气动技术概述

合集下载

气动系统

气动系统

图10-5-1 基本气动系 统示意图
二、YL-235A设备气动系统组成 1、空气过滤器
空气在进入气动系统前必须经过空气过滤器,以滤去其中所含的灰尘和杂质。 空气过滤器的过滤原理是根据固体物质和空气分子的大小和质量不同,利用惯性、 阻隔和吸附的方法将灰尘和杂质与空气分离。空气过滤器由挡板、滤芯、滤杯等组 成,如图10-5-2所示。空气过滤器的排放螺栓应定期打开,放掉积存的油、水和杂 质。有些场合由于人工观察水位和排放不方便,可以将排放螺栓改为自动排水阀,
6、旋转气缸
旋转气缸是利用压缩空气驱动输出轴在小于360°的角度范围内做往复摆 动的气动执行元件,多用于物体的转位、工件的翻转、阀门的开闭等场合。旋 转气缸按结构特点可分为叶片式和齿轮齿条式两大类。单叶片式旋转气缸如下 图所示:
图10-5-7
单叶片式旋转气缸结构图
7、气爪
气爪 (义称气动手指、气动抓手)可以实现各种抓取功能,是现代 气动机械手中的一个重要部件。气爪的主要类型有平行气爪气缸、摆动 气爪气缸、旋转气爪气缸和三点气爪气缸等。
3、油雾器
油雾器是一种特殊的注油装置,它以压缩空气为动力,将特定
的润滑油喷射成雾状混合于压缩空气中,并随压缩空气进入需要润 滑的部位,达到润滑的目的。
图10-5-4
油雾器工作原理示意图及实物图
4、气动三联件
油雾器、空气过滤器和调压阀组合在一起构成的气源调节装置,通常 被称为气动三联件,是气动系统中常用的气源处理装置。联合使用时,其 顺序应为空气过滤器-调压阀-油雾器,不能颠倒。在采用无油润滑的回路 中则不需要油雾器。
表10-5-1
电磁阀外形及符号
表中的“位”,指的是阀芯相对于阀体具有几个不同的工作 位置,有两个不同的工作位置称二位阀,有三个不同的工作位置 称三位阀。在图形符号中,几位阀就用几个方格表示。表中的 “通”,指的是换向阀与系统相连的通口,有几个通口即为几通。 图形符号中的“ ”和“ ”表示各接口互不相通。

气动技术20篇

气动技术20篇

压力计盖板组件 O型圈
压力计盖板 安装螺钉(两个) (二面(四面)宽度) 压力计
SMC(广州)气动元件-中山营业所
控制部分-速度
AS调速阀系列,通过控制压缩气体流速,来控制执行元件动作快慢。
特性
入口节流
出口节流
连接配套 限入型
低速平稳性
易产生低速爬行

阀的开度与速度
惯性的影响 起动延时 起动加速度 行程终点速度 缓冲能力
SMC(广州)气动元件-中山营业所
气源处理-干燥
压缩空气经过后冷却器、储气罐、主管路过滤器初步净化后,仍含有大量 的气态水份,干燥器以物理、化学等各形式进行分离排除气态水蒸气。
冷冻式 IDF/IDFA系列
特点:处理能力大,常用于主管路气源处理,压 力露点温度在2~10℃(大气露点-17℃)。 在高速钻孔机、三坐标测量仪、喷漆等场合应用 广泛。 SMC(广州)气动元件-中山营业所
气源处理-干燥
特点:处理能力低,大气露点温度–30~ –50℃,有10%~15%的流量损耗,适用于处 理流量小,但干燥程度要求高的场合。
特点:处理能力低,大气露点温度–60℃,有 一定量流量损耗,在一些流量小,但干燥程度 要求很高的场合得到广泛应用,如医疗行业。
吸附式 ID系列
高分子隔膜 式IDG系列
SMC(广州)气动元件-中山营业所
气动系统组成
空气干燥机
气罐
空气压缩机
主路过滤器
磁性开关 后冷却器 速度调整阀 (速度控制阀)
气缸 压力开关 电磁阀 (Solenoid valve) 消音器(silencer)
残压释放用手动3通阀 油雾器
真空系统
减压阀(regulator) 气压过滤器 (空气过滤器)

气动技术培训资料

气动技术培训资料

气动技术培训资料气动技术培训资料(一)气动技术是一种利用压缩气体进行工程控制和传动的技术领域。

它在各个行业中广泛应用,包括生产制造、工程建设、能源管理等等。

通过学习气动技术,我们可以了解气动元件的工作原理、气动回路的设计与搭建以及气动系统的操作和维护等内容。

下面将为大家介绍一些气动技术培训资料,以帮助大家更好地理解和应用气动技术。

一、气动元件的工作原理气动元件是气动系统中重要的组成部分,它们能够实现压缩空气的输送、转换和控制。

在气动技术培训中,我们首先需要了解气动元件的工作原理。

1.1 阀门类气动元件阀门类气动元件包括单向阀、调节阀、电磁阀等,它们通过控制压缩空气的通断和流量来实现气动系统的控制。

其中,单向阀的作用是只允许空气单向流动,而调节阀则可以根据需要调整空气的流量和压力。

电磁阀通过电磁原理实现气体的通断和控制。

1.2 执行元件类气动元件执行元件类气动元件主要包括气缸和气动马达等。

气缸是将气压能转变为机械能的装置,常用于推动、拉动和升降物体。

气动马达则将气压能转化为机械能,在工程设备中常用于驱动旋转运动。

以上是气动元件的一些基本工作原理,深入学习气动元件的工作原理可以帮助我们更好地理解和应用气动技术。

二、气动回路的设计与搭建气动回路是指由气动元件组成的传动系统,用于完成特定的工作任务。

在气动技术培训中,学习气动回路的设计与搭建是必不可少的。

2.1 回路的设计气动回路的设计是根据工作任务的要求和气动元件的性能特点来确定的。

在设计气动回路时,我们需要考虑以下几个方面:首先,需要明确工作任务的要求,包括工作轨迹、推力大小等参数。

其次,根据工作任务的要求,选择适当的气动元件进行组合,包括阀门类和执行元件类。

最后,根据设计要求确定气路布置、管线布局和阀门的控制方式等。

2.2 回路的搭建回路的搭建需要根据设计图纸进行操作,包括将气动元件按照一定的布局连接好,保证气体能够在回路中正常流动。

在搭建回路时,需要注意以下几个方面:首先,确保气动元件的连接口没有漏气现象,可以使用密封圈等密封材料增加密封性能。

气动技术培训资料

气动技术培训资料

三联件--过滤器AF的原理
• 空气进入过滤器时,顺着导流片螺旋前进,依靠离心作用将水滴甩至杯壁后 沉降,然后再穿过滤芯,去除粉尘。
气动技术培训资料
三联件--过滤器AF的维护要点
• 必须定期排放冷凝水。上班开工前、下班时均要求排放冷凝水。 • 滤芯要定期更换。一般是每2年气更动换技术一培次训资或料者压力差超过0.1MPa时更换。
P2
• 减压阀溢流孔经常排气,说
明出口压力波动大;如果压力
波动太大,则需要选用溢流量
大的减压阀。
气动技术培训资料
三联件--油雾器AL的原理
滴油窗
舌状活门
P2
P1
P2
• 压缩空气流动时,在舌状活门的上方因为流速大,压
力降低,而此时油杯中的压力和进口压力相同,从而通
过内部通道将杯中的油压至滴油窗滴下,被高速流动的
空压站通常包括以下设备:
• 空气压缩机 • 气源净化设备:除水、除尘、除油 • 气源贮存设备:储气罐
气动技术培训资料
Байду номын сангаас
SMC 南京营业所
压缩空气为何需要净化?
气动系统的主要污染物有 水分 尘埃 油雾
污染物的来源和危害: 1. 大气中含有水分、粉尘、油污等物质。 2. 系统内部产生的污染:管道锈蚀、润滑油炭化、密封件磨 损老化等; 3. 系统安装和维修不规范带来的污染:螺纹牙屑、毛刺以及 铸砂、密封材料碎屑等。
尘埃 气动系统的主要污染物有 油 雾
水分
大气粉尘的大小为0.01-20um,工业粉尘大小一 般为1-100um,因此请选用过滤精度较高的过滤器。 SMC标配为5um,而国产气动或技术欧培训洲资料产品标配一般为40um
空气处理元件——过滤器

液压与气动技术

液压与气动技术

液压与气动技术液压与气动技术是现代工程领域中非常重要的两个技术分支,它们在各个领域的应用广泛,提高了生产效率和工作效益,为工业发展做出了巨大贡献。

首先,我们来看一下液压技术。

液压技术是利用流体的力学性质传递力量和控制信号的一种技术。

在液压系统中,通过压缩流体(一般为液体)产生的压力,实现对机械设备的传动和控制。

液压技术具有以下几个特点。

首先,液压系统具有传递力量稳定、传递效率高的特点。

液压系统中的液体可以平稳地传递力量,而且传递效率高,能够满足工程设备对于高效、稳定传动的要求。

其次,液压技术具有灵活性强、可靠性高的特点。

液压系统可以实现各种复杂的机械动作,并且具有反应速度快、控制精度高等特点,能够满足各种复杂环境下的工程需求。

此外,液压技术还具有结构简单、维修方便的特点,便于工程设备的维护和管理。

液压技术在工程领域中有着广泛的应用。

在起重机械、挖掘机械、船舶机械等工程设备中,液压技术被广泛应用于传动和控制系统中,有效提高了设备的工作效率和精度。

在航空航天领域,液压技术被应用于飞机和火箭等载具的起落架、操纵系统等关键部件中,确保了载具的安全性和可靠性。

在汽车工业中,液压技术被应用于汽车制动系统、悬挂系统等关键部件中,提高了汽车行驶的安全性和舒适性。

在冶金、矿山和化工等行业中,液压技术被应用于液压机、液压缸等设备中,实现了对原材料的压制、挤压等工艺操作,提高了生产效率和产品质量。

接下来我们来看一下气动技术。

气动技术是利用气体的力学性质传递能量和控制信号的一种技术。

在气动系统中,通过压缩气体(一般为空气)产生的压力,实现对机械设备的传动和控制。

气动技术具有以下几个特点。

首先,气动系统具有传递力量快、反应灵敏的特点。

由于气体的压缩性和可压缩性,气动系统的工作速度快,能够满足对于快速反应和高效传动的要求。

其次,气动技术具有安全性高、维护成本低的特点。

气动系统的工作介质为空气,没有易燃易爆的危险,维护成本也相对较低,便于维护和管理。

气动技术相关知识讲解(最全的气动知识讲解159页)

气动技术相关知识讲解(最全的气动知识讲解159页)
破坏密封圈 阀芯黏着
26
压缩空气中的灰尘和油雾
• 大气中的尘埃 压缩机自带的过滤器很难除去大气中2~5μm以下的尘
埃杂质。 随着空气的压缩,空气的体积减小,同一体积的空气
内,尘埃密度增加。
• 压缩机中的润滑油 随着压缩机的运转,其运动部分的润滑油进入到压缩空
气中,同时随着压缩温度的增高,油雾会碳化。
个/l以下
29
厂房配管
AF
带后冷却器的空压机
10bar AT
气罐
排水沟道
自动排水器
30
环状管道配置供气可靠 性高,压力损失小,且 压力较稳定但投资高;
每条支路及两支路间都 设置截至阀,支管末端 安装排水器
31
配管须知
• 管道须保持倾斜度,以便使凝聚的水分能被收集和有排水器 排出系统外。 • 分支管路必须由主管路顶部分分出,以免水分进入分支管路。 • 要适当的配置过滤器,以去除管内的铁锈和油雾。 • 管道须清洁后方可安装。 • 缠绕密封带至管螺纹时,要露出最后2个螺纹,以免密封带 碎片落入管道内。 • 采用环状配管的方式。
从空压机输出的压缩空气中,含有大量的水分、 油分和粉尘等杂质,必须适当清除这些杂质, 以避免他们对气动系统的正常工作造成危害。
•杂质的来源
由系统外部通过空压机等吸入的杂质 由系统内部产生的杂质 系统安装和维修时产生的杂质
20
压缩机
•作用
将电能转化成压缩空气的压力能,供气 动机械使用
•分类
活塞式
往复式
气源处理及辅件
FRL 组合元件
按钮式人力控制
FRL 简化符号 压力表 压力继电器 消声器 气压源
手柄式人力控制 踏板式人力控制 挺杆式机械控制 弹簧控制 滚轮式机械控制

气动技术第一讲气动基础知识 ppt课件

气动技术第一讲气动基础知识 ppt课件
15
记忆回路,双气控二位五通阀
• 由于双气控二位五通阀的 记忆特性,作为发讯元件
的按钮阀,其产生的气信
号可以是短信号或脉冲信
号。一旦驱动按钮阀( 1S1)动作,在双气控二 位五通阀的控制口(14 )上就有气信号,结果使
双气控二位五通阀换向, 气缸(1A1)活塞杆伸出 。
启动按钮时的气动回路见
图。
16
比较驱动按钮阀的顺序 。
18
记忆回路,双气控二位五通阀
• 可调单向节流阀可对气 缸活塞杆伸出或回缩的 速度进行调节,通常采 用排气节流方式。只有 在控制口(14)上有气 信号(该信号由按钮阀 (1S1)产生),气缸活 塞杆才伸出。此时,压 缩空气进入无杆腔,双 气控二位五通阀保持当 前位置,不换向。 讨论同时驱动按钮阀1S1 和1S2动作时,气动回路 的动作情况。
4、辅助元件:保证系统正常工作所需要的辅助装 置,包括气管、管接头、储气罐、过滤器等。
4
气动系统示意图
5
气动系统示意图
气 缸
6
直接控制,已驱动
• 在该回路中,因 只有一个执行元 件—气缸,所以 ,气缸被标识为 1A1。使气缸活 塞杆伸出的控制 元件被标识为 1S1。
7
间接控制,未驱动
• 按下按钮时, 气缸(大缸径 ,单作用)活 塞杆将伸出。 按钮阀可安装 在距气缸较远 的位置上。一 旦松开按钮, 气缸活塞杆将 回缩。
24
气动技术的发展趋势
• 〈2〉、小型化、轻量化:由于气动技术在 电子行业、工业自动化等领域的应用,气 动元件必须小型化和轻量化。各种新技术、 新材料的应用,使气动元件实现了小型化 和轻量化。
19
气动顺序回路
• 气动顺序回路通常具有 下列特征:驱动按钮阀 动作时,气缸(1A1) 活塞杆伸出,需确认动 作顺序中的每一工步。 该气动回路的动作顺序 为A+B+A-B-。

气动零部件讲解及应用

气动零部件讲解及应用

气动零部件讲解及应用一、气动基本概述空气压技术气动(PNEUMATIC)是“气动技术”或“气压传动与控制”的简称。

气动技术是以空气压缩机为动力源,以压缩空气为工作介质,进行能量传递或信号传递的工程技术,是实现各种生产控制、自动控制的重要手段。

常见的空气压气动的应用领域气动系统构成气动系统构成气动系统中最重要的三个控制因素:力的大小,运动方向,运动速度压力控制阀——控制气缸输出力的大小方向控制阀——控制气缸的运动方向速度控制阀——控制气缸的运动速度工业空气压应用二、气动基本知识、空气的压力空气的可压缩性,气体分子的冲突会产生力,这个力就是“压力”。

压力SI单位:Pa 1Pa=1N/m2;1MPa=106Pa,大气压0 . 1013MPa常用压力单位1 psi=6.89KPa1 kgf/cm2=98.07KPa1 bar=100KPa1 mmHg=133.3Pa压力表示方式空气压的基本定律波义耳定律-等温定律温度一定时,气压跟体积成反比查理定律-等容定律体积一定时,气压跟温度成正比p1/T1=p2/T2盖吕萨克定律-等压定律压力一定时,体积跟温度成正比V1/T1=V2/T2三、气动基本元件气源处理气源设备-压缩机定义:吸入空气并连续制造压缩空气的机械。

气动系统动力源气源设备-后冷却器定义:对空气压缩机流出的空气进行降温的装置。

将空压机出口的高温空气冷却至40℃以下气源设备-气罐储气罐(AT系列)1)消除压力脉动2)依靠绝热膨涨及自然冷却降温,进一步分离掉压缩空气中的水分和油分。

3)储存一定量压缩空气气源处理元件为什么对空气进行过滤?清净化的功能:1、除去固体异物和油分2、除去水滴3、除去蒸气状的水分气源处理系统过滤精度:滤芯能够捕捉的杂质的最小直径。

用μm 表示。

气源处理元件气源处理元件-自动排水器。

液压与气动技术

液压与气动技术

液压与气动技术液压与气动技术是一种相辅相成的工业技术,是现代工业领域中最重要的技术之一。

液压技术和气动技术的本质是利用流体来传递能量和控制机械运动。

这两种技术都能够将能量从一个地方传递到另一个地方,并因此拥有广泛的应用领域。

液压技术的原理是利用液体作为传动介质进行力的传递、控制和动力转换。

它通过压力控制来调整速度、转动力矩和角度,从而达到工业现场设备的控制目的。

液压系统具有动态响应快、周转高效、控制精度高等特点,因此被广泛应用于重型机器、工业机械、船舶、航空和军事等领域。

气动技术的原理是利用气体作为传动介质进行力的传递、控制和动力转换。

与液压系统相比,气动系统具有响应速度更快、动力性能较差的特点。

它的应用领域主要集中在需要简单线路和移动性强的场合,例如移动机器、工业机械、自动控制和自动化生产线等。

液压技术和气动技术的组成都是相似的。

它们都由一系列压力泵、压力控制阀、工作缸或执行元件、管路和油缸或气罐组成。

其中,压力泵将油液或气体压缩并将其传送到控制阀中,控制阀将压力分配到工作缸或执行元件中,使其产生动力,达到控制和执行的目的。

液压和气动是密封系统,它们在应用过程中非常重要。

密封技术的发展可以保持液压和气动系统的持续性能和长寿命。

当液压和气动系统发生泄漏时,它们将有效性能受到影响,并且可能会造成不必要的浪费和危险,从而造成财产和人员的损失。

近年来,液压和气动技术的应用逐渐向机器人、医疗保健、食品加工和包装等新兴领域拓展,同时液压和气动技术在现代城市的交通和港口航运中也扮演着重要的角色。

总的来说,液压和气动技术在未来的发展中将继续保持其重要地位,为人们的生活和工作提供更加高效、便利和安全的服务。

《气动技术概述》PPT课件

《气动技术概述》PPT课件

h
13
第8章 气动技术概述
2)
小型化气动元件,如气缸及阀类正应用于许多工业领 域。微型气动元件不但用于精密机械加工及电子制造业,而 且用于制药业、医疗技术、包装技术等。在这些领域中,已 经出现活塞直径小于2.5 mm的气缸、 宽度为10 mm的气阀 及相关的辅助元件,并正在向微型化和系列化方向发展。
第8章 气动技术概述
第8章
8.1 气动系统 8.2 气动技术的应用 8.3 气动技术的特点和应用准则 8.4 气动技术的发展趋势
h
1
第8章 气动技术概述
8.1 气动系统
气动(气压传动)系统是一种能量转换系统,其工作 原理是将原动机输出的机械能转变为空气的压力能, 利用管路、各种控制阀及辅助元件将压力能传送到执 行元件,再转换成机械能,从而完成直线运动或回转 运动,并对外做功。气动系统的基本构成如图8-1所示。
h
3
第8章 气动技术概述
8.2 气动技术的应用
气动技术用于简单的机械操作中已有相当长的时间了, 最近几年随着气动自动化技术的发展,气动技术起到了重 要的作用。
气动自动化控制技术是利用压缩空气作为传递动力或 信号的工作介质,配合气动控制系统的主要气动元件,与 机械、液压、电气、电子(包括PLC控制器和微机)等部 分或全部综合构成的控制回路,使气动元件按工艺要求的 工作状况,自动按设定的顺序或条件动作的一种自动化技 术。用气动自动化控制技术实现生产过程自动化,是工业 自动化的一种重要技术手段, 也是一种低成本自动化技术。
h
5
第8章 气动技术概述
图8-2 货物自动装卸
h
6
第8章 气动技术概述
图8-3 气动机械手
h
7

气动技术第一讲气动基础知识

气动技术第一讲气动基础知识
15
记忆回路,双气控二位五通阀
• 由于双气控二位五通阀的 记忆特性,作为发讯元件
的按钮阀,其产生的气信
号可以是短信号或脉冲信
号。一旦驱动按钮阀( 1S1)动作,在双气控二 位五通阀的控制口(14 )上就有气信号,结果使
双气控二位五通阀换向, 气缸(1A1)活塞杆伸出 。
启动按钮时的气动回路见
图。
16
8
间接控制,已驱动
• 只要按下按钮,
控制口(12)就
有气信号,这是
一个按钮阀控制
单作用气缸的举
例。若松开按钮
,则在弹簧作用
下,按钮阀复位
,控制口(12)
上的气信号消失

9
“与”逻辑(双压阀)
• 将双压阀输入与按 钮阀和滚轮杠杆阀 的输出相连接,当 按钮阀(1S1)动 作时,双压阀只有 左边输入口(1) 有气信号,由于双 压阀阻断了这个气 信号,所以,其输 出口(2)上没有 气信号输出。
10
“与”逻辑(双压阀)
• 若滚轮杠杆阀( 1S2)也动作, 则双压阀输出口 (2)上就有气信 号输出,从而驱 动换向阀(1V1 )换向,使气缸 活塞杆伸出。
11
“或”逻辑(梭阀)
• 当要求二个按钮阀中任 何一个动作,气缸活塞
杆都伸出时,无经验设
计者也许会将两个按钮 阀(1S1和1S2)的工 作口连接起来。在这种
化 5、气动系统在恶劣工作环境中,安全可靠性优于液压等系
统 6、气动系统可实现过载保护,可压缩性气体便于贮存能量 7、气动设备可以自动降温,长期运行也不会发生过热现象 8、空气取之不尽,节省购买、贮存、运输的费用
21
气压传动
气压传动的缺点: 1、工作压力较低,输出功率较小 2、气信号传递的速度慢,不宜用于高速传递

气动技术基本知识

气动技术基本知识

气动技术基本知识目录1. 气动技术概述 (3)1.1 气动技术的定义与应用 (4)1.2 气动技术的历史与发展 (5)2. 气动力学基础 (7)2.1 流体力学原理 (7)2.2 伯努利原理 (9)2.3 压差与流体动力 (10)3. 气动系统设计 (11)3.1 空口设计 (12)3.2 管道与管件设计 (13)3.3 阀门与调节器选择 (15)4. 气动元件 (16)4.1 气缸与活塞 (17)4.2 电磁阀与继电器 (18)4.3 空气压缩机与真空发生器 (19)5. 气动控制 (20)5.1 原理与方法 (22)5.2 逻辑控制器 (23)5.3 通讯协议与接口 (25)6. 气动应用 (26)6.1 工业自动化 (27)6.2 移动机器与机器人 (29)6.3 医疗设备 (30)7. 气动系统维护与保养 (31)7.1 日常维护 (32)7.2 故障诊断与排除 (33)7.3 更新与升级 (34)8. 安全与法规遵从 (36)8.1 气体类型与分类 (37)8.2 安全标准与规范 (38)8.3 应急措施与培训 (40)9. 节能减排 (41)9.1 气动系统的能效 (43)9.2 气动改造与效能提升 (44)9.3 环境影响与对策 (46)10. 气动技术发展趋势 (47)10.1 智能化与自动化 (48)10.2 信息化与数据管理 (50)10.3 绿色节能技术 (52)1. 气动技术概述又称航空力学,是一门研究气体流动与其周围物体的相互作用的科学,核心在于理解介于固体和流体之间的能量和力转化过程。

它涵盖了气流的本性、流动规律、力和机遇的预测以及如何应用这些原理来设计、优化和控制各种飞行器、机械设备和工程系统。

流体力学:研究流体静力学和流体力学的基本原理,包括压力、流速、粘滞性和伯努利定律等。

气流场分析:通过数值方法和实验方法,分析流体在不同形状结构周围运动的特性。

气动外形设计:根据气动原理,设计出具有良好阻力系数、升力和操控性的飞机、火箭、汽车等外形。

气动技术报告

气动技术报告

气动技术的应用一、气动技术简介和发展气动技术是以空气压缩机为动力源,以压缩空气为工作介质,进行能量传递或信号传递的工程技术,是实现各种生产控制、自动控制的重要手段之一。

气动技术与传统的液压技术相比,有以下优点:(1)结构简单轻便、方便安装维护;(2)输出速度一般在50~500mm/s,速度快于液压和电气方式;(3)对冲击负载和负载过载的适应能力较强;(4)可靠性高、使用寿命长、安全无污染且成本较低。

由于气动技术具有以上的使用优点,气动技术在世界工业企业得到了广泛的应用。

虽然气动技术在各工业部门已经获得了广泛应用,但是,在许多应用之间还是存在着相当大差异的。

就应用气动技术来说,最基本条件就是要有一台空气压缩机,对已有用于其它用途的空气压缩机的地方,应用气动技术就更方便些。

特别是在一些非生产加工部门,如畜牧业、种植业或服装业,情况更是如此。

在机器设备制造领域中,大多数场合都有空气压缩机,且气动技术已有应用,每个应用项目在本质上也有许多相似之处。

当然,气动技术也有一些缺点:气体的压缩性使得气动元件的动作速度,容易受到负载变化的影响。

气动设备的输出力能满足大部分的工业操作需要,但是和液动设备相比,气动设备的输出力还是要小一些。

另外,气缸在低速运动时,受摩擦力影响较大,稳定性稍差。

二、气动技术的主要应用气动技术的应用范围大, 广泛应用于各个领域, 不仅用于生产、工程自动化和机械化中, 还渗透到医疗保健和日常生活中。

气动系统具有防火、防爆等特点, 可应用于矿山、石油、天然气、煤气等设备。

还因其耐高温, 适用于火力发电设备、焊接夹紧装置等。

同时, 它容易净化, 可用于半导体制造、纯水处理、医药、香烟制造等设备。

气动系统的高速工作性能, 在冲床、压机、压铸机械、注塑机等设备中得到了广泛的应用, 还用于工件的装配生产线、包装机械、印刷机械、工程机械、木工机械和金属切削机床和纺织设备等。

下面介绍一些应用实例。

1 .汽车制造行业现代汽车制造工厂的生产线,尤其是主要工艺的焊接生产线,几乎无一例外地采用了气动技术。

气动技术的发展及在新领域中的应用

气动技术的发展及在新领域中的应用

气动技术的发展及在新领域中的应用
随着科技的不断发展,气动技术在各个领域中的应用越来越广泛。

气动技术是一种利用气体压力来实现机械运动的技术,它具有结构简单、运动平稳、速度快、可靠性高等优点,因此在工业、交通、医疗、军事等领域中都有着广泛的应用。

在工业领域中,气动技术被广泛应用于各种机械设备中,如气动钻、气动锤、气动砂轮等。

这些设备具有结构简单、维护方便、使用寿命长等优点,能够大大提高生产效率和产品质量。

此外,气动技术还被应用于自动化生产线中,通过气动元件的组合和控制,实现自动化生产,提高生产效率和产品质量。

在交通领域中,气动技术被广泛应用于汽车、火车、飞机等交通工具中。

例如,汽车中的制动系统、悬挂系统、空调系统等都采用了气动技术,能够提高车辆的安全性、舒适性和节能性。

火车和飞机中的制动系统、悬挂系统、起落架等也采用了气动技术,能够提高交通工具的安全性和舒适性。

在医疗领域中,气动技术被应用于各种医疗设备中,如呼吸机、手术器械、输液泵等。

这些设备具有结构简单、使用方便、安全可靠等优点,能够提高医疗效率和治疗效果。

在军事领域中,气动技术被应用于各种武器装备中,如导弹、火箭、
坦克等。

这些装备具有结构简单、使用方便、精度高等优点,能够提高作战效率和作战能力。

随着气动技术的不断发展和应用,它在各个领域中都发挥着重要的作用,为人们的生产和生活带来了便利和效益。

电控第7章气动控制技术

电控第7章气动控制技术

电控 动元件
1.双作用气缸
在压缩空气作用下,双作 用气缸活塞杆既可以伸出,也 可以回缩。通过缓冲调节装置, 可以调节其终端缓冲。气缸活 塞上永久磁铁可以用于传感器 检测。
电控 第7章 气动控制技术
电控 第7章 气4 动控制技术
2 常用的气动元件
北航工程训电练控中第7心章 气动控制技术
7
7
谢谢! 欢迎同学们提问!
电控 第7章 气动控制技术
电控 第7章 气8 动控制技术
第7章 气动控制技术
徐鹏飞 北京航空航天大学
2014-10
电控 第7章 气动控制技术
1
主要内容
• 1 气动技术概念 • 2 常用的气动元件 • 3 双重互锁线路控制的自动往返气动回路
电控 第7章 气动控制技术
电控 第7章 气2 动控制技术
1 气动技术概念
气动技术是以空气压缩机为动力源,以压缩空 气为工作介质,进行能量传输或信号传递的工程技 术,是实现各种生产自动化控制的重要手段之一。
3.气源处理元件
组成包括带分 水排水器的过滤器、 减压阀和气压表等 组成。调节旋钮可 以降低输出压强, 调节后可以压下锁 定到某个固定的降 压状态。
北航工程训电练控中第7心章 气动控制技术
6
6
3 双重互锁线路控制的自动往返气动回路
SQ1触 发V1向 右运动, SQ2触 发V1向 左运动, V1能左 右循环 运动。
2.双电控二位五通阀
电磁线圈得电,双电控二 位五通阀的1口与4口接通, 且具有记忆功能,只有当另 一个电磁线圈得电,双电控 二位五通阀才复位,即1口与 2口接通。如果没有电压作用 在电磁线圈上,则双电控二 位五通阀可以手动驱动。
电控 第7章 气动控制技术

气动技术培训资料

气动技术培训资料

机器人关节驱动
气动控制技术可用于机器 人的关节驱动,实现机器 人的灵活运动。
航空航天领域
在航空航天领域,气动控 制技术可用于飞机的起飞 、降落、姿态调整等关键 环节的控制。
气动控制技术的发展趋势
高精度控制
绿色环保
随着科技的发展,气动控制技术将不 断提高控制精度,满足高精度、高速 度的应用需求。
气动控制技术将更加注重环保和节能 ,采用低能耗、低噪音的气动元件和 控制系统,降低对环境的影响。
智能化发展
气动控制技术将与人工智能、物联网 等先进技术相结合,实现智能化控制 和管理。
04
气动技术与其他技术的结合应 用
气动技术与PLC控制技术的结合应用
结合方式
通过PLC控制技术,可以实现气 动设备的自动化控制,提高生产
效率和产品质量。
应用领域
在自动化生产线、机器人、机械手 等领域,气动技术与PLC控制技术 结合应用可以实现精确的位置控制 、速度控制和力控制。
低能耗和排放。
高精度控制
随着自动化技术的不断发展,气 动技术将更加注重高精度控制, 采用更加精确的气动元件和传感
器,提高控制精度和稳定性。
智能化发展
随着人工智能技术的不断发展, 气动技术将更加注重智能化发展 ,采用更加智能化的控制算法和 传感器技术,实现更加智能化的
自动控制。
02
气动元件与系统
气动元件的种类与特点
气动控制技术原理
利用压缩空气作为动力源,通过气动 元件和控制阀门的组合,实现气体的 压力、流量和方向的调节,从而控制 机械设备的运动。
气动控制技术的分类
根据不同的应用需求,气动控制技术 可分为直动式、先导式、比例式和伺 服式等多种类型。

气动技术知识总结

气动技术知识总结

1、气动技术是以压缩空气为介质,以空气压缩机为动力源,实现能量传递或信号传递与控制的工程技术。

2、气动是气动技术或气压传动与控制的简称。

它是流体传动与控制的重要组成技术之一,也是实现工业自动化和机电一体化的重要途径。

3、一个较完善的机电一体化系统包括动力部分、执行部分、机械部分、检测传感部分、控制部分、信息处理部分,各部分之间通过接口相联系。

通过控制系统发送控制信号,由执行部分产生力和运动的输出。

4、气动技术的优点:简单、方便:气动装置结构简单、轻便、安装维护方便。

输出速度大:气缸动作速度一般为50~500mm/s,比液压和电气方式的速度快。

有良好的缓冲性:对冲击负载和负载过载具有较强的适应能力。

可靠性高、使用寿命长:电器元件的有效动作次数约为数百万次,而电磁阀(如SMC公司生产的电磁阀)的寿命大于3000万次,小型阀超过1亿次。

无污染:工作介质是空气,无污染。

安全性:气动压力等级低,具有防火、防爆、耐潮的能力,与液压方式相比可在高温条件下使用,同时,对于振动、腐蚀具有较强的耐受力,因而,具有很高的安全性。

在很多特殊场合具有不可比拟的优越性。

成本低:在自动化系统中,与单纯分别采用机械、电气、液压的传动与控制方式相比,气动方式成本低,经济性好。

5、气动技术的缺点:能量利用率低:电气传动的效率在90%以上,液压传动的的效率为70~80%,气压传动的的效率为30~40%。

实施精确控制的难度较大:气体的压缩性大。

6、气动元件的制造过程:精密压铸、挤压成型、精密加工、表面处理、装配、性能测试7、气源设备气源设备:空气压缩机:产生压缩空气的动力源气源处理设备:过滤器:清除压缩空气中的水分、油污和灰尘;干燥器:进一步清除压缩空气中的水分;自动排水器:自动排除冷凝水8、气动元件的类型及其功能气动执行元件:气缸:推动工件作直线运动。

摆动气缸:推动工件在一定角度范围内作摆动气马达:驱动工件作连续旋转运动。

气爪:抓取工件。

气动技术 基础

气动技术   基础

往复式压缩机
两级活塞式压缩机
在单级压缩机中,若 空气压力超过6巴, 产生的过热将大大地 降低压缩机的效率。 因此,工业中使用的 活塞式压缩机通常是 两级的。 由两个阶段将吸入的 大气压空气压缩到最 终的压力。 如果最终压力为7巴, 第一级通常将它压缩 到若3巴,然后被冷 却,再输送到第二级 气缸中压缩到7巴。
压缩空气的产生
活塞式 膜片式 旋转式 离心式 速度型 轴流式 滑片式 螺杆式
往复式 容积型 压缩机
往复式压缩机
单级活塞式压缩机: 只有一个行程就将吸 入的大气压空气压缩到 所需要的压力。活塞下 移,体积增加,缸内压 力小于大气压,空气便 从进气阀门进入缸内。 在行程末端,活塞向上 运动,进气阀关闭,空 气被压缩,而同时出气 阀被 打开,输出空气进 入储气罐。这种型式的 压缩机通常用于需要3~ 7巴压力范围的系统。
双作用气缸

在气缸轴套前端有 一个防尘环,以防 止灰尘等杂质进入 气缸腔内。前缸盖 上安装的密封圈用 于活塞杆密封,轴 套可为气缸活塞杆 导向,其由烧结金 属或涂塑金属制成。 指出缸体、活塞、 缸盖、活塞密封、 活塞杆、轴套和防 尘环。
双作用气缸

在无负载条 件下,气缸 活塞运动速 度是相当稳 定的。
气缸安装方式

气缸安装方式由气 缸与设备之间连接 形式决定。若在任 何时候都不需要变 换气缸安装方式, 则可将安装方式设 计为固定式,相反, 应将安装方式设计 为非固定式,即按 模块式构造准则, 通过采用安装附件, 可以改变气缸安装 方式。
摆动气缸

摆动气缸结构紧凑,输 出力矩大。在摆动气缸 中,旋转叶片将压力传 递到驱动轴上。摆动角 度范围可由挡块调节, 其为0 ~ 180°。

气动控制技术的原理及应用

气动控制技术的原理及应用

气动控制技术的原理及应用1. 气动控制技术的概述•定义:气动控制技术是指利用气体作为工作介质,通过控制气体的流动和压力来实现对工业系统中的执行器和工作过程的控制。

•特点:具有快速响应、灵活可靠、安全环保等优势,广泛应用于工业生产中的压力控制、运动控制及流体传动等领域。

2. 气动控制技术的基本原理气动控制技术的基本原理包括压缩空气的产生与处理、气源的分配与控制、信号的传送与转换以及执行器的控制与调节等方面。

2.1 压缩空气的产生与处理•压缩空气是气动控制技术的动力来源,常见的方法包括压缩机的压缩、气瓶的蓄气等。

•处理包括滤波、干燥、减压等过程,以确保供给系统中的气体质量和稳定性。

2.2 气源的分配与控制•气源分配是指将压缩空气从气源系统引出,并分配给不同的工作执行机构。

•气源控制是指通过阀门、控制元件等将压缩空气引导到相应的执行器中,以控制其动作和方向。

2.3 信号的传送与转换•信号传送是指将控制信号从控制器传送到执行器的过程,可以通过电气、气动等方式实现。

•信号转换是指将不同形式的信号进行转换,如将电气信号转换为气动信号,以配合执行器的控制要求。

2.4 执行器的控制与调节•执行器包括气缸、气动阀门等,通过气源的控制实现对工作过程的控制。

•控制与调节可通过控制阀、压力传感器等装置来实现,以达到精确的控制效果。

3. 气动控制技术的主要应用领域气动控制技术在许多工业领域中得到了广泛的应用,主要包括以下几个方面:3.1 压力控制•气动系统能够通过控制压力来实现对工作环境中气体压力的调节和控制,从而保证系统的稳定运行。

•压力控制应用广泛,如在供水系统中控制水压、在制药工艺中控制压力等。

3.2 运动控制•气动系统通过控制气缸的动作来实现对物体的运动控制,具有快速响应、灵活性好等特点。

•运动控制应用广泛,如在自动化生产线上对工件进行定位、装配等操作。

3.3 流体传动•气动技术可用于控制流体介质的传动,在液压系统受限或不适用的场合具备优势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章气动技术概论1.1 气动技术的应用范围我们在日常工作和生活中经常见到各种机器,如汽车、电梯、机床等通常都是由原动机、传动装置和工作机构三部分组成。

其中传动装置最常见的类型有机械传动、电力传动和流体传动。

流体传动是以受压的流体为工作介质对能量进行转换、传递、控制和分配。

它可以分为气压传动、液压传动和液力传动。

气压传动技术简称“气动技术”,是一门涉及压缩空气流动规律的科学技术。

气动技术不仅被用来完成简单的机械动作,而且在促进自动化的发展中起着极为重要的作用。

从50年代起,气动技术不仅用于做功,而且发展到检测和数据处理。

传感器、过程控制器和执行器的发展导致了气动控制系统的产生。

近年来,随着电子技术、计算机与通信技术的发展及各种气动组件的性价比进一步提高,气动控制系统的先进性与复杂性进一步发展,在自动化控制领域起着越来越重要的作用。

气动技术可使气动执行组件依工作需要作直线运动、摆动和旋转运动。

气动系统的工作介质是压缩空气。

压缩空气的用途极其广泛,从用低压空气来测量人体眼球内部的液体压力、气动机械手焊接到气动压力机和使混凝土粉碎的气钻等,几乎遍及各个领域。

在工业中的典型应用如下:1)材料输送(夹紧、位移、定位与定向)、分类、转动、包装与计量、排列、打印与堆置;2)机械加工(钻、车削、铣、锯、成品精加工、成形加工、质量控制)3)设备的控制、驱动、进给与压力加工;4)工件的点焊、铆接、喷漆、剪切;5)气动机器人;6)牙钻。

图 1.1所示的两条传送带的气动旋转分配装置,可通过气缸的伸缩使工件传输到相应的地方。

1.2 基本气动系统的组成基本的气动系统如图1.2所示,它由压缩空气的产生和输送系统及压缩空气消耗系统二个主要部分组成。

一、压缩空气产生系统各组件及其主要功能(一)压缩机:将大气压力的空气压缩并以较高的压力输给气动系统,把机械能转变为气压能。

(二)电动机:把电能转变成机械能,给压缩机提供机械动力。

(三)压力开关:将储气罐内的压力转变为电信号,用来控制电动机。

它被调节到一个最高压力,达到这个压力就使电动机停止;也被调节另一个最低压力,储气罐内压力跌到这个压力就重新激活电动机。

(四)单向阀:让压缩空气从压缩机进入气罐,当压缩机关闭时.阻止压缩空气反方向流动。

(五)储气罐:贮存压缩空气。

它的尺寸大小由压缩机的容量来决定,储气罐的容积愈大,压缩机运行时间间隔就愈长。

(六)压力表:显示储气罐内的压力。

(七)自动排水器:无需人手操作,排掉凝结在储气罐内所有的水。

(八)安全阀:当储气罐内的压力超过允许限度,可将压缩空气溢出。

(九)冷冻式空气干燥器:将压缩空气冷却到零上若干度,使大部分空气中的湿气凝结,以减少系统中的水份。

(十)主管道过滤器:它清除主要管道内灰尘、水份和油。

主管道过滤器必须具有最小的压力降和油雾分离能力。

①压缩机②电动机③压力开关④单向阀⑤储气罐⑥压力表⑦自动排水器⑧安全阀⑨冷冻式空气干燥器⑩主管道过滤器1.压缩空气的分支输出管路2.自动排水器3.空气处理组件4.方向控制阀 5.执行元件 6.速度控制阀二、压缩空气消耗系统(一)压缩空气的分支输出管路:压缩空气要从主管道顶部输出到分支管路,以便偶尔出现的凝结水仍留在主管道里,当压缩空气达到低处时,水传到管子的下部,流入自动排水器内,将凝结水去除。

(二)自动排水器:每一根下接管的末端都应有一个排水器,最有效的方法是用一个自动排水器,将留在管道里的水自动排掉。

(三)空气处理组件:使压缩空气保持清洁和合适压力,以及加润滑油到需要润滑的另件中以延长这些气动组件的寿命。

(四)方向控制阀:通过对气缸两个接口交替地加压和排气,来控制运动的方向。

(五)执行元件:把压缩空气的压力能转变为机械能。

图1.2中的执行元件是一个直线气缸,它也可以是回转执行组件或气动马达等。

(六)速度控制阀:能简便实现执行组件的无级调速。

1.3 气动系统的特点一、压缩空气的特性如下:用量:空气到处都有,用量不受限制。

输送:空气不论距离远近,极易由管道输送。

储 存:压缩空气可储存在贮气罐内,随时取用。

故不需压缩机的连续运转。

温 度:压缩空气不受温度波动的影响,即使在极端温度情况下亦能保证可靠地工作。

危 险 性: 压缩空气没有爆炸或着火的危险,因此不需要昂贵的防爆设施。

清 洁:未经润滑排出的压缩空气是清洁的。

自漏气管道或气压组件逸出的空气不会污染物体。

这一点对食品、木材和纺织工业是极为重要的。

构 造:各种工作部件结构简单,所以价格便宜。

速 度: 压缩空气为快速流动的工作介质,故可获得很高的工作速度。

可调节性:使用各种气动元部件,其速度及出力大小可无限变化。

过 载: 气动机构与工作部件,可以超载而停止不动,因此无过载的危险。

处 理:设备所使用的压缩空气不得含有灰尘和水分,因此必须进行除水与除尘的处理。

可压缩性:压缩空气的可伸缩性使活塞的速度不可能总是均匀恒定的。

出力条件:压缩空气仅在一定的出力条件下使用才经济。

在常规工作气压为6—7bar (600~700kPa),因行程和速度的不同,出力限制在20000到30000N 之间。

排气噪声:排放空气的声音很大。

现在这个问题已因吸音材料和消音器发展大部分获得解决。

成 本:压缩空气是一种比较昂贵的能量传递方法。

但可通过高性价比的气动组件得到部分补偿。

二、执行机构的特点气动执行组件包括气缸、摆缸与气马达。

气动执行组件有下列特点:1) 基本运动 (直线、摆动与转动)易于实现。

2) 多种运动便于组合。

3) 运动参数(力、速度、方向)易于控制。

4) 品种多、尺寸范围广,易于设计与选择。

5) 使用寿命长,安全可靠、灵敏。

6) 操作和安装简便,调试要求较高。

气缸是气动系统中最主要的执行组件,由于气缸价格低,便于安装,结构简单、可靠,并有各种尺寸和有效行程的组件可供使用,它已经成为一种重要的线性驱动组件。

气缸一般有下列特点:· 直径范围: 6—320 mm· 有效行程: 1—2000 mm· 活塞杆输出力:2—50000 N· 活塞速度: 0.02—1 m/s 三.气动控制系统特点气动控制系统通常采用下列方法对气动设备进行控制:1) 采用纯气动控制方式: 这种方式适用于那些不能采用电气控制的场合。

例如磁头加工设备、无静电设备等,其控制系统完全由气动逻辑阀、气动方向阀、手动控制阀组成。

这种纯气动控制系统,气路复杂,维修困难,在可以用电控的场合,一般不采用这种方法。

2) 电-气动控制系统: 这种方式适用于那些简单的气动系统控制。

如设备的气动系统只由3~4个气缸组成,相互动作之间的逻辑关系简单,可采用这种控制方式。

由于控制图1.3 气缸的外形及结构图形符号系统采用的是常规的继电-接触控制系统,因此,适用于控制系统复杂程度不高的场合。

3)PLC控制系统:这是目前气动设备最常见的一种控制方式。

由于PLC能处理相当复杂的逻辑关系,因此,可对各种类型、各种复杂程度的气动系统进行控制。

又由于控制系统采用采用软件编程方法实现控制逻辑,因此,通过改变软件就可改变气系统的逻辑功能,从而使系统的柔性增加、可靠性增加。

4)网络控制系统:当系统复杂程度不断增加,各台设备之间需相互通信来协调动作时,需要采用网络控制系统。

5)综合控制系统: 当设备的控制系统复杂,参数选择性较多,需随时了解工况时,可采用PLC+人机界面+现场网络总线的综合控制方式,使控制系统更灵活,控制能力更强,以满足设备的控制需求。

1.4 气动系统的基本构成1)采用纯气动控制方式:纯气动系统的信号流图如图1.4所示。

其水平箭头代表主气源的流动方向。

主气源通过末级控制组件驱动输出执行机构。

垂直箭头代表的控制信号的流动方向,逐级构成一条总控制路径。

其信号流向是从信号(输入)端到末级控制(输出)端。

可以用各种符号来表征系统中的各个组件及其功能。

采用图1.5所示的回路图将这些符号组合起来可以构成对一个实际控制问题的解决方案。

回路图的画法形式同上述信号流图。

不过,在执行机构部分中应加入必要的控制组件。

这些控制组件接受处理器发出的信号并控制执行机构的动作。

直接控制阀(DCV)具有检测、信号处理图1.4 纯气动系统的结构及其信号流图及实行控制的功能。

如果直接控制阀(DCV)被用来控制气缸运动,那么,它是一个执行机构的控制组件。

如果利用其处理信号的功能,它就被定义为信号处理组件。

如果用它来检测运动,则称其为传感器。

这三种角色的显著特征通常取决于阀门的控制方式及其在回路图中的位置。

图1.5 回路图及气动组件1.2、1.4─输入组件 1.3─传感器 1.6─处理器 1.1─控制组件 1.0执行元件2)采用电-气动控制方式:电气动系统的信号流图如图1.6所示。

其水平箭头代表主气源的流动方向。

主气源通过末级控制组件驱动输出执行机构。

垂直箭头代表了电源的流动方向及控制信号的流动方向,输入组件通常包括电气按钮、各种传感器。

处理组件可以是继电-接触控制电路,或者是可编程序控制器(PLC)、工控计算机等。

末级控制元件主要是各种电控方向控制阀、电控压力及流量控制阀。

输出执图1.6 电气动系统的结构及其信号流图行机构的状态通常通过电信号反馈到输入组件。

图1.7a)为某推料机构的工作原理示意图。

对于一个电-气动控制系统,应画出气动回路图(图1.7b))及电控回路图(图1.7c或图1.7d)。

图1.7 某推料机构的电、气动系统设计。

相关文档
最新文档