大学无机化学课件配位化合物
合集下载
简明无机化学配位化合物课件

Cu2 [ SiF6 ] 六氟合硅(IV)酸亚铜
配体前面用 二、三、四 ··· ···表示该配体的个数。
[ Co(NH3)5 H2O ] Cl3 三氯化五氨•水合钴(III)
Cu2 [ SiF6 ] 六氟合硅(IV)酸亚铜
几种不同的配体之间加 ‘ • ’ 隔开。
[ Co(NH3)5 H2O ] Cl3 三氯化五氨•水合钴(III)
而乙二胺四乙酸(用 EDTA 表示)
HOOCH2C
CH2COOH
NCH2-CH2N
HOOCH2C
CH2COOH
有 2 个 N,4 个 -OH 中的
O 均可配位。
HOOCH2C
CH2COOH
NCH2-CH2N
HOOCH2C
CH2COOH
EDTA 称多基配体。
由双基配体或多基配体形成的 配位化合物经常有环
NH2
NH2
2+
CH2 Cu
CH2
CH2
CH2
NH2
NH2
NH2
NH2
2+
CH2 Cu
CH2
CH2
CH2
NH2
NH2
两个乙二胺像蟹的双螯将 Cu2+ 钳住,形成两个环。
称这种配位化合物为螯合物。
NH2
NH2
2+
CH2 Cu
CH2
CH2
CH2
NH2
NH2
形成的环以 5 元环,6 元环 为最稳定和最常见。
—— 结构异构和空间异构。
1. 结构异构
结构异构又叫构造异构。 键联关系不同,是结构异构 的特点。 中学阶段学习过的有机化合 物的异构现象多属此类。
结构异构主要有如下几种: (1) 解离异构 (2) 配位异构 (3) 键合异构
配体前面用 二、三、四 ··· ···表示该配体的个数。
[ Co(NH3)5 H2O ] Cl3 三氯化五氨•水合钴(III)
Cu2 [ SiF6 ] 六氟合硅(IV)酸亚铜
几种不同的配体之间加 ‘ • ’ 隔开。
[ Co(NH3)5 H2O ] Cl3 三氯化五氨•水合钴(III)
而乙二胺四乙酸(用 EDTA 表示)
HOOCH2C
CH2COOH
NCH2-CH2N
HOOCH2C
CH2COOH
有 2 个 N,4 个 -OH 中的
O 均可配位。
HOOCH2C
CH2COOH
NCH2-CH2N
HOOCH2C
CH2COOH
EDTA 称多基配体。
由双基配体或多基配体形成的 配位化合物经常有环
NH2
NH2
2+
CH2 Cu
CH2
CH2
CH2
NH2
NH2
NH2
NH2
2+
CH2 Cu
CH2
CH2
CH2
NH2
NH2
两个乙二胺像蟹的双螯将 Cu2+ 钳住,形成两个环。
称这种配位化合物为螯合物。
NH2
NH2
2+
CH2 Cu
CH2
CH2
CH2
NH2
NH2
形成的环以 5 元环,6 元环 为最稳定和最常见。
—— 结构异构和空间异构。
1. 结构异构
结构异构又叫构造异构。 键联关系不同,是结构异构 的特点。 中学阶段学习过的有机化合 物的异构现象多属此类。
结构异构主要有如下几种: (1) 解离异构 (2) 配位异构 (3) 键合异构
无机化学课件-配位化合物

乙二酸根(草酸根):
O
O 2-
CC
OO
六齿配体:乙二胺四乙酸根 EDTA(Y4-)
OOC– H2C
CH2 – COO 4-
N–CH2 –CH2 –N
OOC– H2C
CH2 – COO
3.配位数:
指在配合物中直接与中心原子配合的配位 原子的数目
表示:n 特点:一般是2,4,6,8 (偶数)
单齿配体: [ Cu(NH3)4]2+
{ 3.特殊配合物
簇状配合物
π-酸配体配合物
桥基配合物:
H O (H2O)4 Fe Fe(OH2)4 O H
簇状配合物 :
CO CO CO CO
Fe Fe
CO
CO CO
CO
CO
四、配合物的几何异构现象
几何异构体:组成相同、空间排列方式不同的物质 平面四方形空间构型的[Pt(NH3)2Cl2],就有两
种不同的排列方式:
Cl
NH3
Pt
Cl
NH3
顺式
μ≠0 棕黄色
有抗癌活性
Cl
NH3
Pt
NH3
Cl
Байду номын сангаас
反式
μ=0 亮黄色 无抗癌活性
第二节 配合物的化学键理论
一、价键理论
(一)基本要点:
1.配合物的中心原子与配体之间是以配位键结合的: M ← L。
2.在形成配离子时,中心原子所提供的空轨道必须首 先进行杂化,形成数目相同的新杂化轨道,M以杂化 空轨道接受L提供的电子而形成σ配键。配离子的空间 构型、配位数、稳定性,主要取决于形成配位键时, M所用的杂化轨道的类型。 3.M的原子轨道杂化时,由于参加杂化的轨道能级不 同,形成的配离子可分为内轨型、外轨型。
大学无机化学经典课件第三、四章配位化学

Cu2+ + 2
CH2NH2
H2CNH2
NH2CH2
CH2NH2
H2CNH2
NH2CH2
Cu
Cu2+的配位数等于4。
例如:
2+
螯合物
乙二胺四乙酸根 EDTA(Y4-)
乙二酸根(草酸根)
2–
O O C C O O
• •
• •
4–
• •
• •
• •
3. 浓度:一般[配体]增大,配位数增加
4. 温度:温度增加,配位数增大
[AlCl4]- [AlF6]3-
、配位化合物的命名 1 外界是负离子,简单酸根离子(Cl-), “某化某” 2 外界负离子是复杂酸根(SO42-)“某酸某” 3 外界为正离子(H+,Na+), “某酸某” (某酸/钠)
[Ag(NH3)2]+ [Cu(NH3)2]+ [Cu(CN)4]3- [Cu(NH3)4]2+ [Zn(NH3)4]2+ [Cd(CN)4]2- [Fe(CO)5] [FeF6]3- [Fe(CN)6]3- [Fe(CN)6]4- [Fe(H2O)6]2+ [MnCl4]2- [Mn(CN)6]4- [Cr(NH3)6]3+
烯羟配合物:配体为不饱和烃类的配合物。
一、几何异构现象
二、旋光异构现象---对应异构现象
三、其他异构
2.2 配合物异构现象
2.2 配合物异构现象
异构现象: 配合物的化学组成相同而原子间的联结方式或空间排列方式不同而引起性质不同的现象。
配合物的空间构型虽五花八门,但基本规律是:
(1) 形成体在中间,配位体围绕中心离子排布 (2) 配位体倾向于尽可能远离,能量低,配合物稳定
CH2NH2
H2CNH2
NH2CH2
CH2NH2
H2CNH2
NH2CH2
Cu
Cu2+的配位数等于4。
例如:
2+
螯合物
乙二胺四乙酸根 EDTA(Y4-)
乙二酸根(草酸根)
2–
O O C C O O
• •
• •
4–
• •
• •
• •
3. 浓度:一般[配体]增大,配位数增加
4. 温度:温度增加,配位数增大
[AlCl4]- [AlF6]3-
、配位化合物的命名 1 外界是负离子,简单酸根离子(Cl-), “某化某” 2 外界负离子是复杂酸根(SO42-)“某酸某” 3 外界为正离子(H+,Na+), “某酸某” (某酸/钠)
[Ag(NH3)2]+ [Cu(NH3)2]+ [Cu(CN)4]3- [Cu(NH3)4]2+ [Zn(NH3)4]2+ [Cd(CN)4]2- [Fe(CO)5] [FeF6]3- [Fe(CN)6]3- [Fe(CN)6]4- [Fe(H2O)6]2+ [MnCl4]2- [Mn(CN)6]4- [Cr(NH3)6]3+
烯羟配合物:配体为不饱和烃类的配合物。
一、几何异构现象
二、旋光异构现象---对应异构现象
三、其他异构
2.2 配合物异构现象
2.2 配合物异构现象
异构现象: 配合物的化学组成相同而原子间的联结方式或空间排列方式不同而引起性质不同的现象。
配合物的空间构型虽五花八门,但基本规律是:
(1) 形成体在中间,配位体围绕中心离子排布 (2) 配位体倾向于尽可能远离,能量低,配合物稳定
大专无机化学课件-配位化学

6
6 6 6 6 6
NH4[Cr(NCS)4(NH3)2] 四(异硫氰酸根)二氨合铬(Ⅲ) 酸铵 [Co(NH3)(OH)3] 三羟基· 三氨合钴(Ⅲ)
五氨合(Ⅲ) [Co(ONO)(NH3)5]SO4 硫酸亚硝酸根· K[Co(NH3)2(NO2)4] 四硝基· 二氨合钴(Ⅲ)酸钾
配合物化学式的书写
化学综合
第八课 配位化合物 (Coordination Compounds)
主要内容
第一节 配位化合物的基本概念 第二节 配合物的化学键理论 第三节 配位平衡
第四节 螯合物
第一节
配位化合物的基本概念
一、配合物的意义
1.
生物体中金属、酶 都是金属配合物。 例:血红素: 药物
1928年合成第一个 配合物:三氯化六 氨合钴
硫酸一氯 • 一氨 • 二乙二胺合铬(III) [CrCl(NH3) (en)2]SO4 二氯• 一草酸根 • 一乙二胺合铁(III)离子
[FeCl2(C2O4) (en)]–
第二节
配合物的结构
一、配合物化学键理论
1.
问题的提出:
中心原子与配体是通过
什么结合的?为什么中 心原子与一定数目配体 结合? 配合物的空间构型如何? 杂化情况如何? 为什么有的配合物稳定 性,有的不稳定?
● 元素形成配合物时倾向于主价和副价 都能得到满足。 ● 元素的副价指向空间确定的方向。
维尔纳 (Werner, A, 1866—1919) 法裔瑞士化学家。 因创立配位化学而获得1913年诺贝尔化学奖
1893年,维尔纳提出了配位理论来解释配合物 的结构。认为金属有两种原子价,即主价和副价,后
者或称配位数。每一种金属有一定副价。主价必须由
大学无机化学课件配位化合物

Mn+ + ne ≒ M
Mn Ln e M nL
MnL /M
Mn/M
配位的
型
精品课件
(4) 用磁矩判断
n(n2),n为中心离子的未成 子对 数
外轨型配合物:未成对电子数多,µ 较大,
一般为高 自旋配合物
内轨型配合物:未成对电子数减少, µ 较小,
一般为低自旋
配合物
精品课件
Co(NH3)63+,Co3+: 3d6
3d
调整
3d d2sp3杂化
4d 4p 4s
4d 4p 4s
Cu + NH3 = Cu(NH3) 2+
K稳 1
Cu(NH3) 2+ + NH3 = Cu(NH3)22+ K稳
2
KKCCKK不稳稳uu稳((=NN4 =HH33))K23K稳22不++ 1稳×++1×KNN稳HH33K2不==精×稳品CC课uu2件K((×稳NNHH333K))×不3422稳++
[Zn(NH3)4]SO4 [Ag(NH3)2](OH)
三氯化五氨 . 水合钴(III) 硫酸四氨合锌(II) 氢氧化二氨合银(I)
精品课件
§9.2 配合物的化学键理 论
9.2.1 价键理论 9.2.2 晶体场理论(自学)
精品课件
9.2.1 价键理论
解决的问题:⑴ 配合物的配位数
⑵几
何构型
一、基本要矩点及反应活性
精品课件
(2)配体(配位体):含有孤对电子
① 无机配体:H2O、NH3、CO、CN-、X—等。 有机配体 。
② 配位原子:直接与中心原子以配位键相连的原子。
《无机化学》第8章.配位化合物PPT课件

配位化合物的发展趋势与展望
新材料与新能源
随着人类对新材料和新能源需求的不断增加,配位化合物有望在太 阳能电池、燃料电池等领域发挥重要作用。
生物医药领域
配位化合物在药物设计和治疗方面的应用前景广阔,有望为人类疾 病的治疗提供新的解决方案。
环境科学领域
配位化合物在处理环境污染和保护生态环境方面具有潜在的应用价值, 未来有望为环境保护做出贡献。
螯合物
由两个或更多的配位体与同一 中心原子结合而成的配合物,
形成环状结构,如: Fe(SCN)3。
命名
一般命名法
根据配位体和中心原子的名称,加上 “合”字和数字表示配位数的顺序来 命名,如:Co(NH3)5Cl。
系统命名法
采用系统命名法,将配位体名称按照 一定的顺序列出,加上“合”字和数 字表示配位数的顺序,最后加上中心 原子名称,如: (NH4)2[Co(CO3)2(NH3)4]·2H2O。
配位化合物的种类繁多,其组成和结 构取决于中心原子或离子和配位体的 性质。
配位化合物的形成条件
01
存在可用的空轨道 和孤对电子
中心原子或离子必须有可用的空 轨道,而配位体则需提供孤对电 子来形成配位键。
02
能量匹配
中心原子或离子和配位体的能量 状态需要匹配,以便形成稳定的 配位化合物。
03
空间和电子构型适 应性
中心原子或离子和配位体的空间 和电子构型需相互适应,以形成 合适的几何构型和电子排布。
02
配位化合物的组成与结构
组成
配位体
提供孤电子对与中心原子形成配位键的分子或离子。常见的配位 体有:氨、羧酸、酰胺、酸酐、醛、酮、醇、醚等。
中心原子
接受配位体提供的孤电子对形成配位键的原子。常见的中心原子有: 过渡金属元素的离子。
第19章配位化合物ppt课件

为分裂能()。
38
(2) 四面体场
d
dr
四面体场中的坐标和d轨道的分裂 由于dε和dγ两组轨道与配体电场作用的大小区别,远不如 在八面体场中的明显,所以四面体场的分裂能 △t 较小, △t < △o 。
39
(3)正方形场
s
正方形场中坐标的选取和d轨道的分裂 在正方形场中,△s 很大,△s > △o 。
y Ni (CO)4 中d-pπ配键(反馈π键)示意图 35
过渡金属与羰基、氰、链烯烃、环烯烃等配体形成 的配合物都含有反馈π键。
烯烃配合物
1827年,丹麦药剂师Zeise合成了K [ PtCl3(C2H4) ]·H2O, 这是第一个有机金属化合物,但其结构直到120多年后才 确定。
σ 配键
d-pπ 配键
12
3 、配体的先后顺序
(1)先无机后(有机) (2)先阴离子后分子 (3)同类配体中,按配位原子在英文字母表中的次序 (4)配位原子相同,配体中原子个数少的在前 (5)配位原子相同,配体中原子个数相同,则按和配
位原子直接相连的其它原子英文字母次序。
13
命名下列配合物
1. PtCl2(Ph3P)2 2. K [PtCl3 (NH3 )] 3. [Co (NH3 )5 H2O ] Cl3 4. [Pt(Py)(NH3 )(NH2OH)(NO2)]Cl 5. [ Pt (NH3)2 (NO2) (NH2) ]
铂与乙烯之间的成键示意图 36
19- 2- 2 晶体场理论
1、 晶体场中d 轨道的分裂
在自由原子或离子中,五种 d 轨道的能量简并, 其原子轨道的角度分布如图
y x
dxy
z x
dxz
z
38
(2) 四面体场
d
dr
四面体场中的坐标和d轨道的分裂 由于dε和dγ两组轨道与配体电场作用的大小区别,远不如 在八面体场中的明显,所以四面体场的分裂能 △t 较小, △t < △o 。
39
(3)正方形场
s
正方形场中坐标的选取和d轨道的分裂 在正方形场中,△s 很大,△s > △o 。
y Ni (CO)4 中d-pπ配键(反馈π键)示意图 35
过渡金属与羰基、氰、链烯烃、环烯烃等配体形成 的配合物都含有反馈π键。
烯烃配合物
1827年,丹麦药剂师Zeise合成了K [ PtCl3(C2H4) ]·H2O, 这是第一个有机金属化合物,但其结构直到120多年后才 确定。
σ 配键
d-pπ 配键
12
3 、配体的先后顺序
(1)先无机后(有机) (2)先阴离子后分子 (3)同类配体中,按配位原子在英文字母表中的次序 (4)配位原子相同,配体中原子个数少的在前 (5)配位原子相同,配体中原子个数相同,则按和配
位原子直接相连的其它原子英文字母次序。
13
命名下列配合物
1. PtCl2(Ph3P)2 2. K [PtCl3 (NH3 )] 3. [Co (NH3 )5 H2O ] Cl3 4. [Pt(Py)(NH3 )(NH2OH)(NO2)]Cl 5. [ Pt (NH3)2 (NO2) (NH2) ]
铂与乙烯之间的成键示意图 36
19- 2- 2 晶体场理论
1、 晶体场中d 轨道的分裂
在自由原子或离子中,五种 d 轨道的能量简并, 其原子轨道的角度分布如图
y x
dxy
z x
dxz
z
无机化学 配位化合物PPT课件

获1913年诺贝尔化学奖
1893年苏黎世大学维尔纳 (Werner A)教授对这类化 合物本性提出了天才见解, 被后人称为维尔纳配位学 说,成为配位化学的奠基 人。维尔纳因此而获得 1913年诺贝尔化学奖。
维尔纳 (Werner, A, 1866-1919)
配位化学的奠基人—维尔纳
配位化学是当今化学学科的前沿领域之一, 配合物在医疗、药物、分离分析、染料、化学合 成等诸多方面具有极为广泛的应用。
② 配离子的解离如同弱电解质:
[Cu(NH3)4]2+
Hale Waihona Puke Cu2++4NH3
浓度非常低
+
+ [Cu(NH3)4]2+
[Cu(NH3)4]2+
Cu2+
Cu2+ 4NH3
4NH3
配离子解离出中心原子和配体,同
时,二者C重u(新O结H合)2成配离子Cu,S是动态平
衡的过程,这种平衡就叫做配位平衡。
一、稳定常数
内界
外界
离子键
➢ 配合物的解离如同强电解质:
[Cu(NH3)4]SO4→[Cu(NH3)4]2++SO42-
[ Cu (NH3)4 ]2+
中心原子 配体 配位键
➢ 配离子的解离如同弱电解质:
[Cu(NH3)4]2+
Cu2+ + 4 NH3
配合物的解离:
① 配合物的解离如同强电解质:
[Cu(NH3)4]SO4→[Cu(NH3)4]2++SO42-
Fe4[Fe(CN)6]3 [Cu(NH3)4]SO4
K2[Ag(CN)2]
[Ag(NH3)2]OH
1893年苏黎世大学维尔纳 (Werner A)教授对这类化 合物本性提出了天才见解, 被后人称为维尔纳配位学 说,成为配位化学的奠基 人。维尔纳因此而获得 1913年诺贝尔化学奖。
维尔纳 (Werner, A, 1866-1919)
配位化学的奠基人—维尔纳
配位化学是当今化学学科的前沿领域之一, 配合物在医疗、药物、分离分析、染料、化学合 成等诸多方面具有极为广泛的应用。
② 配离子的解离如同弱电解质:
[Cu(NH3)4]2+
Hale Waihona Puke Cu2++4NH3
浓度非常低
+
+ [Cu(NH3)4]2+
[Cu(NH3)4]2+
Cu2+
Cu2+ 4NH3
4NH3
配离子解离出中心原子和配体,同
时,二者C重u(新O结H合)2成配离子Cu,S是动态平
衡的过程,这种平衡就叫做配位平衡。
一、稳定常数
内界
外界
离子键
➢ 配合物的解离如同强电解质:
[Cu(NH3)4]SO4→[Cu(NH3)4]2++SO42-
[ Cu (NH3)4 ]2+
中心原子 配体 配位键
➢ 配离子的解离如同弱电解质:
[Cu(NH3)4]2+
Cu2+ + 4 NH3
配合物的解离:
① 配合物的解离如同强电解质:
[Cu(NH3)4]SO4→[Cu(NH3)4]2++SO42-
Fe4[Fe(CN)6]3 [Cu(NH3)4]SO4
K2[Ag(CN)2]
[Ag(NH3)2]OH
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
配位化合物
§9.1 配位化合物的基本概念
§9.2 配合物的化学键理论
§9.3 配合物的稳定性
§9.4 螯合物
§9.5 配合物的应用(自学)
精选ppt
1
§9.1 配位化合物的基本概念
9.1.1 什么是配位化合物 9.1.2 配合物的组成 9.1.3 配合物的命名
精选ppt
2
9.1.1 什么是配位化合物
解决的问题:⑴ 配合物的配位数 ⑵ 几何构型 ⑶ 磁矩及反应活性
一、基本要点
1)中心离子与配体以配位键相结合
2)中心离子提供的是空的杂化轨道;配离子的空 间构型、配位数及稳定性主要决定于杂化轨道的 数目和类型。
精选ppt
12
二、配键和配位化合物分类
1. 外轨型配合物
中心原子是用最外层的ns、np或ns、np、nd组成的
三(乙二胺)合钴(III)配离子
精选ppt
9
2)配合物的命名 阴离子名称在前,阳离子名称在后。 阴离子为简单离子,则称某化某。 阴离子为复杂离子,则称某酸某。
若外界为氢离子,则缀以“酸”字。例:
K2[PtCl6] H2[PtCl6] Cu2[SiF6]
六氯合铂(IV)酸钾 六氯合铂(IV)酸 六氟合硅(IV)酸铜
(5) 若配位原子相同,配体中含原子数目也相同,则按 与配位原子相连的原子的元素符号的字母顺序排列。
例:[Co(NH3)5H2O]Cl3 三氯化五氨 . 水合钴(III)
[Co(NH3)6]3+
六氨合钴(III)配离子
[Co(NH3)4(H2O)2]2+ 四氨. 二水合铜(II)配离子
[Co(en)3]3+
精选ppt
5
(2)配体(配位体):含有孤对电子
① 无机配体:H2O、NH3、CO、CN-、X—等。 有机配体 。
② 配位原子:直接与中心原子以配位键相连的原子。
通常是电负性较大的原子,如C、N、O、X和S。
③ 单齿配体:配体中只含一个配位原子。
如:X--、S2--、H2O、NH3、CO、CN--等。
ZnSO4 + 4NH3 = [Zn(NH3)4]SO4 在[Zn(NH3)4]SO4 中, Zn2+和NH3的浓度极低, 而[Zn(NH3)4]2+却大量存在,WHY??
(1) 定义:具有孤对电子的离子或分子和具有空轨道的原 子或离子组成的化合物。
精选ppt
3
9.1.2 配合物的组成
内界: 中心体(原子或离子)与配位体,以配位键成键 外界:与内界电荷平衡的相反离子
④ 多齿配体:配体中含两个或更多的配位原子。如
C2O42-、氨基乙酸根、乙二胺、乙二胺四乙酸根(edta)。
N*H2-CH2-COO*- , N*H2-CH2-CH2-N*H2 (en)
精选ppt
6
(3)配位数:直接与中心原子结合的配位原子的数目。
① 若为单齿配体,配位数=配体数。
例:[Ag(NH3)2] 、[Cu(NH3)4]2+、 [CoCl3(NH3)3]和
[Co(NH3)6]3+的配位数分别为2、4、6和6。
② 若为多齿配体,配位数≠配体数。
例:[Cu(en)2]2+的配位数为4,Cu-edta的配位数为6。
(4)配离子的电荷:中心原子和配体电荷的代数和。 也可根据外界离子的电荷数来决定配离子的电荷数。
例:K3[Fe(CN)6]和K4[Fe(CN)6] 分别是-3和-4。
(2) 先阴离子,后阳离子和中性分子的名称。
K[PtCl3NH3] 三氯 . 氨合铂(II)酸钾
(3) 同类配体,按配位原子元素的英文字母顺序排列。
[Co(NH3)5H2O]Cl3
三氯化五氨 精选ppt
.
水合钴(III)
8
(4) 同类配体同一配位原子时,将含较少原子数的配体排 在前面。
例:[Pt(NO2)(NH3)(NH2OH)(py)]Cl 氯化硝基 . 氨 . 羟胺 . 吡啶合铂(II)
ห้องสมุดไป่ตู้
[ Co (NH3) 6 ] Cl3
中心原子 配体 配位数
内界
外界
例: K[Fe(CN)6] [Cu(NH3)4]SO4 K2[HgI4] [CoCl3(NH3)3]
精选ppt
4
(1)中心离子(或原子):提供空的价电子轨道
① 过渡金属阳离子。 ② 某些非金属元素: 如[SiF6]2-中的Si(IV) 。 ③ 中性原子:如Ni(CO)4和Fe(CO)5中的Ni 和Fe
[Co(NH3)5H2O]Cl3 三氯化五氨 . 水合钴(III) [Zn(NH3)4]SO4 硫酸四氨合锌(II) [Ag(NH3)2](OH) 氢氧化二氨合银(I)
精选ppt
10
§9.2 配合物的化学键理论
9.2.1 价键理论 9.2.2 晶体场理论(自学)
精选ppt
11
9.2.1 价键理论
杂化空轨道接受电子,与配体形成配位键.
例:[FeF6]3--中Fe3+:3d5
↑↑↑↑↑ _ _ _ _ _ _ __ _
3d
4s 4p
4d
sp3d2杂化,八面体构型
精选ppt
13
2.内轨型配合物:
配合物中心原子原有的电子层结构发生电子重排, 提供(n-1)d轨道和ns、np组成的杂化空轨道与配体 结合成配键 .
(b) 有空(n-1)d轨道,易形成内轨型 无空(n-1)d轨道, 易形成外轨型
精选ppt
15
(4) 用磁矩判断
n(n2),n为中心离子的未成 子对 数
外轨型配合物:未成对电子数多,µ 较大,
一般为高自旋配合物
内轨型配合物:未成对电子数减少, µ较小,
一般为低自旋配合物
精选ppt
16
Co(NH3)63+,Co3+: 3d6
精选ppt
7
9.1.3 配合物的命名
1. 配离子的命名
配体数-配体名称“ . ”配体数-配体名称“合”中心原 子名称(中心原子氧化数,罗马数字表示)
总原则:先阴离子后阳离子,先简单后复杂
(1) 先无机配体,后有机配体。 Cis-[PtCl2(Ph3P)2] 顺-二氯 . 二(三苯基膦)合铂(II)
例:[Ni(CN)4]2- , Ni 2+:3d8。
↑↓ ↑↓ ↑↓ ↑ ↑ _ 3d
___
4s
4p
↑↓ ↑↓ ↑↓ ↑↓ _ _ 3d
___
4s
4p
dsp2杂化,四方形
精选ppt
14
(3)内外轨型取决于
配位体 (主要因素) 中心离子(次要因素)
(a) 电负性较小: CN–, CO和NO2–等易形成内轨型 电负性较大: X – , H2O易形成外轨型 而NH3分子在两者之间
§9.1 配位化合物的基本概念
§9.2 配合物的化学键理论
§9.3 配合物的稳定性
§9.4 螯合物
§9.5 配合物的应用(自学)
精选ppt
1
§9.1 配位化合物的基本概念
9.1.1 什么是配位化合物 9.1.2 配合物的组成 9.1.3 配合物的命名
精选ppt
2
9.1.1 什么是配位化合物
解决的问题:⑴ 配合物的配位数 ⑵ 几何构型 ⑶ 磁矩及反应活性
一、基本要点
1)中心离子与配体以配位键相结合
2)中心离子提供的是空的杂化轨道;配离子的空 间构型、配位数及稳定性主要决定于杂化轨道的 数目和类型。
精选ppt
12
二、配键和配位化合物分类
1. 外轨型配合物
中心原子是用最外层的ns、np或ns、np、nd组成的
三(乙二胺)合钴(III)配离子
精选ppt
9
2)配合物的命名 阴离子名称在前,阳离子名称在后。 阴离子为简单离子,则称某化某。 阴离子为复杂离子,则称某酸某。
若外界为氢离子,则缀以“酸”字。例:
K2[PtCl6] H2[PtCl6] Cu2[SiF6]
六氯合铂(IV)酸钾 六氯合铂(IV)酸 六氟合硅(IV)酸铜
(5) 若配位原子相同,配体中含原子数目也相同,则按 与配位原子相连的原子的元素符号的字母顺序排列。
例:[Co(NH3)5H2O]Cl3 三氯化五氨 . 水合钴(III)
[Co(NH3)6]3+
六氨合钴(III)配离子
[Co(NH3)4(H2O)2]2+ 四氨. 二水合铜(II)配离子
[Co(en)3]3+
精选ppt
5
(2)配体(配位体):含有孤对电子
① 无机配体:H2O、NH3、CO、CN-、X—等。 有机配体 。
② 配位原子:直接与中心原子以配位键相连的原子。
通常是电负性较大的原子,如C、N、O、X和S。
③ 单齿配体:配体中只含一个配位原子。
如:X--、S2--、H2O、NH3、CO、CN--等。
ZnSO4 + 4NH3 = [Zn(NH3)4]SO4 在[Zn(NH3)4]SO4 中, Zn2+和NH3的浓度极低, 而[Zn(NH3)4]2+却大量存在,WHY??
(1) 定义:具有孤对电子的离子或分子和具有空轨道的原 子或离子组成的化合物。
精选ppt
3
9.1.2 配合物的组成
内界: 中心体(原子或离子)与配位体,以配位键成键 外界:与内界电荷平衡的相反离子
④ 多齿配体:配体中含两个或更多的配位原子。如
C2O42-、氨基乙酸根、乙二胺、乙二胺四乙酸根(edta)。
N*H2-CH2-COO*- , N*H2-CH2-CH2-N*H2 (en)
精选ppt
6
(3)配位数:直接与中心原子结合的配位原子的数目。
① 若为单齿配体,配位数=配体数。
例:[Ag(NH3)2] 、[Cu(NH3)4]2+、 [CoCl3(NH3)3]和
[Co(NH3)6]3+的配位数分别为2、4、6和6。
② 若为多齿配体,配位数≠配体数。
例:[Cu(en)2]2+的配位数为4,Cu-edta的配位数为6。
(4)配离子的电荷:中心原子和配体电荷的代数和。 也可根据外界离子的电荷数来决定配离子的电荷数。
例:K3[Fe(CN)6]和K4[Fe(CN)6] 分别是-3和-4。
(2) 先阴离子,后阳离子和中性分子的名称。
K[PtCl3NH3] 三氯 . 氨合铂(II)酸钾
(3) 同类配体,按配位原子元素的英文字母顺序排列。
[Co(NH3)5H2O]Cl3
三氯化五氨 精选ppt
.
水合钴(III)
8
(4) 同类配体同一配位原子时,将含较少原子数的配体排 在前面。
例:[Pt(NO2)(NH3)(NH2OH)(py)]Cl 氯化硝基 . 氨 . 羟胺 . 吡啶合铂(II)
ห้องสมุดไป่ตู้
[ Co (NH3) 6 ] Cl3
中心原子 配体 配位数
内界
外界
例: K[Fe(CN)6] [Cu(NH3)4]SO4 K2[HgI4] [CoCl3(NH3)3]
精选ppt
4
(1)中心离子(或原子):提供空的价电子轨道
① 过渡金属阳离子。 ② 某些非金属元素: 如[SiF6]2-中的Si(IV) 。 ③ 中性原子:如Ni(CO)4和Fe(CO)5中的Ni 和Fe
[Co(NH3)5H2O]Cl3 三氯化五氨 . 水合钴(III) [Zn(NH3)4]SO4 硫酸四氨合锌(II) [Ag(NH3)2](OH) 氢氧化二氨合银(I)
精选ppt
10
§9.2 配合物的化学键理论
9.2.1 价键理论 9.2.2 晶体场理论(自学)
精选ppt
11
9.2.1 价键理论
杂化空轨道接受电子,与配体形成配位键.
例:[FeF6]3--中Fe3+:3d5
↑↑↑↑↑ _ _ _ _ _ _ __ _
3d
4s 4p
4d
sp3d2杂化,八面体构型
精选ppt
13
2.内轨型配合物:
配合物中心原子原有的电子层结构发生电子重排, 提供(n-1)d轨道和ns、np组成的杂化空轨道与配体 结合成配键 .
(b) 有空(n-1)d轨道,易形成内轨型 无空(n-1)d轨道, 易形成外轨型
精选ppt
15
(4) 用磁矩判断
n(n2),n为中心离子的未成 子对 数
外轨型配合物:未成对电子数多,µ 较大,
一般为高自旋配合物
内轨型配合物:未成对电子数减少, µ较小,
一般为低自旋配合物
精选ppt
16
Co(NH3)63+,Co3+: 3d6
精选ppt
7
9.1.3 配合物的命名
1. 配离子的命名
配体数-配体名称“ . ”配体数-配体名称“合”中心原 子名称(中心原子氧化数,罗马数字表示)
总原则:先阴离子后阳离子,先简单后复杂
(1) 先无机配体,后有机配体。 Cis-[PtCl2(Ph3P)2] 顺-二氯 . 二(三苯基膦)合铂(II)
例:[Ni(CN)4]2- , Ni 2+:3d8。
↑↓ ↑↓ ↑↓ ↑ ↑ _ 3d
___
4s
4p
↑↓ ↑↓ ↑↓ ↑↓ _ _ 3d
___
4s
4p
dsp2杂化,四方形
精选ppt
14
(3)内外轨型取决于
配位体 (主要因素) 中心离子(次要因素)
(a) 电负性较小: CN–, CO和NO2–等易形成内轨型 电负性较大: X – , H2O易形成外轨型 而NH3分子在两者之间