立体几何中的向量方法(一)——证明平行与垂直易错点最新衡水中学自用精品教学设计
立体几何中的向量方法—法向量及平行垂直的证明
uuu r
变式:在正方体 ABCD-A1B1C1D1 中,E,F 分别是 BB1,DC 的中点,求证: AE 是平面 A1D1F 的法向量.
一、导学部分
1 直线的方向向量是指和这条直线 3 空间中平行和垂直关系的向量表示: 线线平行 的向量; 2 若直线 l 的方向向量为 a 且 a 为平面的法向量,则直线 l 与平面 α 的位置为关系 设 直 线 l, m 的 方 向 向 量 分 别 为 a = ( x1 , y1 , z1 ) , b = ( x2 , y2 , z2 )
l⊥m⇔ l ⊥α ⇔
r
r
,
r
r
,
α ⊥β ⇔
二、合作探究: 合作探究:
尝试: (1)直线的方向向量的定义: (2)平面的法向量的定义; 探究 1 求平面的法向量 已知平面 α 经过三点 A(1,2,3),B(2,0,-1),C(3,-2,0),试求平面 α 的一个法向量.
uuuu r
【反思】证明线面平行问题,可以有三个途径,一是在平面 ODC1 内找一向量与 B1C 共线;二
α 、 β 相交不垂直 D 以上都不对
3.已知 A(1,1,-1),B(2,3,1),则直线 AB 的模为 1 的方向向量是_______________ 4、已知平面 α 和 β 的法向量分别为(-1,3,4)和(x,1,-2),若 α ⊥ β ,则 X=__________ 5、在平面 α 中, 已知 AB = (2,3,4), BC = (1,−2,0) 求平面 α 的法向量
探究 3 利用向量方法证明垂直关系 变式:在正方体 ABCD—A1B1C1D1 中,E,F 分别是棱 AB,BC 的中点,试在棱 BB1 上找一点 M,使得 D1M⊥平面 EFB1.
45立体几何中的向量方法(Ⅰ)——证明平行与垂直
第45课时 立体几何中的向量方法(Ⅰ)——证明平行与垂直编者:刘智娟 审核:陈彩余 第一部分 预习案 一、学习目标1. 理解直线的方向向量与平面的法向量;能用向量语言表述直线与直线、直线与平面、平面与平面的垂直和平行关系2. 了解向量方法在研究立体几何问题中的应用二、知识回顾1.直线的方向向量与平面的法向量(1)直线l 上的向量e (e ≠0)以及与e 共线的 向量叫做直线l 的方向向量.(2)如果表示非零向量n 的有向线段所在直线垂直于平面α,那么称向量n 垂直于平面α,记作n ⊥α.此时,我们把向量n 叫做平面α的法向量.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为1v 和2v ,则l 1∥l 2(或l 1与l 2重合)⇔ 1v ∥2v(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量1v 和2v ,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使=x 1v +y 2v(3)设直线l 的方向向量为,平面α的法向量为,则l ∥α或l ⊂α⇔⊥.(4)设平面α和β的法向量分别为1u ,2u ,则α∥β⇔1u ∥2u .3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为1v 和2v ,则l 1⊥l 2⇔1v ⊥2v ⇔1v ·2v =0. (2)设直线l 的方向向量为,平面α的法向量为,则l ⊥α⇔∥(3)设平面α和β的法向量分别为1u 和2u ,则α⊥β⇔1u ⊥2u ⇔1u ·2u =0. 三、基础训练1.两条不重合直线l 1和l 2的方向向量分别为1v =(1,0,-1),2v =(-2,0,2),则l 1与l 2的位置关系是__________2.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为______________.3.已知=(-2,-3,1),b =(2,0,4),c =(-4,-6,2),则下列结论正确的序号是________. ①∥c ,b ∥c ; ②∥b ,⊥c ; ③∥,⊥; ④以上都不对.班级_________学号_________姓名_________4.已知AB →=(2,2,1),AC →=(4,5,3),则平面ABC 的单位法向量为____________.5.若平面α、β的法向量分别为1v =(2,-3,5),2v =(-3,1,-4),则α、β的位置关系为____________.第二部分 探究案探究一 利用空间向量证明平行问题问题1、如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E 、F 、G 分别是线段P A 、PD 、CD 的中点.求证:PB ∥平面EFG .探究二 利用空间向量证明垂直问题问题2、如图所示,正三棱柱ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .探究三利用空间向量解决探索性问题问题3、如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD的中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.问题4、如图所示,四棱锥S—ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD.(2)若SD⊥平面P AC,则侧棱SC上是否存在一点E,使得BE∥平面P AC.若存在,求SE∶EC的值;若不存在,试说明理由.我的收获第三部分训练案见附页。
8.7立体几何中的向量方法(一)——证明平行与垂直
§8.7 立体几何中的向量方法(一)——证明平行与垂直最新考纲考情考向分析1.理解直线的方向向量及平面的法向量.2.能用向量语言表述线线、线面、面面的平行和垂直关系.3.能用向量方法证明立体几何中有关线面位置关系的一些简单定理.利用空间向量证明空间中的位置关系是近几年高考重点考查的内容,涉及直线的方向向量,平面的法向量及空间直线、平面之间位置关系的向量表示等内容.以解答题为主,主要考查空间直角坐标系的建立及空间向量坐标的运算能力及应用能力,有时也以探索论证题的形式出现.1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1 ∥u 2. 3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)直线的方向向量是唯一确定的.( × ) (2)平面的单位法向量是唯一确定的.( × ) (3)若两平面的法向量平行,则两平面平行.( √ ) (4)若两直线的方向向量不平行,则两直线不平行.( √ ) (5)若a ∥b ,则a 所在直线与b 所在直线平行.( × )(6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( × ) 题组二 教材改编2.[P104T2]设u ,v 分别是平面α,β的法向量,u =(-2,2,5),当v =(3,-2,2)时,α与β的位置关系为__________;当v =(4,-4,-10)时,α与β的位置关系为________. 答案 α⊥β α∥β解析 当v =(3,-2,2)时, u ·v =(-2,2,5)·(3,-2,2)=0⇒α⊥β. 当v =(4,-4,-10)时,v =-2u ⇒α∥β.3.[P111T3]如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是________.答案 垂直解析 以A 为原点,分别以AB →,AD →,AA 1→所在直线为x ,y ,z 轴建立空间直角坐标系,如图所示.设正方体的棱长为1,则A (0,0,0),M ⎝⎛⎭⎫0,1,12,O ⎝⎛⎭⎫12,12,0,N ⎝⎛⎭⎫12,0,1, AM →·ON →=⎝⎛⎭⎫0,1,12·⎝⎛⎭⎫0,-12,1=0, ∴ON 与AM 垂直. 题组三 易错自纠4.已知A (1,0,0),B (0,1,0),C (0,0,1),则下列向量是平面ABC 法向量的是( ) A .(-1,1,1) B .(1,-1,1) C.⎝⎛⎭⎫-33,-33,-33 D.⎝⎛⎭⎫33,33,-33 答案 C解析 设n =(x ,y ,z )为平面ABC 的法向量,则⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,化简得⎩⎪⎨⎪⎧-x +y =0,-x +z =0,∴x =y =z .故选C.5.直线l 的方向向量a =(1,-3,5),平面α的法向量n =(-1,3,-5),则有( ) A .l ∥α B .l ⊥α C .l 与α斜交 D .l ⊂α或l ∥α答案 B解析 由a =-n 知,n ∥a ,则有l ⊥α,故选B.6.已知平面α,β的法向量分别为n 1=(2,3,5),n 2=(-3,1,-4),则( ) A .α∥βB .α⊥βC .α,β相交但不垂直D .以上均不对 答案 C解析 ∵n 1≠λn 2,且n 1·n 2=2×(-3)+3×1+5×(-4)=-23≠0,∴α,β既不平行,也不垂直.题型一 利用空间向量证明平行问题典例 如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:PB ∥平面EFG .证明 ∵平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD ,∴AB ,AP ,AD 两两垂直,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (2,2,0), D (0,2,0),P (0,0,2),E (0,0,1), F (0,1,1),G (1,2,0).∴PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1), 设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1), ∴⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2,∴PB →=2FE →+2FG →,又∵FE →与FG →不共线,∴PB →,FE →与FG →共面. ∵PB ⊄平面EFG ,∴PB ∥平面EFG . 引申探究若本例中条件不变,证明平面EFG ∥平面PBC . 证明 ∵EF →=(0,1,0),BC →=(0,2,0), ∴BC →=2EF →,∴BC ∥EF .又∵EF ⊄平面PBC ,BC ⊂平面PBC ,∴EF ∥平面PBC , 同理可证GF ∥PC ,从而得出GF ∥平面PBC .又EF ∩GF =F ,EF ,GF ⊂平面EFG , ∴平面EFG ∥平面PBC .思维升华 (1)恰当建立空间直角坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算. 跟踪训练 如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC . 证明:PQ ∥平面BCD .证明 方法一 如图,取BD 的中点O ,以O 为原点,OD ,OP 所在直线分别为y ,z 轴的正半轴,建立空间直角坐标系Oxyz .由题意知,A (0,2,2),B (0,-2,0),D (0,2,0). 设点C 的坐标为(x 0,y 0,0). 因为AQ →=3QC →,所以Q ⎝⎛⎭⎫34x 0,24+34y 0,12.因为M 为AD 的中点,故M (0,2,1). 又P 为BM 的中点,故P ⎝⎛⎭⎫0,0,12,所以PQ →=⎝⎛⎭⎫34x 0,24+34y 0,0.又平面BCD 的一个法向量为a =(0,0,1),故PQ →·a =0. 又PQ ⊄平面BCD ,所以PQ ∥平面BCD .方法二 在线段CD 上取点F ,使得DF =3FC ,连接OF ,同方法一建立空间直角坐标系,写出点A ,B ,C 的坐标,设点C 坐标为(x 0,y 0,0). 因为CF →=14CD →,设点F 的坐标为(x ,y ,0),则(x -x 0,y -y 0,0)=14(-x 0,2-y 0,0),所以⎩⎨⎧x =34x 0,y =24+34y 0,所以OF →=⎝⎛⎭⎫34x 0,24+34y 0,0.又由方法一知PQ →=⎝⎛⎭⎫34x 0,24+34y 0,0,所以OF →=PQ →,所以PQ ∥OF . 又PQ ⊄平面BCD ,OF ⊂平面BCD , 所以PQ ∥平面BCD .题型二 利用空间向量证明垂直问题命题点1 证线面垂直典例 如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .证明 方法一 设平面A 1BD 内的任意一条直线m 的方向向量为m .由共面向量定理,则存在实数λ,μ,使m =λBA 1→+μBD →.令BB 1→=a ,BC →=b ,BA →=c ,显然它们不共面,并且|a |=|b |=|c |=2,a ·b =a·c =0,b·c =2,以它们为空间的一个基底,则BA 1→=a +c ,BD →=12a +b ,AB 1→=a -c ,m =λBA 1→+μBD →=⎝⎛⎭⎫λ+12μa +μb +λc , AB 1→·m =(a -c )·⎣⎡⎦⎤⎝⎛⎭⎫λ+12μa +μb +λc =4⎝⎛⎭⎫λ+12μ-2μ-4λ=0.故AB 1→⊥m ,结论得证. 方法二 取BC 的中点O ,连接AO .因为△ABC 为正三角形, 所以AO ⊥BC .因为在正三棱柱ABC —A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, 且平面ABC ∩平面BCC 1B 1=BC , 所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,分别以OB ,OO 1,OA 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则B (1,0,0),D (-1,1,0),A 1(0,2,3), A (0,0,3),B 1(1,2,0).设平面A 1BD 的法向量为n =(x ,y ,z ),BA 1→=(-1,2,3),BD →=(-2,1,0). 因为n ⊥BA 1→,n ⊥BD →,故⎩⎪⎨⎪⎧n ·BA 1→=0,n ·BD →=0,即⎩⎪⎨⎪⎧-x +2y +3z =0,-2x +y =0,令x =1,则y =2,z =-3,故n =(1,2,-3)为平面A 1BD 的一个法向量,而AB 1→=(1,2,-3),所以AB 1→=n ,所以AB 1→∥n , 故AB 1⊥平面A 1BD . 命题点2 证面面垂直典例 如图,在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,侧面P AD ⊥底面ABCD ,且P A =PD =22AD ,设E ,F 分别为PC ,BD 的中点.(1)求证:EF ∥平面P AD ; (2)求证:平面P AB ⊥平面PDC .证明 (1)如图,取AD 的中点O ,连接OP ,OF . 因为P A =PD ,所以PO ⊥AD .因为侧面P AD ⊥底面ABCD ,平面P AD ∩平面ABCD =AD , PO ⊂平面P AD , 所以PO ⊥平面ABCD .又O ,F 分别为AD ,BD 的中点,所以OF ∥AB . 又ABCD 是正方形,所以OF ⊥AD . 因为P A =PD =22AD ,所以P A ⊥PD ,OP =OA =a 2. 以O 为原点,OA ,OF ,OP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系, 则A ⎝⎛⎭⎫a 2,0,0,F ⎝⎛⎭⎫0,a 2,0,D ⎝⎛⎭⎫-a2,0,0, P ⎝⎛⎭⎫0,0,a 2,B ⎝⎛⎭⎫a 2,a ,0,C ⎝⎛⎭⎫-a2,a ,0. 因为E 为PC 的中点,所以E ⎝⎛⎭⎫-a 4,a 2,a4. 易知平面P AD 的一个法向量为OF →=⎝⎛⎭⎫0,a 2,0, 因为EF →=⎝⎛⎭⎫a 4,0,-a 4, 且OF →·EF →=⎝⎛⎭⎫0,a 2,0·⎝⎛⎭⎫a 4,0,-a 4=0,又因为EF ⊄平面P AD ,所以EF ∥平面P AD . (2)因为P A →=⎝⎛⎭⎫a 2,0,-a 2,CD →=(0,-a,0), 所以P A →·CD →=⎝⎛⎭⎫a 2,0,-a 2·(0,-a,0)=0, 所以P A →⊥CD →,所以P A ⊥CD .又P A ⊥PD ,PD ∩CD =D ,PD ,CD ⊂平面PDC , 所以P A ⊥平面PDC .又P A ⊂平面P AB ,所以平面P AB ⊥平面PDC . 思维升华 证明垂直问题的方法(1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然 ,也可证直线的方向向量与平面的法向量平行;其三证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可. 跟踪训练 如图所示,已知四棱锥P —ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明:(1)P A ⊥BD ;(2)平面P AD ⊥平面P AB .证明 (1)取BC 的中点O ,连接PO ,∵平面PBC ⊥底面ABCD ,△PBC 为等边三角形, 平面PBC ∩底面ABCD =BC ,PO ⊂平面PBC , ∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO =3,∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3), ∴BD →=(-2,-1,0),P A →=(1,-2,-3). ∵BD →·P A →=(-2)×1+(-1)×(-2)+0×(-3)=0, ∴P A →⊥BD →, ∴P A ⊥BD .(2)取P A 的中点M ,连接DM ,则M ⎝⎛⎭⎫12,-1,32.∵DM →=⎝⎛⎭⎫32,0,32,PB →=(1,0,-3),∴DM →·PB →=32×1+0×0+32×(-3)=0,∴DM →⊥PB →,即DM ⊥PB .∵DM →·P A →=32×1+0×(-2)+32×(-3)=0,∴DM →⊥P A →,即DM ⊥P A .又∵P A ∩PB =P ,P A ,PB ⊂平面P AB , ∴DM ⊥平面P AB . ∵DM ⊂平面P AD , ∴平面P AD ⊥平面P AB .题型三 利用空间向量解决探索性问题典例 (2018·桂林模拟)如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD .(1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由.(1)证明 设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,∴A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3,∴AO 2+A 1O 2=AA 21, ∴A 1O ⊥AO .由于平面AA 1C 1C ⊥平面ABCD ,且平面AA 1C 1C ∩平面ABCD =AC ,A 1O ⊂平面AA 1C 1C ,∴A 1O ⊥平面ABCD .以OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3). 由于BD →=(-23,0,0),AA 1→=(0,1,3), AA 1→·BD →=0×(-23)+1×0+3×0=0, ∴BD →⊥AA 1→,即BD ⊥AA 1.(2)解 假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1, 设CP →=λCC 1→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3). 从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设平面DA 1C 1的法向量为n 3=(x 3,y 3,z 3),则⎩⎪⎨⎪⎧n 3⊥A 1C 1—→,n 3⊥DA 1→,又A 1C 1—→=(0,2,0),DA 1→=(3,0,3),则⎩⎪⎨⎪⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1,则n 3⊥BP →, 即n 3·BP →=-3-3λ=0,得λ=-1, 即点P 在C 1C 的延长线上,且C 1C =CP .思维升华 对于“是否存在”型问题的探索方式有两种:一种是根据条件作出判断,再进一步论证;另一种是利用空间向量,先设出假设存在点的坐标,再根据条件求该点的坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”.跟踪训练 (2016·北京)如图,在四棱锥P ABCD 中,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面P AB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱P A 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.(1)证明 ∵平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,AB ⊥AD ,AB ⊂平面ABCD , ∴AB ⊥平面P AD .∵PD ⊂平面P AD ,∴AB ⊥PD .又P A ⊥PD ,P A ∩AB =A ,且P A ,PB ⊂平面P AB , ∴PD ⊥平面P AB .(2)解 取AD 的中点O ,连接CO ,PO . ∵P A =PD , ∴PO ⊥AD .又∵PO ⊂平面P AD , 平面P AD ⊥平面ABCD , 平面P AD ∩平面ABCD =AD , ∴PO ⊥平面ABCD ,∵CO ⊂平面ABCD ,∴PO ⊥CO , 又∵AC =CD ,∴CO ⊥AD .以O 为原点,OC ,OA ,OP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系, 易知P (0,0,1),B (1,1,0),D (0,-1,0),C (2,0,0),则PB →=(1,1,-1),PD →=(0,-1,-1),PC →=(2,0,-1), CD →=(-2,-1,0).设n =(x 0,y 0,1)为平面PCD 的一个法向量. 由⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0得⎩⎪⎨⎪⎧-y 0-1=0,2x 0-1=0,解得⎩⎪⎨⎪⎧y 0=-1,x 0=12. 即n =⎝⎛⎭⎫12,-1,1. 设PB 与平面PCD 的夹角为θ, 则sin θ=|cos 〈n ,PB →〉|=|n ·PB →||n ||PB →|=⎪⎪⎪⎪12-1-114+1+1×3=33. (3)解 设M 是棱P A 上一点,则存在λ∈[0,1]使得AM →=λAP →,因此点M (0,1-λ,λ),BM →=(-1,-λ,λ),∵BM ⊄平面PCD ,∴BM ∥平面PCD ,当且仅当BM →·n =0,即(-1,-λ,λ)·⎝⎛⎭⎫12,-1,1=0,解得λ=14,∴在棱P A 上存在点M 使得BM ∥平面PCD ,此时AM AP =14.利用向量法解决立体几何问题典例 (12分)如图1所示,正△ABC 的边长为4,CD 是AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B ,如图2所示.(1)试判断直线AB 与平面DEF 的位置关系,并说明理由; (2)求二面角E -DF -C 的余弦值;(3)在线段BC 上是否存在一点P ,使AP ⊥DE ?证明你的结论. 思想方法指导 对于较复杂的立体几何问题可采用向量法(1)用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.(2)两种思路:①选好基底,用向量表示出几何量,利用空间向量有关定理与向量的线性运算进行判断.②建立空间直角坐标系,进行向量的坐标运算,根据运算结果的几何意义解释相关问题. 规范解答解 (1)AB ∥平面DEF ,理由如下:在△ABC 中,由E ,F 分别是AC ,BC 中点,得EF ∥AB . 又AB ⊄平面DEF ,EF ⊂平面DEF , ∴AB ∥平面DEF .[1分](2)以D 为原点,分别以DB ,DC ,DA 所在直线为x 轴,y 轴,z轴,建立如图所示的空间直角坐标系,则A (0,0,2),B (2,0,0),C (0,23,0),E (0,3,1),F (1,3,0),[3分] 易知平面CDF 的法向量为DA →=(0,0,2), 设平面EDF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧DF →·n =0,DE →·n =0,即⎩⎪⎨⎪⎧x +3y =0,3y +z =0,取n =(3,-3,3),则cos 〈DA →,n 〉=DA →·n |DA →||n |=217,∴二面角E -DF -C 的余弦值为217.[6分] (3)设P (x ,y,0),则AP →·DE →=3y -2=0,∴y =233.又BP →=(x -2,y,0),PC →=(-x,23-y,0), ∵BP →∥PC →,∴(x -2)(23-y )=-xy , ∴3x +y =2 3.[9分]把y =233代入上式得x =43,∴P ⎝⎛⎭⎫43,233,0,∴BP →=13BC →,∴点P 在线段BC 上.∴在线段BC 上存在点P ⎝⎛⎭⎫43,233,0,使AP ⊥DE .[12分]1.已知平面α内有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α内的是( ) A .P (2,3,3) B .P (-2,0,1) C .P (-4,4,0)D .P (3,-3,4)答案 A解析 逐一验证法,对于选项A ,MP →=(1,4,1),∴MP →·n =6-12+6=0,∴MP →⊥n ,∴点P 在平面α内,同理可验证其他三个点不在平面α内. 2.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量.若α⊥β,则t 等于( ) A .3 B .4 C .5 D .6 答案 C解析 ∵α⊥β,则u ·v =-2×6+2×(-4)+4t =0,∴t =5.3.(2017·西安模拟)如图,F 是正方体ABCD —A 1B 1C 1D 1的棱CD 的中点,E 是BB 1上一点,若D 1F ⊥DE ,则有( )A .B 1E =EB B .B 1E =2EBC .B 1E =12EBD .E 与B 重合 答案 A解析 以D 为坐标原点,分别以DA ,DC ,DD 1为x ,y ,z 轴建立空间直角坐标系,设正方形的边长为2,则D (0,0,0),F (0,1,0),D 1(0,0,2),设E (2,2,z ),则D 1F →=(0,1,-2),DE →=(2,2,z ),∵D 1F →·DE →=0×2+1×2-2z =0, ∴z =1,∴B 1E =EB .4.(2017·广州质检)已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________________________. 答案 α∥β解析 设平面α的法向量为m =(x ,y ,z ), 由m ·AB →=0,得x ·0+y -z =0,即y =z , 由m ·AC →=0,得x -z =0,即x =z ,取x =1,∴m =(1,1,1),m =-n ,∴m ∥n ,∴α∥β.5.(2017·青岛模拟)已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x +y =________. 答案257解析 由条件得⎩⎪⎨⎪⎧3+5-2z =0,x -1+5y +6=0,3(x -1)+y -3z =0,解得x =407,y =-157,z =4,∴x +y =407-157=257.6.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的序号是________. 答案 ①②③解析 ∵AB →·AP →=0,AD →·AP →=0, ∴AB ⊥AP ,AD ⊥AP ,则①②正确; 又AB ∩AD =A ,∴AP ⊥平面ABCD , ∴AP →是平面ABCD 的法向量,则③正确; ∵BD →=AD →-AB →=(2,3,4),AP →=(-1,2,-1), ∴BD →与AP →不平行,故④错误.7.(2018·青海质检)正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是C 1C ,B 1C 1的中点.求证:MN ∥平面A 1BD .证明 如图所示,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系. 设正方体的棱长为1,则D (0,0,0),A 1(1,0,1),B (1,1,0),M ⎝⎛⎭⎫0,1,12,N ⎝⎛⎭⎫12,1,1, 于是MN →=⎝⎛⎭⎫12,0,12,DA 1→=(1,0,1),DB →=(1,1,0).设平面A 1BD 的法向量为n =(x ,y ,z ),则n ·DA 1→=0,且n ·DB →=0,得⎩⎪⎨⎪⎧x +z =0,x +y =0.取x =1,得y =-1,z =-1. 所以n =(1,-1,-1).又MN →·n =⎝⎛⎭⎫12,0,12·(1,-1,-1)=0, 所以MN →⊥n .又MN ⊄平面A 1BD ,所以MN ∥平面A 1BD .8.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .证明:平面PQC ⊥平面DCQ .证明 如图,以D 为坐标原点,线段DA 的长为单位长度,DA ,DP ,DC 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系Dxyz .由题意得Q (1,1,0),C (0,0,1),P (0,2,0), 则DQ →=(1,1,0),DC →=(0,0,1),PQ →=(1,-1,0). ∴PQ →·DQ →=0,PQ →·DC →=0,即PQ ⊥DQ ,PQ ⊥DC . 又DQ ∩DC =D ,DQ ,DC ⊂平面DCQ , ∴PQ ⊥平面DCQ ,又PQ ⊂平面PQC , ∴平面PQC ⊥平面DCQ .9.(2017·郑州调研)如图所示,四棱锥P —ABCD 的底面是边长为1的正方形,P A ⊥CD ,P A =1,PD =2,E 为PD 上一点,PE =2ED .(1)求证:P A ⊥平面ABCD ;(2)在侧棱PC 上是否存在一点F ,使得BF ∥平面AEC ?若存在,指出F 点的位置,并证明;若不存在,请说明理由.(1)证明 ∵P A =AD =1,PD =2, ∴P A 2+AD 2=PD 2,即P A ⊥AD .又P A ⊥CD ,AD ∩CD =D ,AD ,CD ⊂平面ABCD , ∴P A ⊥平面ABCD .(2)解 以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则A (0,0,0),B (1,0,0),C (1,1,0),P (0,0,1),E ⎝⎛⎭⎫0,23,13,AC →=(1,1,0),AE →=⎝⎛⎭⎫0,23,13. 设平面AEC 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AE →=0,即⎩⎪⎨⎪⎧x +y =0,2y +z =0,令y =1,则n =(-1,1,-2).假设侧棱PC 上存在一点F ,且CF →=λCP →(0≤λ≤1), 使得BF ∥平面AEC ,则BF →·n =0.又∵BF →=BC →+CF →=(0,1,0)+(-λ,-λ,λ)=(-λ,1-λ,λ), ∴BF →·n =λ+1-λ-2λ=0,∴λ=12,∴存在点F ,使得BF ∥平面AEC ,且F 为PC 的中点.10.(2017·成都调研)如图所示,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是( )A .相交B .平行C .垂直D .MN 在平面BB 1C 1C 内答案 B解析 以点C 1为坐标原点,分别以C 1B 1,C 1D 1,C 1C 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系, 由于A 1M =AN =2a 3, 则M ⎝⎛⎭⎫a ,2a 3,a 3,N ⎝⎛⎭⎫2a 3,2a3,a , MN →=⎝⎛⎭⎫-a 3,0,2a 3. 又C 1D 1⊥平面BB 1C 1C ,所以C 1D 1—→=(0,a,0)为平面BB 1C 1C 的一个法向量. 因为MN →·C 1D 1—→=0,所以MN →⊥C 1D 1—→,又MN ⊄平面BB 1C 1C , 所以MN ∥平面BB 1C 1C .11.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别是棱BC ,DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和为________.答案 1解析 以D 1为原点,D 1A 1,D 1C 1,D 1D 所在直线分别为x ,y ,z 轴建立空间直角坐标系,设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),F (0,0,1-y ),B (1,1,1),∴B 1E →=(x -1,0,1),FB →=(1,1,y ),∵B 1E ⊥平面ABF ,∴FB →·B 1E →=(1,1,y )·(x -1,0,1)=0,即x +y =1.12.(2018·长沙模拟)如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为( )A .(1,1,1)B.⎝⎛⎭⎫23,23,1 C.⎝⎛⎭⎫22,22,1 D.⎝⎛⎭⎫24,24,1 答案 C解析 设AC 与BD 相交于O 点,连接OE ,∵AM ∥平面BDE ,且AM⊂平面ACEF ,平面ACEF ∩平面BDE =OE ,∴AM ∥EO ,又O 是正方形ABCD 对角线的交点,∴M 为线段EF 的中点.在空间直角坐标系中,E (0,0,1),F (2,2,1).由中点坐标公式,知点M 的坐标为⎝⎛⎭⎫22,22,1. 13.(2018·东莞质检)如图,圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周).若AM ⊥MP ,则点P 形成的轨迹长度为________.答案 72解析 以O 点为坐标原点,OB ,OS 所在直线分别为y 轴,z 轴,建立空间直角坐标系,如图所示,则A (0,-1,0),B (0,1,0),S ()0,0,3,M ⎝⎛⎭⎫0,0,32, 设P (x ,y,0),∴AM →=⎝⎛⎭⎫0,1,32,MP →=⎝⎛⎭⎫x ,y ,-32, 由AM →·MP →=y -34=0,得y =34, ∴点P 的轨迹方程为y =34.根据圆的弦长公式,可得点P 形成的轨迹长度为2 1-⎝⎛⎭⎫342=72.。
立体几何中的向量方法(一)——证明平行与垂直
u· v=(-2,2,5)· (3,-2,2)=0⇒α⊥β.
当v=(4,-4,-10)时,v=-2u⇒α∥β.
1
2
3
4
5
6
解析
答案
3.[P105练习T2]如图所示,在正方体ABCD-A1B1C1D1中,O是底面正方 形ABCD的中心,M是D1D的中点,N是A1B1的中点,则直线ON,AM的
垂直 位置关系是________.
全国名校高考数学优质学案、专题汇编(附详解)
第八章 立体几何与空间向量
§8.6 立体几何中的向量方法(一)——证明平行与垂直
内容索引
基础知识
自主习
题型分类
课时作业
深度剖析
知识梳理 1.直线的方向向量与平面的法向量的确定 (1)直线的方向向量:在直线上任取一 非零 向量作为它的方向向量. (2)平面的法向量可利用方程组求出:设a,b是平面α内两不共线向量,n为 a=0, n · 平面α的法向量,则求法向量的方程组为 b=0. n · 2.用向量证明空间中的平行关系 (1)设直线l1和l2的方向向量分别为v1和v2,则l1∥l2(或l1与l2重合)⇔ v1∥v2 . (2)设直线l的方向向量为v,与平面α共面的两个不共线向量v1和v2,则l∥α 或l⊂α⇔ 存在两个实数x,y,使v=xv1+yv2 .
(6)若空间向量a平行于平面α,则a所在直线与平面α平行.( × )
1 2 3 4 5 6
题组二 教材改编
2.[P105 练习T1(1)(2)]设 u ,v 分别是平面 α , β 的法向量, u = ( -2,2,5) ,
α⊥β 当v=(3,-2,2)时,α与β的位置关系为__________ ;当v=(4,-4, α∥β -10)时,α与β的位置关系为________. 解析 当v=(3,-2,2)时,
高考数学总复习 第八篇 立体几何 第7讲 立体几何中的向量方法(Ⅰ) 证明平行与垂直课件 理
5.如图所示,在空间直角坐标系中,有一棱长为a的正方体 ABCOA′B′C′D′ , A′C 的 中 点 E 与 AB 的 中 点 F 的 距 离 为 ________.
解析 由图易知A(a,0,0),B(a,a,0),C(0,a,0),A′(a,0, a).
∴Fa,a2,0,Ea2,a2,a2.
【训练1】 如图所示,平 面 PAD⊥平 面 ABCD, ABCD 为 正 方 形 , △PAD是直角三角形, 且 PA = AD = 2 , E 、 F、G分别是线段PA、 PD 、 CD 的 中 点 . 求 证:PB∥平面EFG.
证明 ∵平面PAD⊥平面ABCD且 ABCD为正方形, ∴AB、AP、AD两两垂直,以A为 坐标原点,建立如图所示的空间 直 角 坐 标 系 Axyz , 则 A(0,0,0) 、 B(2,0,0) 、 C(2,2,0) 、 D(0,2,0) 、 P(0,0,2) 、 E(0,0,1) 、 F(0,1,1) 、 G(1,2,0).
. u1∥u2
(3)用向量证明空间中的垂直关系
①设直线l1和l2的方向向量分别为v1和v2,则l1⊥l2⇔v1⊥v2⇔
v1·v2=0 .
② 设 直 线 l 的 方 向 向 量 为 v , 平 面 α 的 法 向 量 为 u , 则 l⊥α⇔
v∥u . ③设平面α和β的法向量分别为u1和u2,则α⊥β⇔____u_1_⊥u⇔2
取x=1,得y=-1,z=-1.∴n=(1,-1,-1).
又M→N·n=12,0,12·(1,-1,-1)=0, ∴M→N⊥n.又MN⊄平面A1BD,∴MN∥平面A1BD. 法二 ∵M→N=—C1→N -—C1→M =12C→1B1-12C→1C=12(—D1→A1-—D1→D )
2016届高考数学考点剖析专题03立体几何立体几何中的向量方法(一)证明平行与垂直
立体几何中的向量方法(一)——证明平行与垂直主标题:立体几何中的向量方法(一)——证明平行与垂直副标题:为学生详细的分析立体几何中的向量方法(一)——证明平行与垂直的高考考点、命题方向以及规律总结。
关键词:向量证平行,向量证垂直,向量求角难度:2重要程度:4考点剖析:1.理解直线的方向向量及平面的法向量.2.能用向量语言表述线线、线面、面面的平行和垂直关系.3.能用向量方法证明立体几何中有关线面位置关系的一些简单定理.命题方向:1)向量法证明垂直与平行多以多面体(特别是棱柱、棱锥)为载体,求证线线、线面、面面的平行或垂直,其中逻辑推理和向量计算各有千秋,逻辑推理要书写清晰,“充分”地推出所求证(解)的结论;向量计算要步骤完整,“准确”地算出所要求的结果.2)用向量法求线线角、线面角多以空间几何体、平面图形折叠成的空间几何体为载体,考查线线角、线面角的求法,正确科学地建立空间直角坐标系是解此类题的关键 规律总结:1.用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.2.两种思路:(1)选好基底,用向量表示出几何量,利用空间向量有关定理与向量的线性运算进行判断.(2)建立空间坐标系,进行向量的坐标运算,根据运算结果的几何意义解释相关问题.3.运用向量知识判定空间位置关系,仍然离不开几何定理.如用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.知 识 梳理1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB →为直线l 的方向向量,与AB →平行的任意非零向量也是直线l 的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧ n·a =0,n·b =0.2.空间位置关系的向量表示。
8.7 立体几何中的向量方法(一)——证明平行与垂直
命题点2 证面面垂直
例3 (2017· 武汉月考 ) 如图,在四棱锥 P - ABCD 中,
底面 ABCD 是边长为 a 的正方形,侧面 PAD⊥ 底面 2 ABCD,且PA=PD= AD,设E,F分别为PC,BD 2 的中点.
(1)求证:EF∥平面PAD; 证明
(2)求证:平面PAB⊥平面PDC.
当v=(4,-4,-10)时,v=-2u⇒α∥β.
5.(教材改编)如图所示,在正方体ABCD-A1B1C1D1中, O 是底面正方形 ABCD 的中心, M 是 D1D 的中点, N 是 垂直 A1B1的中点,则直线ON,AM的位置关系是________.
答案 解析
→ → → 以 A 为原点, 分别以AB, AD, AA1所在直线为 x, y, z 轴, 建立空间直角坐标系,设正方体棱长为 1, 1 1 1 1 则 A(0,0,0),M(0,1,2),O(2,2,0),N(2,0,1), 1 1 → → AM· ON=(0,1,2)· (0,-2,1)=0,∴ON 与 AM 垂直.
4.(教材改编)设u,v分别是平面α,β的法向量,u=(-2,2,5),当v=(3,
α⊥β ;当v=(4,-4,-10)时,α与 -2,2)时,α与β的位置关系为________
α∥β β的位置关系为________.
答案 解析
当v=(3,-2,2)时,u· v=(-2,2,5)· (3,-2,2)=0⇒α⊥β.
u2=0 . (3)设平面α和β的法向量分别为u1和u2,则α⊥β⇔ u1⊥u2 ⇔ u1·
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”) (1)直线的方向向量是唯一确定的.( × ) (2)平面的单位法向量是唯一确定的.( × ) (3)若两平面的法向量平行,则两平面平行.( √ ) (4)若两直线的方向向量不平行,则两直线不平行.( √ ) (5)若a∥b,则a所在直线与b所在直线平行.( × ) (6)若空间向量a平行于平面α,则a所在直线与平面α平行.( × )
高三数学复习立体几何中的向量方法第一课时证明平行和垂直课件理
(2)点面距的求法 设 n 是平面α的法向量,点 A 在平面α内,点 B 在平面α外,则点 B 到平面α
uuur 的距离为 | AB n | .
|n|
(3)线面距、面面距均可转化为点面距再用(2)中方法求解.
| a || b |
(2)求直线与平面所成的角 设直线 l 的方向向量为 a,平面α的法向量为 n,直线 l 与平面α所成的角为 θ,a,n 的夹角为 ,则 sin θ=|cos |= | a n | .
| a || n |
(3)求二面角的大小 ①若 AB,CD 分别是二面角α l β的两个面内与棱 l 垂直的异面直线,则二
uuur uuur 面角的大小就是向量 AB 与 CD 的夹角(如图(1)).
②设 n1,n2 分别是二面角α l β的两个面α,β的法向量,则向量 n1 与 n2 的 夹角(或其补角)的大小就是二面角的平面角的大小(如图(2)(3),其中图(2) 中向量夹角的大小即为二面角平面角,图(3)中则为其补角). 4.求空间距离 (1)两点间距离求法 若 A(x1,y1,z1),B(x2,y2,z2),
又根据(1)的结论知 AP⊥BC,
所以 AP⊥平面 BMC,于是 AM⊥平面 BMC. 又 AM⊂ 平面 AMC,故平面 AMC⊥平面 BMC.
反思归纳 利用向量法证垂直问题的类型及常用方法
提醒:用向量结论还原几何结论时,要注意书写规范.
【即时训练】如图所示,在四棱锥 P-ABCD 中,PC⊥平面 ABCD,PC=2,在四边形 ABCD 中,∠B=∠C=90°,AB=4,CD=1,点 M 在 PB 上,PB=4PM,PB 与平面 ABCD 成 30°的角.求证:CM∥平面 PAD.
8.7 立体几何中的向量方法(一)——证明平行与垂直
1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一________向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔________.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔____________________.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔________. (4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔________. 3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔________⇔________. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔________. (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔________⇔________. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)直线的方向向量是唯一确定的.( ) (2)平面的单位法向量是唯一确定的.( ) (3)若两平面的法向量平行,则两平面平行.( ) (4)若两直线的方向向量不平行,则两直线不平行.( ) (5)若a ∥b ,则a 所在直线与b 所在直线平行.( )(6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( )1.已知A(1,0,0),B(0,1,0),C(0,0,1),则下列向量是平面ABC法向量的是() A.(-1,1,1) B.(1,-1,1)C.(-33,-33,-33) D.(33,33,-33)2.直线l的方向向量a=(1,-3,5),平面α的法向量n=(-1,3,-5),则有()A.l∥αB.l⊥αC.l与α斜交D.l⊂α或l∥α3.平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k),若α∥β,则k等于() A.2 B.-4C.4 D.-24.(教材改编)设u,v分别是平面α,β的法向量,u=(-2,2,5),当v=(3,-2,2)时,α与β的位置关系为________;当v=(4,-4,-10)时,α与β的位置关系为________.5.(教材改编)如图所示,在正方体ABCD-A1B1C1D1中,O是底面正方形ABCD的中心,M 是D1D的中点,N是A1B1的中点,则直线ON,AM的位置关系是________.题型一利用空间向量证明平行问题例1(2016·重庆模拟)如图所示,平面P AD⊥平面ABCD,ABCD为正方形,△P AD是直角三角形,且P A=AD=2,E,F,G分别是线段P A,PD,CD的中点.求证:PB∥平面EFG.引申探究本例中条件不变,证明平面EFG∥平面PBC.思维升华(1)恰当建立空间直角坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.(2016·北京海淀区模拟)正方体ABCD-A1B1C1D1中,M,N分别是C1C,B1C1的中点.求证:MN∥平面A1BD.题型二利用空间向量证明垂直问题命题点1证线面垂直例2如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC—A1B1C1的所有棱长都为2,D 为CC1的中点.求证:AB1⊥平面A1BD.命题点2证面面垂直例3(2017·武汉月考)如图,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面P AD⊥底面ABCD,且P A=PD=22AD,设E,F分别为PC,BD的中点.(1)求证:EF∥平面P AD;(2)求证:平面P AB⊥平面PDC.思维升华证明垂直问题的方法(1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然,也可证直线的方向向量与平面的法向量平行;其三证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可.(2016·青岛模拟)如图,在多面体ABC -A 1B 1C 1中,四边形A 1ABB 1是正方形,AB =AC ,BC =2AB ,B 1C 1綊12BC ,二面角A 1-AB -C 是直二面角.求证:(1)A 1B 1⊥平面AA 1C ; (2)AB 1∥平面A 1C 1C .题型三 利用空间向量解决探索性问题例4 (2016·北京)如图,在四棱锥P ABCD 中,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面P AB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱P A 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.思维升华 对于“是否存在”型问题的探索方式有两种:一种是根据条件作出判断,再进一步论证;另一种是利用空间向量,先设出假设存在点的坐标,再根据条件求该点的坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”.(2016·深圳模拟)如图所示,四边形ABCD 是边长为1的正方形,MD ⊥平面ABCD ,NB ⊥平面ABCD ,且MD =NB =1,E 为BC 的中点.(1)求异面直线NE与AM所成角的余弦值;(2)在线段AN上是否存在点S,使得ES⊥平面AMN?若存在,求线段AS的长;若不存在,请说明理由.19.利用向量法解决立体几何问题典例(12分)(2016·吉林实验中学月考)如图1所示,正△ABC的边长为4,CD是AB边上的高,E,F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B,如图2所示.(1)试判断直线AB与平面DEF的位置关系,并说明理由;(2)求二面角E-DF-C的余弦值;(3)在线段BC上是否存在一点P,使AP⊥DE?证明你的结论.思想方法指导对于较复杂的立体几何问题可采用向量法(1)用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.(2)两种思路:①选好基底,用向量表示出几何量,利用空间向量有关定理与向量的线性运算进行判断.②建立空间直角坐标系,进行向量的坐标运算,根据运算结果的几何意义解释相关问题.规范解答:提醒:完成作业第八章§8.7答案精析基础知识 自主学习 知识梳理 1.(1)非零2.(1)v 1∥v 2 (2)存在两个实数x ,y ,使v =x v 1+y v 2 (3)v ⊥u (4)u 1∥u 2 3.(1)v 1⊥v 2 v 1·v 2=0 (2)v ∥u (3)u 1⊥u 2 u 1·u 2=0 思考辨析(1)× (2)× (3)√ (4)√ (5)× (6)× 考点自测1.C 2.B 3.C 4.α⊥β α∥β 5.垂直 题型分类 深度剖析例1 证明 ∵平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD ,∴AB ,AP ,AD 两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0). ∴PB →=(2,0,-2),FE →=(0,-1,0), FG →=(1,1,-1), 设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1), ∴⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2,∴PB →=2FE →+2FG →, 又∵FE →与FG →不共线, ∴PB →,FE →与FG →共面.∵PB ⊄平面EFG ,∴PB ∥平面EFG . 引申探究证明 ∵EF →=(0,1,0),BC →=(0,2,0),∴BC →=2EF →,∴BC ∥EF .又∵EF ⊄平面PBC ,BC ⊂平面PBC , ∴EF ∥平面PBC ,同理可证GF ∥PC ,从而得出GF ∥平面PBC . 又EF ∩GF =F ,EF ⊂平面EFG , GF ⊂平面EFG , ∴平面EFG ∥平面PBC .跟踪训练1 证明 如图所示,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设正方体的棱长为1,则M (0,1,12),N (12,1,1),D (0,0,0),A 1(1,0,1),B (1,1,0),于是MN →=(12,0,12),DA 1→=(1,0,1),DB →=(1,1,0).设平面A 1BD 的法向量为n =(x ,y ,z ), 则n ·DA 1→=0,且n ·DB →=0,得⎩⎪⎨⎪⎧x +z =0,x +y =0. 取x =1,得y =-1,z =-1. 所以n =(1,-1,-1).又MN →·n =(12,0,12)·(1,-1,-1)=0,所以MN →⊥n . 又MN ⊄平面A 1BD , 所以MN ∥平面A 1BD .例2 证明 取BC 的中点O ,连接AO .因为△ABC 为正三角形, 所以AO ⊥BC .因为在正三棱柱ABC —A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, 所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,分别以OB →,OO 1→,OA →所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则B (1,0,0),D (-1,1,0),A 1(0,2,3), A (0,0,3),B 1(1,2,0).设平面A 1BD 的法向量为n =(x ,y ,z ),BA 1→=(-1,2,3),BD →=(-2,1,0). 因为n ⊥BA 1→,n ⊥BD →,故⎩⎪⎨⎪⎧n ·BA 1→=0,n ·BD →=0⇒⎩⎨⎧-x +2y +3z =0,-2x +y =0,令x =1,则y =2,z =-3,故n =(1,2,-3)为平面A 1BD 的一个法向量, 而AB 1→=(1,2,-3),所以AB 1→=n , 所以AB 1→∥n , 故AB 1⊥平面A 1BD .例3 证明 (1)如图,取AD 的中点O ,连接OP ,OF .因为P A =PD ,所以PO ⊥AD .因为侧面P AD ⊥底面ABCD ,平面P AD ∩平面ABCD =AD , 所以PO ⊥平面ABCD .又O ,F 分别为AD ,BD 的中点, 所以OF ∥AB .又ABCD 是正方形,所以OF ⊥AD . 因为P A =PD =22AD ,所以P A ⊥PD ,OP =OA =a 2. 以O 为原点,OA ,OF ,OP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系, 则A (a 2,0,0),F (0,a 2,0),D (-a 2,0,0),P (0,0,a 2),B (a 2,a,0),C (-a2,a,0).因为E 为PC 的中点, 所以E (-a 4,a 2,a4).易知平面P AD 的一个法向量为 OF →=(0,a 2,0),因为EF →=(a4,0,-a 4),且OF →·EF →=(0,a 2,0)·(a 4,0,-a 4)=0,所以EF ∥平面P AD . (2)因为P A →=(a2,0,-a 2),CD →=(0,-a,0),所以P A →·CD →=(a 2,0,-a 2)·(0,-a,0)=0,所以P A →⊥CD →,所以P A ⊥CD .又P A ⊥PD ,PD ∩CD =D ,所以P A ⊥平面PDC . 又P A ⊂平面P AB ,所以平面P AB ⊥平面PDC .跟踪训练2 证明 (1)∵二面角A 1-AB -C 是直二面角,四边形A 1ABB 1为正方形, ∴AA 1⊥平面BAC .又∵AB =AC ,BC =2AB , ∴∠CAB =90°,即CA ⊥AB , ∴AB ,AC ,AA 1两两互相垂直.建立如图所示的空间直角坐标系,点A 为坐标原点,设AB =2,则A (0,0,0),B 1(0,2,2),A 1(0,0,2),C (2,0,0),C 1(1,1,2). A 1B 1→=(0,2,0),A 1A →=(0,0,-2),AC →=(2,0,0), 设平面AA 1C 的一个法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·A 1A →=0,n ·AC →=0,即⎩⎪⎨⎪⎧-2z =0,2x =0,即⎩⎪⎨⎪⎧x =0,z =0,取y =1,则n =(0,1,0). ∴A 1B 1→=2n ,即A 1B 1→∥n . ∴A 1B 1⊥平面AA 1C .(2)易知AB 1→=(0,2,2),A 1C 1→=(1,1,0),A 1C →=(2,0,-2), 设平面A 1C 1C 的一个法向量 m =(x 1,y 1,z 1),则⎩⎪⎨⎪⎧m ·A 1C 1→=0,m ·A 1C →=0,即⎩⎪⎨⎪⎧x 1+y 1=0,2x 1-2z 1=0,令x 1=1,则y 1=-1,z 1=1, 即m =(1,-1,1).∴AB 1→·m =0×1+2×(-1)+2×1=0, ∴AB 1→⊥m .又AB 1⊄平面A 1C 1C , ∴AB 1∥平面A 1C 1C .例4 (1)证明 ∵平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,AB ⊥AD ,AB ⊂平面ABCD , ∴AB ⊥平面P AD .∵PD ⊂平面P AD ,∴AB ⊥PD . 又P A ⊥PD ,P A ∩AB =A , 且P A ,PB ⊂平面P AB , ∴PD ⊥平面P AB .(2)解 取AD 中点O ,连接CO ,PO ,∵P A =PD , ∴PO ⊥AD .又∵PO ⊂平面P AD , 平面P AD ⊥平面ABCD ,∴PO ⊥平面ABCD ,∵CO ⊂平面ABCD ,∴PO ⊥CO ,∵AC =CD ,∴CO ⊥AD .以O 为原点建立如图所示空间直角坐标系.易知P (0,0,1),B (1,1,0),D (0,-1,0),C (2,0,0). 则PB →=(1,1,-1),PD →=(0,-1,-1),PC →=(2,0,-1).CD →=(-2,-1,0).设n =(x 0,y 0,1)为平面PCD 的一个法向量.由⎩⎪⎨⎪⎧ n ·PD →=0,n ·PC →=0得⎩⎪⎨⎪⎧ -y 0-1=0,2x 0-1=0, 解得⎩⎪⎨⎪⎧ y 0=-1,x 0=12. 即n =⎝⎛⎭⎫12,-1,1.设PB 与平面PCD 的夹角为θ.则sin θ=|cos 〈n ,PB →〉|=|n ·PB →||n ||PB →|=|12-1-1|14+1+1×3=33. (3)解 设M 是棱P A 上一点,则存在λ∈[0,1]使得AM →=λAP →,因此点M (0,1-λ,λ),BM →=(-1,-λ,λ),∵BM ⊄平面PCD ,∴BM ∥平面PCD ,∴BM →·n =0,即(-1,-λ,λ)·⎝⎛⎭⎫12,-1,1=0,解得λ=14,∴在棱P A 上存在点M 使得BM ∥平面PCD ,此时AM AP =14. 跟踪训练3 解 (1)如图,以D 为坐标原点,建立空间直角坐标系Dxyz ,依题意得D (0,0,0),A (1,0,0),M (0,0,1),C (0,1,0),B (1,1,0),N (1,1,1),E (12,1,0), 所以NE →=(-12,0,-1),AM →=(-1,0,1), 因为|cos 〈NE →,AM →〉|=|NE →·AM →||NE →||AM →|=1252×2=1010. 所以异面直线NE 与AM 所成角的余弦值为1010. (2)假设在线段AN 上存在点S ,使得ES ⊥平面AMN .连接AE ,如图所示.因为AN →=(0,1,1),可设AS →=λAN →=(0,λ,λ),又EA →=(12,-1,0), 所以ES →=EA →+AS →=(12,λ-1,λ). 由ES ⊥平面AMN ,得⎩⎪⎨⎪⎧ ES →·AM →=0,ES →·AN →=0,即⎩⎪⎨⎪⎧ -12+λ=0,(λ-1)+λ=0,解得λ=12, 此时AS →=(0,12,12),|AS →|=22. 经检验,当AS =22时,ES ⊥平面AMN . 故线段AN 上存在点S ,使得ES ⊥平面AMN ,此时AS =22. 思想与方法系列典例 解 (1)AB ∥平面DEF ,理由如下:在△ABC 中,由E ,F 分别是AC ,BC 中点,得EF ∥AB .又AB ⊄平面DEF ,EF ⊂平面DEF ,∴AB ∥平面DEF .[1分](2)以D 为原点,建立如图所示的空间直角坐标系,则A (0,0,2),B (2,0,0),C (0,23,0),E (0,3,1),F (1,3,0),[3分] 易知平面CDF 的法向量为DA →=(0,0,2),设平面EDF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ DF →·n =0,DE →·n =0,即⎩⎨⎧x +3y =0,3y +z =0, 取n =(3,-3,3),cos 〈DA →,n 〉=DA →·n |DA →||n |=217, ∴二面角E -DF -C 的余弦值为217.[6分] (3)设P (x ,y,0),则AP →·DE →=3y -2=0,∴y =233. 又BP →=(x -2,y,0),PC →=(-x,23-y,0),∵BP →∥PC →,∴(x -2)(23-y )=-xy ,∴3x +y =2 3.[9分] 把y =233代入上式得x =43, ∴P (43,233,0), ∴BP →=13BC →, ∴在线段BC 上存在点P (43,233,0),使AP ⊥DE .[12分]。
最新文档-立体几何立体几何中的向量方法证明平行和垂直-PPT精品文档
D→M·C→B=0+0+0=0, ∴DM⊥BP,DM⊥CB, 所以DM⊥平面PBC,又DM⊂平面ADM, 所以平面ADM⊥平面PBC.
例2 如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2, ∠ABC=60°,平面AA1C1C⊥平面ABCD,∠A1AC=60°.
(1)证明:BD⊥AA1; (2)求二面角D-AA1-C的平面角的余弦值; (3)在直线CC1上是否存在点P,使BP∥平面DA1C1?若存 在,求出点P的位置;若不存在,说明理由.
由PA∥平面BDM,可得PA∥MG, 因为底面ABCD为菱形,所以G为AC的中点, 所以MG为△PAC的中位线. 因此M为PC的中点. (2)取AD中点O,连接PO,BO. 因为△PAD是正三角形,所以PO⊥AD,又因为平面PAD ⊥平面ABCD, 所以PO⊥平面ABCD,因为底面ABCD是菱形且∠BAD= 60°,△ABD是正三角形,所以AD⊥OB.
立体几何中的向量方法(一) ——位置关系的证明
考纲要求
1.理解直线的方向向量与平面的法向量. 2.能用向量语言表述直线与直线、直线与平面、平面与 平面的垂直、平行关系. 3.能用向量方法证明有关直线和平面位置关系的一些定 理(包括三垂线定理).
知识梳理
1.直线的方向向量与平面的法向量 (1)直线的方向向量:l是空间任意一直线,A,B是直线l上 的任意两点,则称 A→B 为直线l的方向向量.显然,与 A→B 平行的 任意非零向量a也是直线l的方向向量. (2)平面的法向量:直线l垂直于平面α,那么直线l的方向向 量叫做平面α的法向量.所有与直线l平行的非零向量都是平面α 的法向量.
2.平行关系的向量表述
(1)直线与直线平行:若直线l1和l2的方向向量分别为v1和 v2,则l1∥l2⇔__v_1∥__v_2____.
立体几何中的向量方法(一)——证明平行与垂直易错点 2019高考绝密资料
立体几何中的向量方法(一)——证明平行与垂直易错点主标题:立体几何中的向量方法(一)——证明平行与垂直易错点副标题:从考点分析立体几何中的向量方法(一)——证明平行与垂直易错点,为学生备考提供简洁有效的备考策略。
关键词:向量证平行,向量证垂直,向量求角,易错点 难度:2 重要程度:4 【易错点】1.平行关系(1)直线的方向向量是唯一确定的.(×)(2)两不重合直线l 1和l 2的方向向量分别为v 1=(1,0,-1),v 2=(-2,0,2),则l 1与l 2的位置关系是平行.(√) 2.垂直关系(3)已知AB →=(2,2,1),AC →=(4,5,3),则平面ABC 的单位法向量是n 0=±⎝ ⎛⎭⎪⎫13,-23,23.(√) (4)如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线NO ,AM 的位置关系是异面垂直.(√)剖析:1.一是切莫混淆向量平行与向量垂直的坐标表示,二是理解直线平行与直线方向向量平行的差异,如(2).否则易造成解题不严谨.2.利用向量知识证明空间位置关系,要注意立体几何中相关定理的活用,如证明直线a ∥b ,可证向量a =λb ,若用直线方向向量与平面法向量垂直判定线面平行,必需强调直线在平面外等.导数在研究函数中的应用主标题:导数在研究函数中的应用备考策略副标题:通过考点分析高考命题方向,把握高考规律,为学生备考复习打通快速通道。
关键词:导数,极值,最值,备考策略 难度:4重要程度:5 内容考点一 利用导数研究函数的单调性【例1】设函数f (x )=(x -1)e x -kx 2. (1)当k =1时,求函数f (x )的单调区间;(2)若f (x )在x ∈[0,+∞)上是增函数,求实数k 的取值范围. 解 (1)当k =1时,f (x )=(x -1)e x -x 2, ∴f ′(x )=e x +(x -1)e x -2x =x (e x -2). 令f ′(x )>0,即x (e x -2)>0, ∴x >ln 2或x <0.令f ′(x )<0,即x (e x -2)<0,∴0<x <ln 2. 因此函数f (x )的递减区间是(0,ln 2); 递增区间是(-∞,0)和(ln 2,+∞). (2)易知f ′(x )=e x +(x -1)e x -2kx =x (e x -2k ). ∵f (x )在x ∈[0,+∞)上是增函数,∴当x ≥0时,f ′(x )=x (e x -2k )≥0恒成立. ∴e x -2k ≥0,即2k ≤e x 恒成立. 由于e x ≥1,∴2k ≤1,则k ≤12.又当k =12时,f ′(x )=x (e x -1)≥0当且仅当x =0时取等号. 因此,实数k 的取值范围是⎝ ⎛⎦⎥⎤-∞,12.【备考策略】 (1)利用导数研究函数的单调性的关键在于准确判定导数的符号.而解答本题(2)问时,关键是分离参数k ,把所求问题转化为求函数的最小值问题. (2)若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.考点二 利用导数研究函数的极值【例2】 设f (x )=a ln x +12x +32x +1,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线垂直于y轴.(1)求a的值;(2)求函数f(x)的极值.审题路线(1)由f′(1)=0⇒求a的值.(2)确定函数定义域⇒对f(x)求导,并求f′(x)=0⇒判断根左,右f′(x)的符号⇒确定极值.解(1)由f(x)=a ln x+12x+32x+1,∴f′(x)=ax-12x2+32.由于曲线y=f(x)在点(1,f(1))处的切线垂直于y轴,∴该切线斜率为0,即f′(1)=0.从而a-12+32=0,∴a=-1.(2)由(1)知,f(x)=-ln x+12x+32x+1(x>0),∴f′(x)=-1x-12x2+32=(3x+1)(x-1)2x2.令f′(x)=0,解得x=1或-13(舍去).当x∈(0,1)时,f′(x)<0;当x∈(1,+∞)时,f′(x)>0.∴f(x)在(0,1)上是减函数,在(1,+∞)上是增函数.故f(x)在x=1处取得极小值f(1)=3,f(x)无极大值.【备考策略】(1)可导函数y=f(x)在点x0处取得极值的充要条件是f′(x0)=0,且在x0左侧与右侧f′(x)的符号不同.(2)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在某区间上单调增或减的函数没有极值.考点三利用导数求函数的最值【例3】已知函数f(x)=ax3+bx+c在x=2处取得极值为c-16.(1)求a,b的值;(2)若f(x)有极大值28,求f(x)在[-3,3]上的最小值.审题路线 (1)⎩⎨⎧f ′(2)=0,f (2)=c -16⇒a ,b 的值;(2)求导确定函数的极大值⇒求得c 值⇒求得极大值、极小值、端点值⇒求得最值.解 (1)因f (x )=ax 3+bx +c ,故f ′(x )=3ax 2+b , 由于f (x )在点x =2处取得极值c -16, 故有⎩⎨⎧ f ′(2)=0,f (2)=c -16,即⎩⎨⎧12a +b =0,8a +2b +c =c -16.化简得⎩⎨⎧ 12a +b =0,4a +b =-8,解得⎩⎨⎧a =1,b =-12.(2)由(1)知f (x )=x 3-12x +c ,f ′(x )=3x 2-12. 令f ′(x )=0,得x =-2或2.当x 变化时,f (x ),f ′(x )的变化情况如下表:x -3 (-3,-2) -2 (-2,2) 2 (2,3) 3 f ′(x ) + 0 - 0 + f (x )9+c极大值极小值-9+c由表知f (x )在x =-2处取得极大值f (-2)=16+c ,f (x )在x =2处取得极小值f (2)=c -16.由题设条件知,16+c =28,解得c =12,此时f (-3)=9+c =21,f (3)=-9+c =3,f (2)=c -16=-4,因此f (x )在[-3,3]上的最小值为f (2)=-4.【备考策略】在解决类似的问题时,首先要注意区分函数最值与极值的区别.求解函数的最值时,要先求函数y =f (x )在[a ,b ]内所有使f ′(x )=0的点,再计算函数y =f (x )在区间内所有使f ′(x )=0的点和区间端点处的函数值,最后比较即得.。
届高考数学一轮复习讲义立体几何中的向量方法Ⅰ证明平行与垂直
届高考数学一轮复习讲义立体几何中的向量方法Ⅰ证明平行与垂直向量方法是解决平行与垂直关系问题的一种常用方法。
在届高考数学一轮复习中,立体几何中的向量方法Ⅰ主要围绕平面中向量的运算和性质展开,通过向量的加减法、数量积、向量积等运算,来验证平行关系和垂直关系。
一、平行关系的向量验证如果两条直线平行,那么它们的方向向量也是平行的。
因此,我们可以通过直线上的两个向量的比较来判断直线是否平行。
具体的步骤如下:1.设有两条直线l1和l2,分别表示为:l1:A1+t1*B1l2:A2+t2*B2其中A1、B1、A2、B2为已知向量。
2.使用向量的坐标表示,将l1和l2中的向量分解为坐标向量,得到:l1:(x1,y1,z1)+t1*(a1,b1,c1)l2:(x2,y2,z2)+t2*(a2,b2,c2)其中x1、y1、z1、x2、y2、z2、a1、b1、c1、a2、b2、c2为已知数。
3.由于l1和l2平行,所以它们的方向向量a1、b1、c1和a2、b2、c2成比例。
即有:a1/a2=b1/b2=c1/c2=k其中k为非零实数。
4.通过比较系数等,求解k的值。
如果k的值存在且不为零,那么说明l1和l2平行;否则,l1和l2不平行。
示例:设有直线l1:r1=(1,2,3)+t(2,3,-1)和直线l2:r2=(4,5,6)+t(-1,-6,4)。
求证l1、l2平行。
解:将l1和l2化为坐标表示:l1:(x1,y1,z1)+t1*(a1,b1,c1)l2:(x2,y2,z2)+t2*(a2,b2,c2)得:l1:(1,2,3)+t1*(2,3,-1)l2:(4,5,6)+t2*(-1,-6,4)。
比较方向向量的系数:2/(-1)=3/(-6)=(-1)/4=k。
令2/(-1)=3/(-6)=(-1)/4=k,解得k=-2因此,由于k存在且不为零,故l1和l2平行。
二、垂直关系的向量验证两条直线垂直可以理解为它们的方向向量的数量积为零。
8.7 立体几何中的向量方法Ⅰ——证明平行与垂直
2.用向量证明空间中的平行关系 (1)设直线 l1 和 l2 的方向向量分别为 v1 和 v2,则
v1∥v2 v l1∥l2(或 l1 与 l2 重合)⇔_________.
(2)设直线 l 的方向向量为 v,与平面 α 共面的两个
存在两个实数x,y,使v=xv1+yv2 v v v ______________________________________. v⊥u. u 则 l∥α 或 l⊂α⇔________ u1 ∥u2 u ⇔_________.
设平面 A1BD 的法向量是 n=(x,y,z). x+z=0, uuur → 则 n· DA1 =0 且 n·DB=0,得 x+y=0. 取 x=1,得 y=-1,z=-1. ∴n=(1,-1,-1). 1 uuuu r 1 MN ·n= ,0, ·(1,-1,-1)=0, 又 2 2
1 x= 1 令 z=1,得 2 ,∴ n = ( , −1,1), 2 y = −1
n 1 2 2 = ±( , − , ). ∴平面 A B C 的单位法向量为 ± |n| 3 3 3
题型分类 深度剖析
题型一 利用空间向量证明平行问题 例 1 如图所示,在正方体 ABCD—A1B1C1D1 中,M、N 分别是 C1C、B1C1 的中点.求证: MN∥平面 A1BD.
uuur uuu r 2 3 2 3 得 AC ⋅ CD =0,即 y= 3 ,则 D (0, 3 ,0),
uuu r 1 3 ∴ CD = (- 2, 6 ,0).
uuu r 1 又 AE = ( 4 ,
3 4
1 , 2),
uuu uuur r 1 1 3 3 AE ⋅ CD = − 2 × 4 + 6 × 4 = 0 , ∴ uuu uuur r 即 AE ⊥ CD ,即 AE⊥CD.
立体几何中的向量方法—证明平行和垂直
立体几何中的向量方法—证明平行和垂直(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--22017届高二数学导学案编写 审核 审批课题:立体几何中的向量方法—证明平行和垂直第 周 第 课时 班 组 组评 姓名 师评 【使用说明】 1、依据学习目标。
课前认真预习,完成自主学习内容;2、课上思考,积极讨论,大胆展示,充分发挥小组合作优势,解决疑难问题;3、当堂完成课堂检测题目;4、★的多少代表题目的难以程度。
★越多说明试题越难。
不同层次学生选择相应题目完成【学习目标】1.理解空间向量的概念;掌握空间向量的加法、减法和数乘;2.了解空间向量的基本定理;3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。
【教学重点】理解空间向量的概念;掌握空间向量的运算方法【教学难点】 理解空间向量的概念;掌握空间向量的运算方法【学习方法】学案导学法,合作探究法。
【自主学习·梳理基础】1、 考点深度剖析利用空间向量证明平行或垂直是高考的热点,内容以解答题为主,主要围绕考查空间直角坐标系的建立、空间向量的坐标运算能力和分析解决问题的能力命制试题,以多面体为载体、证明线面(面面)的平行(垂直)关系是主要命题方向. 2.【课本回眸】1.直线的方向向量与平面的法向量的确定①直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB →为直线l 的方向向量,与AB →平行的任意非零向量也是直线l 的方向向量.②平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n·a =0,n·b =0.2.用向量证明空间中的平行关系①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)?v 1∥v 2. ②设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ?α?存在两个实数x ,y ,使v =xv 1+yv 2.③设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ?α?v ⊥u . ④设平面α和β的法向量分别为u 1,u 2,则α∥β?u 1∥u 2. 3. 用向量证明空间中的垂直关系①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2?v 1⊥v 2?v 1·v 2=0. ②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α?v∥u . ③设平面α和β的法向量分别为u 1和u 2,则α⊥β?u 1⊥u 2?u 1·u 2=0. 4.共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ?a =λb ?a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R),a ⊥b ?a·b =0?a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). 【课堂合作探究】探究一:如图,在棱长为2的正方体1111D C B A ABCD -中,N M F E ,,,分别是棱1111,,,D A B A AD AB 的中点,点Q P ,分别在棱1DD ,1BB 上移动,且()20<<==λλBQ DP . 当1=λ时,证明:直线//1BC 平面EFPQ .探究二:如图所示,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.证明:(1)AE ⊥CD ; (2)PD ⊥平面ABE .3探究三:在边长是2的正方体ABCD -1111A B C D 中,,E F 分别为1,AB AC 的中点. 应用空间向量方法求解下列问题. (1)求EF 的长(2)证明://EF 平面11AA D D ; (3)证明: EF ⊥平面1ACD .【当堂测试】1.【人教A 版选修2-1P101练习2改编】已知l ∥α,且l 的方向向量为(2,m ,1),平面α的法向量为⎝⎛⎭⎪⎫1,12,2,则m =________.2.【改编自大纲卷】如图,三棱柱111ABC A B C -中,点1A 在平面ABC 内的射影D 在AC 上,090ACB ∠=,11,2BC AC CC ===. (I )证明:11AC A B ⊥;D B 1C C 1A 1AB【课后巩固】1.如图所示,在直三棱柱ABC -A 1B 1C 1中,底面是∠ABC 为直角的等腰直角三角形,AC =2a ,BB 1=3a ,D 是A 1C 1的中点,点F 在线段AA 1上,当AF =________时,CF ⊥平面B 1DF .2. 如图,在棱长为a 的正方体ABCD-A 1B 1C 1D 1中,G 为△BC 1D 的重心, (1) 试证:A 1、G 、C 三点共线; (2) 试证:A 1C⊥平面BC 1D ;3.【改编自高考题】如图所示,四棱柱ABCD -A 1B 1C 1D 1中,A 1D ⊥平面ABCD ,底面ABCD 是边长为1的正方形,侧棱A 1A =2.(1)证明:AC ⊥A 1B ;(2)是否在棱A 1A 上存在一点P ,使得1AP PA λ=且面AB 1C 1⊥面PB 1C 1.【学后反思】 本节课我学会了 掌握了那些? 还有哪些疑问42017届高二数学导学案编写 邓兴明 审核 邓兴明 审批课题:利用向量方法求空间角 第 周 第 课时 班 组 组评 姓名 师评【使用说明】 1、依据学习目标。
精品导学案:立体几何中的向量方法(一)——证明平行与垂直
第7讲 立体几何中的向量方法(一)——证明平行与垂直[最新考纲]1.理解直线的方向向量及平面的法向量.2.能用向量语言表述线线、线面、面面的平行和垂直关系. 3.能用向量方法证明立体几何中有关线面位置关系的一些简单定理.知 识 梳 理1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB →为直线l 的方向向量,与AB →平行的任意非零向量也是直线l 的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n·a =0,n·b =0.2.空间位置关系的向量表示辨 析 感 悟1.平行关系(1)直线的方向向量是唯一确定的.(×)(2)两不重合直线l 1和l 2的方向向量分别为v 1=(1,0,-1),v 2=(-2,0,2),则l 1与l 2的位置关系是平行.(√) 2.垂直关系(3)已知AB →=(2,2,1),AC →=(4,5,3),则平面ABC 的单位法向量是n 0=±⎝ ⎛⎭⎪⎫13,-23,23.(√) (4)(2014·青岛质检改编)如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线NO ,AM 的位置关系是异面垂直.(√)[感悟·提升]1.一是切莫混淆向量平行与向量垂直的坐标表示,二是理解直线平行与直线方向向量平行的差异,如(2).否则易造成解题不严谨.2.利用向量知识证明空间位置关系,要注意立体几何中相关定理的活用,如证明直线a ∥b ,可证向量a =λb ,若用直线方向向量与平面法向量垂直判定线面平行,必需强调直线在平面外等.学生用书第125页考点一 利用空间向量证明平行问题【例1】 如图所示,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是C 1C ,B 1C 1的中点.求证:MN ∥平面A 1BD .审题路线 若用向量证明线面平行,可转化为判定向量MN →∥DA 1→,或证明MN →与平面A 1BD 的法向量垂直.证明 法一 如图所示,以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1,则可求得M ⎝ ⎛⎭⎪⎫0,1,12,N ⎝ ⎛⎭⎪⎫12,1,1,D (0,0,0),A 1(1,0,1),B (1,1,0).于是MN →=⎝ ⎛⎭⎪⎫12,0,12,DA 1→=(1,0,1),DB →=(1,1,0).设平面A 1BD 的法向量是n =(x ,y ,z ). 则n ·DA 1→=0,且n ·DB →=0,得⎩⎨⎧x +z =0,x +y =0.取x =1,得y =-1,z =-1. ∴n =(1,-1,-1).又MN →·n =⎝ ⎛⎭⎪⎫12,0,12·(1,-1,-1)=0,∴MN →⊥n , 又MN ⊄平面A 1BD , ∴MN ∥平面A 1BD .法二 MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12(D 1A 1→-D 1D →)=12DA 1→.∴MN →∥DA 1→, 又∵MN 与DA 1不共线, ∴MN ∥DA 1,又∵MN ⊄平面A 1BD ,A 1D ⊂平面A 1BD , ∴MN ∥平面A 1BD .规律方法 (1)恰当建立坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只须证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.【训练1】 (2013·浙江卷选编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC . 证明:PQ ∥平面BCD .证明 如图所示,取BD 的中点O ,以O 为原点,OD ,OP 所在射线为y ,z 轴的正半轴,建立空间直角坐标系O -xyz .由题意知A (0,2,2),B (0,-2,0),D (0,2,0). 设点C 的坐标为(x 0,y 0,0), 因为AQ →=3QC →,所以Q ⎝ ⎛⎭⎪⎫34x 0,24+34y 0,12.因为点M 为AD 的中点,故M (0,2,1). 又点P 为BM 的中点,故P ⎝ ⎛⎭⎪⎫0,0,12,所以PQ →=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0.又平面BCD 的一个法向量为a =(0,0,1),故PQ →·a =0. 又PQ ⊄平面BCD ,所以PQ ∥平面BCD .考点二 利用空间向量证明垂直问题【例2】 (2014·济南质检)如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3.试证明平面AMC ⊥平面BMC .证明 (1)如图所示,以O 为坐标原点,以射线OP 为z 轴的正半轴建立空间直角坐标系O -xyz .则O (0,0,0),A (0,-3,0), B (4,2,0),C (-4,2,0),P (0,0,4). 于是AP →=(0,3,4), BC →=(-8,0,0),∴AP →·BC →=(0,3,4)·(-8,0,0)=0, 所以AP →⊥BC →,即AP ⊥BC . (2)由(1)知|AP |=5,又|AM |=3,且点M 在线段AP 上, ∴AM →=35AP →=⎝ ⎛⎭⎪⎫0,95,125, 又BC →=(-8,0,0),AC →=(-4,5,0),BA →=(-4,-5,0), ∴BM →=BA →+AM →=⎝ ⎛⎭⎪⎫-4,-165,125,则AP →·BM →=(0,3,4)·⎝ ⎛⎭⎪⎫-4,-165,125=0, ∴AP →⊥BM →,即AP ⊥BM , 又根据(1)的结论知AP ⊥BC ,∴AP ⊥平面BMC ,于是AM ⊥平面BMC . 又AM ⊂平面AMC ,故平面AMC ⊥平面BCM .规律方法 (1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键. (2)其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可.【训练2】 如图所示,在直三棱柱ABC -A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA1,D ,E ,F 分别为B 1A ,C 1C ,BC 的中点.求证: (1)DE ∥平面ABC ; (2)B 1F ⊥平面AEF .证明 如图,建立空间直角坐标系A -xyz , 令AB =AA 1=4,则A (0,0,0),E (0,4,2),F (2,2,0),B (4,0,0),B 1(4,0,4). (1)取AB 中点为N ,则N (2,0,0), 又C (0,4,0),D (2,0,2),∴DE →=(-2,4,0),NC →=(-2,4,0), ∴DE →=NC →.∴DE ∥NC ,又NC 在平面ABC 内,故DE ∥平面ABC .(2)B 1F →=(-2,2,-4),EF →=(2,-2,-2),AF →=(2,2,0),B 1F →·EF →=(-2)×2+2×(-2)+(-4)×(-2)=0, 则B 1F →⊥EF →,∴B 1F ⊥EF ,∵B 1F →·AF →=(-2)×2+2×2+(-4)×0=0, ∴B 1F →⊥AF →,即B 1F ⊥AF .又∵AF ∩EF =F ,∴B 1F ⊥平面AEF .学生用书第126页 考点三 利用空间向量解决探索性问题【例3】 (2014·福州调研)如图,在长方体ABCD -A1B 1C 1D 1中,AA 1=AD =1,E 为CD 的中点. (1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由.审题路线 由长方体特征,以A 为坐标原点建立空间坐标系,从而将几何位置关系转化为向量运算.第(1)问证明B 1E →·AD 1→=0,第(2)问是存在性问题,由DP →与平面B 1AE 的法向量垂直,通过计算作出判定.(1)证明 以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图).设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1),E ⎝ ⎛⎭⎪⎫a 2,1,0,B 1(a,0,1).故AD 1→=(0,1,1),B 1E →=⎝ ⎛⎭⎪⎫-a 2,1,-1,AB 1→=(a,0,1),AE →=⎝ ⎛⎭⎪⎫a 2,1,0.∵AD 1→·B 1E →=-a2×0+1×1+(-1)×1=0, ∴B 1E ⊥AD 1.(2)解 假设在棱AA 1上存在一点P (0,0,z 0). 使得DP ∥平面B 1AE ,此时DP →=(0,-1,z 0). 又设平面B 1AE 的法向量n =(x ,y ,z ).∵n ⊥平面B 1AE ,∴n ⊥AB 1→,n ⊥AE →,得⎩⎪⎨⎪⎧ax +z =0,ax2+y =0.取x =1,得平面B 1AE 的一个法向量n =⎝ ⎛⎭⎪⎫1,-a 2,-a要使DP ∥平面B 1AE ,只要n ⊥DP →,有a2-az 0=0, 解得z 0=12. 又DP ⊄平面B 1AE ,∴存在点P ,满足DP ∥平面B 1AE ,此时AP =12. 规律方法 立体几何开放性问题求解方法有以下两种:(1)根据题目的已知条件进行综合分析和观察猜想,找出点或线的位置,然后再加以证明,得出结论;(2)假设所求的点或线存在,并设定参数表达已知条件,根据题目进行求解,若能求出参数的值且符合已知限定的范围,则存在这样的点或线,否则不存在.本题是设出点P 的坐标,借助向量运算,判定关于z 0的方程是否有解.【训练3】 如图所示,四棱锥S -ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点. (1)求证:AC ⊥SD .(2)若SD ⊥平面P AC ,则侧棱SC 上是否存在一点E ,使得BE ∥平面P AC .若存在,求SE ∶EC 的值;若不存在,试说明理由. (1)证明 连接BD ,设AC 交BD 于O ,则AC ⊥BD . 由题意知SO ⊥平面ABCD .以O 为坐标原点,OB →,OC →,OS →分别为x 轴、y 轴、z 轴正方向,建立空间直角坐标系如图.设底面边长为a ,则高SO =62a , 于是S ⎝⎛⎭⎪⎫0,0,62a ,D ⎝ ⎛⎭⎪⎫-22a ,0,0,B ⎝ ⎛⎭⎪⎫22a ,0,0,C ⎝ ⎛⎭⎪⎫0,22a ,0,于是OC →=⎝ ⎛⎭⎪⎫0,22a ,0,SD →=⎝ ⎛⎭⎪⎫-22a ,0,-62a ,则OC →·SD →=0.故OC ⊥SD .从而AC ⊥SD . (2)解 棱SC 上存在一点E 使BE ∥平面P AC . 理由如下:由已知条件知DS →是平面P AC 的一个法向量, 且DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,CS →=⎝ ⎛⎭⎪⎫0,-22a ,62a ,BC →=⎝ ⎛⎭⎪⎫-22a ,22a ,0.设CE →=tCS →,则BE →=BC →+CE →=BC →+tCS →= ⎝ ⎛⎭⎪⎫-22a ,22a (1-t ),62at ,由BE →·DS →=0⇔t =13.∴当SE ∶EC =2∶1时,BE →⊥DS →.又BE 不在平面P AC 内,故BE ∥平面P AC .1.用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想. 2.两种思路:(1)选好基底,用向量表示出几何量,利用空间向量有关定理与向量的线性运算进行判断.(2)建立空间坐标系,进行向量的坐标运算,根据运算结果的几何意义解释相关问题.3.运用向量知识判定空间位置关系,仍然离不开几何定理.如用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.思想方法8——运用空间向量研究空间位置关系中的转化思想【典例】 (2013·陕西卷)如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A 1O ⊥平面ABCD ,AB =AA 1= 2. (1)证明:A 1C ⊥平面BB 1D 1D ;(2)求平面OCB 1与平面BB 1D 1D 的夹角θ的大小.(1)证明 法一 由题设易知OA ,OB ,OA 1两两垂直,以O 为原点建立直角坐标系,如图.∵AB =AA 1=2,∴OA =OB =OA 1=1,∴A (1,0,0),B (0,1,0),C (-1,0,0),D (0,-1,0),A 1(0,0,1).①由A 1B 1→=AB →,易得B 1(-1,1,1).∵A 1C →=(-1,0,-1),BD →=(0,-2,0),BB 1→=(-1,0,1),∴A 1C →·BD →=0,A 1C →·BB 1→=0,② ∴A 1C ⊥BD ,A 1C ⊥BB 1,且BB 1∩BD =B ,∴A 1C ⊥平面BB 1D 1D .③ 法二 ∵A 1O ⊥平面ABCD ,∴A 1O ⊥BD .又底面ABCD 是正方形,∴BD ⊥AC ,∴BD ⊥平面A 1OC ,∴BD ⊥A 1C .④又OA 1是AC 的中垂线,∴A 1A =A 1C =2,且AC =2,∴AC 2=AA 21+A 1C 2,∴△AA 1C 是直角三角形,∴AA 1⊥A 1C .又BB 1∥AA 1,∴A 1C ⊥BB 1,又BB 1∩BD =B ,∴A 1C ⊥平面BB 1D 1D . ⑤(2)解 设平面OCB 1的法向量n =(x ,y ,z ).∵OC →=(-1,0,0),OB 1→=(-1,1,1),∴⎩⎪⎨⎪⎧ n ·OC →=-x =0,n ·OB 1→=-x +y +z =0,∴⎩⎪⎨⎪⎧x =0,y =-z ,取n =(0,1,-1), 由(1)知,A 1C →=(-1,0,-1)是平面BB 1D 1D 的法向量,∴cos θ=|cos<n ,A 1C →>|=12×2=12. ⑥ 又0≤θ≤π2,∴θ=π3.[反思感悟] (1)转化化归是求解空间几何的基本思想方法:①中将空间位置、数量关系坐标化.②和③体现了线线垂直与线面垂直的转化,以及将线线垂直转化为向量的数量积为0.在④与⑤中主要实施线面、线线垂直的转化.⑥中把求“平面夹角的余弦值”转化为“两平面法向量夹角的余弦值”.(2)空间向量将“空间位置关系”转化为“向量的运算”.应用的核心是要充分认识形体特征,建立恰当的坐标系,实施几何问题代数化.同时注意两点:一是正确写出点、向量的坐标,准确运算;二是空间位置关系中判定定理与性质定理条件要完备.【自主体验】如图,在直三棱柱ABC -A 1B 1C 1中,AC ⊥BC ,D 为AB 的中点,AC =BC =BB 1.求证:(1)BC 1⊥AB 1;(2)BC 1∥平面CA 1D .证明 如图,以C 1点为原点,C 1A 1,C 1B 1,C 1C 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.设AC =BC =BB 1=2,则A (2,0,2),B (0,2,2),C (0,0,2),A 1(2,0,0),B 1(0,2,0),C 1(0,0,0),D (1,1,2).(1)由于BC 1→=(0,-2,-2),AB 1→=(-2,2,-2),所以BC 1→·AB 1→=0-4+4=0,因此BC 1→⊥AB 1→,故BC 1⊥AB 1.(2)连接A 1C ,取A 1C 的中点E ,连接DE ,由于E (1,0,1),所以ED →=(0,1,1),又BC 1→=(0,-2,-2),所以ED →=-12BC 1→,又ED 和BC 1不共线,所以ED ∥BC 1,又DE ⊂平面CA 1D ,BC 1⊄平面CA 1D ,故BC 1∥平面CA 1D .对应学生用书P321基础巩固题组(建议用时:40分钟)一、选择题1.已知平面α,β的法向量分别为μ=(-2,3,-5),v =(3,-1,4),则( ).A .α∥βB .α⊥βC .α、β相交但不垂直D .以上都不正确解析 ∵-23≠3-1≠-54,∴μ与v 不是共线向量,又∵μ·v =-2×3+3×(-1)+(-5)×4=-29≠0,∴μ与v 不垂直,∴平面α与平面β相交但不垂直.答案 C2.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( ).A .相交B .平行C .在平面内D .平行或在平面内解析 ∵AB →=λCD →+μCE →,∴AB →,CD →,CE →共面.则AB 与平面CDE 的位置关系是平行或在平面内.答案 D3.(2014·泰安质检)已知A (1,0,0),B (0,1,0),C (0,0,1)三点,向量n =(1,1,1),则以n 为方向向量的直线l 与平面ABC 的关系是( ).A .垂直B .不垂直C .平行D .以上都有可能解析 易知AB →=(-1,1,0),AC →=(-1,0,1),∴AB →·n =-1×1+1×1+0=0,∴AC →·n=0,则AB →⊥n ,AC →⊥n ,即AB ⊥l ,AC ⊥l ,又AB 与AC 是平面ABC 内两相交直线,∴l ⊥平面ABC .答案 A如图,在长方体ABCD -A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 的位置关系为( ).A .平行B .异面C .垂直D .以上都不对解析以D 点为原点,分别以DA ,DC ,DD 1所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系D -xyz ,依题意,可得,D (0,0,0),P (0,1,3),C (0,2,0),A (22,0,0),M (2,2,0). ∴PM →=(2,2,0)-(0,1,3)=(2,1,-3),AM →=(2,2,0)-(22,0,0)=(-2,2,0),∴PM →·AM →=(2,1,-3)·(-2,2,0)=0,即PM →⊥AM →,∴AM ⊥PM .答案 C5.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE .则M 点的坐标为( ).A .(1,1,1) B.⎝ ⎛⎭⎪⎫23,23,1 C.⎝ ⎛⎭⎪⎫22,22,1 D.⎝ ⎛⎭⎪⎫24,24,1 解析 连接OE ,由AM ∥平面BDE ,且AM ⊂平面ACEF ,平面ACEF ∩平面BDE =OE ,∴AM ∥EO ,又O 是正方形ABCD 对角线交点,∴M 为线段EF 的中点.在空间坐标系中,E (0,0,1),F (2,2,1).由中点坐标公式,知点M 的坐标⎝ ⎛⎭⎪⎫22,22,1. 答案 C二、填空题6.已知平面α和平面β的法向量分别为a =(1,1,2),b =(x ,-2,3),且α⊥β,则x =________.解析 ∵α⊥β,∴a ·b =x -2+6=0,则x =-4.答案 -47.已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1).则不重合的两个平面α与β的位置关系是________.解析 AB →=(0,1,-1),AC →=(1,0,-1),∴n ·AB →=0,n ·AC →=0,∴n ⊥AB →,n ⊥AC →,故n 也是α的一个法向量.又∵α与β不重合,∴α∥β.答案 平行8.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________.解析 ∵AB →·AP →=0,AD →·AP →=0,∴AB ⊥AP ,AD ⊥AP ,则①②正确.又AB →与AD →不平行,∴AP →是平面ABCD 的法向量,则③正确.由于BD →=AD →-AB →=(2,3,4),AP →=(-1,2,-1),∴BD →与AP →不平行,故④错误.答案 ①②③三、解答题 9.如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:PB ∥平面EFG . 证明 ∵平面P AD ⊥平面ABCD 且ABCD 为正方形,∴AB ,AP ,AD 两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).∴PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1),设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),∴⎩⎨⎧ t =2,t -s =0,-t =-2,解得s =t =2.∴PB →=2FE →+2FG →,又∵FE →与FG →不共线,∴PB →,FE →与FG →共面.∵PB ⊄平面EFG ,∴PB ∥平面EFG .10.如图所示,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°的角.(1)求证:CM ∥平面P AD ;(2)求证:平面P AB ⊥平面P AD .证明以C 为坐标原点,CB 所在直线为x 轴,CD 所在直线为y 轴,CP 所在直线为z 轴建立如图所示的空间直角坐标系C -xyz .∵PC ⊥平面ABCD ,∴∠PBC 为PB 与平面ABCD 所成的角,∴∠PBC =30°.∵PC =2,∴BC =23,PB =4.∴D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2),M ⎝ ⎛⎭⎪⎫32,0,32,∴DP →=(0,-1,2),DA →=(23,3,0),CM →=⎝ ⎛⎭⎪⎫32,0,32, (1)设n =(x ,y ,z )为平面P AD 的一个法向量,则⎩⎪⎨⎪⎧ DP →·n =0,DA →·n =0,即⎩⎨⎧ -y +2z =0,23x +3y =0,∴⎩⎪⎨⎪⎧ z =12y ,x =-32y , 令y =2,得n =(-3,2,1).∵n ·CM →=-3×32+2×0+1×32=0,∴n ⊥CM →,又CM ⊄平面P AD ,∴CM ∥平面P AD .(2)取AP 的中点E ,并连接BE ,则E (3,2,1),BE →=(-3,2,1),∵PB =AB ,∴BE ⊥P A . 又BE →·DA →=(-3,2,1)·(23,3,0)=0,∴BE →⊥DA →,则BE ⊥DA .∵P A ∩DA =A .∴BE ⊥平面P AD ,又∵BE ⊂平面P AB ,∴平面P AB ⊥平面P AD .能力提升题组(建议用时:25分钟)一、选择题1.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则x +y 的值为( ).A.257B.67C.187D.407解析 ∵AB →⊥BC →,∴AB →·BC →=0,即3+5-2z =0,得z =4,又BP ⊥平面ABC ,∴BP →⊥AB →,BP →⊥BC →,则⎩⎪⎨⎪⎧(x -1)+5y +6=0,3(x -1)+y -12=0,解得x =407,y =-157.于是x +y =407-157=257. 答案 A2.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,若平行六面体的各棱长均相等,则( ).①A 1M ∥D 1P ;②A 1M ∥B 1Q ;③A 1M ∥平面DCC 1D 1;④A 1M ∥平面D 1PQB 1.以上正确说法的个数为( ).A .1B .2C .3D .4解析 A 1M →=A 1A →+AM →=A 1A →+12AB →,D 1P →=D 1D →+DP →=A 1A →+12AB →,∴A 1M →∥D 1P →,所以A 1M ∥D 1P ,由线面平行的判定定理可知,A 1M ∥面DCC 1D 1,A 1M ∥面D 1PQB 1.①③④正确.答案 C二、填空题3.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别是棱BC ,DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.解析 以D 1A 1,D 1C 1,D 1D 分别为x ,y ,z 轴建立空间直角坐标系,设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),F (0,0,1-y ),B (1,1,1),∴B 1E →=(x -1,0,1),∴FB →=(1,1,y ),由于B 1E ⊥平面ABF ,所以FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1.答案 1三、解答题4.在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E ,F 分别是AB ,PB 的中点.(1)求证:EF ⊥CD ;(2)在平面P AD 内求一点G ,使GF ⊥平面PCB ,并证明你的结论.(1)证明如图,以DA ,DC ,DP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0),A (a,0,0),B (a ,a,0),C (0,a,0),E ⎝ ⎛⎭⎪⎫a ,a 2,0,P (0,0,a ), F ⎝ ⎛⎭⎪⎫a 2,a 2,a 2. EF →=⎝ ⎛⎭⎪⎫-a 2,0,a 2,DC →=(0,a,0). ∵EF →·DC →=0,∴EF →⊥DC →,即EF ⊥CD .(2)解 设G (x,0,z ),则FG →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2, 若使GF ⊥平面PCB ,则由FG →·CB →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2·(a,0,0)=a ⎝ ⎛⎭⎪⎫x -a 2=0,得x =a 2;由FG →·CP →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2·(0,-a ,a ) =a 22+a ⎝ ⎛⎭⎪⎫z -a 2=0,得z =0. ∴G 点坐标为⎝ ⎛⎭⎪⎫a 2,0,0,即G 点为AD 的中点. 学生用书第128页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何中的向量方法(一)——证明平行与垂直易错点
主标题:立体几何中的向量方法(一)——证明平行与垂直易错点
副标题:从考点分析立体几何中的向量方法(一)——证明平行与垂直易错点,为学生备考提供简洁有效的备考策略。
关键词:向量证平行,向量证垂直,向量求角,易错点
难度:2
重要程度:4
【易错点】
1.平行关系
(1)直线的方向向量是唯一确定的.(×)
(2)两不重合直线l 1和l 2的方向向量分别为v 1=(1,0,-1),v 2=(-2,0,2),则l 1与l 2的位置关系是平行.(√)
2.垂直关系
(3)已知AB →=(2,2,1),AC →
=(4,5,3),则平面ABC 的单位法向量是n 0=
±⎝ ⎛⎭
⎪⎫13,-23,23.(√) (4)如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线NO ,AM 的位置关系是异面垂直.(√)
剖析:
1.一是切莫混淆向量平行与向量垂直的坐标表示,二是理解直线平行与直线方向向量平行的差异,如(2).否则易造成解题不严谨.
2.利用向量知识证明空间位置关系,要注意立体几何中相关定理的活用,如证明直线a ∥b ,可证向量a =λb ,若用直线方向向量与平面法向量垂直判定线面平行,必需强调直线在平面外等.。