磨削的基本特点及机理
磨削机理
δ——单颗工作磨粒顶面积,即工件与工作磨粒的实际接触面积;
p ——磨粒实际磨损表面与工件间的平均接触压强;
因此,可以得到单位宽度法向磨削力F’n,单位宽度切向磨削力F’t公式:
F 'n
1 1 v w P An vw Ce a p 2 d se 2 Fp a p vs 1 vs
1 2
l l q
1
Fn l F p Al N d l dl
0
整个接触弧长度上的法向磨削力大小:
Fn F p C e
,
vw v s
2 1
a d
p se
1
1 1 n 1 n 2
有效磨刃数, 为砂轮以工件的接触弧长度,b为磨削宽度。
Ls
砂轮接触面上的动态磨刃数的磨削力计算公式
关于磨削力计算公式的建立,目前国内外有不少 论述。在这里重点介绍G.Wener等建立的磨削力计算 公式,该公式考虑了磨削力与磨削过程的动态参数关 系。
建立磨削力计算公式时,需要两项参数:
(1)单位砂轮表面上参与工作的磨刃数; (2)砂轮与工件相对接触长度内的平均切削截面积A。
单位砂轮表面上参与工作的磨刃数:N d An Ce
vw v s
ap d se
2
如图,对于弧任意接触长度ι范围内的动态磨刃数Nd(ι)为:
l N d (l ) N d l s
vw A C n e v s
磨削的工艺特点及应用范围
磨削的工艺特点及应用范围磨削是一种通过将磨料与工件接触并相对运动,以去除工件表面的材料来达到加工目的的工艺。
它是机械加工中常用的一种精密加工工艺,具有以下几个特点和应用范围。
首先,磨削具有高精度的特点。
由于磨削采用磨料的物理磨损作用,能够在工件表面形成较高的精度和光洁度。
这使得磨削可以在高要求的部件上进行加工,如模具、精密仪器零部件等。
其次,磨削具有高表面质量的优势。
由于磨削可产生微细破碎和位移切削,所以能够在工件表面形成比较光滑及均匀的表面。
磨削加工可将工件表面粗糙度控制在很低的范围内,以满足高精度零部件的要求。
第三,磨削可以加工各种材料。
由于磨料多种多样,几乎可以加工所有的工程材料,如钢、铸铁、有色金属、陶瓷、石材等。
而且磨削还可以加工硬度高、韧性好的材料,如硬质合金、高速钢等。
因此,磨削具有广泛的应用范围。
第四,磨削是一种高效率的加工方法。
尽管磨削是一种相对慢速的金属切削方式,但具有高的切削效率。
这是由于磨削通过很薄的材料去除率来实现加工,而它的单位材料去除率比其他加工方法要高得多。
此外,磨削可以实现连续加工,大大提高了生产效率。
第五,磨削可以加工各种形状的工件,如平面、曲面、孔等。
通过不同形状的磨具和磨料,可以加工出各种不同形状和精度要求的工件。
并且,由于磨削是一种柔性的加工方法,它可以根据加工需要进行不同的修整,以满足不同的要求。
最后,磨削还可以改善材料的机械性能和表面质量。
通过磨削可以降低材料的表面硬度和残余应力,从而提高材料的疲劳寿命和抗腐蚀性能。
此外,磨削还可以消除工件的加工硬化层,提高工件的尺寸精度和表面质量。
总之,磨削是一种高精度、高效率、多功能的加工方法。
它在航空航天、汽车、机床制造、电子仪器、模具制造等领域广泛应用。
在未来,随着科学技术的不断发展,磨削将更加趋向智能化,更好地满足不同领域对于精密加工的需求。
磨削加工的工艺特点
磨削加工的工艺特点磨削加工是指通过磨削工具与工件相互作用,以削除工件表面的金属层来改变工件形状、尺寸与表面质量的一种加工方法。
它具有以下的工艺特点:1. 磨削加工是一种高精度加工方法。
磨削加工能够实现极高的加工精度与表面质量要求,通常能够达到工件表面的精度及其低的Ra值。
2. 磨削加工能够实现高硬度材料的加工。
磨削加工适用于各种各样的工件材料,包括高硬度材料,如合金钢、铸造铁、硬质合金等。
3. 磨削加工是一种没有侵蚀性的加工方法。
由于磨削加工不需要进行物理或者化学的反应,因此不会在工件表面形成氢脆、表面扭曲、残余应力等不良影响,从而保持了工件的原有性能。
4. 磨削加工能够实现多种形状的加工。
由于磨削加工中采用的磨削工具多种多样,如磨轮、砂轮、磨棒等,因此能够实现各种形状、轮廓的工件加工。
5. 磨削加工对于不同材料可以选择不同的磨削工艺。
不同的材料有不同的磨削工艺要求,而磨削加工则可以根据不同材料的特性选择不同的磨削工艺参数,从而实现最佳的加工效果。
6. 磨削加工具有较高的生产效率。
虽然磨削加工相对于其他加工方法来说比较耗时,但是相对于传统的粗加工和磨床加工来说,磨削加工能够大大提高加工效率。
7. 磨削加工有较高的自动化程度。
随着数控技术的发展,磨削加工已经实现了高度的自动化,减少了人为操作的影响,提高了加工的稳定性和一致性。
总之,磨削加工具有高精度、高硬度、无侵蚀、多形状、材料可选择性、生产效率高以及高自动化程度的工艺特点。
这些特点使得磨削加工在精密零件制造、模具制造、航空航天领域以及高精度传动装置等方面都有着广泛的应用。
尽管磨削加工在实际应用中仍存在着一些问题,如加工效率低、磨削热引起的负面影响等,但是随着技术的不断发展和进步,这些问题可以逐渐得到解决,使得磨削加工在工业生产中发挥更大的作用。
2.4磨削机理
1)车削修整法
以单颗粒金刚石(或以细碎金刚石制成 的金刚笔、金刚石修整块) 作为刀具车 削砂轮是应用最普遍的修整方法。安装 在刀架上的金刚石刀具通常在垂直和水 平两个方向各倾斜约5°~15°;金刚 石与砂轮的接触点应低于砂轮轴线 0.5~2mm,修整时金刚石作均匀的低速 进给移动。要求磨削后的表面粗糙度越 小,则进给速度应越低,如要达到 Ra0.16~0.04µm的表面粗糙度,修整进 给速度应低于50mm/min。修整总量一般 为单面0.1mm左右,往复修整多次。粗 修的切深每次为0.01~0.03mm,精修则 小于0.01mm。
当砂轮硬度较低,修整较粗,磨削载荷较 重时。易出现脱落型。这时,砂轮廓形失真, 严重影响磨削表面质量及加工精度。 在磨削碳钢时由于切屑在磨削高温下发生 软化,嵌塞在砂轮空隙处,形成嵌入式堵塞, 在磨削钛合金时,由于切屑与磨粒的亲合力强, 使切屑熔结粘附于磨粒上,形成粘附式堵塞。 砂轮堵塞后即丧失切削能力,磨削力及温度剧 增,表面质量明显下降。
根据条件不同,磨粒的切削过程的3个阶段可以全部存 在,也可以部分存在 。
典型磨屑有带状、挤裂状、 球状及灰烬等(图10— 7).
三、磨削力及磨削功率 尽管单个磨粒切除的材料很少,但一个砂轮表层 有大量磨粒同时工作,而且磨粒的工作角度很不合理, 因此总的磨削力相当大。总磨削力可分解为三个分力: Rz——主磨削力(切向磨削力);
根据表面颜色,可以推断磨削温度及烧伤程度。如淡黄色 约为400℃~500℃,烧伤深度较浅;紫色为800℃~900℃, 烧伤层较深。 5、磨削表面裂纹 磨削过程中,当形成的残余拉应力超过工件材料的强 度极限时,工件表面就会出现裂纹。 磨削裂纹极浅,呈网状或垂直于磨削方向。有时不在表层, 而存在于表层之下。有时在研磨或使用过程中,由于去除 了表面极薄金属层后,残余应力失去平衡,形成微细裂纹。 这些微小裂纹,在交变载荷作用下,会迅速扩展,并造成 工件的破坏。
磨削有哪些原理特点
磨削加工都有哪些类型及原理特点《磨削加工》以制造工艺为主线,数据与方法相结合,汇集了我国多年来工艺工作的成就和经验,反映了国内外现代工艺水平及其发展方向。
工艺基础包括车削、镗削、铣削、锯削、钻削、扩削、铰削、拉削、刨削、插削、磨削加工,齿轮、蜗轮蜗杆、花键加工,螺纹加工,特种加工,精密加工和纳米加工,高速切削,难加工材料的切削加工,表面工程技术。
主要包括磨削原理、磨削液、磨床与磨床夹具、磨料磨具、磨削加工工艺等内容。
磨削加工磨削加工1、外圆磨削主要在外圆磨床上进行,用以磨削轴类工件的外圆柱、外圆锥和轴肩端面。
磨削时,工件低速旋转,如果工件同时作纵向往复移动并在纵向移动的每次单行程或双行程后砂轮相对工件作横向进给,称为纵向磨削法。
如果砂轮宽度大于被磨削表面的长度,则工件在磨削过程中不作纵向移动,而是砂轮相对工件连续进行横向进给,称为切入磨削法。
一般切入磨削法效率高于纵向磨削法。
如果将砂轮修整成成形面,切入磨削法可加工成形的外表面。
2、内圆磨削主要用于在内圆磨床、万能外圆磨床和坐标磨床上磨削工件的圆柱孔、圆锥孔和孔端面。
一般采用纵向磨削法。
磨削成形内表面时,可采用切入磨削法。
在坐标磨床上磨削内孔时,工件固定在工作台上,砂轮除作高速旋转外,还绕所磨孔的中心线作行星运动。
内圆磨削时,由于砂轮直径小,磨削速度常常低于30米/秒、耐磨性是普通砂轮的20-100倍,极大的减少了砂轮的修正及更换频率。
3、平面磨削主要用于在平面磨床上磨削平面、沟槽等。
平面磨削有两种:用砂轮外圆表面磨削的称为周边磨削,一般使用卧轴平面磨床,如用成形砂轮也可加工各种成形面;用砂轮端面磨削的称为端面磨削,一般使用立轴平面磨床。
4、无心磨削一般在无心磨床上进行,用以磨削工件外圆。
磨削时,工件不用顶尖定心和支承,而是放在砂轮与导轮之间,由其下方的托板支承,并由导轮带动旋转。
当导轮轴线与砂轮轴线调整成斜交1°~6°时,工件能边旋转边自动沿轴向作纵向进给运动,这称为贯穿磨削。
3)磨削加工特点
3)磨削加工特点3)磨削加工特点(1)能获得很高的加工精度和低的表面粗糙度n 磨粒上锋利的切削刃,能够切下一层很薄的金属,切削厚度可以小到数微米;残留面积的高度小,有利于形成光洁的表面;n 磨床有较高的精度和刚度,并有实现微量进给机构,可以实现微量切削;(2)砂轮有自锐作用n 磨削过程中,磨钝了的磨粒会自动脱落而露出新鲜锐利的磨粒。
n 实际生产中,有时就利用这一原理进行强力磨削,以提高磨削加工的生产率。
(3)磨削温度高n 磨削时的切削速度为一般切削加工的10~20倍,磨粒多为负前角切削,挤压和摩擦较严重,磨削时滑擦、刻划和切削三个阶段所消耗的能量绝大部分转化为热量。
n 砂轮本身的传热性很差,大量的磨削热在短时间内传散不出去,在磨削区形成瞬时高温,有时高达800~1000 ℃。
n 大部分磨削热将传入工件,降低零件的表面质量和使用寿命。
n 向磨削区加注大量的切削液起冷却、润滑作用,不仅可降低磨削温度,还可以冲掉细碎的切屑和碎裂及脱落的磨粒,避免堵塞砂轮空隙,提高砂轮的寿命。
(4)磨削的背向力大n 磨削外圆时,总磨削力分解为磨削力Fc、进给力Ff和背向力Fp 3个相互垂直的分力。
n 磨削力Fc决定磨削时消耗功率的大小,在一般切削加工中,切削力Fc比背向力Fp大得多;而在磨削时,背向磨削力Fp大于磨削力Fc(一般2~4倍)。
n 进给力最小,一般可忽略不计。
n 背向力Fp不消耗功率,但它会使工件产生水平方向的弯曲变形,直接影响工件的加工精度。
例如纵磨细长轴的外圆时,由于工件的弯曲而产生腰鼓形。
(三)外圆面的光整加工1.研磨(lapping)把研磨剂放在研具与工件之间,在一定压力作用下研具与工件作复杂的相对运动,通过研磨剂的微量切削及化学作用,去除工件表面的微小余量,以提高尺寸精度、形状精度和降低表面粗糙度。
研磨方法:手工研磨和机械研磨工件安装在车床两顶尖间作低速旋转(20~30m/min),研具(手握)在一定压力下沿工件轴向作往复直线运动, 直至研磨合格为止。
磨削原理介绍
(4)硬度
指砂轮工作时在磨削力作用下磨粒脱落的难易程度。 取决于结合剂的结合能力及所占比例,与磨料硬度无关。 硬度高,磨料不易脱落;硬度低,自锐性好。 分7大级(超软、软、中软、中、中硬、硬、超硬),16小级
砂轮硬度选择原则:
第八节 磨削原理
➢ 磨削是一种精加工方法。 ➢ 尺寸精度可达IT5~IT6。
➢ 表面粗糙度能达到Ra0.8~0.04μm;
➢ 可磨普通材料,又可磨高硬度难加工材料; ➢ 适应各种工件形状、表面及生产批量。
一、砂轮的特性和选择
1、普通砂轮的特性和选择
砂轮 = 磨料+结合剂 砂轮特性决定于五要素: 磨料、粒度、结合剂、 硬度和 组织。
(2)工件速度 vw 增大工件速度 ,单位时间内进入磨削区的 工件材料增加,单颗磨粒的切削厚度加大,磨削力及能耗增 加,磨削温度上升;但从热量传递的观点分析,提高工件速 度 ,工件表面被磨削点与砂轮的接触时间缩短,工件上受热 影响区的深度较浅,可以有效防止工件表面层产生磨削烧伤 和磨削裂纹,在生产实践中常采用提高工件速度的方法来减 少工件表面烧伤和裂纹。
双斜边 一号砂轮
4
主要用于磨齿轮齿面和磨单线螺纹
薄片砂轮 41
用于切断和开槽等
杯形砂轮 6 碗形砂轮 11
碟形 12 一号砂轮 a
主要用其端面刃磨刀具,也可用其圆 周面磨平面及内孔
通常用于刃磨刀具,也可用于导轨磨 床上磨机床导轨
适于磨铣刀、铰刀、拉刀等,大尺寸 的砂轮一般用于磨齿轮的齿面
(7) 砂轮的标志
2)耕犁阶段 开始产生塑性变形,磨 粒逐渐切入工件表层材料中, 出现沟痕,沟痕两侧产生隆起。 产生的热量大大增加。
磨削的基本特点及机理
理论预测和实验结果表明: 弹性变形有如下基本特征 1)临界法向力随切削刃与工件的摩擦系数增大而明显降低; 随接触宽度增加而呈直线增加;随切削速度增加而减小。 2)临界切入深度随切削速度增加而减小;随摩擦系数减小而 减小。 3)弹性滑移长度随接触宽度增加呈直线增加;随干涉角 增加而直线地减小;随弹簧常数的增加而减小;随切削 速度的变化无明显影响。弹性滑移长度是摩擦系数的复 杂函数;且随磨削液性能的变化而变化。
磨粒与工件的干涉过程可分为以下三个阶段: (1)划擦阶段: 砂轮与工件开始接触阶 段,磨粒切削刃与工件之间只发生弹性 接触。 (2)刻划阶段: 砂轮与工件开始接触以 后,继续以恒定的进给量切入工件。经 过滑擦阶段后,磨粒上承受一定大小的 法向力,增大到一定值之后,材料表面 产生塑性变形。使磨粒前方的材料被挤 压而隆起,如犁田的情况,故称之为耕 犁作用。这时一般不形成切屑 (3)切削阶段:砂轮继续相对于材料表面作进给。使磨粒切入 深度增加,达一定数值时,形成切屑。
在磨削中,切削刃和工件的干涉存在着以下几种情况: a) 磨粒在整个接触期间只进行弹性滑移; b) 磨粒在整个接触期间由弹性滑移到塑性耕犁再转 变为弹性滑移离开磨削区; c) 磨粒在整个接触期间要经过弹性滑移、塑性耕犁和切 削三个过程。 切削刃即将离开工件时由于磨粒与工件材料的干涉深 度迅速减小,工件又将产生塑性和弹性变形,但这一 阶段非常短暂,实际研究中常常不作考虑。
(4) 积屑瘤 在磨削软质材料 时砂轮被堵塞时所特有的现象, 即切屑时而堆积在砂轮表面时而 脱落形成了积屑瘤
(5) 熔融切屑 粉末状切 屑在高温下熔融并在飞散过 程中球化而成,这种切屑在 磨削硬度较高材料中砂轮发 生堵塞的磨削状态下最为明 显
三、磨屑的形状
(1) 带状切屑 在正常磨削中 和自锐性良好的情况下,砂轮表 面磨粒锐利,由于磨粒具有负前 角并且切削速度十分高,常常产 生带状切屑。
机械制造工艺之磨削概述
通过调整砂轮转速、切削深度和进给速度等参数,优化磨削力的 大小和方向,提高加工质量和效率。
砂轮磨损与再生
1 2 3
砂轮磨损
在磨削过程中,砂轮与工件之间的摩擦会导致砂 轮磨损,影响磨削效果和加工精度。
再生技术
为了减少砂轮磨损,采用金刚石或立方氮化硼等 超硬材料对砂轮进行修整和再生,恢复砂轮的磨 削性能。
热影响
冷却技术
为了控制磨削热,采用切削液、喷雾 冷却和油雾冷却等技术,降低工件表 面温度,减少热影响。
磨削热会导致工件表面烧伤、裂纹和 变形等问题,影响工件质量和精度。
磨削力影响及优化
磨削力产生
在磨削过程中,砂轮与工件之间的相互作用力产生磨削力。
磨削力影响
磨削力的大小和方向对工件表面质量、加工精度和砂轮磨损有重 要影响。
磨削的应用领域
01
02
03
机械制造
磨削广泛应用于机械制造 领域,如汽车、航空、能 源、轨道交通等。
精密加工
由于磨削加工精度高,因 此也广泛应用于精密加工 领域,如光学、钟表、医 疗器械等。
难加工材料
对于硬脆、高强度、高精 度要求的难加工材料,磨 削是一种有效的加工方法 。
02
磨削工艺流程
磨料与磨具选择
再生方法
包括在线修整、离线修整和超声波振动修整等方 法,根据不同的加工需求选择合适的再生方法。
06
案例分析
航空发动机叶片磨削工艺
总结词
高精度、高效率
详细描述
航空发动机叶片磨削工艺是机械制造中的重 要环节,要求高精度和高效率。采用先进的 磨削设备和工艺技术,确保叶片的几何形状 、尺寸和表面质量达到设计要求,同时提高 生产效率,降低制造成本。
磨削原理
磨削原理3.7 磨削原理磨削是用砂轮作刀具磨削工件的主要方法之一。
它不仅能加工一可以加工一般刀具难以加工的材料磨削加工的精度可以达到IT60.02~1.25μm。
磨削加工不适合软的材料。
削工件的加工过程,是零件精加工加工一般材料(如钢、铸铁等),还的材料(如淬火钢、硬质合金等)。
~IT4,表面粗糙度Ra值可达适合磨削铝、铜等有色金属及较1.磨料:即砂轮中的硬质颗粒。
2.粒度粒度是指磨料颗粒的大小。
粒度号小的磨粒称为微粉,其号数越小,表示微粉从粗到细依次为W63、W50、W W7、W5、W3.5、W2.5、W1.5、W 度,粒度号W表示微粉,阿拉伯数字表示表示颗粒的大小为40~28μm。
砂轮的粒度对工件表面的粗糙度和磨削深度可以增加,磨削效率高,但表工作标表面上单位面积内的磨粒多,好的表面质量,但磨削效率比较低。
摩擦大,发热量大,易引起工件烧伤。
度号越大,表示磨料颗粒越小。
颗粒更表示磨料的颗粒也越小,亦即粒度越细W40、W28、W20、W14、W10、W1.0、W0.5。
微粉用显微镜测量其粒字表示磨粒的实际宽度尺寸。
例如W40度和磨削效率有较大的影响。
磨粒大,但表面质量差。
反之,磨粒小,在砂轮,磨粒切削刃的等高性好,可以获得较。
另外,粒度细砂轮与工件表面之间的。
3.结合剂结合剂用来将磨料粘合起来,使之影响砂轮的硬度、强度。
结合剂的名称及由于砂轮在高速旋转中进行磨削加击载荷以及强腐蚀性切削液的条件下工合剂本身的耐热、耐蚀性能,就成为结合使之成为砂轮。
结合剂的种类及其性质名称及其代号见表3-13。
削加工,而且又是在高温、高压、强冲下工作,所以磨料粘接的牢固程度,结为结合剂的重要要求。
4.硬度硬度是指砂轮表面上的磨粒在外力易脱落,表明砂轮的硬度低,反之,轮的硬度与磨料的硬度是两个不同的概成不同硬度的砂轮,它主要取决于结合艺。
根据GB/T2484—94标准,砂轮的硬、D、E、F、G、H、J、K、L、M、外力作用下脱落的难易程度。
磨削加工的特点是什么
磨削加工的特点是什么?磨削是一种常用的半精加工和精加工方法,砂轮是磨削的切削工具,磨削是由砂轮表面大量随机分布的磨粒在工件表面进行滑擦、刻划和切削三种作用的综合结果。
磨削的基本特点如下:1.磨削的切削速度高,导致磨削温度高。
普通外圆磨削时v=35m/s,高速磨削v >50m/s。
磨削产生的切削热80%~90%传入工件(10%~15%传入砂轮,1%~10%由磨屑带走),加上砂轮的导热性很差,易造成工件表面烧伤和微裂纹。
因此,磨削时应采用大量的切削液以降低磨削温度。
2.能获得高的加工精度和小的表面粗糙度值加工精度可达IT6-IT4,表面粗糙度值可达Ra0.8-0.02μm。
磨削不但可以精加工,还可以粗磨、荒磨、重载荷磨削。
3.磨削的背向磨削力大因磨粒负前角很大,且切削刃钝圆半径rn较大,导致背向磨削力大于切向磨削力,造成砂轮与工件的接触宽度较大。
会引起工件、夹具及机床产生弹性变形,影响加工精度。
因此,在加工刚性较差的工件时(如磨削细长轴),应采取相应的措施,防止因工件变形而影响加工精度。
4.砂轮有自锐作用在磨削过程中,磨粒有破碎产生较锋利的新棱角,及磨粒的脱落而露出一层新的锋利磨粒,能够部分地恢复砂轮的切削能力,这种现象叫做砂轮的自锐作用,有利于磨削加工。
5.能加工高硬度材料磨削除可以加工铸铁、碳钢、合金钢等一般结构材料外,还能加工一般刀具难以切削的高硬度材料,如淬火钢、硬质合金、陶瓷和玻璃等。
但不宜精加工塑性较大的有色金属工件。
残阳渐逝,血红冲天。
半是夕阳余光,半是狰狞血雨。
是的,血,到处都是冷腥的鲜血。
整个皇宫之内,血流成河,白玉理石全被洗涮成黑红之色,到处是断壁残肢,尸横一片,到处是厮杀后的痕迹。
“为什么?”百里冰左手紧捂着胸口,瞪大着眼睛看着对面十米敌对方处,挥手点兵之人。
那是她的未婚夫,她倾尽一生所爱之人。
亦是绝杀她百里一族,将她迫入绝境之人。
她不懂,为何倾尽所有的爱,换来的是百里一族的灭顶之灾。
磨削及磨削机理.
500———砂轮直径,mm(正规的还须标上环端直径)
10/16——砂轮厚度,mm。其中10mm为砂轮厚度,16mm为中孔加厚区厚度。 203———砂轮孔径,mm
返回目录
第15页
100——磨料粒度号。微粉级(240粒度以下)用〝W〞标识,现国标规定 固结磨具统用〝F〞粒度号标识 L———磨具硬度号(旧称中软2) 5———磨具组织号
金属切削时绝大部分能量转化为热能,这些热能传散在切屑、刀具、工 件上。其中车削、铣削等普通切削方式,热量都是被切屑带走,而对与 磨削来说由于切削的金属层非常薄所以大约60%~90%的热量都传入工件, 这些热量来不及导入工件更深处所以在局部形成高温,并在表层形成极 大的温度梯度。当这些局部温度达到一定临界值时,就会在工件表面形 成热损伤(如表面氧化、烧伤、残余应力、裂纹等),也影响工件尺寸 精度。所以控制磨削热非常关紧。 返回目录 第 8页
1.磨削热产生与传散
磨削热来源于磨削功率的消耗。磨削热量Q分配如下: Q=QW+QS+QC+QO+QU (QW、QS、QC、QO、QU分别表示:传入工件热量、 传入砂轮热量、传入切屑热量、传入切削液热量、、辐射热量)。热量 的分配还跟工件、砂轮的导热性有关,如超硬磨具导热性好,所以磨削 热大部分被砂轮带走。 2.磨削温度的分类和意义:
静止型修整器和运动型修整器。普通的修整方法有三种:车削法、滚压 法和磨削法 我公司主要用金刚石笔的车削法修整和修整滚轮的磨削法。而对超硬磨 具的修整可分为整形和修锐:整形是对砂轮进行微量切削,使表面达到 所要求的几何形状;修锐是去除磨粒间的结合剂,使磨粒间有一定的溶 屑空间,并行成切削刃。对于陶瓷结合剂的疏松型的超硬砂轮(如金刚 石、CBN砂轮),整形和修锐可在同一工序进行。
磨削的名词解释
磨削的名词解释磨削,是一种常见的加工工艺,广泛应用于金属加工、石材加工、木材加工等领域。
它是通过使用磨具与工件之间的相对运动来去除材料的一种方法。
磨削可以用于改善工件的尺寸精度、表面质量和形状精度,以满足不同行业的需求。
在工业生产中,磨削被用于制造各种产品,比如汽车引擎的配件、飞机发动机的零部件、精密仪器仪表以及各类工具刀具等等。
磨削广泛应用的原因之一是它相对于其他加工方法,如铣削、车削等,具有较高的加工精度和表面质量。
磨削过程中,磨具是至关重要的工具,它是用于切削和磨砂的工作部分。
磨削中最常用的磨具是砂轮,砂轮由磨砂颗粒和胶结剂组成。
砂轮具有不同的形状、尺寸和粒度,用于满足不同工件的加工需求。
在磨削过程中,砂轮通过高速旋转产生的切削力和磨粒与工件表面发生相互作用,将工件上的材料磨削下来,从而达到修磨、加工、抛光等目的。
除了砂轮,磨削中还会使用其他类型的磨具,比如研磨棒、砂带等。
这些磨具根据不同材料和加工需求,具有不同的特点和用途。
例如,砂带具有较大的磨削面积,适用于较大面积的修整和平整加工;而研磨棒则适用于狭窄和不规则表面的修磨。
磨削过程的参数与结果密切相关。
磨削的参数包括磨削速度、进给速度、切削深度等。
这些参数的选择取决于工件的材料性质、形状复杂程度以及所需加工精度。
不同的参数设置会对加工结果产生重要影响。
例如,对于加工精度要求较高的工件,一般会选择较小的切削深度和较高的进给速度,以获得更好的表面质量和精度。
磨削的过程也会产生热量,对工件产生热影响。
为了避免过高的温度对工件的影响,常常需要使用冷却液来冷却工件和磨具。
冷却液的使用可以有效降低磨削过程中的温度,减少材料热变形和表面氧化的可能。
磨削技术的发展中,还涌现出了一些创新的方法和技术。
例如,电火花磨削、超声波磨削等。
这些新技术在一些特定的工件加工中发挥了重要作用,为加工行业带来了更多的可能性。
总之,磨削是一种重要的加工方法,它可以提供更高的加工精度和表面质量,满足不同行业的需求。
2 精密磨削加工
砂轮磨削修整法
采用低速回转的超硬级碳化硅砂轮与
高速旋转的砂轮对磨,以达到修整的目的。
滚轧修整法
采用硬质合金圆盘、一组由波浪形白口铁
圆盘或带槽的淬硬钢片套装而成的滚轮,与砂轮对滚和 挤压进行修整。滚轮一般装在修整夹具上手动操作,修
整效率高,适于粗磨砂轮的修整。
精、细修整砂轮
(1)用金钢石笔精修,再用精车后的砂轮细修砂轮
2.精密磨削加工
2.1 概述
(1)磨削(加工的定义)是一种常用的半精加工和精加工方法,
砂轮是磨削的重要切削刀具。加工时通过刀具上的磨粒对工件
的表面不断进行划擦,耕犁,切削作用而获得较高精度和较好
表面质量,精度可达IT5以上Ra为1.25~0.01μm
(2)磨削的主要特点
磨削除了可以加工铸铁、碳钢、合金钢等一般结构材料外,还能加工一般刀具难
修整用量
修整用量包括修整导程、修整深度两项。
修整导程是指砂轮每转一转时金刚石沿砂轮表面的移动距离,
其大小应使砂轮上每颗磨粒都能得到修整, 可按照磨粒的平均尺寸来选择。
修整深度是指修整时金刚石的切削深度,
不能太大,否则会使颗粒随结合剂大量脱落或击碎, 因而既 损耗砂轮又不易将砂轮修整得平整。 修整时候要使用冷却液。
树脂
高分子 化合物
聚腊酸 乙烯脂
精密磨削。
④涂覆方法
重力落砂法:先将粘结剂均匀涂敷在基底上,在靠重力将
砂粒均匀地喷洒在涂层上,经过烘干去除浮面砂粒后即成卷
状砂带,裁剪后就可以制成涂覆磨具产品,整个过程自动进
行。一般的砂纸、砂布就是这样制成的,成本较低。
涂敷法:先将粘结剂和砂粒混合均匀,然后利用胶辊将砂
1)固结磨具
精密砂轮磨削是利用精细修整的粒度为60#~80#的 砂轮进行磨削,其加工精度可达1~0.1 µ 。表面粗糙度值 m Ra可达0.2~0.25µ m。 超精密砂轮磨削是利用经过精细修整的粒度为W40~ W5的砂轮进行磨削,其加工精度可达0.1 µ 。表面粗糙度 m 值Ra可达0.025 ~ 0.008 µ m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4) 积屑瘤 在磨削软质材料 时砂轮被堵塞时所特有的现象, 即切屑时而堆积在砂轮表面时而 脱落形成了积屑瘤
(5) 熔融切屑 粉末状切 屑在高温下熔融并在飞散过 程中球化而成,这种切屑在 磨削硬度较高材料中砂轮发 生堵塞的磨削状态下最为明 显
三、磨屑的形状
(1) 带状切屑 在正常磨削中 和自锐性良好的情况下,砂轮表 面磨粒锐利,由于磨粒具有负前 角并且切削速度十分高,常常产 生带状切屑。
(2) 挤裂切屑 砂轮表面工作 磨粒处于锐利状态下,磨削脆性 工件材料时得到这种切屑特别显 著
(3) 单元切屑 这种切屑短而不 规则并经受了较大的塑性变形。多 见于磨粒钝化后或砂轮被堵塞的磨 削状态之中
第三章 磨削机理和磨削几何参数
磨削与其他切削加工方式的比较
g g
切屑
刀具
磨屑
磨粒
工件
工件
为了描述磨削加工过程,必须找出一些能明确表征 主要的输入或输出参数。
表征输入条件的参数有:磨刃几何参数、有效 磨刃数、切屑层(末变形)断面尺寸、接触弧长 度和砂轮当量直径等。
表征输出条件的参数有:材料切除率、砂轮耗损 率和磨削比、比法向力、功率消耗和比能以及加 工精度和表面完整性指标等。 其中:磨刃几何参数、有效磨刃数、切屑层断面 而尺寸和磨削比等比较重要,称为磨削基本参数。
在磨削中,切削刃和工件的干涉存在着以下几种情况: a) 磨粒在整个接触期间只进行弹性滑移; b) 磨粒在整个接触期间由弹性滑移到塑性耕犁再转 变为弹性滑移离开磨削区; c) 磨粒在整个接触期间要经过弹性滑移、塑性耕犁和切 削三个过程。 切削刃即将离开工件时由于磨粒与工件材料的干涉深 度迅速减小,工件又将产生塑性和弹性变形,但这一 阶段非常短暂,实际研究中常常不作考虑。
磨粒与工件的干涉过程可分为以下三个阶段: (1)划擦阶段: 砂轮与工件开始接触阶 段,磨粒切削刃与工件之间只发生弹性 接触。 (2)刻划阶段: 砂轮与工件开始接触以 后,继续以恒定的进给量切入工件。经 过滑擦阶段后,磨粒上承受一定大小的 法向力,增大到一定值之后,材料表面 产生塑性变形。使磨粒前方的材料被挤 压而隆起,如犁田的情况,故称之为耕 犁作用。这时一般不形成切屑 (3)切削阶段:砂轮继续相对于材料表面作进给。使磨粒切入 深度增加,达一定数值时,形成切屑。
磨粒与工件的干涉曲线
实际生成曲线
实际干涉曲线
理论干涉曲线
磨粒切刃
切 入 深 度
切削 耕 滑 犁 擦
二、弹性变形过程分析
v 一颗磨粒被作为一个刚体装在 弹簧常数为K的弹簧上 接触宽度为2a
ig,
切削刃与工件的相对滑移 速度v
K:弹簧常数
表面干涉角ig,
实际干涉角iw
磨粒 iw 2a 工件
从磨粒与工件开始接触到 转入塑性变形之间的区域 称为弹性变形区. 这个转变点叫弹之间的区域为塑性变形区
KS iw γ KS Vs γ A段 Dh B段 x
Vs
ig
在切削刃前下方的变形中存在着两个阶段:
(a)段中切削刃前下方既有弹性变形,又有塑性变形,其长度非常短。 塑性变形的最大部分是在(b)段,其特点是切削刃的耕犁作用只 产生沟槽和堆积尚无切屑产生
第一节 磨粒切削刃的形状与分布
一、磨粒切削刃的形状
磨粒切削刃的尖端形状对磨粒的磨削能力,磨削 精度和磨削表面粗糙度有着重要的影响
(圆锥或角锥)
球形
尖端球形的圆锥
尖端平面的圆锥
切削刃的形状可直接用显微镜或电子显微镜进行观测,也可以 利用表面轮廓仪描绘尖端的形状;或者间接地测定被磨表面上 的磨削条痕,然后根据磨粒引起的水平分力值进行推定,以获 得切削刃的形状
二、磨粒切刃的分布
ω
a
平均切刃间隔ω 和连续切刃间隔a
da
单位长度
砂轮的组成
砂轮内部的磨粒分布
单位面积内存在的切刃数为C,平均的切刃间隔为ω ,则
w
1 C
ω 对分析磨粒的切入深度和切屑断 面积是一个必要的数值
在砂轮内部任意切断的单位平面含有Np颗磨粒,磨粒的平均直径 为do,那么在1×do的体积内含有的磨粒数
塑性变形的基本特征 1)切削刃上方的堆积和前下方的塑性变形是前角 γ和摩擦系数μ的 函数。较小的前角和摩擦系数使塑性变形程度较小;而较大的前角 和摩擦系数则会在磨粒前下方产生大面积的塑性变形。 2) 发生塑性变形的金属与切削刃前面的接触长度h,在前角γ和摩擦 系数μ较小时随前角γ和摩擦系数μ的增大而增加,但在前角γ和摩擦 系数μ较大时则随前角γ和摩擦系数μ的增大而减小。 3)在刃尖下方的塑性变形深度Dh随前角γ 和摩擦系数μ 的增加而 增加。
理论预测和实验结果表明: 弹性变形有如下基本特征 1)临界法向力随切削刃与工件的摩擦系数增大而明显降低; 随接触宽度增加而呈直线增加;随切削速度增加而减小。 2)临界切入深度随切削速度增加而减小;随摩擦系数减小而 减小。 3)弹性滑移长度随接触宽度增加呈直线增加;随干涉角 增加而直线地减小;随弹簧常数的增加而减小;随切削 速度的变化无明显影响。弹性滑移长度是摩擦系数的复 杂函数;且随磨削液性能的变化而变化。
NP
6
d o V g 1 d o
6V g
3
Vg是砂轮的组织,即磨粒 体积率。一般值0.4~0.5
NP
d o 2
w
'
1 NP
d o =(1.14~1.15)d 0 6V g
砂轮表面上平均 的切刃间隔大约 为平均粒径的 1.5~2倍
第二节
一、磨削过程
磨削机理与磨削过程
磨削加工的特点 决定了磨粒与工 件的干涉过程不 同于一般切削方 式:切屑并不是 从切削一开始就 产生的