻辑异或答案:D2. 下列哪个命题不是命题逻辑中的命题?A. 所有学生都是勤奋的B. 有些学生是勤奋的C. 学生是勤奋的D. 勤奋的学生答案:D3. 在集合论中,以下哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 以下哪个图不是无向图?A. 简单图B. 完全图C. 有向图D. 多重图答案:C二、填空题(每题5分,共20分)1. 如果一个命题的逆否命题为真,则原命题的________为真。

答案:逆命题2. 在图论中,如果一个图的任意两个顶点都由一条边连接,则称这个图为________图。

答案:完全3. 一个集合的幂集是指包含该集合的所有________的集合。

答案:子集4. 如果一个函数的定义域和值域都是有限集合,那么这个函数被称为________函数。

答案:有限三、简答题(每题10分,共30分)1. 请简述什么是图的欧拉路径。

答案:欧拉路径是一条通过图中每条边恰好一次的路径。

2. 解释什么是二元关系,并给出一个例子。

答案:二元关系是指定义在两个集合之间的关系,它将第一个集合中的元素与第二个集合中的元素联系起来。

例如,小于关系就是一个二元关系。

3. 请说明什么是递归函数,并给出一个简单的例子。

答案:递归函数是一种通过自身定义来计算函数值的函数。

例如,阶乘函数就是一个递归函数,定义为:n! = n * (n-1)!,其中n! = 1当n=0时。

四、计算题(每题10分,共30分)1. 计算以下逻辑表达式:(P ∧ Q) ∨ ¬R答案:首先计算P ∧ Q,然后计算¬R,最后计算两者的逻辑或。

2. 给定集合A = {1, 2, 3},B = {2, 3, 4},求A ∪ B。

答案:A ∪ B = {1, 2, 3, 4}3. 已知函数f(x) = 2x + 3,求f(5)。

离散数学试题及答案解析

离散数学试题及答案解析

离散数学试题及答案解析一、单项选择题(每题2分,共10分)1. 集合A={1,2,3},集合B={2,3,4},则A∩B等于:A. {1,2,3}B. {2,3}C. {1,4}D. {3,4}答案:B2. 以下哪个命题是真命题?A. 所有天鹅都是白色的。

B. 有些天鹅不是白色的。

C. 所有天鹅都不是白色的。

D. 没有天鹅是白色的。

答案:B3. 函数f: A→B的定义域是A,值域是B,那么f是:A. 单射B. 满射C. 双射D. 既不是单射也不是满射答案:D4. 逻辑表达式(p∧q)→r的逆否命题是:A. ¬r→¬(p∧q)B. ¬r→¬p∨¬qC. r→(p∧q)D. ¬r∧¬p∨¬q答案:B5. 有限集合A={a, b, c}的子集个数为:A. 3B. 4C. 7D. 8答案:D二、填空题(每题3分,共15分)1. 如果一个关系R在集合A上是自反的,那么对于A中的每一个元素a,都有___________。

答案:(a, a)∈R2. 命题逻辑中,合取(AND)的逻辑运算符用___________表示。

答案:∧3. 在图论中,一个连通图是指图中任意两个顶点之间都存在___________。

答案:路径4. 集合{1, 2, 3}的幂集包含___________个元素。

答案:85. 如果一个函数f是单射,那么对于任意的x1, x2∈A,如果f(x1)=f(x2),则x1___________x2。

答案:=三、解答题(每题10分,共20分)1. 证明:若p是q的充分条件,q是r的充分条件,则p是r的充分条件。

证明:假设p成立,由于p是q的充分条件,所以q成立。

又因为q是r的充分条件,所以r成立。

因此,p成立可以推出r成立,即p是r的充分条件。

2. 给定一个有向图,其中包含顶点A、B、C、D,边为(A, B),(B, C),(C, D),(D, A),(A, C)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选择题
1.设P :他在听音乐,Q :他学习,将命题“他在学习或在听音乐”符号化正确的是( )
A.P →Q
B.P ∧Q
C.P ∨Q
D.Q →⌝P
2.下列命题公式不是..
永真式的是( ) A.()P Q P →→ B.()P Q →∨P C.P ⌝∨()Q P →
D.()P Q P →→
3.下列等价式正确的是( )
A.()()()()x A x x A x ⌝∀⇔∀⌝
B.()()()(())A x B x x A B x →∃⇔∃→
C.()(())()()x A x B x A x B ∀→⇔∀→
D.()(())()()x A x B x A x B ∃→⇔∃→ 4.设A(x):x 是鸟,B(x):x 会飞,命题“有的鸟不会飞”符号化为( )
A.()(()x A x ⌝∃∧())B x
B.()(()x A x ⌝∀∧())B x
C.()(()())x A x B x ⌝∃→
D.()(()())x A x B x ⌝∀→
5.设X ={,{},{,}}a a ∅∅,则下列陈述正确的是( )
A.a X ∈
B.{,}a X ∅⊆
C.{{,}}a X ∅⊆
D.{}X ∅∈
6.设A B B = ,则有( )
A.A B A =
B.A B -=∅
C.A B B =
D.A B ⊆
7.设A ={a ,{b , c }},则其幂集P (A )的元素总个数为( )
A.3
B.4
C.6
D.8
8.在整数集Z 上,下列定义的运算满足结合律的是( )
A.1a b b *=+
B.1a b a *=-
C.1a b ab *=-
D.1a b a b *=++
9.设<G ,*>是群,则下列陈述不正确...
的是( ) A.11()a a --= B.111()ab a b ---= C.n m n m a a a += D.11()n n a ba a b a --=
10.设:,:f X Y g Y Z →→是函数,则下列陈述正确的是( )
A.若f 不是入射的,则g f 不是入射的
B.若g 是入射的,则g f 也是入射的
C.若f 是入射的,则g f 也是入射的
D.若g f 不是入射的,则f 也不是入射的
11.设简单图G 所有结点的度数之和为36,由G 的边数为( )
A.6
B.9
C.12
D.18
12. 设无向图中有6条边,有一个3度顶点和一个5度顶点,其余顶点度为2,则该图的顶点数是( )
A .3
B .4
C .5
D .6
13.设R 1,R 2是A 上的两个关系,s 为对称闭包,t 为传递闭包,则下列描述正确的是( )
A.1212()()()s R R s R s R =
B.1212()()()t R R t R t R =
C.1212()()()s R R s R s R =
D.1212()()()t R R t R t R =
14.下列必为欧拉图的是( )
A.有回路的连通图
B.不可以一笔画的图
C.有1个奇数度结点的连通图
D.无奇数度结点的连通图 15.设X ={0},下列关于代数系统<P (X ), >的陈述正确的是( )
A.0是幺元
B.∅是幺元
C.{0}是幺元
D.没有幺元
填空题
16.命题公式P Q →的成真指派为_________,成假指派为__________。

17.设{1,,},{1,2},________,A a b B A B A A ==⊕=⊕=则__________。

18.公式()()()(,,)P x y z R x y z →∀∃的约束变元为__________,自由变元为_________。

19.整数集Z 中的运算 * 定义如下:3a b a b ab *=++,则 * 运算的幺元为_________;设a 有逆元,则其逆元a -1为_________。

20.设f(x)=2-x,g(x)=2x 2+1,那么复合函数()()f g x =_________,()()g f x =________。

21.设A={<1,3>,<3,5>,<4,4>},B={<1,3>,<4,5>,<5,5>},那么dom()A B =_______,
ran ()A B =__________。

22. 22. 若一条路中,所有边均不相同,则此路称作____________;若一条路中所有的结点均不相同,则称此路为____________。

23.<Zn ,+>是一个群,其中Z n ={0,1,2, ,n-1},x y +=()mod x y n +,则当n =6时,
在<Z 6,+>中,1的阶为___________,4的阶为___________。

24.设R ={<1,2>,<2,3>,<4,5>}和S ={<3,2>,<4,3>,<5,1>}是集合A ={1,2,3,4,5}上的两个关系,则R S = _________.S R =________。

25.K n是n个结点的完全图,则K5有_______条边,每个结点的度数为__________。

分析题
26.构造命题公式(P
P Q
→的真值表。

⌝∧)R∨()
27.设{1,3,1,4,2,2,3,1,3,3,4,1}
R=<><><><><><>是A={1,2,3,4}上的二元关系。

(1)画出R的关系图;
(2)写出R的关系矩阵;
(3)说明R是否具有自反、反自反、对称、反对称性质。

28.求公式()
→⌝∨(Q∧)R的主合取范式和主析取范式。

P Q
29.设A={<a,b>|a,b为正整数},在A上定义二元关系~如下:<a,b>~<c,d>当且仅当|a-b|=|c-d|。

证明:~是一个等价关系。

30.设G是有n个结点、n+1条边的简单连通图,且G中存在度数为5的结点。

证明:G中至少有一个度数为1的结点。

31.构造下列推理的证明。

如果他有时间并且他有很多钱,他必去过桂林。

如果他没有很多钱,他一定不会买小轿车。

他有时间。

他买了小轿车。

所以他去过桂林。

32.今有a,b,c,d,e,f,g共7人,已知下列事实:a会讲汉语和英语;b会讲英语和韩语;c会讲英语和意大利语;d会讲法语、俄语和意大利语;e会讲俄语和韩语;f会讲汉语;g会讲法语和汉语。

试问这7个人应如何排座位(圆桌),才能使每个人和他身边的人交谈?。

相关文档
最新文档