高中数学竞赛专题讲座—直线和圆的方程

合集下载

高中数学第七章 直线与圆的方程课件

高中数学第七章 直线与圆的方程课件

解:设所求圆的方程为:
(x-1)2+(y-3)2=r2
因为圆C和直线3x-4y-7=0相切 所以圆心C到这条直线的距离等于半径r 根据点到直线的距离公式,得
r= | 3×1— 4×3 — 7 | 32+(-4)2 因此,所求圆的方程是 = 16 O
C M
x
5
256 = 25
(x-1)2+(y-3)2
y
P(x , y )
M ( x0 , y0 )
x02 + y02
=
r2
x0x +y0 y = r2
O
x
结束 返回 下一页
知识点拨:
已知圆的方程是
的切线的方程:
x 2 y 2 r 2, 经过圆上一点 M ( x0 , y0 )
x0x +y0 y = r2
过圆(x-a)2+(y-b)2=r2上一点M(x0,y0) 的切线方程为:
P(x , y )
M ( x0 , y0 )
x
x0x +y0 y = r2
结束 返回 下一页
圆的标准方程
2 x 2 y 2 r,求经过圆上一点 例2 已知圆的方程是
M ( x0 , y0 ) 的切线的方程。
( x1 , y1 ) ( x2 , y2 ) x1 x2 y1 y2
解法三(利用平面向量知识): OM MP OM MP= 0
所以切线方程为:y = x± 2
(2)在y轴上截距是 2 的切线方程。 y = ± x+ 2
结束 返回 下一页
圆的标准方程
(1) 圆心为C(a,b),半径为r 的圆的标准方程为 (x-a) 2 + (y-b) 2 = r2

《直线和圆的方程》课件

《直线和圆的方程》课件
参数$D,E,F$必须满足一定的条 件才能构成一个有效的圆。
圆的参数方程
圆的参数方程
01
$x=a+rcostheta, y=b+rsintheta$,其中$(a,b)$是圆心,$r$
是半径,$theta$是参数。
参数方程的应用
02
参数方程常用于圆的极坐标表示,方便计算圆的轨迹和运动。
参数方程与直角坐标系的关系
圆的一般方程
圆的一般方程
$x^2+y^2+Dx+Ey+F=0$, 其中$D,E,F$是常数。
圆心坐标
圆心的坐标为$(-frac{D}{2}, frac{E}{2})$,通过圆心可以确 定圆的位置。
半径
半径的平方为 $frac{D^2+E^2-4F}{4}$,通 过半径可以确定圆的大小。
参数$D,E,F$
02
圆的方程的介绍
圆的标准方程
圆的标准方程
圆心坐标
$(x-a)^2+(y-b)^2=r^2$,其中$(a,b)$是 圆心,$r$是半径。
圆心的坐标为$(a,b)$,通过圆心可以确定 圆的位置。
半径
圆上任一点坐标
半径是圆上任一点到圆心的距离,用$r$表 示。
根据圆的标准方程,圆上任一点的坐标可 以表示为$(a+rcostheta, b+rsintheta)$, 其中$theta$是参数。
《直线和圆的方程》 ppt课件
目 录
• 直线方程的介绍 • 圆的方程的介绍 • 直线与圆的位置关系 • 直线与圆的实际应用
01
直线方程的介绍
直线的斜率与截距式
总结词
斜率截距式是直线方程的基本形式,它描述了直线在直角坐标系中的位置关系 。

高考数学专题讲座 第11讲 直线与圆

高考数学专题讲座 第11讲 直线与圆

高考数学专题讲座 第11讲 直线与圆考纲要求:(1)理解直线斜率的概念,掌握两点的直线的斜率,掌握直线方程的点斜式\两点式\一般式,并能根据条件熟练地求出直线方程.(2)掌握两条直线平行于垂直的条件,两条直线所成的角和点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系.(3)了解二元一次不等式表示平面区域. (4)了解线性规划的意义,并会简单应用. (5)了解解析几何的基本思想,了解坐标法.(6)掌握圆的标准方程和一般方程.理解圆的参数方程. 基础达标1.若直线l 的倾斜角为π+arctan(-12),且过点(1,0),则直线l 的方程为________________.x +2y -1=02.已知定点A (0,1),点B 在直线x +y =0上运动,当线段AB 最短时,点B 的坐标是________________. (-12,12)3.已知两条直线l 1:y =x ,l 2:ax -y =0,其中a 为实数.当这两条直线的夹角在(0,π12)内变动时,a 的取值X 围是 ( C ) A .(0,1)B .(33,3)C .(33,1)∪(1,3) D .(1,3) 4.过点A (1,-1)、B (-1,1)且圆心在直线x +y -2=0上的圆的方程是 ( C )A .(x -3)2+(y +1)2=4B .(x +3)2+(y -1)2=4C .(x -1)2+(y -1)2=4D .(x +1)2+(y +1)2=45.圆2x 2+2y 2=1与直线x sin θ+y -1=0(θ∈R ,θ≠π2+k π,k ∈Z )的位置关系是 ( C )A .相交B .相切C .相离D .不确定6.已知圆C :(x -a )2+(y -2)2=4(a >0)及直线l :x -y +3=0.当直线l 被C 截得的弦长为23时,则a = ( C ) A . 2 B .2-2C .2-1 D .2+1 例题选讲例1.(1)过点M (2,1)作直线l 与x 轴、y 轴的正半轴分别交于A 、B 两点.① 若△AOB 的面积取得最小值,求直线l 的方程,并求出面积的最小值;② 直线l 在两条坐标轴上截距之和的最小值;③若|MA |·|MB |为最小,求直线l 的方程.解:(1)①由于已知直线l 在坐标轴上的截距,故选用直线的截距方程:1=+bya x (i ) 由已知a >0,b >0.故S △AOB =21ab (ii ) 由已知,直线(i)经过点(2,1).故112=+b a ,就是a +2b =ab ,a =12-b b (∵b ≠1) (iii) ∵a >0, b >0, ∴a >1. 将(iii)代入(ii),得S =12-b b =1112-+-b b =b +1+11-b =(b -1)+11-b +2.当b >1时 S ≥211)1(-⋅-b b +2=4. 等号当且仅当 b -1=11-b 即b =2时成立.代入(iii)得a =4. ∴所求的直线方程为24yx +=1,即x②解一:a +b =2b b -1+b =2(b -1)+2b -1+b = = 2b -1+b -1+当b >1时 , a +b ≥2(2b -1)(b -1)等号当且仅当 b -1=2b -1, 即解二:a +b =(a +b )×1=(a +b )(2a +1b )=3等号当且仅当2b a =a b ,即a 2=2b 2③由于直线l 绕点M 运动,故可选∠OAB 2θsin M y =1sin θ, |MB |=θcos M x =2cos θ,|MA |·|MB |=1sin θ×2cos θ=4s in2θ,∴当sin2θ=1时,|MA |·|MB |有最小值4, 此时tan θ=1,所求直线l 的方程为x +y -3=0.(2)已知圆C :(x +2)2+y 2=1,P (x ,y )为圆上任意一点.①求y -22x -2的最大值、最小值;②求x -2y的最大值、最小值.解:(1)令k =y -2x -1,则k 表示经过P 点和A (1,2)两点的直线的斜率,故当k 取最大值或最小值时,直线P A :kx -y +2-k =0和圆相切,此时d =|-2k +2-k |1+k 2=1,解得k =3±34,所以y -22x -2的最大值为3+38,最小值为3-38;(2)方法一:令x -2y =t ,可视为一组平行线系,由题意,直线应与圆C 有公共点,且当t 取最大值或最小值时,直线x -2y -t =0和圆相切,则d =|-2-t |5=1,解得t =-2±5,所以x -2y 的最大值为-2+5,最小值为-2-5;方法二:因为P (x ,y )为圆C :(x +2)2+y 2=1上的点,令x =-2+cos θ,y =sin θ,θ∈[0,2π),所以x -2y =-2+cos θ-2 sin θ=-2+5cos(θ+φ)( φ=arctan2),当θ+φ=2π,即θ=2π-arctan2时,cos(θ+φ)=1,x -2y 取到最大值为-2+5,当θ+φ=π,即θ=π-arctan2时,cos(θ+φ)=-1,x -2y 取到最大值为-2+5;例2.已知圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l :x -2y =0的距离为55.求该圆的方程. 解:设圆P 的圆心为P (a ,b ),半径为γ,则点P 到x 轴,y 轴的距离分别为|b |,|a |.由题设知圆P 截x 轴所得劣弧对的圆心角为90º,知圆P 截x 轴所得的弦长为r 2.故r 2=2b 2又圆P 被y 轴所截得的弦长为2,所以有 r 2=a 2+1.从而得2b 2-a 2=1.又因为P (a ,b )到直线x -2y =0的距离为55,所以5552b a d -=, 即有 a -2b =±1, 由此有⎩⎨⎧=-=-121222b a a b ⎩⎨⎧-=-=-121222b a a b 解方程组得⎩⎨⎧-=-=11b a ⎩⎨⎧==11b a 于是r 2=2b 2=2,所求圆的方程是(x +1)2+(y +1)2=2,或(x -1)2+(y -1)2=2.思考:求在满足条件①、②的所有圆中,圆心到直线l :x -2y =0的距离最小的圆的方程.解法一:设圆的圆心为P (a ,b ),半径为r ,则点P 到x 轴,y 轴的距离分别为│b │, │a │. 由题设知圆P 截x 轴所得劣弧对的圆心角为90°,知圆P 截X 轴所得的弦长为r 2,故r 2=2b 2, 又圆P 截y 轴所得的弦长为2,所以有 r 2=a 2+1.从而得2b 2-a 2=1.又点P (a ,b )到直线x -2y =0的距离为52b a d -=,所以5d 2=│a -2b │2 =a 2+4b 2-4ab≥a 2+4b 2-2(a 2+b 2)=2b 2-a 2=1,当且仅当a =b 时上式等号成立,此时5d 2=1,从而d 取得最小值. 由此有⎩⎨⎧=-=12,22a b b a 解此方程组得⎩⎨⎧==;1,1b a 或⎩⎨⎧-=-=.1,1b a 由于r 2=2b 2知2=r .于是,所求圆的方程是(x -1) 2+(y -1) 2=2,或(x +1) 2+(y +1) 2=2. 解法二:同解法一,得52b a d -=∴d b a 52±=-得2225544d bd b a +±= ①将a 2=2b 2-1代入①式,整理得01554222=++±d db b②把它看作b 的二次方程,由于方程有实根,故判别式非负,即△=8(5d 2-1)≥0,得 5d 2≥1.∴5d 2有最小值1,从而d 有最小值55. 将其代入②式得2b 2±4b +2=0.解得b =±1.将b =±1代入r 2=2b 2,得r 2=2.由r 2=a 2+1得a =±1. 综上a =±1,b =±1,r 2=2. 由b a 2-=1知a ,b 同号. 于是,所求圆的方程是(x -1) 2+(y -1) 2=2,或(x +1) 2+(y +1) 2=2.例3.在以O 为原点的直角坐标系中,点A (4,-3)为△OAB 的直角顶点.已知|AB |=2|OA |,且点B 的纵坐标大于零.(1)求向量AB →的坐标;(2)求圆x 2-6x +y 2+2y =0关于直线OB 对称的圆的方程;(3)是否存在实数a ,使抛物线y =ax 2-1上总有关于直线OB 对称的两个点?若不存在,说明理由:若存在,求a 的取值X 围.[解](1)设⎩⎨⎧=-=+⎪⎩⎪⎨⎧=⋅==,034100,0||||||2||},,{22v u v u OA AB OA AB v u AB 即则由得 },3,4{.86,86-+=+=⎩⎨⎧-=-=⎩⎨⎧==v u AB OA OB v u v u 因为或 所以v -3>0,得v =8,故AB ={6,8}.(2)由OB ={10,5},得B (10,5),于是直线OB 方程:.21x y =由条件可知圆的标准方程为:(x -3)2+y(y+1)2=10, 得圆心(3,-1),半径为10. 设圆心(3,-1)关于直线OB 的对称点为(x,y )则,31,231021223⎩⎨⎧==⎪⎪⎩⎪⎪⎨⎧-=-+=-⋅-+y x x y y x 得故所求圆的方程为(x -1)2+(y -3)2=10. (3)设P (x 1,y 1), Q (x 2,y 2) 为抛物线上关于直线OB 对称两点,则.23,022544,02252,,2252,202222222212212121212121>>-⋅-=∆=-++⎪⎪⎩⎪⎪⎨⎧-=-=+⎪⎪⎩⎪⎪⎨⎧-=--=+-+a aa a a ax a x x x a a x x ax x x x yy y y x x 得于是由的两个相异实根为方程即得 故当23>a 时,抛物线y=ax 2-1上总有关于直线OB 对称的两点.4.已知⊙M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点,(1)如果|AB |=423,求直线MQ 的方程;(2)求动弦AB 的中点P 的轨迹方程. 解:(1)由324||=AB ,可得,31)322(1)2||(||||2222=-=-=AB MA MP 由射影定理,得 ,3|||,|||||2=⋅=MQ MQ MP MB 得 在Rt △MOQ 中,523||||||2222=-=-=MO MQ OQ ,故55-==a a 或, 所以直线AB 方程是;0525205252=+-=-+y x y x 或 (2)连接MB ,MQ ,设),0,(),,(a Q y x P 由点M ,P ,Q 在一直线上,得(*),22xy a -=-由射影定理得|,|||||2MQ MP MB ⋅= 即(**),14)2(222=+⋅-+a y x 把(*)及(**)消去a ,并注意到2<y ,可得).2(161)47(22≠=-+y y x说明:适时应用平面几何知识,这是快速解答本题的要害所在。

系列讲座之十——直线和圆

系列讲座之十——直线和圆

的方 程 是 3 x+ 4 y一 1 0— 0 .
直线 .
所 以
C 一 3 0 一 9 。 ( 8 。 a 一d一 6 。 O 一 1 0 一4 )
又 点 Q, D均 在 。 上 , 以点 Q和点 D重 合 , 所
故 P 是 o 的 切 线 . D
9。 3 , 0 + d 故 P Q 一 1 0 一 I 8。
M D 一 9 一 0。

N P .
j P 如 图 2 若设 A _ D, , B切 o 于Q, 连结 I 只要 O,
△ NC 所 以 P,
证 △ P D △ P Q.
又 C 公 共 , 以 AA P P 所 C
PAC 一 PN C .
简 证 设 A 与 o 切 于点 Q, 结 I I , B 连 O,D I , I = I — I , 上A I 上 B M 则 D Q M I Q B, M C.
例 2 已知 直 线 z: 一 4 x和 P( , ) 在 直 线 z 64 . 上 求 一 点 Q, 过 P, 的 直 线 与 z 以及 z轴 , 第 使 Q , 在

竞 赛 中 的直 线 和 圆 主 要 涉 及 一 些 证 明和 最 值 问 题 .
1 例 题 选 讲
象 限 内 围成 的 三 角 形 的 面 积 最 小 . 1 7 ( 9 8年 全 国
0, 且 也 恒 过 定 点 P( , ) 与 并 24 ,
轴 交 于A (k q2 O . 图 l 四边 2。 - ,) 如 , 形 ( ) APB 的 面 积 为 图1
轴 交 于 点

s㈣ 一 △ . c ’ ;
Szl+ S 一 0 .

高考数学第一轮复习单元讲座 直线、圆的方程

高考数学第一轮复习单元讲座 直线、圆的方程

2008高考数学第一轮复习单元讲座 直线、圆的方程一.课标要求:1.直线与方程(1)在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素;(2)理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式;(3)根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;2.圆与方程回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程。

二.命题走向直线方程考察的重点是直线方程的特征值(主要是直线的斜率、截距)有关问题,可与三角知识联系;圆的方程,从轨迹角度讲,可以成为解答题,尤其是参数问题,在对参数的讨论中确定圆的方程。

预测2007年对本讲的考察是:(1)2道选择或填空,解答题多与其他知识联合考察,本讲对于数形结合思想的考察也会是一个出题方向;(2)热点问题是直线的倾斜角和斜率、直线的几种方程形式和求圆的方程。

三.要点精讲1.倾斜角:一条直线L 向上的方向与X 轴的正方向所成的最小正角,叫做直线的倾斜角,范围为[)π,0。

2.斜率:当直线的倾斜角不是900时,则称其正切值为该直线的斜率,即k=t a n α;当直线的倾斜角等于900时,直线的斜率不存在。

过两点p 1(x 1,y 1),p 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式:k=t a n 1212x x y y --=α(若x 1=x 2,则直线p 1p 2的斜率不存在,此时直线的倾斜角为900)。

4.直线方程的五种形式确定直线方程需要有两个互相独立的条件。

确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围。

直线的点斜式与斜截式不能表示斜率不存在(垂直于x 轴)的直线;两点式不能表示平行或重合两坐标轴的直线;截距式不能表示平行或重合两坐标轴的直线及过原点的直线。

5.圆的方程圆心为),(b a C ,半径为r 的圆的标准方程为:)0()()(222>=-+-r r b y a x 。

高中数学竞赛试题汇编七《直线与圆》讲义

高中数学竞赛试题汇编七《直线与圆》讲义

高中数学竞赛试题汇编七《直线与圆》一、知识清单1. 求轨迹方程的步骤:建(系),设(点),限(制条件),代(入坐标),化(简).2.直线方程的几种形式:一般/点斜/斜截/截距/两点式.3.l 1//l 2的充要条件是k 1=k 2;l 1l 2的充要条件是k 1k 2=-1。

4.两点P 1(x 1, y 1)与P 2(x 2, y 2)间的距离公式:|P 1P 2|=221221)()(y y x x -+-。

5.点P(x 0, y 0)到直线l: Ax+By+C=0的距离公式:2200||B A C By Ax d +++=。

6.圆的标准方程为(x-a)2+(y-b)2=r 2;圆的一般方程:x 2+y 2+Dx+Ey+F=0(D 2+E 2-4F>0)圆的参数方程为⎩⎨⎧+=+=θθsin cos r b y r a x 二、试题汇编1. 与圆()2221x y -+=相切,且在两坐标轴上截距相等的直线有 (A) 2条 (B) 3条 (C) 4条 (D) 6条2. 已知221a b +=,且c a b <+恒成立,则c 的取值范围是(A) (,2)-∞- (B) (,-∞ (C) ( (D) (-∞3. P 是圆2236x y +=上的动点,A (20,0)线段PA 的中点M 的轨迹方程为4. 已知点P 是直线40kx y ++=,PA ,PB 是圆C: 2220x y y +-=的两条切线,A 、B 是切点,若四边形PACB 的最小面积是2,则k 的值为 .5. 若集合: {}221(,)lg(1)1lg()S x y x y x y =++≤++ {}222(,)lg(2)2lg()S x y x y x y =++≤++则2S 的面积与1S 的面积之比为 .6. 在直角坐标xoy 中,曲线235x y +=所围成的图形的面积是 .7. 直线10ax by -+=平分圆222410x y x y ++-+=的周长,则ab 的取值范围为 .8. 点P 在圆2225x y +=上,A (1,2)、B (4,1),则△PAB 面积最大值是 .9. 已知[0,2)θπ∈,则θθs i n 2c o s 3-+=y 的取值范围是 .10. 方程1x -=表示的曲线是 .11. 函数()2f x x =+的值域是 .。

高考数学二轮专题五解析几何第讲直线与圆课件

高考数学二轮专题五解析几何第讲直线与圆课件

(2,3),则圆C的半径为
()
A.2 2
B.8
C.5
D. 5
返回
解析:∵圆C截两坐标轴所得弦长相等,∴圆心C在直线y =x或y=-x上. ①当圆心C在直线y=x上时,设C(m,m),半径为R,则 (m+1)2+m2=(m-2)2+(m-3)2=R2,可得m=1,R2= 5,∴R= 5; ②当圆心C在直线y=-x上时,设C(m,-m),半径为 R,则(m+1)2+(-m)2=(m-2)2+(-m-3)2=R2,该方 程组无解. ∴圆C的半径为 5,故选D. 答案:D
到直线方程. “专题检测”见“专题检测” (十八)
考点3 直线与圆的位置关系
考点3 直线与圆的位置关系
“专题检测”见“专题检测” (十八)
考点3 直线与圆的位置关系
考点3 直线与圆的位置关系
考点3 直线与圆的位置关系
考点3 直线与圆的位置关系
返回
2.轴对称问题的两种类型及求解方法 若两点P1(x1,y1)与P2(x2,y2)关于直线l:Ax+By +C=0对称,则线段P1P2的中点在对称轴l上,而 且连接P1,P2的直线垂直于对称轴l.由方程组
[答案] (1)ABC (2)ACD
返回
解题方略
求圆的方程的2种方法 几何 通过研究圆的性质,直线和圆、圆与圆的位置关系,
法 从而求得圆的基本量和方程 代数 用待定系数法先设出圆的方程,再由条件求得各系 法 数,从而求得圆的方程
返回
[跟踪训练]
1.已知圆C截两坐标轴所得弦长相等,且圆C过点(-1,0)和
0,则下列说法正确的是
()
A.圆A的半径为2
B.圆A截y轴所得的弦长为2 3
C.圆A上的点到直线3x-4y+12=0的最小距离为1

新课标高三数学人教版复习单元讲座 直线圆的方程

新课标高三数学人教版复习单元讲座  直线圆的方程
截距式
xy=1 +ab
a——直线的横截距b——直线的纵截距
过(0,0)及与两坐标轴平行的直线不能用此式
一般式
=0
AxC+By+
ACC分别为,,BAB斜率、横截距和纵截距
A、B不能同时为零
直线的点斜式与斜截式不能表示斜率不存在(垂直于x轴)的直线;两点式不能表示平行或重合两坐标轴的直线;截距式不能表示平行或重合两坐标轴的直线及过原点的直线。
5.圆的方程
222ab0)0(rxa)(yb)r()(Ca,b时,圆。特殊地,当圆心为,半径为r的圆的标准方程为:第1页(共10页)2018年3月19日星期一Wisdom&Love
智愛學習传扬爱心喜乐分享智慧泉源
222ryx心在原点的圆的方程为:。ED22),(0xFyDxEy圆的一般方程,圆心为点, 22224EDF22DE4F0r。半径,其中 22222xy0DxEyAxBxyCyF项的系数相项,表示圆的方程的充要条件是:①、二元二次方程22AC0DE4AF0。;②、没有xy项,即B=0同且不为0,即;③、
l两点,求、B分别交x轴、y轴的正半轴于AP例2.过点(2,1)作直线B
|·|PBPAl 的值最小时直线的方程。
θ=,解析:依题意作图,设∠BAO,1)P(2
21θPBPA, 则, cossinx O A
424 2·PAPB, 2sinsinsincoscos|PB·PA|145sin2l 时的值最小,此时直线,即°,的倾斜角为当1351ktan135。∴斜率l2x11·y0y3xl故直线,即的方程为。点评:求直线方程是解析几何的基础,也是重要的题型。解这类题除用到有关概念和直线方程的五种形式外,还要用到一些技巧。:斜率公式及应用题型20y2xy04x2y的最大值满足3.(1)(05年江西高考)设实数x,y,则例 x02y3

直线与圆的方程的应用ppt

直线与圆的方程的应用ppt

直线与圆的方程的应用直线与圆的方程是高中数学中的基础知识点,它们在几何图形的研究中起到重要作用。

本文将介绍直线和圆的方程的基本概念,并以实际应用为例,展示它们在解决实际问题中的应用。

直线的方程在平面几何中,直线可以用不同的方程表示,常见的有一般式、点斜式和斜截式方程。

•一般式方程:一般式方程表示为Ax + By + C = 0,其中A、B、C为常数,A和B不同时为0。

•点斜式方程:点斜式方程表示为y - y₁ = k(x - x₁),其中(x₁, y₁)为直线上的一点,k为直线的斜率。

•斜截式方程:斜截式方程表示为y = kx + b,其中k为直线的斜率,b 为直线在y轴上的截距。

直线的方程可以通过给定的条件进行推导和转换。

通过直线的方程,我们可以确定直线在平面上的位置、斜度和与其他几何图形的关系等。

圆的方程圆是一个由一组离一个固定点的距离相等的点所组成的集合。

在平面几何中,圆的方程有多种表示方式。

•一般式方程:一般式方程表示为(x - a)² + (y - b)² = r²,其中(a, b)表示圆心的坐标,r表示半径。

•标准方程:标准方程表示为(x - a)² + (y - b)² = R²,其中(a, b)表示圆心的坐标,R表示圆的半径。

•参数方程:参数方程表示为x = a + rcosθ,y = b + rsinθ,其中(a, b)表示圆心的坐标,r表示半径,θ为参数。

圆的方程描述了圆心坐标、半径和点与圆的关系等信息。

通过圆的方程,我们可以确定圆的位置、形状和与其他几何图形的关系等。

直线与圆的相交问题直线与圆的相交问题是直线和圆的方程应用的一个重要部分。

在解决直线与圆的相交问题时,我们需要先将直线的方程和圆的方程联立,求解它们的交点。

当直线与圆相交时,交点可以有两个、一个或没有。

我们可以通过解方程组来求解直线与圆的交点坐标,进而得到它们之间的关系。

高中数学竞赛讲义第十章 直线与圆的方程

高中数学竞赛讲义第十章  直线与圆的方程

第十章 直线与圆的方程一、基础知识1.解析几何的研究对象是曲线与方程。

解析法的实质是用代数的方法研究几何.首先是通过映射建立曲线与方程的关系,即如果一条曲线上的点构成的集合与一个方程的解集之间存在一一映射,则方程叫做这条曲线的方程,这条曲线叫做方程的曲线。

如x 2+y 2=1是以原点为圆心的单位圆的方程。

2.求曲线方程的一般步骤:(1)建立适当的直角坐标系;(2)写出满足条件的点的集合;(3)用坐标表示条件,列出方程;(4)化简方程并确定未知数的取值范围;(5)证明适合方程的解的对应点都在曲线上,且曲线上对应点都满足方程(实际应用常省略这一步)。

3.直线的倾斜角和斜率:直线向上的方向与x 轴正方向所成的小于1800的正角,叫做它的倾斜角。

规定平行于x 轴的直线的倾斜角为00,倾斜角的正切值(如果存在的话)叫做该直线的斜率。

根据直线上一点及斜率可求直线方程。

4.直线方程的几种形式:(1)一般式:Ax+By+C=0;(2)点斜式:y-y 0=k(x-x 0);(3)斜截式:y=kx+b ;(4)截距式:1=+b ya x ;(5)两点式:121121y y y y x x x x --=--;(6)法线式方程:xcos θ+ysin θ=p (其中θ为法线倾斜角,|p|为原点到直线的距离);(7)参数式:⎪⎩⎪⎨⎧+=+=θθsin cos 00t y y t x x (其中θ为该直线倾斜角),t 的几何意义是定点P 0(x 0, y 0)到动点P (x, y )的有向线段的数量(线段的长度前添加正负号,若P 0P 方向向上则取正,否则取负)。

5.到角与夹角:若直线l 1, l 2的斜率分别为k 1, k 2,将l 1绕它们的交点逆时针旋转到与l 2重合所转过的最小正角叫l 1到l 2的角;l 1与l 2所成的角中不超过900的正角叫两者的夹角。

若记到角为θ,夹角为α,则tan θ=21121k k k k +-,tan α=21121k k k k +-.6.平行与垂直:若直线l 1与l 2的斜率分别为k 1, k 2。

高中数学直线和圆教案

高中数学直线和圆教案

高中数学直线和圆教案
课题:直线和圆
一、教学目标:
1. 知识与技能:掌握直线和圆的基本概念、性质和公式;能够运用直线和圆的知识解决相关问题。

2. 过程与方法:通过例题分析、思维导向和讨论等方式,培养学生的数学思维和解决问题的能力。

3. 情感态度与价值观:鼓励学生积极思考、勇于探索,培养他们对数学的兴趣和自信心。

二、教学内容:
1. 直线的概念及斜率、方向角的相关性质;
2. 圆的概念及圆心、半径、弦、弧、切线等基本概念;
3. 直线和圆的位置关系及相关公式。

三、教学过程:
1. 引入:通过给出一道直线和圆的问题,让学生思考直线和圆之间的关系,并引出本节课的主题。

2. 学习直线的知识点:讲解直线的概念、斜率、方向角等基本知识,并通过例题演示如何计算直线的斜率和方向角。

3. 学习圆的知识点:讲解圆的概念、圆心、半径、弦、弧、切线等基本知识,并通过例题演示如何计算圆的相关参数。

4. 直线和圆的位置关系:讲解直线和圆的位置关系及相关公式,并通过例题演示如何判断直线和圆的位置关系。

5. 练习与巩固:布置练习题,让学生独立解题,并对答案进行核对和讲解。

6. 总结与拓展:总结本节课的重点知识,拓展相关知识,激发学生兴趣和探索欲望。

四、课堂评价:
考核学生对直线和圆的基本概念、性质以及相关公式的掌握情况,包括思维能力、解题能力等方面的评价。

五、课后作业:
1. 完成课后练习题;
2. 总结笔记,复习本节课所学知识。

解析几何之旅:学习直线和圆的方程

解析几何之旅:学习直线和圆的方程

解析几何之旅:学习直线和圆的方程在数学中,解析几何是研究几何图形的性质和关系的一门学科。

它是数学中的一个重要分支,对于理解平面和空间中的直线和曲线方程具有重要意义。

本文将带您进行一次解析几何之旅,深入了解学习直线和圆的方程。

一、直线的方程直线是解析几何中最基础的图形之一,掌握直线的方程是学习解析几何的第一步。

在平面直角坐标系中,我们可以利用直线的斜率和截距来表示它的方程。

1. 斜率截距法假设直线的斜率为m,截距为b,那么直线的方程可以写成y = mx + b的形式,其中,m和b可以根据题目中给定的条件进行确定。

例如,对于一条过点P(2,3)且斜率为2的直线,我们可以直接写出该直线的方程为y = 2x + b。

然后,将点P代入方程,得到3 = 2*2 + b,解得b = -1。

因此,该直线的方程为y = 2x - 1。

2. 两点法另一种确定直线方程的方法是利用直线上两点的坐标。

假设直线上两点分别为P(x1,y1)和Q(x2,y2),那么直线的方程可以表示为(y - y1) / (x - x1) = (y2 - y1) / (x2 - x1)。

例如,对于一条过点P(1,3)和Q(4,6)的直线,我们可以写出方程为(y - 3) / (x - 1) = (6 - 3) / (4 - 1)。

然后,我们可以通过化简方程得到标准形式的直线方程。

二、圆的方程与直线不同,圆在平面直角坐标系中的方程与其位置和半径有关。

圆的方程有三种常见的表示形式:标准方程、一般方程和截距方程。

1. 标准方程假设圆的圆心为(h,k),半径为r,那么圆的标准方程可以表示为(x - h)² + (y - k)² = r²。

例如,对于一个圆心坐标为(2,3),半径为4的圆,我们可以直接写出其标准方程为(x - 2)² + (y - 3)² = 4²。

2. 一般方程一般方程是圆的另一种表示形式,它可以表示为x² + y² + Dx + Ey +F = 0。

直线和圆的参数方程名师公开课获奖课件百校联赛一等奖课件

直线和圆的参数方程名师公开课获奖课件百校联赛一等奖课件

即x x0 , y y0 tcos,sin ,
所以 x x0 t cos , y y0 t sin ,
即 x x0 t cos , y y0 t sin ,
所以,经过点 M 0 x0 , y0 ,倾斜角为 的直线
l 的参数 方程是为
x x0 t cos , y y0 t sin .
t2 2
0, 即
cos 2sin 0,于是直线l的斜率为
1
k tan 2 .
因此,
直线l的方程是y
1
1 2
x
2,
即 x 2 y 4 0.
思考 例2的解法对一般圆锥曲线 适用吗?把 "中点"改为"三等分点",直线l的方程怎样求 ?
例5 当前台风中心 P 在某海滨
城市O向东 300km处生成, 并以40
到A,B两点旳距离之积.
解:(1)直线旳参数方程是
x=1+
3 2t
y=1+12t
(t 是参数).
(2)因为点 A,B 都在直线 l 上,所以可设它们对应的参数为 t1 和 t2,则点 A,B 的坐标分别为 A1+ 23t1,1+12t1,B1+ 23t2,1+21t2. 以直线 l 的参数方程代入圆的方程 x2+y2=4, 整理得到 t2+( 3+1)t-2=0.① 因为 t1 和 t2 是方程①的解,从而 t1t2=-2. 所以|PA|·|PB|=|t1t2|=|-2|=2.
方向向量 e 的方向总是向上.此时,若 t 0, 则 M 0M 的方向向上;若t 0,则 M 0M 的方 向向下;若 t 0,则点M与点M 0重合.
【基本题型】
例1.直线 l 经过点 M0(1,5),倾斜角为π3,且交直线

《新课标》高三数学(人教版)复习单元讲座直线圆的方程

《新课标》高三数学(人教版)复习单元讲座直线圆的方程

《新课标》高三数学(人教版)复习单元讲座直线圆的方程分享智慧泉源智愛學習传扬爱心喜乐一.课标要求:1.直线与方程(1)在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素;(2)理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式;(3)根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;2.圆与方程回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程。

二.命题走向本讲的考察是:(1)2道选择或填空,解答题多与其他知识联合考察,本讲对于数形结合思想的考察也会是一个出题方向;(2)热点问题是直线的倾斜角和斜率、直线的几种方程形式和求圆的方程。

三.要点精讲1.倾斜角:一条直线L向上的方向与某轴的正方向所成的最小正角,叫做直线的倾斜角,范围为0,2.斜率:当直线的倾斜角不是900时,则称其正切值为该直线的斜率,即k=an;当直线的倾斜角等于900时,直线的斜率不存在。

过两点p1(某1,y1),p2(某2,y2)(某1≠某2)的直线的斜率公式:k=tany2y1(若某1=某2,则直线p1p2的斜率不存在,某2某1此时直线的倾斜角为900)。

4.直线方程的五种形式确定直线方程需要有两个互相独立的条件。

确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围。

名称斜截式点斜式方程y=k某+by-y0=k(某-某0)说明k——斜率b——纵截距(某0,y0)——直线上已知点,k——斜率适用条件倾斜角为90°的直线不能用此式倾斜角为90°的直线不能用此式两点式yy1某某1(某1,y1),(某2,y2)是直线上与两坐标轴平行的直线=不能用此式y2y1某2某1两个已知点某y+=1abA某+By+C=0a——直线的横截距b——直线的纵截距过(0,0)及与两坐标轴平行的直线不能用此式截距式一般式ACC,,分别为BAB斜率、横截距和纵截距A、B不能同时为零直线的点斜式与斜截式不能表示斜率不存在(垂直于某轴)的直线;两点式不能表示平行或重合两坐标轴的直线;截距式不能表示平行或重合两坐标轴的直线及过原点的直线。

直线和圆

直线和圆

的方程为羔 十孚 :1即 缸 十a a =0 , y— b .
‘ .
‘S△删

S△邶


( ) 断两 圆 的位 置关系 , 2判 常利 用 圆心 距 与两 圆 半 径 的和或 差 的 大小 关 系 . 1 4 圆 的 切 线 . ( ) 圆 十 十D 1过 x十E y十F=0上 一点 P( 0 z,
2 x 十 7 一2 0: 0. x 一2 y 十 1 0:0. 4 y 0 7 4 5
0的切线 , 则切线长为 :/ 0十 z 十 0 、 z 0 十D 0 十F. /
例 1 过点 P( , ) 两 条 互 相 垂 直 的 直 线 P 68作 A、 P 分别 交 轴 正 半轴 于 A , B, y轴 正半轴 于 B。 () 1 求线 段 AB 中点 的轨 迹 方程 ; ( ) S△ 2若 她 =S 枷 , P 与 P 所 在 直 线 的 求 A B 方程 . ( 1 第 0届希 望杯 数 学邀 请 赛试 题 ) 导析 : 于第 ( ) 题 , 见 的思路 有 两 种 : 是 利 对 1小 常 一
f 3÷ 一, = : 1- 十 消 , 4一50 4 去k 得3十 2 . 3 = ,

结 合 图 形知 , 中点 M 的轨 迹 是 直 线 3 z十4 v一2 5 =0在 第一 象 限 内 的部 分 ( M 适 合 ) 点 也 . ( ) A( 0 、 0 b ( 2设 口, ) B( , ) 口>0, >0 , 直 线 AB b )则
过两 圆 C 、 2 lc 的交点 A 、 的 圆 系 方 程 为 l B (
十 十Dl 十El +F1 2 十. x )十 ( ) , 十D2 十 E2 y十 F ) ( 十, 0, l 2 0 . 2 =0 l l ≠ 且 z 十 ≠ )

高中数学第四章圆与方程4.2.3直线与圆的方程的应用全国公开课一等奖百校联赛微课赛课特等奖PPT课件

高中数学第四章圆与方程4.2.3直线与圆的方程的应用全国公开课一等奖百校联赛微课赛课特等奖PPT课件
练习.求圆(x-1)2 +(y-1)2=4关于直线 l:x-2y-2=0对称圆方程.
4/7
5.实际问题
例2. 下列图是某圆拱形桥一孔圆拱示意
图.这个圆圆拱跨度AB=20cm,拱高
OP=4m,建造时每间隔4m需要用一根
支柱支撑,求支柱A2P2高度(准确到
0.01m).ຫໍສະໝຸດ P2 P4mA A1 A2 O A3 A4 B
20m
5/7
6.用代数法证实几何问题 例3. 已知内接于圆四边形对角线互
相垂直,求证圆心到一边距离等于这
条边所对边长二分之一.
B
CO
A
D
6/7
课后作业
1. 阅读P124 《坐标法与机 器证实》
7/7
4.2.3 直线与圆 方程应用
1/7
4.对称问题 圆关于点对称,圆关于直线对称.
2/7
4.对称问题 圆关于点对称,圆关于直线对称.
例1.求圆(x-1)2 +(y+1)2=4关于点(2,2) 对称圆方程.
3/7
4.对称问题 圆关于点对称,圆关于直线对称.
例1.求圆(x-1)2 +(y+1)2=4关于点(2,2) 对称圆方程.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档