晶体工艺的制备过程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
净室
一般的机械加工是不需要洁净室(clean room)的,因为加工分辨率在数十微米以上,远比日常环境的微尘颗粒为大。但进入半导体组件或微细加工的世界,空间单位都是以微米计算,因此微尘颗粒沾附在制作半导体组件的晶圆上,便有可能影响到其上精密导线布局的样式,造成电性短路或断路的严重后果。
为此,所有半导体制程设备,都必须安置在隔绝粉尘进入的密闭空间中,这就是洁净室的来由。洁净室的洁净等级,有一公认的标准,以class 10为例,意谓在单位立方英呎的洁净室空间内,平均只有粒径0.5微米以上的粉尘10粒。所以class后头数字越小,洁净度越佳,当然其造价也越昂贵(参见图2-1)。
为营造洁净室的环境,有专业的建造厂家,及其相关的技术与使用管理办法如下:
1、内部要保持大于一大气压的环境,以确保粉尘只出不进。所以需要大型鼓风机,将经滤网的空气源源不
绝地打入洁净室中。
2、为保持温度与湿度的恒定,大型空调设备须搭配于前述之鼓风加压系统中。换言之,鼓风机加压多久,
冷气空调也开多久。
3、所有气流方向均由上往下为主,尽量减少突兀之室内空间设计或机台摆放调配,使粉尘在洁净室内回旋
停滞的机会与时间减至最低程度。
4、所有建材均以不易产生静电吸附的材质为主。
5、所有人事物进出,都必须经过空气吹浴(air shower) 的程序,将表面粉尘先行去除。
6、人体及衣物的毛屑是一项主要粉尘来源,为此务必严格要求进出使用人员穿戴无尘衣,除了眼睛部位外,
均需与外界隔绝接触(在次微米制程技术的工厂内,工作人员几乎穿戴得像航天员一样。) 当然,化妆是在禁绝之内,铅笔等也禁止使用。
7、除了空气外,水的使用也只能限用去离子水(DI water, de-ionized water)。一则防止水中粉粒污染晶圆,
二则防止水中重金属离子,如钾、钠离子污染金氧半(MOS) 晶体管结构之带电载子信道(carrier
channel),影响半导体组件的工作特性。去离子水以电阻率(resistivity) 来定义好坏,一般要求至
17.5MΩ-cm以上才算合格;为此需动用多重离子交换树脂、RO逆渗透、与UV紫外线杀菌等重重关卡,
才能放行使用。由于去离子水是最佳的溶剂与清洁剂,其在半导体工业之使用量极为惊人!
8、洁净室所有用得到的气源,包括吹干晶圆及机台空压所需要的,都得使用氮气(98%),吹干晶圆的氮
气甚至要求99.8%以上的高纯氮!以上八点说明是最基本的要求,另还有污水处理、废气排放的环保问题,再再需要大笔大笔的建造与维护费用!
二、晶圆制作
硅晶圆(silicon wafer) 是一切集成电路芯片的制作母材。既然说到晶体,显然是经过纯炼与结晶的程序。
目前晶体化的制程,大多是采「柴可拉斯基」(Czycrasky) 拉晶法(CZ法)。拉晶时,将特定晶向(orientation) 的晶种(seed),浸入过饱和的纯硅熔汤(Melt) 中,并同时旋转拉出,硅原子便依照晶种晶向,乖乖地一层层成长上去,而得出所谓的晶棒(ingot)。晶棒的阻值如果太低,代表其中导电杂质(impurity dopant) 太多,还需经过FZ法(floating-zone) 的再结晶(re-crystallization),将杂质逐出,提高纯度与阻值。
辅拉出的晶棒,外缘像椰子树干般,外径不甚一致,需予以机械加工修边,然后以X光绕射法,定出主切面(primary flat) 的所在,磨出该平面;再以内刃环锯,削下一片片的硅晶圆。最后经过粗磨(lapping)、化学蚀平(chemical etching) 与拋光(polishing) 等程序,得出具表面粗糙度在0.3微米以下拋光面之晶圆。(至于晶圆厚度,与其外径有关。)
刚才题及的晶向,与硅晶体的原子结构有关。硅晶体结构是所谓「钻石结构」(diamond-structure),系由两组面心结构(FCC),相距(1/4,1/4,1/4) 晶格常数(lattice constant;即立方晶格边长) 叠合而成。我们依米勒指针法(Miller index),可定义出诸如:{100}、{111}、{110} 等晶面。所以晶圆也因之有{100}、{111}、{110}等之分野。有关常用硅晶圆之切边方向等信息,请参考图2-2。现今半导体业所使用之硅晶圆,大多以{100} 硅晶圆为主。其可依导电杂质之种类,再分为p型(周期表III族) 与n型(周期表V族)。
由于硅晶外貌完全相同,晶圆制造厂因此在制作过程中,加工了供辨识的记号:亦即以是否有次要切面
(secondary flat) 来分辨。该次切面与主切面垂直,p型晶圆有之,而n型则阙如。
{100}硅晶圆循平行或垂直主切面方向而断裂整齐的特性,所以很容易切成矩形碎块,这是早期晶圆切割时,可用刮晶机(scriber) 的原因(它并无真正切断芯片,而只在表面刮出裂痕,再加以外力而整齐断开之。)事实上,硅晶的自然断裂面是{111},所以虽然得到矩形的碎芯片,但断裂面却不与{100}晶面垂直!
以下是订购硅晶圆时,所需说明的规格:项目说明
晶面{100}、{111}、{110} ± 1o
外径(吋) 3 4 5 6
厚度(微米) 300~450 450~600 550~650 600~750(±25)
杂质p型、n型
阻值(Ω-cm) 0.01 (低阻值) ~ 100 (高阻值)
制作方式CZ、FZ (高阻值)
拋光面单面、双面
平坦度(埃) 300 ~ 3,000
三、半导体制程设备
半导体制程概分为三类:(1)薄膜成长,(2)微影罩幕,(3)蚀刻成型。设备也跟着分为四类:(a)高温炉管,(b)微影机台,©化学清洗蚀刻台,(d)电浆真空腔室。其中(a)~©机台依序对应(1)~(3)制程,而新近发展的第(d)项机台,则分别应用于制程(1)与(3)。
由于坊间不乏介绍半导体制程及设备的中文书籍,故本文不刻意锦上添花,谨就笔者认为较有趣的观点,描绘一二!
(一)氧化(炉)(Oxidation)
对硅半导体而言,只要在高于或等于1050℃的炉管中,如图2-3所示,通入氧气或水汽,自然可以将硅晶的表面予以氧化,生长所谓干氧层(dryz/gate oxide)或湿氧层(wet /field oxide),当作电子组件电性绝缘或制程掩膜之用。氧化是半导体制程中,最干净、单纯的一种;这也是硅晶材料能够取得优势的特性之一(他种半导体,如砷化镓GaAs,便无法用此法成长绝缘层,因为在550℃左右,砷化镓已解离释放出砷!)硅氧化层耐得住850℃~ 1050℃的后续制程环境,系因为该氧化层是在前述更高的温度成长;不过每生长出1 微米厚的氧化层,硅晶表面也要消耗掉0.44微米的厚度。
以下是氧化制程的一些要点:
(1)氧化层的成长速率不是一直维持恒定的趋势,制程时间与成长厚度之重复性是较为重要之考量。(2)后长的氧化层会穿透先前长的氧化层而堆积于上;换言之,氧化所需之氧或水汽,势必也要穿透先前成长的氧化层到硅质层。故要生长更厚的氧化层,遇到的阻碍也越大。一般而言,很少成长2微米厚以上之氧化层。
(3)干氧层主要用于制作金氧半(MOS)晶体管的载子信道(channel);而湿氧层则用于其它较不严格讲究的电性阻绝或制程罩幕(masking)。前者厚度远小于后者,1000~ 1500埃已然足够。
(4)对不同晶面走向的晶圆而言,氧化速率有异:通常在相同成长温度、条件、及时间下,{111}厚度≧{110}厚度>{100}厚度。
(5)导电性佳的硅晶氧化速率较快。
(6)适度加入氯化氢(HCl)氧化层质地较佳;但因容易腐蚀管路,已渐少用。
(7)氧化层厚度的量测,可分破坏性与非破坏性两类。前者是在光阻定义阻绝下,泡入缓冲过的氢氟酸(BOE,Buffered Oxide Etch,系HF与NH4F以1:6的比例混合而成的腐蚀剂)将显露出来的氧化层去除,露出不沾水的硅晶表面,然后去掉光阻,利用表面深浅量测仪(surface profiler or alpha step),得到有无氧化层之高度差,即其厚度。
(8)非破坏性的测厚法,以椭偏仪(ellipsometer) 或是毫微仪(nano-spec)最为普遍及准确,前者能同