采用A算法解决八数码问题

合集下载

a算法八数码问题例题

a算法八数码问题例题

a算法八数码问题例题八数码问题是一个经典的搜索问题,其中有一个3×3的格子,其中包含了一些数字(通常是1到8),以及一个空白格。

目标是使用最少的步骤将格子中的数字排列成给定的目标顺序。

每个步骤可以是以下三种操作之一:1. 上下移动(将行中的某个数字上移或下移)2. 左右移动(将列中的某个数字左移或右移)3. 旋转(以中心为中心旋转整个格子)下面是一个使用A算法解决八数码问题的例子:假设初始状态如下:```markdown4 1 2 756 3 8 05 0 3 2 4 167 86 7 5 8 3 4 2 1 0```目标状态如下:```markdown1 2 3 4 5 6 7 8 00 3 6 7 4 5 8 1 27 8 5 6 1 2 3 4 0```下面是使用A算法解决这个问题的步骤:1. 首先,我们需要构建一个优先级队列(例如最小堆),用于存储所有可能的移动。

在这个例子中,每个移动都有一个成本和优先级。

成本是从当前状态到目标状态的最短路径长度,优先级是当前状态到目标状态的H启发式估计。

H启发式估计通常是当前状态和目标状态之间的曼哈顿距离。

2. 从队列中取出优先级最高(即成本最低)的移动。

在这个例子中,初始状态的移动是"上下移动"。

3. 应用这个移动,并更新所有相关状态的成本和优先级。

在这个例子中,我们将第一行向下移动一格。

然后,我们需要重新评估所有可能的状态,并更新优先级队列。

4. 在更新优先级队列后,我们需要检查是否已经达到目标状态。

如果已经达到目标状态,则算法结束。

否则,我们重复步骤2和步骤3,直到达到目标状态。

5. 在这个例子中,我们需要进行多次上下移动、左右移动和旋转,才能将数字排列成目标顺序。

每次应用移动后,都需要重新评估所有可能的状态,并更新优先级队列。

a星算法求解八数码问题python

a星算法求解八数码问题python

a星算法求解八数码问题python一、介绍八数码问题是一种经典的智力游戏,也是人工智能领域中的经典问题之一。

在这个问题中,有一个3×3的棋盘,上面摆着1至8这8个数字和一个空格,初始状态和目标状态都已知。

要求通过移动数字,将初始状态变换成目标状态。

其中空格可以和相邻的数字交换位置。

为了解决这个问题,我们可以使用A*算法。

本文将详细介绍如何用Python实现A*算法来求解八数码问题。

二、A*算法简介A*算法是一种启发式搜索算法,常用于寻找最短路径或最优解等问题。

它基于Dijkstra算法,并加入了启发式函数来加速搜索过程。

在A*算法中,每个节点都有两个估价值:g值和h值。

g值表示从起点到该节点的实际代价,h值表示从该节点到目标节点的估计代价。

启发式函数f(n) = g(n) + h(n) 表示从起点到目标节点的估计总代价。

A*算法采用优先队列来保存待扩展的节点,并按照f(n)值从小到大排序。

每次取出队头元素进行扩展,并将扩展出来的新节点按照f(n)值插入队列中。

当扩展出目标节点时,算法结束。

三、八数码问题的状态表示在八数码问题中,每个状态都可以表示为一个3×3的矩阵。

我们可以用一个一维数组来表示这个矩阵,其中0表示空格。

例如,初始状态可以表示为[2, 8, 3, 1, 6, 4, 7, 0, 5],目标状态可以表示为[1, 2, 3, 8, 0, 4, 7, 6, 5]。

四、A*算法求解八数码问题的步骤1.将初始状态加入优先队列中,并设置g值和h值为0。

2.从队头取出一个节点进行扩展。

如果该节点是目标节点,则搜索结束;否则,将扩展出来的新节点加入优先队列中。

3.对于每个新节点,计算g值和h值,并更新f(n)值。

如果该节点已经在优先队列中,则更新其估价值;否则,将其加入优先队列中。

4.重复第2步至第3步直到搜索结束。

五、Python实现以下是用Python实现A*算法求解八数码问题的代码:```import heapqimport copy# 目标状态goal_state = [1,2,3,8,0,4,7,6,5]# 启发式函数:曼哈顿距离def h(state):distance = 0for i in range(9):if state[i] == 0:continuerow = i // 3col = i % 3goal_row = (state[i]-1) // 3goal_col = (state[i]-1) % 3distance += abs(row - goal_row) + abs(col - goal_col)return distance# A*算法def A_star(start_state):# 初始化优先队列和已访问集合queue = []visited = set()# 将初始状态加入优先队列中,并设置g值和h值为0heapq.heappush(queue, (h(start_state), start_state, 0))while queue:# 取出队头元素进行扩展f, state, g = heapq.heappop(queue)# 如果该节点是目标节点,则搜索结束;否则,将扩展出来的新节点加入优先队列中。

基于启发式搜索算法A星解决八数码问题

基于启发式搜索算法A星解决八数码问题
//定义算法中用到的链表,图,树的节点的结构。 struct Node {
int statue[size][size]; //记录当前节点的状态 struct Node * Tparent; //用来构成搜索树,该树由搜索图的反向指针构成 struct Node * opennext; //用来构成 open 表,该指针指向该节点在 open 表中的下一个 节点 struct Node * closenext; //用来构成 open 表,该指针指向该节点在 close 表中的下一个 节点 struct Node * brothernext; //构成兄弟链表,该指针指向该节点在兄弟链表中的下一个节 点 int f; //记录当前节点的 f 函数值 int g; //记录当前节点的 g 函数的值 int h; //记录当前节点的 h 函数的值 };
5
get_bestroute (bestNode); return; }
2.2.7 生成 bestNode 所指节点的后继节点
定义一个后继节点链表,表头为 head_b,将 bestNode 所指节点的不是前驱节点的后继 节点,链接到后继及诶单链表中。getchild 函数可以实现这个功能。
//产生 bestNode 的一切后继节点。。 head head_b; //定义 bestNode 的后继节点表 head_b.next=NULL; getchild (&head_b,bestNode); //产生 bestNode 的子节点,将不是 bestNode 的父节点的
while (head_b.next!=NULL) { Node *tmp=getbrother (&head_b); //从后继节点表中取出一个节点记为 tmp,并从

用A算法解决八数码问题

用A算法解决八数码问题

用A*算法解决八数码问题一、 题目:八数码问题也称为九宫问题。

在3×3的棋盘,有八个棋子,每个棋子上标有1至8的某一数字,不同棋子上标的数字不相同。

棋盘上还有一个空格,与空格相邻的棋子可以移到空格中。

要解决的问题是:任意给出一个初始状态和一个目标状态,找出一种从初始转变成目标状态的移动棋子步数最少的移动步骤。

二、 问题的搜索形式描述状态:状态描述了8个棋子和空位在棋盘的9个方格上的分布。

初始状态:任何状态都可以被指定为初始状态。

操作符:用来产生4个行动(上下左右移动)。

目标测试:用来检测状态是否能匹配上图的目标布局。

路径费用函数:每一步的费用为1,因此整个路径的费用是路径中的步数。

现在任意给定一个初始状态,要求找到一种搜索策略,用尽可能少的步数得到上图的目标状态算法介绍三、 解决方案介绍1.A*算法的一般介绍A*(A-Star)算法是一种静态路网中求解最短路最有效的方法。

对于几何路网来说,可以取两节点间欧几理德距离(直线距离)做为估价值,即()()()()()()**f g n sqrt dx nx dx nx dy ny dy ny =+--+--;这样估价函数f 在g 值一定的情况下,会或多或少的受估价值h 的制约,节点距目标点近,h 值小,f 值相对就小,能保证最短路的搜索向终点的方向进行。

明显优于盲目搜索策略。

A star算法在静态路网中的应用2.算法伪代码创建两个表,OPEN表保存所有已生成而未考察的节点,CLOSED表中记录已访问过的节点。

算起点的估价值,将起点放入OPEN表。

while(OPEN!=NULL){从OPEN表中取估价值f最小的节点n;if(n节点==目标节点){break;}for(当前节点n 的每个子节点X){算X的估价值;if(X in OPEN){if( X的估价值小于OPEN表的估价值 ){把n设置为X的父亲;更新OPEN表中的估价值; //取最小路径的估价值}}if(X inCLOSE){if( X的估价值小于CLOSE表的估价值 ){把n设置为X的父亲;更新CLOSE表中的估价值;把X节点放入OPEN //取最小路径的估价值}}if(X not inboth){把n设置为X的父亲;求X的估价值;并将X插入OPEN表中; //还没有排序}}//end for将n节点插入CLOSE表中;按照估价值将OPEN表中的节点排序; //实际上是比较OPEN表内节点f的大小,从最小路径的节点向下进行。

人工智能实验一 八数码问题

人工智能实验一 八数码问题
启发式搜索就是在状态空间中的搜索对每一个搜索的位置进行评估,得到最好的位置, 再从这个位置进行搜索直到目标。这样可以省略大量无畏的搜索路径,提到了效率。在启发 式搜索中,对位置的估价是十分重要的。采用了不同的估价可以有不同的效果。
启发中的估价是用估价函数表示的,如:f(n) = g(n) + h(n) 其中 f(n) 是节点 n 的估价函数,g(n)是在状态空间中从初始节点到 n 节点的实际代价, h(n)是从 n 到目标节点最佳路径的估计代价。 在此八数码问题中,显然 g(n)就是从初始状 态变换到当前状态所移动的步数,估计函数 f(n)我们就可采用当前状态各个数字牌不在目标
附录—源代码及其注释 #include "stdafx.h" #include "iostream.h" #include <time.h> #include <stdio.h> #include <dos.h> #include <conio.h> static int target[9]={1,2,3,8,0,4,7,6,5}; //class definition
eight_num(int init_num[9]); eight_num(int num1,int num2,int num3,int num4,int num5,int num6,int num7,int num8,int num9) {
num[0]=num1; num[1]=num2; num[2]=num3; num[3]=num4; num[4]=num5; num[5]=num6; num[6]=num7; num[7]=num8; num[8]=num9; } eight_num(void) { for (int i=0;i<9;i++)

A-star-算法-八数码问题-C++-报告+代码+详细注释1

A-star-算法-八数码问题-C++-报告+代码+详细注释1

二、程序运行测试A*算法求解八数码问题一、详细设计说明1.评价函数以当前状态下各将牌到目标位置的距离之和作为节点的评价标准。

距离的定义为: “某将牌行下标与目标位置行下标之差的绝对值 + 列下标与目标位置列下标之差的绝对值”。

距离越小, 该节点的效果越好。

某个状态所有将牌到目标位置的距离之和用“h值”表示。

2.主要函数2.1countH(state & st);countH函数功能是计算st状态的h值。

2.2计算过程中将会用到rightPos数组, 数组里记录的是目标状态下, 0~9每个将牌在九宫格里的位置(位置 = 行下标 * 3 + 列下标)。

2.3f(state * p);f()=h()+level2.4look_up_dup(vector<state*> & vec, state * p);2.5在open表或close表中, 是否存在指定状态p, 当找到与p完全相等的节点时, 退出函数。

2.6search(state & start);在open表不为空时, 按f值由小到大对open表中元素进行排序。

调用findZero()函数找到0值元素的位置。

空格可以向上下左右四个方向移动, 前提是移动后不能越过九宫格的边界线。

确定某方向可走后, 空格移动一步, 生成状态p’。

2.7此时, 检查open表中是否已有p’, 若有, 更新p’数据;检查close表中是否已有p’, 若有, 将p’从close表中删除, 添加到open表中。

2.8重复的执行这个过程, 直到某状态的h值为零。

2.9dump_solution(state * q);在终端输出解路径。

// A*算法八数码问题#include"stdafx.h"#include<iostream>#include<vector>#include<time.h>#include<algorithm>using namespace std;const int GRID = 3; //Grid表示表格的行数(列数), 这是3*3的九宫格int rightPos[9] = { 4, 0, 1, 2, 5, 8, 7, 6, 3 };//目标状态时, 若p[i][j]=OMG,那么3*i+j = rightPos[OMG]struct state{int panel[GRID][GRID];int level; //记录深度int h;state * parent;state(int level) :level(level){}bool operator == (state & q){//判断两个状态是否完全相等(对应位置元素相等), 完全相等返回true,否则返回falsefor (int i = 0; i<GRID; i++){for (int j = 0; j<GRID; j++){if (panel[i][j] != q.panel[i][j])return false;}}return true;}state & operator = (state & p){ //以状态p为当前状态赋值, 对应位置元素相同for (int i = 0; i<GRID; i++){for (int j = 0; j<GRID; j++){panel[i][j] = p.panel[i][j];}}return *this;}};void dump_panel(state * p){ //将八数码按3*3矩阵形式输出for (int i = 0; i<GRID; i++){for (int j = 0; j<GRID; j++)cout << p->panel[i][j] << " ";cout << endl;}}int countH(state & st){ //给定状态st, 计算它的h值。

人工智能实验一_八数码问题

人工智能实验一_八数码问题

用A*算法解决八数码问题1 问题描述1.1 待解决问题的解释八数码游戏(八数码问题)描述为:在3×3组成的九宫格棋盘上,摆有八个将牌,每一个将牌都刻有1-8八个数码中的某一个数码。

棋盘中留有一个空格,允许其周围的某一个将牌向空格移动,这样通过移动将牌就可以不断改变将牌的布局。

这种游戏求解的问题是:给定一种初始的将牌布局或结构(称初始状态)和一个目标的布局(称目标状态),问如何移动将牌,实现从初始状态到目标状态的转变。

1.2 问题的搜索形式描述(4要素)初始状态:8个数字将牌和空格在九宫格棋盘上的所有格局组成了问题的状态空间。

其中,状态空间中的任一种状态都可以作为初始状态。

后继函数:通过移动空格(上、下、左、右)和周围的任一棋子一次,到达新的合法状态。

目标测试:比较当前状态和目标状态的格局是否一致。

路径消耗:每一步的耗散值为1,因此整个路径的耗散值是从起始状态到目标状态的棋子移动的总步数。

1.3 解决方案介绍(原理)对于八数码问题的解决,首先要考虑是否有答案。

每一个状态可认为是一个1×9的矩阵,问题即通过矩阵的变换,是否可以变换为目标状态对应的矩阵?由数学知识可知,可计算这两个有序数列的逆序值,如果两者都是偶数或奇数,则可通过变换到达,否则,这两个状态不可达。

这样,就可以在具体解决问题之前判断出问题是否可解,从而可以避免不必要的搜索。

如果初始状态可以到达目标状态,那么采取什么样的方法呢?常用的状态空间搜索有深度优先和广度优先。

广度优先是从初始状态一层一层向下找,直到找到目标为止。

深度优先是按照一定的顺序前查找完一个分支,再查找另一个分支,以至找到目标为止。

广度和深度优先搜索有一个很大的缺陷就是他们都是在一个给定的状态空间中穷举。

这在状态空间不大的情况下是很合适的算法,可是当状态空间十分大,且不预测的情况下就不可取了。

他的效率实在太低,甚至不可完成。

由于八数码问题状态空间共有9!个状态,对于八数码问题如果选定了初始状态和目标状态,有9!/2个状态要搜索,考虑到时间和空间的限制,在这里采用A*算法作为搜索策略。

a算法求解八数码问题 实验报告

a算法求解八数码问题 实验报告

题目: a算法求解八数码问题实验报告目录1. 实验目的2. 实验设计3. 实验过程4. 实验结果5. 实验分析6. 实验总结1. 实验目的本实验旨在通过实验验证a算法在求解八数码问题时的效果,并对其进行分析和总结。

2. 实验设计a算法是一种启发式搜索算法,主要用于在图形搜索和有向图中找到最短路径。

在本实验中,我们将使用a算法来解决八数码问题,即在3x3的九宫格中,给定一个初始状态和一个目标状态,通过移动数字的方式将初始状态转变为目标状态。

具体的实验设计如下:1) 实验工具:我们将使用编程语言来实现a算法,并结合九宫格的数据结构来解决八数码问题。

2) 实验流程:我们将设计一个初始状态和一个目标状态,然后通过a 算法来求解初始状态到目标状态的最短路径。

在求解的过程中,我们将记录下每一步的状态变化和移动路径。

3. 实验过程我们在编程语言中实现了a算法,并用于求解八数码问题。

具体的实验过程如下:1) 初始状态和目标状态的设计:我们设计了一个初始状态和一个目标状态,分别为:初始状态:1 2 34 5 67 8 0目标状态:1 2 38 0 42) a算法求解:我们通过a算法来求解初始状态到目标状态的最短路径,并记录下每一步的状态变化和移动路径。

3) 实验结果在实验中,我们成功求解出了初始状态到目标状态的最短路径,并记录下了每一步的状态变化和移动路径。

具体的实验结果如下:初始状态:1 2 34 5 67 8 0目标状态:1 2 38 0 47 6 5求解路径:1. 上移1 2 37 8 62. 左移1 2 3 4 0 5 7 8 63. 下移1 2 3 4 8 5 7 0 64. 右移1 2 3 4 8 5 0 7 65. 上移1 2 3 0 8 5 4 7 61 2 38 0 54 7 67. 下移1 2 38 7 54 0 68. 右移1 2 38 7 54 6 0共计8步,成功从初始状态到目标状态的最短路径。

关于A算法实现的8数码问题(人工智能)

关于A算法实现的8数码问题(人工智能)

基于A*算法解决把数码问题《人工智能》专业:信息与计算科学班级:101001学号:101001102姓名:陈斌指导老师:时华日期:2013年10月14日一、问题描述8数码问题又称9宫问题,与游戏“华容道”类似。

意在给定的33⨯棋格的8个格子内分别放一个符号,符号之间互不相同,余下的一格为空格。

并且通常把8个符号在棋格上的排列顺序称作8数码的状态。

开始时,规则给定一个初始状态和一个目标状态,并要求被试者对棋格内的符号经过若干次移动由初始状态达到目标状态,这个过程中只有空格附近的符号可以朝空格的方向移动,且每次只能移动一个符号。

为方便编程和表示,本文中8个格子内的符号分别取1—8的8个数字表示,空格用0表示。

并给定8数码的初始状态和目标状态分别如图1、2所示。

图1 初始状态图2 目标状态则要求以图1为初始状态,通过交换0和0的上、下、左、右四个方位的数字(每次只能和其中一个交换),达到图2所示目标状态。

二、算法设计根据任务要求,本文采用A*搜索算法。

但要在计算机上通过编程解决该问题,还应当解决该问题在计算机上表示的方式,并设计合适的启发函数,以提高搜索效率。

①状态的表示在A*算法中,需要用到open表和closed表,特别是在open表中,待扩展节点间有很严格的扩展顺序。

因此在表示当前状态的变量中,必须要有能指向下一个扩展节点的指针,以完成对open表中元素的索引。

从这一点上看,open表中的元素相互间即构成了一个线性表,因此初步选定使用结构体表示问题的状态。

如图3所示,表示问题的结构体包括表示当前节点状态的DATA和指向open 表中下一个待扩展节点的指针NEXT。

图3 结构体现在进一步考虑DATA中包括的内容:如图1、2所示,8数码问题的提出是以一个33⨯数表表示的,因此本文中采用一个33⨯的二维数组s[3][3]表示当前状态的具体信息。

而为了保证在搜索到目标状态后能够顺利复现寻优路径,当前状态的DATA中还应该包括一个指向其父节点的指针father,这样,才能在达到目标状态后,通过指针father逐层回溯到初始状态,即复现寻优路径。

课程设计 用A算法解决8数码问题

课程设计 用A算法解决8数码问题

课程设计用A算法解决8数码问题
8数码问题是一个组合优化问题,是指给定8个数字,请将这些数字填入九宫格,使
九宫格中每行、列、粗实线和细实线中的数字之和都相等。

本文重点讨论的是用A算法解
决8数码问题的方法,即A算法估价函数。

A算法属于启发式搜索,它的原理是:先计算当前状态的分数,再根据该分数估计状
态所代表的最终的价值,以作为当前局面的启发,判断当前局面是否是最优局面。

针对 8数码问题,A算法估价函数可计算九宫格每行、列和粗实线差值总和,它代表
九宫格中九位之和是如何与其目标值(45)的偏差程度。

根据九宫格中九位之和的偏差程
度定义该九宫格的分数:若九位之和与其目标值相等,则分数成为 0;若差值跨越两个数字,则分数变为 2;若差值跨越一个数字,则分数变为 1。

有了这一定义,A算法便可应
用在8数码问题中了。

正如上述,A算法估价函数的总分数可由九宫格所有表项的偏差程度来定义,若九宫
格所有表项的结果均跟其目标值(45)相等,总分数则为 0,反之则不是,总分数就会根
据表项有多大的偏差程度来决定。

然后A算法搜索遍历到的每个状态都可以根据它对应的
分数计算当前状态的价值,以作为启发,最终定位最优状态。

从理论上讲,A算法可以在求解8数码问题时取得良好的运算的结果,它可以很好的
评估问题的最优解,因此使得搜索树更加有效,从而减少计算机运算时间,提升解答效率。

人工智能-A算法求解8数码问题

人工智能-A算法求解8数码问题

实验四 A*算法求解8数码问题一、实验目的熟悉和掌握启发式搜索的定义、估价函数和算法过程,并利用A*算法求解8数码难题,理解求解流程和搜索顺序。

二、实验原理A*算法是一种启发式图搜索算法,其特点在于对估价函数的定义上。

对于一般的启发式图搜索,总是选择估价函数f值最小的节点作为扩展节点。

因此,f 是根据需要找到一条最小代价路径的观点来估算节点的,所以,可考虑每个节点n的估价函数值为两个分量:从起始节点到节点n的实际代价g(n)以及从节点n 到达目标节点的估价代价h(n),且h(n)<=h*(n),h*(n)为n节点到目标节点的最优路径的代价。

八数码问题是在3×3的九宫格棋盘上,排放有8个刻有1~8数码的将牌。

棋盘中有一个空格,允许紧邻空格的某一将牌可以移到空格中,这样通过平移将牌可以将某一将牌布局变换为另一布局。

针对给定的一种初始布局或结构(目标状态),问如何移动将牌,实现从初始状态到目标状态的转变。

如图1所示表示了一个具体的八数码问题求解。

图1 八数码问题的求解三、实验内容1、参考A*算法核心代码,以8数码问题为例实现A*算法的求解程序(编程语言不限),要求设计两种不同的估价函数。

2、在求解8数码问题的A*算法程序中,设置相同的初始状态和目标状态,针对不同的估价函数,求得问题的解,并比较它们对搜索算法性能的影响,包括扩展节点数、生成节点数等。

3、对于8数码问题,设置与图1所示相同的初始状态和目标状态,用宽度优先搜索算法(即令估计代价h(n)=0的A*算法)求得问题的解,记录搜索过程中的扩展节点数、生成节点数。

4、提交实验报告和源程序。

四.实验截图五.源代码#include<iostream>#include"stdio.h"#include"stdlib.h"#include"time.h"#include"string.h"#include<queue>#include<stack>using namespace std;const int N=3;//3*3棋?盘ìconst int Max_Step=32;//最?大洙?搜?索÷深?度èenum Direction{None,Up,Down,Left,Right};//方?向ò,?分?别纄对?应畖上?下?左哩?右?struct Chess//棋?盘ì{int chessNum[N][N];//棋?盘ì数簓码?int Value;//评à估à值μDirection BelockDirec;//所ù屏á蔽?方?向òstruct Chess * Parent;//父?节ú点?};void PrintChess(struct Chess *TheChess);//打洙?印?棋?盘ìstruct Chess * MoveChess(struct Chess * TheChess,Direction Direct,bool CreateNewChess);//移?动ˉ棋?盘ì数簓字?int Appraisal(struct Chess * TheChess,struct Chess * Target);//估à价?函ˉ数簓struct Chess * Search(struct Chess* Begin,struct Chess * Target);//A*搜?索÷函ˉ数簓int main(){//本?程ì序ò的?一?组哩?测a试?数簓据Y为a/*初?始?棋?盘ì*1 4 0**3 5 2**6 7 8**//*目?标括?棋?盘ì*0 1 2**3 4 5**6 7 8**/Chess Target;Chess *Begin,*ChessList;Begin=new Chess;int i;cout<<"请?输?入?初?始?棋?盘ì,?各÷数簓字?用?空?格?隔?开a:阰"<<endl;for(i=0;i<N;i++){for(int j=0;j<N;j++){cin>>Begin->chessNum[i][j];}}cout<<"请?输?入?目?标括?棋?盘ì,?各÷数簓字?用?空?格?隔?开a:阰"<<endl;for(i=0;i<N;i++){for(int j=0;j<N;j++){cin>>Target.chessNum[i][j];}}//获?取?初?始?棋?盘ìAppraisal(Begin,&Target);Begin->Parent=NULL;Begin->BelockDirec=None;Target.Value=0;cout<<"初?始?棋?盘ì:";PrintChess(Begin);cout<<"目?标括?棋?盘ì:";PrintChess(&Target);ChessList=Search(Begin,&Target);//搜?索÷//打洙?印?if(ChessList){/*将?返う?回?的?棋?盘ì列表括?利?用?栈?将?其?倒?叙e*/Chess *p=ChessList;stack<Chess *>Stack;while(p->Parent!=NULL){Stack.push(p);p=p->Parent;}cout<<"搜?索÷结á果?:"<<endl;int num=1;while(!Stack.empty()){cout<<"第台?<<num<<"步?: ";num++;PrintChess(Stack.top());Stack.pop();}cout<<"\n完?成é!"<<endl;}elsecout<<"搜?索÷不?到?结á果?,?搜?索÷深?度è大洙?于?2\n"<<endl;return 0;}//打洙?印?棋?盘ìvoid PrintChess(struct Chess *TheChess){cout<<"(评à估à值μ为a";cout<<TheChess->Value;cout<<")"<<endl;for(int i=0;i<N;i++){cout<<" ";for(int j=0;j<N;j++){cout<<TheChess->chessNum[i][j]<<" ";}cout<<endl;}}//移?动ˉ棋?盘ìstruct Chess * MoveChess(struct Chess * TheChess,Direction Direct,bool CreateNewChess) {struct Chess * NewChess;//获?取?空?闲D格?位?置?int i,j;for(i=0;i<N;i++){bool HasGetBlankCell=false;for(j=0;j<N;j++){if(TheChess->chessNum[i][j]==0){HasGetBlankCell=true;break;}}if(HasGetBlankCell)break;}int ii=i,jj=j;bool AbleMove=true;//判D断?是?否?可é以?移?动ˉswitch(Direct){case Up:i++;if(i>=N)AbleMove=false;break;case Down:i--;if(i<0)AbleMove=false;break;case Left:j++;if(j>=N)AbleMove=false;break;case Right:j--;if(j<0)AbleMove=false;break;};if(!AbleMove)//不?可é以?移?动ˉ则ò返う?回?原-节ú点?{return TheChess;}if(CreateNewChess){NewChess=new Chess();for(int x=0;x<N;x++){for(int y=0;y<N;y++)NewChess->chessNum[x][y]=TheChess->chessNum[x][y];//创洹?建¨新?棋?盘ì,?此?时骸?值μ与?原-棋?盘ì一?致?}}elseNewChess=TheChess;NewChess->chessNum[ii][jj] = NewChess->chessNum[i][j];//移?动ˉ数簓字?NewChess->chessNum[i][j]=0;//将?原-数簓字?位?置?设Θ?置?为a空?格?return NewChess;}//估à价?函ˉ数簓int Appraisal(struct Chess * TheChess,struct Chess * Target){int Value=0;for(int i=0;i<N;i++){for(int j=0;j<N;j++){if(TheChess->chessNum[i][j]!=Target->chessNum[i][j])Value++;}}TheChess->Value=Value;return Value;}//A*搜?索÷函ˉ数簓struct Chess * Search(struct Chess* Begin,struct Chess * Target){Chess *p1,*p2,*p;int Step=0;//深?度èp=NULL;queue<struct Chess *> Queue;Queue.push(Begin);//初?始?棋?盘ì入?队ó//搜?索÷do{p1=(struct Chess *)Queue.front();Queue.pop();//出?队ófor(int i=1;i<=4;i++)//分?别纄从洙?四?个?方?向ò推?导?出?新?子哩?节ú点? {Direction Direct=(Direction)i;if(Direct==p1->BelockDirec)//跳?过y屏á蔽?方?向òcontinue;p2=MoveChess(p1,Direct,true);//移?动ˉ数簓码?if(p2!=p1)//数簓码?是?否?可é以?移?动ˉ{Appraisal(p2,Target);//对?新?节ú点?估à价?if(p2->Value<=p1->Value)//是?否?为a优?越?节ú点?{p2->Parent=p1;switch(Direct)//设Θ?置?屏á蔽?方?向ò,防え?止1往?回?推?{case Up:p2->BelockDirec=Down;break;case Down:p2->BelockDirec=Up;break;case Left:p2->BelockDirec=Right;break;case Right:p2->BelockDirec=Left;break;}Queue.push(p2);//存?储洹?节ú点?到?待鋣处鋦理え?队ó列if(p2->Value==0)//为a0则ò,搜?索÷完?成é{p=p2;i=5;}}else{delete p2;//为a劣ⅷ?质ê节ú点?则ò抛×弃úp2=NULL;}}}Step++;if(Step>Max_Step)return NULL;}while(p==NULL || Queue.size()<=0);return p;}六、实验报告要求1、分析不同的估价函数对A*搜索算法性能的影响等。

采用A算法解决八数码问题

采用A算法解决八数码问题

人工智能实验一报告题目:采用A*算法解决八数码问题姓名:XXX学号:10S003028专业:计算机科学与技术提交日期:2011-05-04目录1问题描述 .............................................................................................................................. - 2 -1.1待解决问题的解释.................................................................................................. - 2 -1.2问题的搜索形式描述.............................................................................................. - 3 -1.3解决方案介绍(原理).......................................................................................... - 4 -2算法介绍 .............................................................................................................................. - 5 -2.1A*搜索算法一般介绍 .............................................................................................. - 5 -2.2 算法伪代码 ............................................................................................................. - 6 -3算法实现 .............................................................................................................................. - 7 -3.1 实验环境与问题规模............................................................................................. - 7 -3.2 数据结构.................................................................................................................. - 8 -3.3 实验结果.................................................................................................................. - 8 -3.4系统中间及最终输出结果 ..................................................................................... - 8 -4参考文献 .............................................................................................................................. - 9 -5附录—源代码及其注释................................................................................................... - 10 -1问题描述所谓八数码问题是指这样一种游戏:将分别标有数字1,2,3,…,8 的八块正方形数码牌任意地放在一块3×3 的数码盘上。

人工智能A算法八数码报告

人工智能A算法八数码报告

人工智能课程设计报告题目:A*算法解决八数码问题专业:计算机软件与理论1.8数码问题1.1问题描述八数码问题是指这样一种游戏:将分别标有数字1,2,3,…,8 的八块正方形数码牌任意地放在一块3×3 的数码盘上。

放牌时要求不能重叠。

于是,在3×3 的数码盘上出现了一个空格。

现在要求按照每次只能将与空格相邻的数码牌与空格交换的原则,不断移动该空格方块以使其和相邻的方块互换,直至达到所定义的目标状态。

空格方块在中间位置时有上、下、左、右4个方向可移动,在四个角落上有2个方向可移动,在其他位置上有3个方向可移动,问题描述如图1-1所示初始状态过渡状态最终状态图1-1 八数码问题执行过程1.2.八数码问题形式化描述初始状态:初始状态向量:规定向量中各分量对应的位置,各位置上的数字。

把3×3的棋盘按从左到右,从上到下的顺序写成一个一维向量。

我们可以设定初始状态:<1,5,2,4,0,3,6,7,8>后继函数:按照某种规则移动数字得到的新向量。

例如:<1,5,2,4,0,3,6,7,8> <1,0,2,4,5,3,6,7,8>目标测试:新向量是都是目标状态。

即<1,2,3,4,5,6,7,8,0>是目标状态?路径耗散函数:每次移动代价为1,每执行一条规则后总代价加1。

1.3解决方案该问题是一个搜索问题。

它是一种状态到另一种状态的变换。

要解决这个问题,必须先把问题转化为数字描述。

由于八数码是一个3*3的矩阵,但在算法中不实用矩阵,而是将这个矩阵转化为一个一维数组,使用这个一维数组来表示八数码,但是移动时要遵守相关规则。

(1)可用如下形式的规则来表示数字通过空格进行移动:<a1,a2,a3,a4,a5,a6,a7,a8,a9>→<b1,b2,b3,b4,b5,b6,b7,b8,b9>(2)共24条移动规则,对应与每个位置的移动规则。

人工智能A算法八数码报告

人工智能A算法八数码报告

人工智能A算法八数码报告
一、什么是人工智能A算法八数码?
二、人工智能A算法八数码原理
八数码问题可以用一个3x3矩阵表示,一个有效路径是由空格移动到另一个位置的路径,它可以在矩阵中上下左右移动,直到所有数字都按从小到大的顺序排列好。

但是,由于有很多种移动的可能性,有效的路径非常难以找到,并且需要大量的计算来完成。

这就是人工智能A算法八数码可以帮助用户解决的问题。

该算法采用了蚁群算法的变种,每个蚂蚁都可以把有效路径拆分成四个状态:移动空格,改变表格上的数字,计算移动的路径,并求出路径的代价(代价是一个函数,用于衡量当前路径和有效路径之间的差异)。

采用A星算法实现八数码问题

采用A星算法实现八数码问题

人工智能实验一报告题目:采用A*算法解决八数码问题成员:李文、郭弯弯学号:、专业:计算机科学与技术完成日期: 2016/04/09一、实验要求、目的及分工1.1实验要求使用A*算法实现八数码问题,并用图形界面展示。

1.2实验目的a. 熟悉人工智能系统中的问题求解过程;b. 熟悉状态空间的盲目搜索和启发式搜索算法的应用;c. 熟悉对八数码问题的建模、求解及编程语言的应用。

1.3实验分工我们小组共两个人,共同查找背景资料,李文同学主要负责源代码,郭弯弯同学主要负责实验报告以及演示文稿的完成。

二、实验问题2.1问题描述所谓八数码问题是指这样一种游戏:将分别标有数字1,2,3,…,8 的八块正方形数码牌任意地放在一块3×3 的数码盘上。

放牌时要求不能重叠。

于是,在3×3 的数码盘上出现了一个空格。

现在要求按照每次只能将与空格相邻的数码牌与空格交换的原则,不断移动该空格方块以使其和相邻的方块互换,直至达到所定义的目标状态。

空格方块在中间位置时有上、下、左、右4个方向可移动,在四个角落上有2个方向可移动,在其他位置上有3个方向可移动,问题描述如下图所示:(a) 初始状态 (b) 目标状态图1 八数码问题示意图2.2问题解释首先,八数码问题包括一个初始状态(START) 和目标状态(TRAGET),所谓解决八数码问题就是在两个状态间寻找一系列可过渡状态:(START>STATE1>STATE2>...>TARGET )这个状态是否存在就是我们要解决的第一个问题;第二个问题是我们要求出走的路径是什么。

2.3八数码问题形式化描述初始状态:初始状态向量:规定向量中各分量对应的位置,各位置上的数字。

把3×3的棋盘写成一个二维向量。

我们可以设定初始状态:<1,5,2,4,0,3,6,7,8>后继函数:按照某种规则移动数字得到的新向量。

例如:<1,5,2,4,0,3,6,7,8> <1,0,2,4,5,3,6,7,8>路径耗散函数:规定每次移动代价为1,即每执行一条规则后总代价加1。

启发式搜索-A算法解决八数码问题

启发式搜索-A算法解决八数码问题

/*用启发式算法——A*搜索来解决八数码问题*/#include <stdio.h>#define MAX_BOARD 3*3#define MAX_DEPTH 22typedef struct BroadNode {int array[MAX_BOARD];int g;int h;int f;int depth;struct BroadNode *parent;}BNode, *BiNode;/*估计函数h(n)的计算,等于错置的图块数*/int evaluateBoard(BiNode T){int i, score;const int test[MAX_BOARD-1]={1,2,3,4,5,6,7,8};score = 0;for(i=0; i<MAX_BOARD-1; i++)score += (T->array[i] != test[i]);return score;}/*A*搜索,解决八数码问题*/void astarEightNumber(){int i;BiNode cur_board_p, child_p, temp;while(listEmpty(&openList_p)==false){/*从OPEN优先队列中,选取第一个,即f(n)最小的结点*/cur_board_p = getListBest(&openList_p);putList(&closedList_p, cur_board_p);if(cur_board_p->h == 0) /*h(n)==0,则表示找到了目标结点*/{/*输出路径过程,即从初始结点到目标结点路径上的每个结点*/showSolution(cur_board_p);return;}else{/*由于平均22步,就应该能找到解,故h(n)>22,则放弃该结点,继续查看其他的*/if(cur_board_p->depth > MAX_DEPTH)continue;/*列举从当前状态(结点)出发,所有可能的移动(子结点),最多4种移法*/for(i=0; i<4; i++){ /*找到下一个子结点*/child_p = getChildBoard(cur_board_p, i);if(child_p == (BiNode)0)continue;/*如果child_p在CLOSED表中,则抛弃child_p,继续循环*/if(onList(&closedList_p, child_p->array, NULL)){nodeFree(child_p);continue;}child_p->depth = cur_board_p->depth+1;child_p->h = evaluateBoard(child_p);child_p->g = child_p->depth;child_p->f = child_p->h + child_p->g;/*如果child_p在OPEN表上,则*/if(onList(&openList_p, child_p->array, NULL)) {temp = getList(&openLisy_p, child_p->array);if(temp->f < child_p->f) {nodeFree(child_p);putList(&openList_p, temp);continue;}nodeFree(temp);child_p->parent = cur_board_p;putList(&openList_p, child_p);}else {/*child_p既不在CLOSED表上,也不在OPEN表上,则将其插入OPEN 表即可*/child_p->parent = cur_board_p;putList(&openList_p, child_p);}}}};}。

实验三:A星算法求解8数码问题实验讲解

实验三:A星算法求解8数码问题实验讲解

实验三:A*算法求解8数码问题实验一、实验目的熟悉和掌握启发式搜索的定义、估价函数和算法过程,并利用A*算法求解N数码难题,理解求解流程和搜索顺序。

二、实验内容1、八数码问题描述所谓八数码问题起源于一种游戏:在一个3×3的方阵中放入八个数码1、2、3、4、5、6、7、8,其中一个单元格是空的。

将任意摆放的数码盘(城初始状态)逐步摆成某个指定的数码盘的排列(目标状态),如图1所示:图1 八数码问题的某个初始状态和目标状态对于以上问题,我们可以把数码的移动等效城空格的移动。

如图1的初始排列,数码7右移等于空格左移。

那么对于每一个排列,可能的一次数码移动最多只有4中,即空格左移、空格右移、空格上移、空格下移。

最少有两种(当空格位于方阵的4个角时)。

所以,问题就转换成如何从初始状态开始,使空格经过最小的移动次数最后排列成目标状态。

2、八数码问题的求解算法盲目搜索宽度优先搜索算法、深度优先搜索算法启发式搜索启发式搜索算法的基本思想是:定义一个评价函数f,对当前的搜索状态进行评估,找出一个最有希望的节点来扩展。

先定义下面几个函数的含义:f*(n)=g*(n)+h*(n) (1)¥式中g*(n)表示从初始节点s到当前节点n的最短路径的耗散值;h*(n)表示从当前节点n到目标节点g的最短路径的耗散值,f*(n)表示从初始节点s经过n到目标节点g的最短路径的耗散值。

评价函数的形式可定义如(2)式所示:f(n)=g(n)+h(n) (2)其中n是被评价的当前节点。

f(n)、g(n)和h(n)分别表示是对f*(n)、g*(n)和h*(n)3个函数值的估计值。

利用评价函数f(n)=g(n)+h(n)来排列OPEN表节点顺序的图搜索算法称为算法A。

在A算法中,如果对所有的x,h(x)<=h*(x) (3)成立,则称好h(x)为h*(x)的下界,它表示某种偏于保守的估计。

采用h*(x)的下界h(x)为启发函数的A算法,称为A*算法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人工智能实验一报告题目:采用A*算法解决八数码问题姓名: XXX学号: 10S******专业:计算机科学与技术提交日期: 2011-05-04目录1问题描述........................................................................................................................... - 2 -1.1待解决问题的解释............................................................................................... - 2 -1.2问题的搜索形式描述............................................................................................ - 2 -1.3解决方案介绍(原理)........................................................................................ - 3 -2算法介绍........................................................................................................................... - 4 -2.1A*搜索算法一般介绍............................................................................................ - 4 -2.2 算法伪代码........................................................................................................... - 4 -3算法实现........................................................................................................................... - 5 -3.1 实验环境与问题规模........................................................................................... - 5 -3.2 数据结构............................................................................................................... - 5 -3.3 实验结果............................................................................................................... - 6 -3.4系统中间及最终输出结果.................................................................................... - 6 -4参考文献........................................................................................................................... - 7 - 5附录—源代码及其注释................................................................................................... - 7 -1问题描述所谓八数码问题是指这样一种游戏:将分别标有数字1,2,3,…,8 的八块正方形数码牌任意地放在一块3×3 的数码盘上。

放牌时要求不能重叠。

于是,在3×3 的数码盘上出现了一个空格。

现在要求按照每次只能将与空格相邻的数码牌与空格交换的原则,不断移动该空格方块以使其和相邻的方块互换,直至达到所定义的目标状态。

空格方块在中间位置时有上、下、左、右4个方向可移动,在四个角落上有2个方向可移动,在其他位置上有3个方向可移动,问题描述如下图1-1所示:初始状态中间状态目标状态图1-1 八数码问题的求解过程1.1待解决问题的解释首先,八数码问题包括一个初始状态(START) 和目标状态(END),所谓解决八数码问题就是在两个状态间寻找一系列可过渡状态:(START>STATE1>STATE2>...>END)这个状态是否存在就是我们要解决的第一个问题:Q1:每一个状态及每一次操作的表示方法?有许多表示方法,比如一个3*3 的八数码盘可以压缩成一个int 值表示,但不适用于15 puzzle或大于8 的puzzle 问题。

如果对空间要求很高,应该还可以再压缩。

本文采用一个int 表示的方法。

表示方法如下:由于int 的表示范围大于1e9,所以我们取一个int 的低9 位,为了方便寻找空格的位置,int 的个位我们用来放空格的位置(19)。

而前8 位,按照行从上到下,列从左到右的顺序依次记录对应位置上的数字。

1.2问题的搜索形式描述八数码问题形式化描述:初始状态:初始状态向量:规定向量中各分量对应的位置,各位置上的数字。

把3×3的棋盘按从左到右,从上到下的顺序写成一个一维向量。

我们可以设定初始状态:<1,5,2,4,0,3,6,7,8>后继函数:按照某种规则移动数字得到的新向量。

例如:<1,5,2,4,0,3,6,7,8> <1,0,2,4,5,3,6,7,8>目标测试:新向量是都是目标状态。

即<1,2,3,4,5,6,7,8,0>是目标状态?路径耗散函数:每次移动代价为1,每执行一条规则后总代价加1。

1.3解决方案介绍(原理)该问题是一个搜索问题。

它是一种状态到另一种状态的变换。

要解决这个问题,必须先把问题转化为数字描述。

由于八数码是一个3*3的矩阵,但在算法中不实用矩阵,而是将这个矩阵转化为一个一维数组,使用这个一维数组来表示八数码,但是移动时要遵守相关规则。

(1)可用如下形式的规则来表示数字通过空格进行移动:<a1,a2,a3,a4,a5,a6,a7,a8,a9>→<b1,b2,b3,b4,b5,b6,b7,b8,b9>(2)共24条移动规则,对应与每个位置的移动规则。

(3)搜索顺序举例:<1>优先移动行数小的棋子(数字)<2>同一行中优先移动列数大的棋子(4)约束规则:不使离开既定位置的数字数增加八数码的节点扩展应当遵循棋子的移动规则。

按规则,每一次可以将一个与空格相邻的棋子移动到空格中,实际上也可以看做空格的相反方向移动。

空格的移动方向可以是上下左右,当然不能出边界。

棋子的位置,也就是保存状态的数组元素的下标,空格移动后,相应位置发生变化,在不移出边界的条件下,空格向右,下,左,上移动后,新位置是原位置分别加上1,3,-1,-3。

在这里,空格可以用任意数字表示。

操作本文用u r d l 分别表示空格的向上向右向下向左四个操作。

图的搜索策略:经分析,8数码问题的搜索策略共有:1.广度优先搜索、2.深度优先搜索、3.有界深度优先搜索、4.最好优先搜索、5.局部择优搜索,等等。

其中广度优先搜索法是可采纳的,有界深度优先搜索法是不完备的,最好优先和局部择优搜索法是启发式搜索法。

本实验采用启发式A*搜索算法来实现。

2算法介绍问题的求解实际上就是在这个图中找到一条路径可以从开始到结果。

这个寻找的过程就是状态空间搜索。

常用的状态空间搜索有深度优先和广度优先。

广度优先是从初始状态一层一层向下找,直到找到目标为止。

深度优先是按照一定的顺序前查找完一个分支,再查找另一个分支,以至找到目标为止。

启发式搜索就是在状态空间中的搜索对每一个搜索的位置进行评估,得到最好的位置,再从这个位置进行搜索直到目标。

这样可以省略大量无畏的搜索路径,提高了效率。

2.1A*搜索算法一般介绍A* 算法实际是一种启发式搜索,所谓启发式搜索,就是利用一个估价函数评估每次的的决策的价值,决定先尝试哪一种方案,这样可以极大的优化普通的广度优先搜索。

一般来说,从出发点(A)到目的地(B)的最短距离是固定的,我们可以写一个函数judge() 估计 A 到 B 的最短距离,如果程序已经尝试着从出发点 A 沿着某条路线移动到了 C 点, 那么我们认为这个方案的 A B 间的估计距离为 A 到 C 实际已经行走了的距离H 加上用judge() 估计出的 C 到B 的距离。

如此,无论我们的程序搜索展开到哪一步,都会算出一个评估值,每一次决策后,将评估值和等待处理的方案一起排序,然后挑出待处理的各个方案中最有可能是最短路线的一部分的方案展开到下一步,一直循环到对象移动到目的地,或所有方案都尝试过却没有找到一条通向目的地的路径则结束。

A*算法是一个可采纳的最好优先算法。

A*算法的估价函数可表示为:f'(n) = g'(n) + h'(n)这里,f'(n)是估价函数,g'(n)是起点到终点的最短路径值,h'(n)是n到目标的最断路经的启发值。

由于这个f'(n)其实是无法预先知道的,所以我们用前面的估价函数f(n)做近似。

g(n)代替g'(n),但g(n)>=g'(n)才可(大多数情况下都是满足的,可以不用考虑),h(n)代替h'(n),但h(n)<=h'(n)才可。

可以证明应用这样的估价函数是可以找到最短路径的,也就是可采纳的。

2.2 算法伪代码首先定义两个表,open表用于存放已经生成,且已用启发式函数进行过估计或评价,但尚未产生它们的后继节点的那些结点,这些结点也称未考察结点;closed表用于存放已经生成,且已考察过的结点。

设S0为初态,Sg为目标状态。

具体过程如下:(1) 把S0放入open表,记为f=h,令closed为空表;(2)重复下列过程,直至找到目标结点为止。

相关文档
最新文档