九年级二次函数提高训练题
人教版九年级数学上册《二次函数》能力提升卷
人教版九年级数学上册22.1.1二次函数能力提升卷一、选择题(共10小题,3*10=30)1.下列函数中,是二次函数的有( )①y=1-3x2;②y=1x2;③y=x(1+x);④y=(1-2x)(1+2x).A.1个B.2个C.3个D.4个2.若函数y=(m-2)x2+4x-5(m是常数)是二次函数,则()A.m≠-2 B.m≠2C.m≠3 D.m≠-33.对于任意实数m,下列函数一定是二次函数的是()A.y=mx2+3x-1B.y=(m-1)x2C.y=(m-1)2x2D.y=(-m2-1)x24.二次函数y=x2+bx+c中,若b+c=0,则它的图象一定经过点()A.(1,-1) B.(-1,1)C.(-1,-1) D.(1,1)5.无论m为何实数,二次函数y=x2-(2-m)x+m的图象总是过定点()A.(-1,3) B.(1,0)C.(1,3) D.(-1,0)6. 设y=y1-y2,y1与x成正比例,y2与x2成正比例,则y与x的函数关系是( )A.正比例函数B.一次函数C.二次函数D.以上都不正确7.已知二次函数y=1-3x+5x2,则它的二次项系数a,一次项系数b,常数项c分别是() A.a=1,b=-3,c=5B.a=1,b=3,c=5C.a=5,b=3,c=1D.a=5,b=-3,c=18.已知x是实数,且满足(x-2)(x-3)1-x=0,则相应的函数y=x2+x+1的值为()A.13或3 B.7或3C.3 D.13或7或39.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价,若每件商品的售价为x元,则可卖出(350-10x)件商品,那么销售该商品所赚利润y(元)与每件商品的售价x(元)的函数关系式为()A.y=-10x2-560x+7 350B.y=-10x2+560x-7 350C.y=-10x2+350xD.y=-10x2+350x-7 35010.如图,正方形ABCD的边长为5,点E是AB上一点,点F是AD延长线上一点,且BE=DF.四边形AEGF是矩形,则矩形AEGF的面积y与BE的长x之间的函数关系式为()A.y=5-x2(0≤x<5)B.y=5-x2(0≤x<5)C.y=25-x2(0≤x<25)D.y=25-x2(0≤x<5)二.填空题(共8小题,3*8=24)11.已知y=(m-2)x2+3x+6是二次函数,则m的取值范围是.12. 对于二次函数y=1-3x+2x2,其二次项系数、一次项系数及常数项的和是____.13.已知两个变量x,y之间的关系式为y=(a-2)x2+(b+2)x-3.(1)当__________时,x,y之间是二次函数关系;(2)当______________时,x,y之间是一次函数关系.14.国家对某种商品价格分两次降价,若平均每次降价的百分率为x,且该药品的原价是28元/盒,降价后的价格为y元/盒,则y与x的函数关系式为y=28(1-x)2,自变量x的取值范围是__________. 15.已知二次函数y=x2-2x-2,当x=2时,y=____;当x=______________时,函数值为1. 16.当a=________时,函数y=(a-2)x a2-2+ax-1是二次函数.17.若等边三角形的边长为x,面积为y,则y与x之间的函数关系式为.18.一块矩形的草坪,长为8 m,宽为6 m,若将长和宽都增加x m,设增加的面积为y m2. 则y与x的函数关系式是________ ..三.解答题(共7小题,46分)19.(6分) 写出下列函数自变量x的取值范围:(1)y=x(x-1);(2)y=x1-2x;(3)y=3x-4.20.(6分) 如图,有一根长60 cm的铁丝,用它围成一个矩形.(1)写出矩形面积S(cm2)与它的一边长x(cm)之间的函数关系式;(2)当S=125时,求x的值.21.(6分) 如图,已知等腰直角三角形ABC的直角边长与正方形MNPQ的边长均为20厘米,AC与MN在同一直线上,开始时点A与点N重合,让△ABC以每秒2厘米的速度向左运动,最终点A与点M重合,求重叠部分的面积y(厘米2)与时间t(秒)之间的函数关系式.22.(6分)若y=(m-1)xm2+2m-1+3.(1)m取什么值时,此函数是二次函数?(2)m取什么值时,此函数是一次函数?23.(6分)某商店以每副42元的价格购进一种手套,根据试销得知这种手套每天的销售量t(副)与每副的售价x(元)之间可以看成一次函数关系:t=-4x+204.请写出每天的销售利润y(元)与每副的售价x(元)之间的函数解析式,并确定自变量x的取值范围.24.(8分)某商场每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,这种商品每降价1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利多少元.(2)设后来该商品每件降价x元,商场一天可获利y元.①若商场经营该商品一天要获利2 160元,则每件商品要降价多少元?②求y与x之间的函数关系式.25.(8分) 如图,在△ABC 中,∠B =90°,AB =5 cm ,BC =7 cm ,点P 从点A 开始沿AB 边向点B 以1 cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2 cm/s 的速度移动.如果点P ,Q 分别从点A ,B 同时出发,一点到达终点后,另一点随即停止运动,设运动时间为x s ,△PBQ 的面积为y cm 2.(1)求y 与x 之间的函数关系式,并写出x 的取值范围.(2)当x 为多少时,△PBQ 的面积为4 cm 2?(3)△PBQ 的面积能否等于7 cm 2?说明理由.参考答案1-5CBDDA 6-10CDCBD11. m≠212. 013. a≠2;a =2且b≠-214. 0<x <115. -2;3或-116. -217. y =34x 218. y =x 2+14x(x≥0)19. 解:(1)任意实数 (2)x≠12(3)x >420. 解:(1)S =x·60-2x2=-x 2+30x.(2)当S =125时,-x 2+30x =125,即x 2-30x +125=0.∴ x 1=5,x 2=25.21. 解:由题意知,AM =20-2t ,则重叠部分的面积y =12×AM 2=12(20-2t)2, 即y =12(20-2t)2=2t 2-40t +200(0≤t≤10). 22. 解:(1)由⎩⎪⎨⎪⎧m -1≠0,m 2+2m -1=2, 得m =-3(2)由⎩⎪⎨⎪⎧m -1≠0,m 2+2m -1=1, 得m =-1±323. 解:y =(x -42)t =(x -42)(-4x +204),即y =-4x 2+372x -8 568.因为每副手套的进价为42元,所以x≥42.而t≥0,故-4x +204≥0,即x≤51.所以自变量x 的取值范围为42≤x≤51.24. 解:(1)商场经营该商品原来一天可获利100×(100-80)=2 000(元).(2) ①依题意,得(100-80-x)(100+10x)=2 160,即x 2-10x +16=0,解得x 1=2,x 2=8.因为要尽量减少库存,所以x 应取8,即每件商品要降价8元.②依题意,得y =(100-80-x)(100+10x)=-10x 2+100x +2 000.25. 解:(1)y =12PB·BQ =12·(5-x)·2x =-x 2+5x(0<x≤3.5). (2)由-x 2+5x =4,解得x 1=1,x 2=4(舍去).∴当x =1时,△PBQ 的面积为4 cm 2.(3)不能.理由如下:由-x 2+5x =7,得x 2-5x +7=0.∵Δ=(-5)2-4×1×7=-3<0,∴此方程无实数根.∴△PBQ 的面积不能等于7 cm 2.1、在最软入的时候,你会想起谁。
人教版九年级数学二次函数专题训练(含答案)
二次函数专题训练(含答案)一、填空题1.把抛物线221x y -=向左平移2个单位得抛物线 ,接着再向下平移3个 单位,得抛物线 .2.函数x x y +-=22图象的对称轴是 ,最大值是 .3.正方形边长为3,如果边长增加x 面积就增加y ,那么y 与x 之间的函数关系是 .4.二次函数6822-+-=x x y ,通过配方化为k h x a y +-=2)(的形为 . 5.二次函数c ax y +=2(c 不为零),当x 取x 1,x 2(x 1≠x 2)时,函数值相等,则 x 1与x 2的关系是 .6.抛物线c bx ax y ++=2当b=0时,对称轴是 ,当a ,b 同号时,对称轴在y 轴 侧,当a ,b 异号时,对称轴在y 轴 侧.7.抛物线3)1(22-+-=x y 开口 ,对称轴是 ,顶点坐标是 .如果y 随x 的增大而减小,那么x 的取值范围是 .8.若a <0,则函数522-+=ax x y 图象的顶点在第 象限;当x >4a-时,函数值随x 的增大而 .9.二次函数c bx ax y ++=2(a ≠0)当a >0时,图象的开口a <0时,图象的开口 ,顶点坐标是 . 10.抛物线2)(21h x y --=,开口 ,顶点坐标是 ,对称轴是 . 11.二次函数)()(32+-=x y 的图象的顶点坐标是(1,-2).12.已知2)1(312-+=x y ,当x 时,函数值随x 的增大而减小. 13.已知直线12-=x y 与抛物线k x y +=25交点的横坐标为2,则k= ,交点坐标为 . 14.用配方法将二次函数x x y 322+=化成k h x a y +-=2)(的形式是 . 15.如果二次函数m x x y +-=62的最小值是1,那么m 的值是 . 二、选择题:16.在抛物线1322+-=x x y 上的点是( )A.(0,-1)B.⎪⎭⎫ ⎝⎛0,21 C.(-1,5) D.(3,4) 17.直线225-=x y 与抛物线x x y 212-=的交点个数是( ) A.0个 B.1个 C.2个 D.互相重合的两个18.关于抛物线c bx ax y ++=2(a ≠0),下面几点结论中,正确的有( ) ① 当a >0时,对称轴左边y 随x 的增大而减小,对称轴右边y 随x 的增大而增大,当a <0时,情况相反.② 抛物线的最高点或最低点都是指抛物线的顶点.③ 只要解析式的二次项系数的绝对值相同,两条抛物线的形状就相同.④ 一元二次方程02=++c bx ax (a ≠0)的根,就是抛物线c bx ax y ++=2与x 轴交点的横坐标.A.①②③④B.①②③C. ①②D.① 19.二次函数y=(x+1)(x-3),则图象的对称轴是( )A.x=1B.x=-2C.x=3D.x=-320.如果一次函数b ax y +=的图象如图代13-3-12中A 所示,那么二次函+=2ax ybx -3的大致图象是( )图代13-2-1221.若抛物线c bx ax y ++=2的对称轴是,2-=x 则=ba( ) A.2 B.21 C.4 D.41 22.若函数xa y =的图象经过点(1,-2),那么抛物线3)1(2++-+=a x a ax y 的性 质说得全对的是( ) A. 开口向下,对称轴在y 轴右侧,图象与正半y 轴相交 B. 开口向下,对称轴在y 轴左侧,图象与正半y 轴相交 C. 开口向上,对称轴在y 轴左侧,图象与负半y 轴相交 D. 开口向下,对称轴在y 轴右侧,图象与负半y 轴相交23.二次函数c bx x y ++=2中,如果b+c=0,则那时图象经过的点是( ) A.(-1,-1) B.(1,1) C.(1,-1) D.(-1,1)24.函数2ax y =与xay =(a <0)在同一直角坐标系中的大致图象是( )图代13-3-1325.如图代13-3-14,抛物线c bx x y ++=2与y 轴交于A 点,与x 轴正半轴交于B , C 两点,且BC=3,S △ABC =6,则b 的值是( )A.b=5B.b=-5C.b=±5D.b=4图代13-3-1426.二次函数2ax y =(a <0),若要使函数值永远小于零,则自变量x 的取值范围是 ( )A .X 取任何实数 B.x <0 C.x >0 D.x <0或x >027.抛物线4)3(22+-=x y 向左平移1个单位,向下平移两个单位后的解析式为 ( )A.6)4(22+-=x y B.2)4(22+-=x y C.2)2(22+-=x y D.2)3(32+-=x y 28.二次函数229k ykx x y ++=(k >0)图象的顶点在( ) A.y 轴的负半轴上 B.y 轴的正半轴上 C.x 轴的负半轴上 D.x 轴的正半轴上 29.四个函数:xy x y x y 1,1,-=+=-=(x >0),2x y -=(x >0),其中图象经过原 点的函数有( )A.1个B.2个C.3个D.4个30.不论x 为值何,函数c bx ax y ++=2(a ≠0)的值永远小于0的条件是( ) A.a >0,Δ>0 B.a >0,Δ<0C .a <0,Δ>0 D.a <0,Δ<0 三、解答题31.已知二次函数1222+-+=b ax x y 和1)3(22-+-+-=b x a x y 的图象都经过x 轴上两上不同的点M ,N ,求a ,b 的值.32.已知二次函数c bx ax y ++=2的图象经过点A (2,4),顶点的横坐标为21,它 的图象与x 轴交于两点B (x 1,0),C (x 2,0),与y 轴交于点D ,且132221=+x x ,试问:y 轴上是否存在点P ,使得△POB 与△DOC 相似(O 为坐标原点)?若存在,请求出过P ,B 两点直线的解析式,若不存在,请说明理由.33.如图代13-3-15,抛物线与直线y=k(x-4)都经过坐标轴的正半轴上A ,B 两点,该 抛物线的对称轴x=-21与x 轴相交于点C ,且∠ABC=90°,求:(1)直线AB 的解析式;(2)抛物线的解析式.图代13-3-15图代13-3-1634.中图代13-3-16,抛物线c x ax y +-=32交x 轴正方向于A ,B 两点,交y 轴正方 向于C 点,过A ,B ,C 三点做⊙D ,若⊙D 与y 轴相切.(1)求a ,c 满足的关系;(2)设∠ACB=α,求tg α;(3)设抛物线顶点为P ,判断直线PA 与⊙O 的位置关系并证明. 35.如图代13-3-17,这是某市一处十字路口立交桥的横断面在平面直角坐标系中的示 意图,横断面的地平线为x 轴,横断面的对称轴为y 轴,桥拱的DGD '部分为一段抛物线,顶点C 的高度为8米,AD 和A 'D '是两侧高为5.5米的支柱,OA 和OA '为两个方向的汽车通行区,宽都为15米,线段CD 和C 'D '为两段对称的上桥斜坡,其坡度为1∶4.求(1)桥拱DGD '所在抛物线的解析式及CC '的长;(2)BE 和B 'E '为支撑斜坡的立柱,其高都为4米,相应的AB 和A 'B '为两个方 向的行人及非机动车通行区,试求AB 和A 'B '的宽;(3)按规定,汽车通过该桥下时,载货最高处和桥拱之间的距离不得小于0.4米,车 载大型设备的顶部与地面的距离均为7米,它能否从OA (或OA ')区域安全通过?请说明理由.图代13-3-1736.已知:抛物线2)4(2+++-=m x m x y 与x 轴交于两点)0,(),0,(b B a A (a <b ).O 为坐标原点,分别以OA ,OB 为直径作⊙O 1和⊙O 2在y 轴的哪一侧?简要说明理由,并指出两圆的位置关系.37.如果抛物线1)1(22++-+-=m x m x y 与x 轴都交于A ,B 两点,且A 点在x 轴 的正半轴上,B 点在x 同的负半轴上,OA 的长是a ,OB 的长是b. (1) 求m 的取值范围;(2) 若a ∶b=3∶1,求m 的值,并写出此时抛物线的解析式; (3) 设(2)中的抛物线与y 轴交于点C ,抛物线的顶点是M ,问:抛物线上是否存 在 点P ,使△PAB 的面积等于△BCM 面积的8倍?若存在,求出P 点的坐标;若不存在,请 说明理由. 38.已知:如图代13-3-18,EB 是⊙O 的直径,且EB=6,在BE 的延长线上取点P ,使EP=EB.A 是EP 上一点,过A 作⊙O 的切线AD ,切点为D ,过D 作DF ⊥AB 于F ,过B 作AD 的垂线BH ,交AD 的延长线于H ,连结ED 和FH.图代13-3-18(1) 若AE=2,求AD 的长.(2) 当点A 在EP 上移动(点A 不与点E 重合)时,①是否总有FHEDAH AD =?试证 明 你的结论;②设ED=x ,BH=y ,求y 与x 的函数关系式,并写出自变量x 的取值范围. 39.已知二次函数)294(2)254(222+--+--=m m x m m x y 的图象与x 轴的交点为 A ,B (点A 在点B 右边),与y 轴的交点为C. (1) 若△ABC 为Rt △,求m 的值; (2) 在△ABC 中,若AC=BC ,求∠ACB 的正弦值; (3) 设△ABC 的面积为S ,求当m 为何值时,S 有最小值,并求这个最小值. 40.如图代13-3-19,在直角坐标系中,以AB 为直径的⊙C 交x 轴于A ,交y 轴于B , 满足OA ∶OB=4∶3,以OC 为直径作⊙D ,设⊙D 的半径为2.图代13-3-19(1) 求⊙C 的圆心坐标. (2) 过C 作⊙D 的切线EF 交x 轴于E ,交y 轴于F ,求直线EF 的解析式. (3) 抛物线c bx ax y ++=2(a ≠0)的对称轴过C 点,顶点在⊙C 上,与y 轴交点为B ,求抛物线的解析式. 41.已知直线x y 21=和m x y +-=,二次函数q px x y ++=2图象的顶点为M. (1)若M 恰在直线x y 21=与m x y +-=的交点处,试证明:无论m 取何实数值,二次函数q px x y ++=2的图象与直线m x y +-=总有两个不同的交点. (2)在(1)的条件下,若直线m x y +-=过点D (0,-3),求二次函数q px x y ++=2的表达式,并作出其大致图象.图代13-3-20(3) 在(2)的条件下,若二次函数q px x y ++=2的图象与y 轴交于点C ,与x同的左交点为A ,试在直线x y 21=上求异于M 点P ,使P 在△CMA 的外接圆上. 42.如图代13-3-20,已知抛物线b ax x y ++-=2与x 轴从左至右交于A ,B 两点, 与y 轴交于点C ,且∠BAC=α,∠ABC=β,tg α-tg β=2,∠ACB=90°. (1) 求点C 的坐标; (2) 求抛物线的解析式;(3) 若抛物线的顶点为P ,求四边形ABPC 的面积.参 考 答 案动脑动手 1. 设每件提高x 元(0≤x ≤10),即每件可获利润(2+x )元,则每天可销售(100-10x ) 件,设每天所获利润为y 元,依题意,得)10100)(2(x x y -+=.360)4(10200801022+--=++-=x x x∴当x=4时(0≤x ≤10)所获利润最大,即售出价为14元,每天所赚得最大利润360元. 2.∵43432+⎪⎭⎫⎝⎛+-=x m mx y , ∴当x=0时,y=4. 当0,043432≠=+⎪⎭⎫ ⎝⎛+-m x m mx 时mm m 34,321==. 即抛物线与y 轴的交点为(0,4),与x 轴的交点为A (3,0),⎪⎭⎫⎝⎛0,34m B . (1)当AC=BC 时,94,334-=-=m m . ∴ 4942+-=x y(2)当AC=AB 时,5,4,3===AC OC AO .∴ 5343=-m. ∴ 32,6121-==m m . 当61=m 时,4611612+-=x x y ; 当32-=m 时,432322++-=x x y .(3)当AB=BC 时,22344343⎪⎭⎫⎝⎛+=-m m ,∴ 78-=m .∴ 42144782++-=x x y . 可求抛物线解析式为:43232,461161,494222+--=+-=+-=x x y x x y x y 或42144782++-=x x y .3.(1)∵)62(4)]5([222+---=∆m m)1(122222 +=++=m m m图代13-3-21 ∴不论m 取何值,抛物线与x 轴必有两个交点. 令y=0,得062)5(222=+++-m x m x 0)3)(2(2=---m x x , ∴ 3,2221+==m x x .∴两交点中必有一个交点是A (2,0).(2)由(1)得另一个交点B 的坐标是(m 2+3,0).12322+=-+=m m d ,∵ m 2+10>0,∴d=m 2+1.(3)①当d=10时,得m 2=9.∴ A (2,0),B (12,0).25)7(241422--=+-=x x x y .该抛物线的对称轴是直线x=7,顶点为(7,-25),∴AB 的中点E (7,0). 过点P 作PM ⊥AB 于点M ,连结PE , 则2222)7(,,521a MEb PM AB PE -====, ∴ 2225)7(=+-b a . ① ∵点PD 在抛物线上,∴ 25)7(2--=a b . ② 解①②联合方程组,得0,121=-=b b .当b=0时,点P 在x 轴上,△ABP 不存在,b=0,舍去.∴b=-1. 注:求b 的值还有其他思路,请读者探觅,写出解答过程. ②△ABP 为锐角三角形时,则-25≤b <-1; △ ABP 为钝角三角形时,则b >-1,且b ≠0. 同步题库一、 填空题 1.3)2(21,)2(2122-+-=+-=x y x y ; 2.81,41=x ; 3.9)3(2-+=x y ; 4. 2)2(22+--=x y ; 5.互为相反数; 6.y 轴,左,右; 7.下,x=-1,(-1,-3),x >-1;8.四,增大; 9.向上,向下,a bx a b ac a b 2,44,22-=⎪⎪⎭⎫ ⎝⎛--; 10.向下,(h,0),x=h ; 11.-1,-2; 12.x <-1; 13.-17,(2,3); 14.91312-⎪⎭⎫ ⎝⎛+=x y ; 15.10.二、选择题16.B 17.C 18.A 19.A 20.C 21.D 22.B 23.B 24.D 25.B 26.D 27.C 28. C 29.A 30.D 三、解答题31.解法一:依题意,设M (x 1,0),N (x 2,0),且x 1≠x 2,则x 1,x 2为方程x 2+2ax-2b+1=0 的两个实数根,∴ a x x 221-=+,1x ·122+-=b x . ∵x 1,x 2又是方程01)3(22=-+-+-b x a x 的两个实数根, ∴ x 1+x 2=a-3,x 1·x 2=1-b 2.∴ ⎩⎨⎧-=+--=-.112,322b b a a 解得 ⎩⎨⎧==;0,1b a 或⎩⎨⎧==.2,1b a当a=1,b=0时,二次函数的图象与x 轴只有一个交点, ∴a=1,b=0舍去.当a=1;b=2时,二次函数322-+=x x y 和322+--=x x y 符合题意. ∴ a=1,b=2.解法二:∵二次函数1222+-+=b ax x y 的图象对称轴为a x -=,二次函数1)3(22-+-+-=b x a x y 的图象的对称轴为23-=a x , 又两个二次函数图象都经过x 轴上两个不同的点M ,N , ∴两个二次函数图象的对称轴为同一直线.∴ 23-=-a a . 解得 1=a .∴两个二次函数分别为1222+-+=b x x y 和1222-+--=b x x y . 依题意,令y=0,得01222=+-+b x x , 01222=-+--b x x .①+②得022=-b b .解得 2,021==b b . ∴ ⎩⎨⎧==;0,1b a 或⎩⎨⎧==.2,1b a当a=1,b=0时,二次函数的图象与x 轴只有一个交点, ∴a=1,b=0舍去.当a=1,b=2时,二次函数为322-+=x x y 和322+--=x x y 符合题意. ∴ a=1,b=2.32.解:∵c bx ax y ++=2的图象与x 轴交于点B (x 1,0),C (x 2,0), ∴ acx x a b x x =⋅-=+2121,. 又∵132221=+x x 即132)(21221=-+x x x x ,∴ 132)(2=⋅--a cab . ① 又由y 的图象过点A (2,4),顶点横坐标为21,则有4a+2b+c=4, ② 212=-a b . ③ 解由①②③组成的方程组得a=-1,b=1,c=6.∴ y=-x 2+x+6.与x 轴交点坐标为(-2,0),(3,0).与y 轴交点D 坐标为(0,6).设y 轴上存在点P ,使得△POB ∽△DOC ,则有(1) 当B (-2,0),C (3,0),D (0,6)时,有 6,3,2,====OD OC OB ODOP OC OB . ∴OP=4,即点P 坐标为(0,4)或(0,-4).当P 点坐标为(0,4)时,可设过P ,B 两点直线的解析式为y=kx+4.有 0=-2k-4.得 k=-2.∴ y=-2x-4.或 3,6,2,====OC OD OB OCOP OD OB . ∴OP=1,这时P 点坐标为(0,1)或(0,-1).当P 点坐标为(0,1)时,可设过P ,B 两点直线的解析式为y=kx+1.有 0=-2k+1.得 21=k . ∴ 121+-=x y . 当P 点坐标为(0,-1)时,可设过P ,B 两点直线的解析式为y=kx-1,有 0=-2k-1,得 21-=k . ∴ 121--=x y . (2) 当B (3,0),C (-2,0),D (0,6)时,同理可得y=-3x+9,或 y=3x-9,或 131+-=x y , 或 131-=x y . 33.解:(1)在直线y=k(x-4)中,令y=0,得x=4.∴A 点坐标为(4,0).∴ ∠ABC=90°.∵ △CBD ∽△BAO , ∴OBOA OC OB =,即OB 2=OA ·OC.又∵ CO=1,OA=4,∴ OB 2=1×4=4.∴ OB=2(OB=-2舍去)∴B 点坐标为(0,2).将点B (0,2)的坐标代入y=k(x-4)中,得21-=k . ∴直线的解析式为:221+-=x y . (2)解法一:设抛物线的解析式为h x a y ++=2)1(,函数图象过A (4,0),B (0,2),得⎩⎨⎧=+=+.2,025h a h a 解得 .1225,121=-=h a ∴抛物线的解析式为:1225)1(1212++-=x y . 解法二:设抛物线的解析式为:c bx ax y ++=2,又设点A (4,0)关于x=-1的对 称是D.∵ CA=1+4=5,∴ CD=5.∴ OD=6.∴D 点坐标为(-6,0).将点A (4,0),B (0,2),D (-6,0)代入抛物线方程,得 ⎪⎩⎪⎨⎧=+-==++.0636,2,0416c b a c c b a 解得 2,61,121=-=-=c b a . ∴抛物线的解析式为:2611212+--=x x y . 34.解:(1)A ,B 的横坐标是方程032=+-c x ax 的两根,设为x 1,x 2(x 2>x 1),C 的 纵坐标是C.又∵y 轴与⊙O 相切,∴ OA ·OB=OC 2.∴ x 1·x 2=c 2.又由方程032=+-c x ax 知 ac x x =⋅21,∴a c c =2,即ac=1. (2)连结PD ,交x 轴于E ,直线PD 必为抛物线的对称轴,连结AD 、BD ,图代13-3-22∴ AB AE 21=. α=∠=∠=∠ADE ADB ACB 21. ∵ a >0,x 2>x 1, ∴ aa ac x x AB 54912=-=-=. a AE 25=. 又 ED=OC=c ,∴ 25==DE AE tg α. (3)设∠PAB=β,∵P 点的坐标为⎪⎭⎫ ⎝⎛-a a 45,23,又∵a >0, ∴在Rt △PAE 中,aPE 45=. ∴ 25==AE PE tg β. ∴ tg β=tg α. ∴β=α.∴∠PAE=∠ADE.∵ ∠ADE+∠DAE=90°∴PA 和⊙D 相切.35.解:(1)设DGD '所在的抛物线的解析式为c ax y +=2,由题意得G (0,8),D (15,5.5).∴ ⎩⎨⎧+==.255.5,8c a c 解得⎪⎩⎪⎨⎧=-=.8,901c a∴DGD '所在的抛物线的解析式为89012+-=x y . ∵41=AC AD 且AD=5.5, ∴ AC=5.5×4=22(米).∴ 2215(2)(22+⨯=+⨯=='AC OA OC c c )=74(米).答:cc '的长为74米.(2)∵ 4,41==BE BC EB , ∴ BC=16.∴ AB=AC-BC=22-16=6(米).答:AB 和A 'B '的宽都是6米.(3) 在89012+-=x y 中,当x=4时, 45377816901=+⨯-=y . ∵ 4519)4.07(45377=+->0. ∴该大型货车可以从OA (OA ')区域安全通过.36.解:(1)∵⊙O 1与⊙O 2外切于原点O ,∴A ,B 两点分别位于原点两旁,即a <0,b >0.∴方程02)4(2=+++-m x m x 的两个根a ,b 异号.∴ab=m+2<0,∴m <-2.(2)当m <-2,且m ≠-4时,四边形PO 1O 2Q 是直角梯形. 根据题意,计算得22121b S Q O PO =四边形(或221a 或1). m=-4时,四边形PO 1O 2Q 是矩形. 根据题意,计算得22121b S Q O PO =四边形(或221a 或1). (3)∵ 4)2()2(4)4(22++=+-+=∆m m m >0∴方程02)4(2=+++-m x m x 有两个不相等的实数根.∵ m >-2,∴ ⎩⎨⎧+=+=+.02,04 m ab m b a∴ a >0,b >0.∴⊙O 1与⊙O 2都在y 轴右侧,并且两圆内切.37.解:(1)设A ,B 两点的坐标分别是(x 1,0)、(x 2,0),∵A ,B 两点在原点的两侧,∴ x 1x 2<0,即-(m+1)<0,解得 m >-1.∵ )1()1(4)]1(2[2+⨯-⨯--=∆m m 7)21(484422+-=+-=m m m 当m >-1时,Δ>0,∴m 的取值范围是m >-1.(2)∵a ∶b=3∶1,设a=3k ,b=k (k >0),则 x 1=3k ,x 2=-k ,∴ ⎩⎨⎧+-=-⋅-=-).1()(3),1(23m k k m k k解得 31,221==m m . ∵31=m 时,3421-=+x x (不合题意,舍去), ∴ m=2 ∴抛物线的解析式是32++-=x x y .(3)易求抛物线322++-=x x y 与x 轴的两个交点坐标是A (3,0),B (-1,0) 与y 轴交点坐标是C (0,3),顶点坐标是M (1,4).设直线BM 的解析式为q px y +=,则 ⎩⎨⎧+-⋅=+⋅=.)1(0,14q p q p 解得 ⎩⎨⎧==.2,2q p∴直线BM 的解析式是y=2x+2.设直线BM 与y 轴交于N ,则N 点坐标是(0,2),∴ MNC BCN BCM S S S ∆∆∆+= .111211121=⨯⨯+⨯⨯=设P 点坐标是(x,y ),∵ BCM ABP S S ∆∆=8,∴ 1821⨯=⨯⨯y AB . 即 8421=⨯⨯y . ∴ 4=y .∴4±=y .当y=4时,P 点与M 点重合,即P (1,4),当y=-4时,-4=-x 2+2x+3,解得 221±=x .∴满足条件的P 点存在.P 点坐标是(1,4),)4,221(),4,221(---+.38.(1)解:∵AD 切⊙O 于D ,AE=2,EB=6,∴ AD 2=AE ·AB=2×(2+6)=16.∴ AD=4.图代13-2-23(2)①无论点A 在EP 上怎么移动(点A 不与点E 重合),总有FHED AH AD =. 证法一:连结DB ,交FH 于G ,∵AH 是⊙O 的切线,∴ ∠HDB=∠DEB.又∵BH ⊥AH ,BE 为直径,∴ ∠BDE=90°有 ∠DBE=90°-∠DEB=90°-∠HDB=∠DBH.在△DFB 和△DHB 中,DF ⊥AB ,∠DFB=∠DHB=90°,DB=DB ,∠DBE=∠DBH ,∴ △DFB ∽△DHB.∴BH=BF , ∴△BHF 是等腰三角形.∴BG ⊥FH ,即BD ⊥FH.∴ED ∥FH ,∴FH ED AH AD =.图代13-3-24证法二:连结DB ,∵AH 是⊙O 的切线,∴ ∠HDB=∠DEF.又∵DF ⊥AB ,BH ⊥DH ,∴ ∠EDF=∠DBH.以BD 为直径作一个圆,则此圆必过F ,H 两点,∴∠DBH=∠DFH ,∴∠EDF=∠DFH. ∴ ED ∥FH.∴ FHED AH AD =. ②∵ED=x ,BH=,BH=y ,BE=6,BF=BH ,∴EF=6y.又∵DF 是Rt △BDE 斜边上的高,∴ △DFE ∽△BDE ,∴EBED ED EF =,即EB EF ED ⋅=2. ∴)6(62y x -=,即6612+-=x y . ∵点A 不与点E 重合,∴ED=x >0.A 从E 向左移动,ED 逐渐增大,当A 和P 重合时,ED 最大,这时连结OD ,则OD ⊥PH. ∴ OD ∥BH.又 12,936==+=+=PB EO PE PO ,4,=⋅==POPB OD BH PB PO BH OD , ∴ 246,4=-=-===BF EB EF BH BF ,由ED 2=EF ·EB 得 12622=⨯=x ,∵x >0,∴32=x .∴ 0<x ≤32.(或由BH=4=y ,代入6612+-=x y 中,得32=x )故所求函数关系式为6612+-=x y (0<x ≤32). 39.解:∵]294)[2(2942254222⎪⎭⎫ ⎝⎛+--+=⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛+--=m m x x m m x m m x y , ∴可得⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛+--2942,0,0,294),0,2(22m m C m m B A . (1)∵△ABC 为直角三角形,∴OB AO OC⋅=2, 即⎪⎭⎫ ⎝⎛+-⨯=⎪⎭⎫ ⎝⎛+-22942294422m m m m , 化得0)2(2=-m .∴m=2.(2)∵AC=BC ,CO ⊥AB ,∴AO=BO ,即22942=+-m m . ∴429422=⎪⎭⎫ ⎝⎛+-=m m OC .∴25==BC AC . 过A 作AD ⊥BC ,垂足为D ,∴ AB ·OC=BC ·AD.∴ 58=AD .∴ 545258sin ===∠AC AD ACB .图代13-3-25(3)CO AB S ABC ⋅=∆21 .1)1()2(2942229421222-+=+=⎪⎭⎫ ⎝⎛+-⋅⎪⎭⎫ ⎝⎛++-=u u u m m m m ∵ 212942≥+-=m m u ,∴当21=u ,即2=m 时,S 有最小值,最小值为45. 40.解:(1)∵OA ⊥OB ,OA ∶OB=4∶3,⊙D 的半径为2,∴⊙C 过原点,OC=4,AB=8.A 点坐标为⎪⎭⎫ ⎝⎛0,532,B 点坐标为⎪⎭⎫ ⎝⎛524,0. ∴⊙C 的圆心C 的坐标为⎪⎭⎫⎝⎛512,516. (2)由EF 是⊙D 切线,∴OC ⊥EF.∵ CO=CA=CB ,∴ ∠COA=∠CAO ,∠COB=∠CBO.∴ Rt △AOB ∽Rt △OCE ∽Rt △FCO.∴OBOC AB OF OA OC AB OE ==,. ∴ 320,5==OF OE . E 点坐标为(5,0),F 点坐标为⎪⎭⎫ ⎝⎛320,0, ∴切线EF 解析式为32034+-=x y . (3)①当抛物线开口向下时,由题意,得抛物线顶点坐标为⎪⎭⎫⎝⎛+4512,516,可得 ⎪⎪⎩⎪⎪⎨⎧==-=⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-.524,1,325.52453244,51622c b a c a b ac a b ∴ 5243252++-=x x y . ②当抛物线开口向上时,顶点坐标为⎪⎭⎫ ⎝⎛-4512,516,得⎪⎪⎩⎪⎪⎨⎧=-==⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=-.524,4,85.524,5844,51622c b a c a b ac a b ∴ 5244852+--=x x y . 综合上述,抛物线解析式为5243252++-=x x y 或5244852+-=x x y . 41.(1)证明:由⎪⎩⎪⎨⎧+-==,,21m x y x y 有m x x +-=21, ∴ m y m x m x 31,32,23===. ∴交点)31,32(m m M . 此时二次函数为m m x y 31322+⎪⎭⎫ ⎝⎛-= m m mx x 31943422++-=. 由②③联立,消去y ,有 0329413422=-+⎪⎭⎫ ⎝⎛--m m x m x . ⎪⎭⎫ ⎝⎛--⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--=∆m m m 3294413422 .013891613891622>=+-+-=m m m m∴无论m 为何实数值,二次函数q px x y ++=2的图象与直线m x y +-=总有两个不同的交点.图代13-3-26(2)解:∵直线y=-x+m 过点D (0,-3),∴ -3=0+m ,∴ m=-3.∴M (-2,-1).∴二次函数为)1)(3(341)2(22++=+-=-+=x x x x x y .图象如图代13-3-26.(3)解:由勾股定理,可知△CMA 为Rt △,且∠CMA=Rt ∠,∴MC 为△CMA 外接圆直径.∵P 在x y 21=上,可设⎪⎭⎫ ⎝⎛n n P 21,,由MC 为△CMA 外接圆的直径,P 在这个圆上, ∴ ∠CPM=Rt ∠.过P 分别作PN ⊥y ,轴于N ,PQ ⊥x 轴于R ,过M 作MS ⊥y 轴于S ,MS 的延长线与PR 的 延长线交于点Q.由勾股定理,有222QP MQ MP +=,即222121)2(⎪⎭⎫ ⎝⎛+++=n n MP . 22222213n n NP NC CP +⎪⎭⎫ ⎝⎛-=+=. 202=CM. 而 222CM CPMP =+, ∴ 20213121)2(2222=+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+++n n n n , 即 062252=-+n n , ∴ 012452=-+n n ,0)2)(65(=+-n n .∴ 2,5621-==n n . 而n 2=-2即是M 点的横坐标,与题意不合,应舍去.∴ 56=n , 此时 5321=n . ∴P 点坐标为⎪⎭⎫ ⎝⎛53,56. 42.解:(1)根据题意,设点A (x 1,0)、点(x 2,0),且C (0,b ),x 1<0,x 2>0,b >0, ∵x 1,x 2是方程02=++-b ax x 的两根,∴ b x x a x x -=⋅=+2121,.在Rt △ABC 中,OC ⊥AB ,∴OC 2=OA ·OB.∵ OA=-x 1,OB=x 2,∴ b 2=-x 1·x 2=b.∵b >0,∴b=1,∴C (0,1).(2)在Rt △AOC 的Rt △BOC 中, 211212121==+-=--=-=-ba x x x x x x OB OC OA OC tg tg βα. ∴ 2=a .∴抛物线解析式为122++-=x x y .图代13-3-27(3)∵122++-=x x y ,∴顶点P 的坐标为(1,2),当0122=++-x x 时,21±=x .∴)0,21(),0,21(+-B A .延长PC 交x 轴于点D ,过C ,P 的直线为y=x+1,∴点D 坐标为(-1,0).∴ DCA DPB ABPC S S S ∆∆-=四边形).(22321)22(212)22(212121平方单位+=⨯-⨯-⨯+⨯=⋅-⋅⋅=yc AD y DB p。
九年级数学二次函数专题训练含答案解析-精选5份
九年级数学上册《二次函数》专题测试题(附答案)一.选择题(共8小题,满分32分)1.若y=(a+1)x|a+3|﹣x+3是关于x的二次函数,则a的值是()A.1B.﹣5C.﹣1D.﹣5或﹣12.下列关于二次函数y=﹣(x﹣m)2+m2+1(m为常数)的结论错误的是()A.当x>0时,y随x的增大而减小B.该函数的图象一定经过点(0,1)C.该函数图象的顶点在函数y=x2+1的图象上D.该函数图象与函数y=﹣x2的图象形状相同3.已知:抛物线的解析式为y=﹣3(x﹣2)2+1,则抛物线的对称轴是直线()A.x=﹣1B.x=1C.x=2D.x=﹣24.将二次函数y=2x2向左平移5个单位,再向上平移3个单位,所得新抛物线表达式为()A.y=2(x+5)2﹣3B.y=2(x+5)2+3C.y=2(x﹣5)2﹣3D.y=2(x﹣5)2+35.二次函数y=ax2+bx+c的图象如图所示,下列结论:(1)4ac<b2;(2)abc<0;(3)2a+b<0;(4)(a+c)2<b2其中正确的个数是()A.1B.2C.3D.46.已知抛物线y=ax2+4ax﹣8与直线y=n相交于A,B两点(点A在点B左侧),AB=4,且抛物线与x轴只有一个交点,则n的值为()A.﹣8B.﹣4C.4D.87.已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m =0(m>0)有两个整数根,其中一个根是3,则另一个根是()A.﹣5B.﹣3C.﹣1D.38.物理课上我们学习了竖直上抛运动,若从地面竖直向上抛一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示,下列结论:①小球在空中经过的路程是40m②小球抛出3s后,速度越来越快③小球抛出3s时速度为0④小球的高度h=30m时,t=1.5s其中正确的是()A.①②③B.①②C.②③④D.②③二.填空题(共8小题,满分32分)9.已知抛物线y=x2+bx+c关于直线x=2对称,设x=1,2,4时对应的函数值依次为y1,y2,y4,那么y1,y2,y4的大小关系是.(用“<”连接)10.已知抛物线y=ax2﹣2ax﹣1(a<0)(I)抛物线的对称轴为;(2)若当﹣2≤x≤2时,y的最大值是1,求当﹣2≤x≤2时,y的最小值是.11.已知二次函数y=ax2﹣2ax+c(a≠0)的图象与x轴的一个交点为(﹣1,0),则关于x 的一元二次方程ax2﹣2ax+c=0的两根之积是.12.已知二次函数y=﹣x2+4x+5及一次函数y=﹣x+b,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象(如图所示),当直线y=﹣x+b与新图象有4个交点时,b的取值范围是.13.将抛物线y=﹣(x﹣3)2﹣1向右平移5个单位,再向上平移2个单位,所得的抛物线的解析式为.14.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,9),B(1,1),则方程ax2﹣bx﹣c=0的解是.15.抛物线y=ax2+bx+tc(a<0)交x轴于点A、B,交y轴于点C(0,3),其中点B坐标为(1,0),同时抛物线还经过点(2,﹣5).(1)抛物线的解析式为;(2)设抛物线的对称轴与抛物线交于点E,与x轴交于点H,连接EC、EO,将抛物线向下平移n(n>0)个单位,当EO平分∠CEH时,则n的值为.16.某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y (个)与销售价格x(元/个)的关系如图所示,当10≤x≤20时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为元(利润=总销售额﹣总成本).三.解答题(共6小题,满分56分)17.已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P(2,4).(1)求m的值;(2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.18.对于向上抛的物体,如果空气阻力忽略不计,有下面的关系式:h=v0t﹣gt2(h是物体离起点的高度,v0是初速度,g是重力系数,取10m/s2,t是抛出后经过的时间).杂技演员抛球表演时,以10m/s的初速度把球向上抛出.(1)球抛出后经多少秒回到起点?(2)几秒后球离起点的高度达到1.8m?(3)球离起点的高度能达到6m吗?请说明理由.19.在平面直角坐标系中,已知二次函数y=ax2+(a﹣1)x﹣1.(1)若该函数的图象经过点(1,2),求该二次函数图象的顶点坐标.(2)若(x1,y1),(x1,y2)为此函数图象上两个不同点,当x1+x2=﹣2时,恒有y1=y2,试求此函数的最值.(3)当a<0且a≠﹣1时,判断该二次函数图象的顶点所在象限,并说明理由.20.某商场新进一批拼装玩具,进价为每个10元,在销售过程中发现,日销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)求y与x的函数关系式(不要求写出自变量x的取值范围);(2)若该玩具某天的销售利润是600元,则当天玩具的销售单价是多少元?(3)设该玩具日销售利润为w元,当玩具的销售单价定为多少元时,日销售利润最大?最大利润是多少元?21.如图,抛物线y=﹣x2+bx+c过点A(4,0),B(0,2).M(m,0)为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点D、N.(1)求直线AB的表达式和抛物线的表达式;(2)若DN=3DM,求此时点N的坐标;(3)若点P为直线AB上方的抛物线上一个动点,当∠ABP=2∠BAC时,求点P的坐标.22.如图,已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(3,﹣2),点C(0,﹣5),顶点为点M,过点A作AB∥x轴,交y轴于点D,交二次函数y=x2+bx+c的图象于点B,连接BC.(1)求该二次函数的表达式及点M的坐标;(2)若将该二次函数图象向上平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;(3)若E为线段AB上一点,且BE:EA=3:1,P为直线AC上一点,在抛物线上是否存在一点Q,使以B、P、E、Q为顶点的四边形是平行四边形?若存在,请直接写出点Q的横坐标;若不存在,请说明理由.参考答案一.选择题(共8小题,满分32分)1.解:∵函数y=(a+1)x|a+3|﹣x+3是关于x的二次函数,∴|a+3|=2且a+1≠0,解得a=﹣5,故选:B.2.解:A.∵y=﹣(x﹣m)2+m2+1(m为常数),∴抛物线开口向下,对称轴为直线x=m,∴x>m时,y随x增大而减小,故A错误,符合题意;∵当x=0时,y=1,∴该函数的图象一定经过点(0,1),故B正确,不合题意;∵y=﹣(x﹣m)2+m2+1,∴抛物线顶点坐标为(m,m2+1),∴抛物线顶点在抛物线y=x2+1上,故C正确,不合题意;∵y=﹣(x﹣m)2+m2+1与y=﹣x2的二次项系数都为﹣1,∴两函数图象形状相同,故D正确,不合题意.故选:A.3.解:∵y=﹣3(x﹣2)2+1,∴抛物线对称轴为直线x=2.故选:C.4.解:将二次函数y=2x2向左平移5个单位,再向上平移3个单位,所得新抛物线表达式为y=2(x+5)2+3,故选:B.5.解:根据图象知道抛物线与x轴有两个交点,∴b2﹣4ac>0,即4ac<b2,故(1)正确.∵抛物线开口朝下,∴a<0,∵对称轴在y轴右侧,∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∴abc<0,故(2)正确;∵对称轴x=﹣>1,∴2a+b>0,故(3)错误;根据图象知道当x=1时,y=a+b+c>0,根据图象知道当x=﹣1时,y=a﹣b+c<0,∴(a+c)2﹣b2=(a+c+b)(a+c﹣b)<0,故(4)正确;故选:C.6.解:∵抛物线与x轴只有一个交点,∴a≠0且Δ=16a2﹣4a×(﹣8)=0,∴a=﹣2,∴抛物线解析式为y=﹣2x2﹣8x﹣8,∵抛物线的对称轴为直线x=﹣=﹣2,而AB平行x轴,AB=4,∴A点的横坐标为﹣4,B点的横坐标为0,当x=0时,y=﹣8,∴n的值为﹣8.故选:A.7.解:∵二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,∴函数y=ax2+bx+c的对称轴是直线x=﹣1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.∴二次函数y=ax2+bx+c的图象与直线y=﹣m的一个交点的横坐标为3,∵对称轴是直线x=﹣1,∴二次函数y=ax2+bx+c的图象与直线y=﹣m的另一个交点的横坐标为﹣5,∴关于x的方程ax2+bx+c+m=0(m>0)的另一个根是﹣5,故选:A.8.解:①由图象知小球在空中达到的最大高度是40m;故①错误;②小球抛出3秒后,速度越来越快;故②正确;③小球抛出3秒时达到最高点即速度为0;故③正确;④设函数解析式为:h=a(t﹣3)2+40,把O(0,0)代入得0=a(0﹣3)2+40,解得,∴函数解析式为,把h=30代入解析式得,,解得:t=4.5或t=1.5,∴小球的高度h=30m时,t=1.5s或4.5s,故④错误;故选D.二.填空题(共8小题,满分32分)9.解:∵抛物线y=x2+bx+c的开口向上,对称轴是直线x=2,∴当x=2时取最小值,又|1﹣2|<|4﹣2|,∴y1<y4,故答案为:y2<y1<y4.10.解:(1)抛物线的对称轴为:直线x=﹣=1,故答案为:直线x=1;(2)∵抛物线y=ax2﹣2ax﹣1=a(x﹣1)2﹣a﹣1(a<0),∴该函数图象的开口向下,对称轴是直线x=1,当x=1时,取得最大值﹣a﹣1,∵当﹣2≤x≤2时,y的最大值是1,∴x=1时,y=﹣a﹣1=1,得a=﹣2,∴y=﹣2(x﹣1)2+1,∵﹣2≤x≤2,∴x=﹣2时,取得最小值,此时y=﹣2(﹣2﹣1)2+1=﹣17,故答案为:﹣17.11.解:∵二次函数y=ax2﹣2ax+c(a≠0)的图象与x轴的一个交点为(﹣1,0),∴该函数的对称轴是直线x=﹣=1,∴该函数图象与x轴的另一个交点坐标为(3,0),∴关于x的一元二次方程ax2﹣2ax+c=0的两实数根是x1=﹣1,x2=3,∴两根之积为﹣3,故答案为:﹣3.12.解:如图,当y=0时,﹣x2+4x+5=0,解得x1=﹣1,x2=5,则A(﹣1,0),B(5,0),将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为y=(x+1)(x﹣5),即y=x2﹣4x﹣5(﹣1≤x≤5),当直线y=﹣x+b经过点A(﹣1,0)时,1+b=0,解得b=﹣1;当直线y=﹣x+b与抛物线y=x2﹣4x﹣5(﹣1≤x≤5)有唯一公共点时,方程x2﹣4x﹣5=﹣x+b有相等的实数解,解得b=﹣,所以当直线y=﹣x+b与新图象有4个交点时,b的取值范围为﹣<b<﹣1.故答案为:﹣<b<﹣1.13.解:将抛物线y=﹣(x﹣3)2﹣1向右平移5个单位,再向上平移2个单位,所得的抛物线的解析式为y=﹣(x﹣3﹣5)2﹣1+2,即y=﹣(x﹣8)2+1,故答案为:y=﹣(x﹣8)2+1.14.解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,9),B(1,1),∴方程ax2=bx+c的解为x1=﹣3,x2=1,∴ax2﹣bx﹣c=0的解是x1=﹣3,x2=1,故答案为:x1=﹣3,x2=1.15.解:(1)将点C(0,3)、B(1,0)、(2,﹣5)代入抛物线y=ax2+bx+tc中,得:a+b+c=0,c=3,4a+2b+c=﹣5;解得:a=﹣1,b=﹣2,c=3,∴抛物线的解析式为y=﹣x2﹣2x+3.(2)抛物线向下平移n个单位后,E为(﹣1,4﹣n),C为(0,3﹣n),∴EC=,∵CO∥EH,∴当CO=CE=时,∠CEO=∠COE=∠OCH,∴3﹣n=或n﹣3=,即n=3﹣或3+.16.解:当10≤x≤20时,设y=kx+b,把(10,20),(20,10)代入可得:,解得,∴每天的销售量y(个)与销售价格x(元/个)的函数解析式为y=﹣x+30,设该食品零售店每天销售这款冷饮产品的利润为w元,w=(x﹣8)y=(x﹣8)(﹣x+30)=﹣x2+38x﹣240=﹣(x﹣19)2+121,∵﹣1<0,∴当x=19时,w有最大值为121,故答案为:121.三.解答题(共6小题,满分56分)17.解:(1)将(2,4)代入y=x2+mx+m2﹣3得4=4+2m+m2﹣3,解得m1=1,m2=﹣3,又∵m>0,∴m=1.(2)∵m=1,∴y=x2+x﹣2,∵Δ=b2﹣4ac=12+8=9>0,∴二次函数图象与x轴有2个交点.18.解:∵初速度为10m/s,g取10m/s2,∴h=10t﹣×10t2=10t﹣5t2,(1)当h=0时,10t﹣5t2=0,解得t=0或t=2,∴球抛出后经2秒回到起点;(2)当h=1.8时,10t﹣5t2=1.8,解得t=0.2或t=1.8,∴0.2秒或1.8秒后球离起点的高度达到1.8m;(3)球离起点的高度不能达到6m,理由如下:若h=6,则10t﹣5t2=6,整理得5t2﹣10t+6=0,Δ=(﹣10)2﹣4×5×6=﹣20<0,∴原方程无实数解,∴球离起点的高度不能达到6m.19.解:(1)∵函数图象过点(1,2),∴将点代入y=ax2+(a﹣1)x﹣1,解得a=2,∴二次函数的解析式为y=2x2+x﹣1,∴x=﹣=﹣,∴y=2×﹣﹣1=﹣,∴该二次函数的顶点坐标为(﹣,﹣);(2)函数y=ax2+(a﹣1)x﹣1的对称轴是直线x=﹣,∵(x1,y1),(x2,y2)为此二次函数图象上的两个不同点,且x1+x2=﹣2,则y1=y2,∴﹣===﹣1,∴a=﹣1,∴y=﹣x2﹣2x﹣1=﹣(x+1)2≤0,∴当x=﹣1时,函数有最大值0;(3)∵y=ax2+(a﹣1)x﹣1,∴由顶点公式得:x=﹣=﹣+,y==﹣,∵a<0且a≠﹣1,∴x<0,y>0,∴该二次函数图象的顶点在第二象限.20.解:(1)设一次函数的关系式为y=kx+b,由题图可知,函数图象过点(25,50)和点(35,30).把这两点的坐标代入一次函数y=kx+b,得,解得,∴一次函数的关系式为y=﹣2x+100;(2)根据题意,设当天玩具的销售单价是x元,由题意得,(x﹣10)×(﹣2x+100)=600,解得:x1=40,x2=20,∴当天玩具的销售单价是40元或20元;(3)根据题意,则w=(x﹣10)×(﹣2x+100),整理得:w=﹣2(x﹣30)2+800;∵﹣2<0,∴当x=30时,w有最大值,最大值为800;∴当玩具的销售单价定为30元时,日销售利润最大;最大利润是800元.21.解:(1)设直线AB的解析式为y=px+q,把A(4,0),B(0,2)代入得,,解得,∴直线AB的解析式为y=﹣x+2;把A(4,0),B(0,2)代入y=﹣x2+bx+c得,,解得;∴抛物线解析式为y=﹣x2+x+2;(2)∵MN⊥x轴,M(m,0),点D在直线AB上,点N在抛物线上,∴N(m,﹣m2+m+2),D(m,﹣m+2),∴DN=﹣m2+2m,DM=﹣m+2,∵DN=3DM,∴﹣m2+2m=3(﹣m+2),解得m=3或m=4(舍),∴N(3,2).(3)如图,作点B关于x轴的对称点B′,∴OB=OB′,B′(0,﹣2),∵∠AOB=∠AOB′=90°,OA=OA,∴△AOB≌△AOB′,∴∠OAB′=∠OAB,∴∠BAB′=2∠BAC,∵A(4,0),B′(0,﹣2),∴直线AB′的解析式为:y=x﹣2,过点B作BP∥AB′交抛物线于点P,则∠ABP=∠BAB′=2∠BAC,即点P即为所求,∴直线BP的解析式为:y=x+2,令x+2=﹣x2+x+2,解得x=2或x=0(舍),∴P(2,3).22.解:(1)将点A(3,﹣2),点C(0,﹣5)代入y=x2+bx+c,∴,解得,∴y=x2﹣2x﹣5,∴M(1,﹣6);(2)平移后的函数解析式为y=(x﹣1)2﹣6+m,∴平移后的顶点坐标为(1,m﹣6),∴抛物线的顶点在x=1的直线上,设直线CA的解析式为y=kx+b,∴,∴,∴y=x﹣5,当x=1时,y=﹣4,∴﹣4<m﹣6<﹣2,解得2<m<4;(3)存在一点Q,使以B、P、E、Q为顶点的四边形是平行四边形,理由如下:当y=﹣2时,x2﹣2x﹣5=﹣2,解得x=﹣1或x=3,∴B(﹣1,﹣2),∴AB=4,∵BE:EA=3:1,∴AE=1,∴E(2,﹣2),设P(t,t﹣5),Q(x,x2﹣2x﹣5),①当BE为平行四边形的对角线时,,解得或,∴Q(,)或(,);②当BP为平行四边形的对角线时,,解得或,∴Q(,)或(,);③当BQ为平行四边形的对角线时,,此时无解;综上所述:Q点坐标为(,)或(,)或(,)或(,).九年级数学上册二次函数的图象与性质练习题(附答案)一.选择题1.如果在二次函数的表达式y=ax2+bx+c中,a>0,b<0,c<0,那么这个二次函数的图象可能是()A.B.C.D.2.已知y=(m+2)x|m|+2是关于x的二次函数,那么m的值为()A.﹣2B.2C.±2D.03.已知A(,y1),B(2,y2),C(﹣,y3)是二次函数y=3(x﹣1)2+k图象上三点,则y1、y2、y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y2>y1D.y2>y3>y1 4.二次函数的部分图象如图所示,对称轴是直线x=﹣1,则这个二次函数的表达式为()A.y=﹣x2+2x+3B.y=x2+2x+3C.y=﹣x2+2x﹣3D.y=﹣x2﹣2x+35.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()A.B.C.D.6.关于抛物线y=﹣x2+2x﹣3的判断,下列说法正确的是()A.抛物线的开口方向向上B.抛物线的对称轴是直线x=﹣1C.抛物线对称轴左侧部分是下降的D.抛物线顶点到x轴的距离是27.已知二次函数y=x2﹣4x+5(0≤x≤3),则它的最大值是()A.1B.2C.3D.58.如图为二次函数y=ax2+bx+c的图象,给出下列说法:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③a+b+c>0;④当x<1时,y随x值的增大而增大;⑤当y>0时,x<﹣1或x>3.其中,正确的说法有()A.①②④B.①②⑤C.①③⑤D.②④⑤9.已知函数y=2(x+1)2+1,则()A.当x<1 时,y随x的增大而增大B.当x<1 时,y随x的增大而减小C.当x<﹣1 时,y随x的增大而增大D.当x<﹣1 时,y随x的增大而减小10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中不正确的有()个.①abc>0;②2a+b=0;③9a+3b+c<0;④4ac﹣b2<0;⑤a+b≥m(am+b)(m为任意实数).A.3B.2C.1D.0二.填空题11.已知四个二次函数的图象如图所示,那么a1,a2,a3,a4的大小关系是.(请用“>”连接排序)12.抛物线y=3x2+6x+11的顶点坐标为.13.二次函数y=3(x﹣1)2+5的最小值为.14.已知二次函数y=2x2+bx+4顶点在x轴上,则b=.15.二次函数y=x2﹣2x+1在2≤x≤5范围内的最小值为.16.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x轴的另一个交点为(3,0);④abc>0.其中正确的结论是(填写序号).三.解答题17.已知二次函数的顶点坐标为A(1,﹣4),且经过点B(3,0).(1)求该二次函数的解析式;(2)判断点C(2,﹣3)是否在该函数图象上,并说明理由.18.如图,已知直线l过点A(4,0),B(0,4)两点,它与二次函数y=ax2的图象在第一象限内交于点P,若S△AOP=4,试求二次函数的表达式.19.如图,直线L1:y=bx+c与抛物线L2:y=ax2的两个交点坐标分别为A(m,4),B (1,1).(1)求m的值;(2)过动点P(n,0)且垂直于x轴的直线与L1,L2的交点分别为C,D,当点C 位于点D上方时,请直接写出n的取值范围.20.已知二次函数y=a(x+a)(x+a﹣1).(1)当a=2时,求该二次函数图象的对称轴.(2)当a<0时,判断该二次函数图象的顶点所在的象限,并说明理由.(3)当0<x<3时,y随着x增大而增大,求a的取值范围.21.已知二次函数y=ax2(a≠0)与一次函数y=kx﹣2的图象相交于A、B两点,如图所示,其中A(﹣1,﹣1),求△OAB的面积.22.抛物线y=﹣x2+bx+c经过点A(3,0)和点B(0,3),且这个抛物线的对称轴为直线l,顶点为C.(1)求抛物线的解析式;(2)连接AB、AC、BC,求△ABC的面积.23.如图,在平面直角坐标系中,直线AB与抛物线y=﹣x2+bx+c交于A(﹣1,0)和B(2,3)两点,抛物线与y轴交于点C.(1)求一次函数和二次函数的解析式;(2)求△ABC的面积.参考答案一.选择题1.解:∵a>0,b<0,c<0,∴﹣>0,∴抛物线的图象开口向上,对称轴在y轴的右边,交y轴于负半轴,故选:C.2.解:∵y=(m+2)x|m|+2是y关于x的二次函数,∴|m|=2且m+2≠0.解得m=2.故选:B.3.解:∵二次函数y=3(x﹣1)2+k图象的对称轴为直线x=1,而A(,y1)到直线x=1的距离最近,C(﹣,y3)到直线x=1的距离最远,∴y3>y2>y1.故选:C.4.解:由图象知抛物线的对称轴为直线x=﹣1,设抛物线解析式为y=a(x+1)2+k,将(﹣3,0)、(0,3)代入,得:,解得:,则抛物线解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3,故选:D.5.解:A、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;B、由抛物线可知,a>0,由直线可知,a<0,故本选项错误;C、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;D、由抛物线可知,a>0,由直线可知,a<0,故本选项错误.故选:A.6.解:∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴抛物线开口向下,对称轴为x=1,顶点坐标为(1,﹣2),在对称轴左侧,y随x的增大而增大,∴A、B、C不正确;∵抛物线顶点到x轴的距离是|﹣2|=2,∴D正确,故选:D.7.解:y=x2﹣4x+5=(x﹣2)2+1,由于0≤x≤3,所以当x=2时,y有最小值1,当x=0时,y有最大值5.故选:D.8.解:根据图象可知:①对称轴﹣>0,故ab<0,正确;②方程ax2+bx+c=0的根为x1=﹣1,x2=3,正确;③x=1时,y=a+b+c<0,错误;④当x<1时,y随x值的增大而减小,错误;⑤当y>0时,x<﹣1或x>3,正确.正确的有①②⑤.故选:B.9.解:∵y=2(x+1)2+1,∴当x>﹣1时,y随x的增大而增大,故选项A错误,当x<﹣1时,y随x的增大而减小,故选项B错误、选项C错误、选项D正确;故选:D.10.解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a>0,∵抛物线与y轴的交点坐标在x轴上方,∴c>0,∴abc<0,所以①错误;∵b=﹣2a,∴2a+b=0,所以②正确;∵x=3时,y<0,∴9a+3b+c<0,所以③正确.∵抛物线与x轴有2个交点,∴Δ=b2﹣4ac>0,即4ac﹣b2<0,所以④正确;∵抛物线的对称轴为直线x=1,∴函数的最大值为a+b+c,∴a+b+c≥am2+bm+c(m为任意实数),即a+b≥m(am+b),所以⑤正确.故选:C.二.填空题11.解:如图所示:①y=a1x2的开口小于②y=a2x2的开口,则a1>a2>0,③y=a3x2的开口大于④y=a4x2的开口,开口向下,则a4<a3<0,故a1>a2>a3>a4.故答案为:a1>a2>a3>a412.解:∵y=3x2+6x+11=3(x+1)2+8,∴抛物线y=3x2+6x+11的顶点坐标为(﹣1,8),故答案为(﹣1,8).13.解:由于二次函数y=3(x﹣1)2+5中,a=3>0,所以当x=1时,函数取得最小值为5,故答案为5.14.解:∵二次函数y=2x2+bx+4顶点在x轴上,∴=0,解得b=,故答案为:±4.15.解:∵二次函数y=x2﹣2x+1=(x﹣1)2,∴当x>1时,y随x的增大而增大,∴在2≤x≤5范围内,当x=2时,y取得最小值,此时y=(2﹣1)2=1,故答案为:1.16.解:∵抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①正确;∵x=﹣1时,y<0,∴a﹣b+c<0,即a+c<b,所以②错误;∵抛物线与x轴的一个交点为(﹣2,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(4,0),所以③错误;∵抛物线开口向上,∴a>0,∴b=﹣2a<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以④正确.故答案为①④.三.解答题17.解:(1)设二次函数的解析式是y=a(x﹣h)2+k,∵二次函数的顶点坐标为A(1,﹣4),∴y=a(x﹣1)2﹣4,∵经过点B(3,0),∴代入得:0=a(3﹣1)2﹣4,解得:a=1,∴y=(x﹣1)2﹣4,即二次函数的解析式为y=x2﹣2x﹣3;(2)点C(2,﹣3)在该函数图象上,理由是:把C(2,﹣3)代入y=x2﹣2x﹣3得:左边=﹣3,右边=4﹣4﹣3=﹣3,即左边=右边,所以点C在该函数的图象上.18.解:设直线l的解析式为y=kx+b,把A(4,0),B(0,4)分别代入得,解得,∴直线l的关系式为y=﹣x+4,设P(t,﹣t+4),∵S△AOP=4,∴×4×(﹣t+4)=4,解得t=2,∴P(2,2),把P(2,2)代入y=ax2得4a=2,解得a=,∴二次函数的表达式为y=x2.19.解:(1)把B(1,1)代入y=ax2得:a=1,∴抛物线解析式为y=x2.把A(m,4)代入y=x2得:4=m2,∴m=±2.∵点A在二象限,∴m=﹣2.(2)观察函数图象可知:当﹣2<x<1时,直线在抛物线的上方,∴n的取值范围为:﹣2<n<1.20.解:(1)当a=2时,y=2(x+2)(x+1),∴二次函数的对称轴为x=.(2)由题知二次函数与x轴的交点坐标为(﹣a,0),(1﹣a,0);∵a<0,∴二次函数的开口方向向下;又﹣a>0,1﹣a>0,所以对称轴所在直线为x==>0,当x=时,y=﹣>0,所以顶点坐标(,﹣)在第一象限.(3)由(2)知,二次函数的对称轴为直线x=,∵当0<x<3时,y随着x增大而增大,∴当a>0时,≤0,解得a≥;当a<0,≥3,解得a≤﹣.∴a的取值范围为a≥或a≤﹣.21.解:∵一次函数y=kx﹣2的图象相过点A(﹣1,﹣1),∴﹣1=﹣k﹣2,解得k=﹣1,∴一次函数表达式为y=﹣x﹣2,∴令x=0,得y=﹣2,∴G(0,﹣2),∵y=ax2过点A(﹣1,﹣1),∴﹣1=a×1,解得a=﹣1,∴二次函数表达式为y=﹣x2,由一次函数与二次函数联立可得,解得,,∴S△OAB=OG•|A的横坐标|+OG•点B的横坐标=×2×1+×2×2=1+2=3.22.解:(1)∵抛物线经过A、B(0,3)∴由上两式解得∴抛物线的解析式为:;(2)由(1)抛物线对称轴为直线x=把x=代入,得y=4则点C坐标为(,4)设线段AB所在直线为:y=kx+b,则有,解得∴AB解析式为:∵线段AB所在直线经过点A、B(0,3)抛物线的对称轴l于直线AB交于点D∴设点D的坐标为D将点D代入,解得m=2∴点D坐标为,∴CD=CE﹣DE=2过点B 作BF ⊥l 于点F ∴BF =OE =∵BF +AE =OE +AE =OA =∴S △ABC =S △BCD +S △ACD =CD •BF +CD •AE ∴S △ABC =CD (BF +AE )=×2×=23.解:(1)∵抛物线y =﹣x 2+bx +c 交于A (﹣1,0)和B (2,3)两点 ∴,解得:, ∴抛物线解析式为y =﹣x 2+2x +3,设直线AB 的解析式为y =mx +n (m ≠0),则,解得,∴直线AB 的解析式为y =x +1; (2)令x =0,则y =﹣x 2+2x +3=3, ∴C (0,3),则OC =3,BC =2,BC ∥x 轴, ∴S △ABC =×BC ×OC ==3.九年级数学二次函数专题精练含答案一、单选题1.关于二次函数22(4)6y x =-+的最大值或最小值,下列说法正确的是( ) A .有最大值4B .有最小值4C .有最大值6D .有最小值62.已知抛物线24y x x c =-++经过点(4,3),那么下列各点中,该抛物线必经过的点是( ) A .(0,2)B .(0,3)C .(0,4)D .(0,5)3.在平面直角坐标系中,已知抛物线245y x x =-+,将该抛物线沿y 轴翻折所得的抛物线的表达式为( ) A .245y x x =--+B .245y x x =++C .245y x x =-+-D .245y x x =---4.正方形的边长为4,若边长增加x ,那么面积增加y ,则y 关于x 的函数表达式为( ) A .216y x =+B .2(4)y x =+C .28y x x =+D .2164y x =-5.把抛物线22y x =向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析式是( ) A .22(2)1y x =-+- B .22(2)1y x =--+ C .22(2)1y x =++D .22(2)1y x =--6.如图,二次函数2y ax bx c =++的图象关于直线1x =对称,与x 轴交于1(,0)A x ,2(,0)B x 两点,若121x -<<-,则下列四个结论:①234x <<,②320a b +>,③24b a c ac >++,④a c b >>.正确结论的个数为( ) A .1个B .2个C .3个D .4个7.对于抛物线23(1)2y x =-+-,下列说法正确的是( ) A .抛物线开口向上B .当1x >-时,y 随x 增大而减小C .函数最小值为﹣2D .顶点坐标为(1,﹣2)8.关于二次函数()215y x =-+,下列说法正确的是( )A .函数图象的开口向下B .函数图象的顶点坐标是()1,5-C .该函数有最大值,是大值是5D .当1x >时,y 随x 的增大而增大9.已知A (−3,−2) ,B (1,−2),抛物线y =ax 2+bx +c (a >0)顶点在线段AB 上运动,形状保持不变,与x 轴交于C ,D 两点(C 在D 的右侧),下列结论: ①c ≥−2 ;②当x >0时,一定有y 随x 的增大而增大;③若点D 横坐标的最小值为−5,点C 横坐标的最大值为3; ④当四边形ABCD 为平行四边形时,a =12.其中正确的是( ) A .①③B .②③C .①④D .①③④10.已知二次函数2243y mx m x =--(m 为常数,0m ≠),点(),p p P x y 是该函数图象上一点,当04p x ≤≤时,3p y ≤-,则m 的取值范围是( ) A .m 1≥或0m < B .m 1≥ C .1m ≤-或0m >D .1m ≤-11.已知函数()211y ax a x =-++,则下列说法不正确的个数是( )①若该函数图像与x 轴只有一个交点,则1a =②方程()2110ax a x -++=至少有一个整数根③若11x a<<,则()211y ax a x =-++的函数值都是负数 ④不存在实数a ,使得()2110ax a x -++≤对任意实数x 都成立A .0B .1C .2D .312.如图,在正方形ABCD 中,4AB =,点P 从点A 出发沿路径A B C →→向终点C 运动,连接DP ,作DP 的垂直平分线MN 与正方形ABCD 的边交于M ,N 两点,设点P 的运动路程为x ,PMN 的面积为y ,则下列图象能大致反映y 与x 函数关系的是( )A .B .C .D .二、填空题13.已知点(3,a )在抛物线y =-2x 2+2x 上,则=a ______.14.如图是二次函数21y ax bx c =++ 和一次函数y 2=kx +t 的图象,当y 1≥y 2时,x 的取值范围是_____.15.小亮同学在探究一元二次方程2ax bx c 0++=的近似解时,填好了下面的表格:根据以上信息请你确定方程2ax bx c 0++=的一个解的范围是________. 16.已知二次函数223y x x =--+,当12a x 时,函数值y 的最小值为1,则a 的值为_______. 17.已知抛物线2122y x bx =+-与x 轴交于A ,B 两点,与y 轴交于C 点. (1)若(1,0)A -,则b =______. (2)若(1,0)M -,(1,0)N ,抛物线2122y x bx =+-与线段MN 没有交点,则b 的取值范围为______. 三、解答题18.已知抛物线经过点()1,0A -,()5,0B ,()0,5C ,求该抛物线的函数关系式19.如图,抛物线212y x bx c =++与直线132y x =+分别相交于A 、B 两点,其中点A 在y 轴上,且此抛物线与x 轴的一个交点为()3,0C -.(1)求抛物线的解析式(2)在抛物线对称轴l 上找一点M ,使MBC ∆的周长最小,请求出这个周长的最小值.20.如图,一次函数y =A 、B ,二次函数2y bx c ++图象过A 、B 两点.(1)求二次函数解析式;(2)点B 关于抛物线对称轴的对称点为点C ,点P 是对称轴上一动点,在抛物线上是否存在点Q ,使得以B 、C 、P 、Q 为顶点的四边形是菱形?若存在,求出Q 点坐标;若不存在,请说明理由.21.如图,二次函数y =ax 2+bx +c 的图象与x 轴交于点A (﹣2,0)和点B (8,0),与y 轴交于点C (0,﹣8),连接AC ,D 是抛物线对称轴上一动点,连接AD ,CD ,得到△ACD .(1)求该抛物线的函数解析式.(2)△ACD 周长能否取得最小值,如果能,请求出D 点的坐标;如果不能,请说明理由.(3)在(2)的条件下,在抛物线上是否存在点E ,使得△ACE 与△ACD 面积相等,如果存在,请求出点的坐标;如果不存在,请说明理由.参考答案1--10DBCCD BBDDA 11--12CA13.-1214.﹣1≤x ≤215.3.24x 3.25<<16.1-17. 32- 3322b -<< 18.解:△抛物线经过点()1,0A -,()5,0B ,()0,5C ,△设抛物线的表达式为()()15y a x x =+-,将点()0,5C 代入得:55a =-,解得:1a =-,△()()21545y x x x x =-+-=-++.△该抛物线的函数关系式为245y x x =-++.19..解:(1)抛物线212y x bx c =++与直线132y x =+交于y 轴上一点A , 令0,x = 则3,y =∴ 点()0,3A把()0,3A ,()3,0C -代入212y x bx c =++得: 39302c b c =⎧⎪⎨-+=⎪⎩, 解得:523b c ⎧=⎪⎨⎪=⎩, ∴抛物线的解析式是215322y x x =++; (2)将直线132y x =+与二次函数215322y x x =++联立得方程组: 213215322y x y x x ⎧=+⎪⎪⎨⎪=++⎪⎩ 215133,222x x x ∴++=+ 240,x x ∴-=解得:0x =或4x =-,04,,31x x y y ==-⎧⎧∴⎨⎨==⎩⎩()0,3A ,()4,1B ∴-BC ∴==如图,要使MBC △的周长最小,则MB MC +最小,设二次函数215322y x x=++与x 轴的另一交点为D , 抛物线的对称轴为:552,1222x =-=-⨯ ()3,0C -∴ 点()2,0D -,连接,BD 交对称轴于,MMD MC ∴=,此时,MB MC MB MD BD +=+=最小,此时:BD =MBC ∴20.解:(1)对于y =x =0时,y =当y =0时,03x -=,妥得,x =3 △A (3,0),B (0,把A (3,0),B (0,2y bx c++得:+=0b c c ⎧⎪⎨=⎪⎩解得,b c ⎧=⎪⎨⎪=⎩△抛物线的解析式为:2y =(2)抛物线的对称轴为直线12b x a =-== 故设P (1,p ),Q (m ,n )①当BC 为菱形对角线时,如图,△B ,C 关于对称没对称,且对称轴与x 轴垂直,△△BC 与对称轴垂直,且BC //x 轴△在菱形BQCP 中,BC △PQ△PQ △x 轴△点P 在x =1上,△点Q 也在x =1上,当x =1时,211y△Q (1,); ②当BC 为菱形一边时,若点Q 在点P 右侧时,如图,△BC //PQ ,且BC =PQ△BC //x 轴,△令y =2y 解得,120,2x x ==△(2,C△PQ=BC=22=△PB=BC=2△迠P在x轴上,△P(1,0)△Q(3,0);若点Q在点P的左侧,如图,同理可得,Q(-1,0)综上所述,Q点坐标为(1,)或(3,0)或(-1,0)21.解:(1)由题意可得:0=4206488a b ca b cc-+⎧⎪=++⎨⎪=-⎩,解得:1238abc⎧=⎪⎪=-⎨⎪=-⎪⎩,△抛物线的解析式为:y=12x2﹣3x﹣8;(2)△ACD周长能取得最小值,△点A(﹣2,0),点B(8,0),△对称轴为直线x=3,△△ACD周长=AD+AC+CD,AC是定值,△当AD+CD取最小值时,△ACD周长能取得最小值,△点A,点B关于对称轴直线x=3对称,△连接BC交对称轴直线x=3于点D,此时AD+CD有最小值,设直线BC 解析式为:y =kx ﹣8,△0=8k ﹣8,△k =1,△直线BC 解析式为:y =x ﹣8,当x =3,y =﹣5,△点D (3,﹣5);(3)存在,△点A (﹣2,0),点C (0,﹣8),△直线AC 解析式为y =﹣4x ﹣8,如图,△△ACE 与△ACD 面积相等,△DE △AC ,△设DE 解析式为:y =﹣4x +n ,△﹣5=﹣4×3+n ,△n =7,△DE 解析式为:y =﹣4x +7, 联立方程组可得:2471382y x y x x =-+⎧⎪⎨=--⎪⎩,解得:12111x y ⎧=⎪⎨=-⎪⎩,22111x y ⎧=⎪⎨=⎪⎩, △点E1,﹣1,).九年级上册数学二次函数同步练习一、单选题1.下列函数中,是二次函数的是( )A .y =(2x ﹣1)2B .y =(x +1)2﹣x 2C .y =ax 2D .y =2x +3 2.若抛物线258(3)23mm y m x x -+=-+-是关于x 的二次函数,那么m 的值是( ) A .3 B .2-C .2D .2或3 3.若抛物线y =x 2-x -2经过点A (3,a ),则a 的值是( )A .2B .4C .6D .84.已知二次函数2135y x x =-+,则其二次项系数a ,一次项系数b ,常数项c 分别是( )A .1,3,5a b c ==-=B .1,3,5a b c ===C .5,3,1a b c ===D .5,3,1a b c ==-= 5.如果函数2(2)25y a x x =-+-是二次函数,则a 的取值范围是( )A .2a ≠B .a≥0C .a=2D .a>0 6.下列函数中①31y x ;②243y x x =-;③1y x =;④225=-+y x ,是二次函数的有()A .①②B .②④C .②③D .①④ 7.若抛物线2y x bx c =-++经过点()2,3-,则247c b --的值是( )A .6B .7C .8D .208.函数y=ax2+bx+c(a ,b ,c 是常数)是二次函数的条件是( )A .a≠0,b≠0,c≠0B .a<0,b≠0,c≠0C .a>0,b≠0,c≠0D .a≠0 二、填空题9.若()2321mm y m x --=+是二次函数,则m 的值为______. 10.若22a y x -=是二次函数,则=a ________.11.在二次函数21y x =-+中,二次项系数、一次项系数、常数项的和为_____. 12.下列函数一定是二次函数的是__________.①2y ax bx c =++;②3y x=-;③2431y x x =-+;④2(1)y m x bx c =-++;⑤y =(x -3)2-x 213.当常数m ≠______时,函数y =(m 2﹣2m ﹣8)x 2+(m +2)x +2是二次函数;当常数m =___时,这个函数是一次函数.14.已知函数2135m y x -=-① 当m = _________时,y 是关于x 的一次函数;② 当m =_________时,y 是关于x 的二次函数 .15.二次函数()22339y m x x m =+++-的图象经过原点,则m =__________.16.已知二次函数2y x bx 3=-++,当x 2=时,y 3=.则这个二次函数的表达式是________.三、解答题17.下列函数中(x ,t 是自变量),哪些是二次函数?22322113,25,22,1522y x y x x y x s t t =-+=-+=+=++.18.已知函数y =(m 2-2)x 2+(m )x +8.(1)若这个函数是一次函数,求m 的值;(2)若这个函数是二次函数,求m 的取值范围.19.若函数y=(a -1)x b+1+x 2+1是二次函数,试讨论a 、b 的取值范围.20.篱笆墙长30m ,靠墙围成一个矩形花坛,写出花坛面积y(m 2)与长x 之间的函数关系式,并指出自变量的取值范围.参考答案:1.A2.C3.B4.D5.A6.B7.B8.D9.410.2±11.012.③13. 4,-2 414. 13215.316.2y x 2x 3=-++17.2132y x =-+和215s t t =++是二次函数 18.(1)m =(2)m ≠m ≠19.①a≠0;②b=0或-1,a 取全体实数③当a=1,b 为全体实数时,y=x 2+1是二次函数 20.y= 21152x x -+, x 的取值范围为0<x<30.九年级数学上册二次函数单元综合测试卷一.选择题(共10小题)1.下列各式中,是y 关于x 的二次函数的是( )A .y =4xB .y =3x ﹣5C .y =D .y =2x 2+12.已知:a >b >c ,且a +b +c =0,则二次函数y =ax 2+bx +c 的图象可能是下列图象中的( )A.B.C.D.3.二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是()A.(2,6)B.(4,6)C.(3,﹣5)D.(3,5)4.将二次函数y=x2+2x﹣1转化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣1)2B.y=(x+1)2C.y=(x+1)2﹣1D.y=(x+1)2﹣2 5.已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣66.顶点坐标为(3,1),形状与函数y=的图象相同且开口方向相反的抛物线的解析式为()A.y=+1B.y=+1C.y=﹣+1D.y=﹣+17.已知点A(﹣1,y1),B(1,y2),C(2,y3)都在二次函数y=(x﹣1)2的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1 8.抛物线y=ax2+bx+c纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则下列说法中正确的个数是()①方程ax2+bx+c=0,有两根为x1=﹣2,x2=3;②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=1;④抛物线开口向上.A.1B.2C.3D.49.如图,在正方形ABCD中,AB=4,AC与BD交于点O,E,F分别为边BC,CD上的点(点E,F不与线段BC,CD的端点重合),BE=CF,连接OE,OF,EF.关于以下三个结论,下列判断正确的是()结论Ⅰ:∠BOF始终是90°;结论Ⅱ:△OEF面积的最小值是2;结论Ⅲ:四边形OECF的面积始终是8.A.结论Ⅰ和Ⅱ都对,结论Ⅲ错B.结论Ⅰ和Ⅱ都对,结论Ⅱ错C.结论Ⅱ和Ⅲ都对,结论Ⅰ错D.三个结论都对10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.37.5°B.40°C.42.5°D.45°二.填空题(共6小题)11.函数是二次函数,则m的值为.12.已知抛物线y=x2﹣4x+c.与直线y=m相交于A,B两点,若点A的横坐标;x A=﹣1,。
九年级数学二次函数专项训练含答案-精选5篇
九年级数学二次函数专题精练含答案一、单选题1.关于二次函数22(4)6y x =-+的最大值或最小值,下列说法正确的是( ) A .有最大值4 B .有最小值4 C .有最大值6 D .有最小值6 2.已知抛物线24y x x c =-++经过点(4,3),那么下列各点中,该抛物线必经过的点是( )A .(0,2)B .(0,3)C .(0,4)D .(0,5) 3.在平面直角坐标系中,已知抛物线245y x x =-+,将该抛物线沿y 轴翻折所得的抛物线的表达式为( )A .245y x x =--+B .245y x x =++C .245y x x =-+-D .245y x x =--- 4.正方形的边长为4,若边长增加x ,那么面积增加y ,则y 关于x 的函数表达式为( ) A .216y x =+ B .2(4)y x =+ C .28y x x =+ D .2164y x =- 5.把抛物线22y x =向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析式是( )A .22(2)1y x =-+-B .22(2)1y x =--+C .22(2)1y x =++D .22(2)1y x =--6.如图,二次函数2y ax bx c =++的图象关于直线1x =对称,与x 轴交于1(,0)A x ,2(,0)B x 两点,若121x -<<-,则下列四个结论:①234x <<,①320a b +>,①24b a c ac >++,①a c b >>.正确结论的个数为( )A .1个B .2个C .3个D .4个7.对于抛物线23(1)2y x =-+-,下列说法正确的是( )A .抛物线开口向上B .当1x >-时,y 随x 增大而减小C .函数最小值为﹣2D .顶点坐标为(1,﹣2)8.关于二次函数()215y x =-+,下列说法正确的是( )A .函数图象的开口向下B .函数图象的顶点坐标是()1,5-C .该函数有最大值,是大值是5D .当1x >时,y 随x 的增大而增大 9.已知A (−3,−2) ,B (1,−2),抛物线y =ax 2+bx +c (a >0)顶点在线段AB 上运动,形状保持不变,与x 轴交于C ,D 两点(C 在D 的右侧),下列结论:①c ≥−2 ;①当x >0时,一定有y 随x 的增大而增大;①若点D 横坐标的最小值为−5,点C 横坐标的最大值为3;①当四边形ABCD 为平行四边形时,a =12. 其中正确的是( )A .①①B .①①C .①①D .①①① 10.已知二次函数2243y mx m x =--(m 为常数,0m ≠),点(),p p P x y 是该函数图象上一点,当04p x ≤≤时,3p y ≤-,则m 的取值范围是( )A .m 1≥或0m <B .m 1≥C .1m ≤-或0m >D .1m ≤-11.已知函数()211y ax a x =-++,则下列说法不正确的个数是( )①若该函数图像与x 轴只有一个交点,则1a =①方程()2110ax a x -++=至少有一个整数根①若11x a<<,则()211y ax a x =-++的函数值都是负数 ①不存在实数a ,使得()2110ax a x -++≤对任意实数x 都成立A .0B .1C .2D .312.如图,在正方形ABCD 中,4AB =,点P 从点A 出发沿路径A B C →→向终点C 运动,连接DP ,作DP 的垂直平分线MN 与正方形ABCD 的边交于M ,N 两点,设点P 的运动路程为x ,PMN 的面积为y ,则下列图象能大致反映y 与x 函数关系的是( )A .B .C .D .二、填空题13.已知点(3,a )在抛物线y =-2x 2+2x 上,则=a ______.14.如图是二次函数21y ax bx c =++ 和一次函数y 2=kx +t 的图象,当y 1≥y 2时,x 的取值范围是_____.15.小亮同学在探究一元二次方程2ax bx c 0++=的近似解时,填好了下面的表格:根据以上信息请你确定方程2ax bx c 0++=的一个解的范围是________.16.已知二次函数223y x x =--+,当12a x时,函数值y 的最小值为1,则a 的值为_______.17.已知抛物线2122y x bx =+-与x 轴交于A ,B 两点,与y 轴交于C 点.(1)若(1,0)A -,则b =______.(2)若(1,0)M -,(1,0)N ,抛物线2122y x bx =+-与线段MN 没有交点,则b 的取值范围为______.三、解答题18.已知抛物线经过点()1,0A -,()5,0B ,()0,5C ,求该抛物线的函数关系式 19.如图,抛物线212y x bx c =++与直线132y x =+分别相交于A 、B 两点,其中点A 在y 轴上,且此抛物线与x 轴的一个交点为()3,0C -.(1)求抛物线的解析式(2)在抛物线对称轴l 上找一点M ,使MBC ∆的周长最小,请求出这个周长的最小值.20.如图,一次函数y A 、B ,二次函数2y bx c ++图象过A 、B 两点.(1)求二次函数解析式;(2)点B 关于抛物线对称轴的对称点为点C ,点P 是对称轴上一动点,在抛物线上是否存在点Q ,使得以B 、C 、P 、Q 为顶点的四边形是菱形?若存在,求出Q 点坐标;若不存在,请说明理由.21.如图,二次函数y =ax 2+bx +c 的图象与x 轴交于点A (﹣2,0)和点B (8,0),与y 轴交于点C (0,﹣8),连接AC ,D 是抛物线对称轴上一动点,连接AD ,CD ,得到①ACD .(1)求该抛物线的函数解析式.(2)①ACD 周长能否取得最小值,如果能,请求出D 点的坐标;如果不能,请说明理由.(3)在(2)的条件下,在抛物线上是否存在点E ,使得①ACE 与①ACD 面积相等,如果存在,请求出点的坐标;如果不存在,请说明理由.参考答案1--10DBCCD BBDDA 11--12CA13.-1214.﹣1≤x ≤215.3.24x 3.25<<16.1-17. 32- 3322b -<< 18.解:①抛物线经过点()1,0A -,()5,0B ,()0,5C ,①设抛物线的表达式为()()15y a x x =+-,将点()0,5C 代入得:55a =-,解得:1a =-,①()()21545y x x x x =-+-=-++.①该抛物线的函数关系式为245y x x =-++.19..解:(1)抛物线212y x bx c =++与直线132y x =+交于y 轴上一点A , 令0,x = 则3,y = ∴ 点()0,3A把()0,3A ,()3,0C -代入212y x bx c =++得: 39302c b c =⎧⎪⎨-+=⎪⎩, 解得:523b c ⎧=⎪⎨⎪=⎩, ∴抛物线的解析式是215322y x x =++; (2)将直线132y x =+与二次函数215322y x x =++联立得方程组: 213215322y x y x x ⎧=+⎪⎪⎨⎪=++⎪⎩ 215133,222x x x ∴++=+ 240,x x ∴-=解得:0x =或4x =-,04,,31x x y y ==-⎧⎧∴⎨⎨==⎩⎩()0,3A ,()4,1B ∴-BC ∴==如图,要使MBC △的周长最小,则MB MC +最小,设二次函数215322y x x =++与x 轴的另一交点为D ,抛物线的对称轴为:552,1222x=-=-⨯()3,0C-∴点()2,0D-,连接,BD交对称轴于,MMD MC∴=,此时,MB MC MB MD BD+=+=最小,此时:BD=MBC∴20.解:(1)对于y x=x=0时,y=当y=0时,03x-=,妥得,x=3①A(3,0),B(0,把A(3,0),B(0,2y bx c++得:+=0b cc⎧⎪⎨=⎪⎩解得,bc⎧=⎪⎨⎪=⎩①抛物线的解析式为:2y x x=-(2)抛物线的对称轴为直线12bxa=-==故设P(1,p),Q(m,n)①当BC为菱形对角线时,如图,①B ,C 关于对称没对称,且对称轴与x 轴垂直,①①BC 与对称轴垂直,且BC //x 轴①在菱形BQCP 中,BC ①PQ①PQ ①x 轴①点P 在x =1上,①点Q 也在x =1上,当x =1时,211y①Q (1,); ①当BC 为菱形一边时,若点Q 在点P 右侧时,如图,①BC //PQ ,且BC =PQ①BC //x 轴,①令y =2y 解得,120,2x x ==①(2,C①PQ=BC=22①PB=BC=2①迠P在x轴上,①P(1,0)①Q(3,0);若点Q在点P的左侧,如图,同理可得,Q(-1,0)综上所述,Q点坐标为(1,)或(3,0)或(-1,0)21.解:(1)由题意可得:0=4206488a b ca b cc-+⎧⎪=++⎨⎪=-⎩,解得:1238abc⎧=⎪⎪=-⎨⎪=-⎪⎩,①抛物线的解析式为:y=12x2﹣3x﹣8;(2)△ACD周长能取得最小值,①点A(﹣2,0),点B(8,0),①对称轴为直线x=3,①①ACD周长=AD+AC+CD,AC是定值,①当AD+CD取最小值时,△ACD周长能取得最小值,①点A,点B关于对称轴直线x=3对称,①连接BC交对称轴直线x=3于点D,此时AD+CD有最小值,设直线BC 解析式为:y =kx ﹣8,①0=8k ﹣8,①k =1,①直线BC 解析式为:y =x ﹣8,当x =3,y =﹣5,①点D (3,﹣5);(3)存在,①点A (﹣2,0),点C (0,﹣8),①直线AC 解析式为y =﹣4x ﹣8,如图,①①ACE 与①ACD 面积相等,①DE ①AC ,①设DE 解析式为:y =﹣4x +n ,①﹣5=﹣4×3+n ,①n =7,①DE 解析式为:y =﹣4x +7, 联立方程组可得:2471382y x y x x =-+⎧⎪⎨=--⎪⎩,解得:12111x y ⎧=⎪⎨=-⎪⎩,22111x y ⎧=⎪⎨=⎪⎩, ①点E1,﹣1,).九年级上册数学二次函数同步练习一、单选题1.下列函数中,是二次函数的是( ) A .y =(2x ﹣1)2 B .y =(x +1)2﹣x 2 C .y =ax 2D .y =2x +32.若抛物线258(3)23m m y m x x -+=-+-是关于x 的二次函数,那么m 的值是( )A .3B .2-C .2D .2或33.若抛物线y =x 2-x -2经过点A (3,a ),则a 的值是( ) A .2B .4C .6D .84.已知二次函数2135y x x =-+,则其二次项系数a ,一次项系数b ,常数项c 分别是( ) A .1,3,5a b c ==-= B .1,3,5a b c ===C .5,3,1a b c ===D .5,3,1a b c ==-=5.如果函数2(2)25y a x x =-+-是二次函数,则a 的取值范围是( ) A .2a ≠ B .a≥0C .a=2D .a>06.下列函数中①31y x ;①243y x x =-;①1y x=;①225=-+y x ,是二次函数的有() A .①①B .①①C .①①D .①①7.若抛物线2y x bx c =-++经过点()2,3-,则247c b --的值是( ) A .6B .7C .8D .208.函数y=ax2+bx+c(a ,b ,c 是常数)是二次函数的条件是( ) A .a≠0,b≠0,c≠0 B .a<0,b≠0,c≠0 C .a>0,b≠0,c≠0 D .a≠0二、填空题 9.若()2321m m y m x --=+是二次函数,则m 的值为______.10.若22ay x -=是二次函数,则=a ________.11.在二次函数21y x =-+中,二次项系数、一次项系数、常数项的和为_____. 12.下列函数一定是二次函数的是__________.①2y ax bx c =++;①3y x =-;①2431y x x =-+;①2(1)y m x bx c =-++;①y =(x -3)2-x 213.当常数m ≠______时,函数y =(m 2﹣2m ﹣8)x 2+(m +2)x +2是二次函数;当常数m =___时,这个函数是一次函数. 14.已知函数2135m y x -=-① 当m = _________时,y 是关于x 的一次函数; ① 当m =_________时,y 是关于x 的二次函数 .15.二次函数()22339y m x x m =+++-的图象经过原点,则m =__________.16.已知二次函数2y x bx 3=-++,当x 2=时,y 3=.则这个二次函数的表达式是________. 三、解答题17.下列函数中(x ,t 是自变量),哪些是二次函数? 22322113,25,22,1522y x y x x y x s t t =-+=-+=+=++.18.已知函数y =(m 2-2)x 2+(m x +8. (1)若这个函数是一次函数,求m 的值; (2)若这个函数是二次函数,求m 的取值范围.19.若函数y=(a -1)x b+1+x 2+1是二次函数,试讨论a 、b 的取值范围.20.篱笆墙长30m ,靠墙围成一个矩形花坛,写出花坛面积y(m 2)与长x 之间的函数关系式,并指出自变量的取值范围.参考答案:1.A 2.C 3.B 4.D 5.A 6.B 7.B 8.D 9.4 10.2± 11.0 12.①13. 4,-2 4 14. 1 3215.316.2y x 2x 3=-++17.2132y x =-+和215s t t =++是二次函数18.(1)m (2)m ≠m ≠19.①a≠0;①b=0或-1,a 取全体实数①当a=1,b 为全体实数时,y=x 2+1是二次函数 20.y= 21152x x -+, x 的取值范围为0<x<30.九年级数学上册二次函数的图象与性质练习题(附答案)一.选择题1.如果在二次函数的表达式y =ax 2+bx +c 中,a >0,b <0,c <0,那么这个二次函数的图象可能是( )A.B.C.D.2.已知y=(m+2)x|m|+2是关于x的二次函数,那么m的值为()A.﹣2B.2C.±2D.03.已知A(,y1),B(2,y2),C(﹣,y3)是二次函数y=3(x﹣1)2+k图象上三点,则y1、y2、y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y2>y1D.y2>y3>y14.二次函数的部分图象如图所示,对称轴是直线x=﹣1,则这个二次函数的表达式为()A.y=﹣x2+2x+3B.y=x2+2x+3C.y=﹣x2+2x﹣3D.y=﹣x2﹣2x+3 5.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()A.B.C.D.6.关于抛物线y=﹣x2+2x﹣3的判断,下列说法正确的是()A.抛物线的开口方向向上B.抛物线的对称轴是直线x=﹣1C.抛物线对称轴左侧部分是下降的D.抛物线顶点到x轴的距离是27.已知二次函数y=x2﹣4x+5(0≤x≤3),则它的最大值是()A.1B.2C.3D.58.如图为二次函数y=ax2+bx+c的图象,给出下列说法:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③a+b+c>0;④当x<1时,y随x值的增大而增大;⑤当y>0时,x<﹣1或x>3.其中,正确的说法有()A.①②④B.①②⑤C.①③⑤D.②④⑤9.已知函数y=2(x+1)2+1,则()A.当x<1 时,y随x的增大而增大B.当x<1 时,y随x的增大而减小C.当x<﹣1 时,y随x的增大而增大D.当x<﹣1 时,y随x的增大而减小10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中不正确的有()个.①abc>0;②2a+b=0;③9a+3b+c<0;④4ac﹣b2<0;⑤a+b≥m(am+b)(m为任意实数).A.3B.2C.1D.0二.填空题11.已知四个二次函数的图象如图所示,那么a1,a2,a3,a4的大小关系是.(请用“>”连接排序)12.抛物线y=3x2+6x+11的顶点坐标为.13.二次函数y=3(x﹣1)2+5的最小值为.14.已知二次函数y=2x2+bx+4顶点在x轴上,则b=.15.二次函数y=x2﹣2x+1在2≤x≤5范围内的最小值为.16.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x轴的另一个交点为(3,0);④abc>0.其中正确的结论是(填写序号).三.解答题17.已知二次函数的顶点坐标为A(1,﹣4),且经过点B(3,0).(1)求该二次函数的解析式;(2)判断点C(2,﹣3)是否在该函数图象上,并说明理由.18.如图,已知直线l过点A(4,0),B(0,4)两点,它与二次函数y=ax2的图象在第一象限内交于点P,若S△AOP=4,试求二次函数的表达式.19.如图,直线L1:y=bx+c与抛物线L2:y=ax2的两个交点坐标分别为A(m,4),B(1,1).(1)求m的值;(2)过动点P(n,0)且垂直于x轴的直线与L1,L2的交点分别为C,D,当点C位于点D上方时,请直接写出n的取值范围.20.已知二次函数y=a(x+a)(x+a﹣1).(1)当a=2时,求该二次函数图象的对称轴.(2)当a<0时,判断该二次函数图象的顶点所在的象限,并说明理由.(3)当0<x<3时,y随着x增大而增大,求a的取值范围.21.已知二次函数y=ax2(a≠0)与一次函数y=kx﹣2的图象相交于A、B两点,如图所示,其中A(﹣1,﹣1),求△OAB的面积.22.抛物线y=﹣x2+bx+c经过点A(3,0)和点B(0,3),且这个抛物线的对称轴为直线l,顶点为C.(1)求抛物线的解析式;(2)连接AB、AC、BC,求△ABC的面积.23.如图,在平面直角坐标系中,直线AB与抛物线y=﹣x2+bx+c交于A(﹣1,0)和B(2,3)两点,抛物线与y轴交于点C.(1)求一次函数和二次函数的解析式;(2)求△ABC的面积.参考答案一.选择题1.解:∵a>0,b<0,c<0,∴﹣>0,∴抛物线的图象开口向上,对称轴在y轴的右边,交y轴于负半轴,故选:C.2.解:∵y=(m+2)x|m|+2是y关于x的二次函数,∴|m|=2且m+2≠0.解得m=2.故选:B.3.解:∵二次函数y=3(x﹣1)2+k图象的对称轴为直线x=1,而A(,y1)到直线x=1的距离最近,C(﹣,y3)到直线x=1的距离最远,∴y3>y2>y1.故选:C.4.解:由图象知抛物线的对称轴为直线x=﹣1,设抛物线解析式为y=a(x+1)2+k,将(﹣3,0)、(0,3)代入,得:,解得:,则抛物线解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3,故选:D.5.解:A、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;B、由抛物线可知,a>0,由直线可知,a<0,故本选项错误;C、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;D、由抛物线可知,a>0,由直线可知,a<0,故本选项错误.故选:A.6.解:∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴抛物线开口向下,对称轴为x=1,顶点坐标为(1,﹣2),在对称轴左侧,y随x的增大而增大,∴A、B、C不正确;∵抛物线顶点到x轴的距离是|﹣2|=2,∴D正确,故选:D.7.解:y=x2﹣4x+5=(x﹣2)2+1,由于0≤x≤3,所以当x=2时,y有最小值1,当x=0时,y有最大值5.故选:D.8.解:根据图象可知:①对称轴﹣>0,故ab<0,正确;②方程ax2+bx+c=0的根为x1=﹣1,x2=3,正确;③x=1时,y=a+b+c<0,错误;④当x<1时,y随x值的增大而减小,错误;⑤当y>0时,x<﹣1或x>3,正确.正确的有①②⑤.故选:B.9.解:∵y=2(x+1)2+1,∴当x>﹣1时,y随x的增大而增大,故选项A错误,当x<﹣1时,y随x的增大而减小,故选项B错误、选项C错误、选项D正确;故选:D.10.解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a>0,∵抛物线与y轴的交点坐标在x轴上方,∴c>0,∴abc<0,所以①错误;∵b=﹣2a,∴2a+b=0,所以②正确;∵x=3时,y<0,∴9a+3b+c<0,所以③正确.∵抛物线与x轴有2个交点,∴Δ=b2﹣4ac>0,即4ac﹣b2<0,所以④正确;∵抛物线的对称轴为直线x=1,∴函数的最大值为a+b+c,∴a+b+c≥am2+bm+c(m为任意实数),即a+b≥m(am+b),所以⑤正确.故选:C.二.填空题11.解:如图所示:①y=a1x2的开口小于②y=a2x2的开口,则a1>a2>0,③y=a3x2的开口大于④y=a4x2的开口,开口向下,则a4<a3<0,故a1>a2>a3>a4.故答案为:a1>a2>a3>a412.解:∵y=3x2+6x+11=3(x+1)2+8,∴抛物线y=3x2+6x+11的顶点坐标为(﹣1,8),故答案为(﹣1,8).13.解:由于二次函数y=3(x﹣1)2+5中,a=3>0,所以当x=1时,函数取得最小值为5,故答案为5.14.解:∵二次函数y=2x2+bx+4顶点在x轴上,∴=0,解得b=,故答案为:±4.15.解:∵二次函数y=x2﹣2x+1=(x﹣1)2,∴当x>1时,y随x的增大而增大,∴在2≤x≤5范围内,当x=2时,y取得最小值,此时y=(2﹣1)2=1,故答案为:1.16.解:∵抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①正确;∵x=﹣1时,y<0,∴a﹣b+c<0,即a+c<b,所以②错误;∵抛物线与x轴的一个交点为(﹣2,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(4,0),所以③错误;∵抛物线开口向上,∴a>0,∴b=﹣2a<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以④正确.故答案为①④.三.解答题17.解:(1)设二次函数的解析式是y=a(x﹣h)2+k,∵二次函数的顶点坐标为A(1,﹣4),∴y=a(x﹣1)2﹣4,∵经过点B(3,0),∴代入得:0=a(3﹣1)2﹣4,解得:a=1,∴y=(x﹣1)2﹣4,即二次函数的解析式为y=x2﹣2x﹣3;(2)点C(2,﹣3)在该函数图象上,理由是:把C(2,﹣3)代入y=x2﹣2x﹣3得:左边=﹣3,右边=4﹣4﹣3=﹣3,即左边=右边,所以点C在该函数的图象上.18.解:设直线l的解析式为y=kx+b,把A(4,0),B(0,4)分别代入得,解得,∴直线l的关系式为y=﹣x+4,设P(t,﹣t+4),∵S△AOP=4,∴×4×(﹣t+4)=4,解得t=2,∴P(2,2),把P(2,2)代入y=ax2得4a=2,解得a=,∴二次函数的表达式为y=x2.19.解:(1)把B(1,1)代入y=ax2得:a=1,∴抛物线解析式为y=x2.把A(m,4)代入y=x2得:4=m2,∴m=±2.∵点A在二象限,∴m=﹣2.(2)观察函数图象可知:当﹣2<x<1时,直线在抛物线的上方,∴n的取值范围为:﹣2<n<1.20.解:(1)当a=2时,y=2(x+2)(x+1),∴二次函数的对称轴为x=.(2)由题知二次函数与x轴的交点坐标为(﹣a,0),(1﹣a,0);∵a<0,∴二次函数的开口方向向下;又﹣a>0,1﹣a>0,所以对称轴所在直线为x==>0,当x=时,y=﹣>0,所以顶点坐标(,﹣)在第一象限.(3)由(2)知,二次函数的对称轴为直线x=,∵当0<x<3时,y随着x增大而增大,∴当a>0时,≤0,解得a≥;当a<0,≥3,解得a≤﹣.∴a的取值范围为a≥或a≤﹣.21.解:∵一次函数y=kx﹣2的图象相过点A(﹣1,﹣1),∴﹣1=﹣k﹣2,解得k=﹣1,∴一次函数表达式为y=﹣x﹣2,∴令x=0,得y=﹣2,∴G(0,﹣2),∵y=ax2过点A(﹣1,﹣1),∴﹣1=a×1,解得a=﹣1,∴二次函数表达式为y=﹣x2,由一次函数与二次函数联立可得,解得,,∴S△OAB=OG•|A的横坐标|+OG•点B的横坐标=×2×1+×2×2=1+2=3.22.解:(1)∵抛物线经过A、B(0,3)∴由上两式解得∴抛物线的解析式为:;(2)由(1)抛物线对称轴为直线x=把x=代入,得y=4则点C坐标为(,4)设线段AB所在直线为:y=kx+b,则有,解得∴AB解析式为:∵线段AB所在直线经过点A、B(0,3)抛物线的对称轴l于直线AB交于点D∴设点D的坐标为D将点D代入,解得m=2∴点D坐标为,∴CD=CE﹣DE=2过点B作BF⊥l于点F∴BF=OE=∵BF+AE=OE+AE=OA=∴S△ABC=S△BCD+S△ACD=CD•BF+CD•AE∴S△ABC=CD(BF+AE)=×2×=23.解:(1)∵抛物线y=﹣x2+bx+c交于A(﹣1,0)和B(2,3)两点∴,解得:,∴抛物线解析式为y=﹣x2+2x+3,设直线AB的解析式为y=mx+n(m≠0),则,解得,∴直线AB的解析式为y=x+1;(2)令x=0,则y=﹣x2+2x+3=3,∴C(0,3),则OC=3,BC=2,BC∥x轴,∴S△ABC=×BC×OC==3.九年级数学上册二次函数单元综合测试卷一.选择题(共10小题)1.下列各式中,是y关于x的二次函数的是()A.y=4x B.y=3x﹣5C.y=D.y=2x2+12.已知:a>b>c,且a+b+c=0,则二次函数y=ax2+bx+c的图象可能是下列图象中的()A.B.C.D.3.二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是()A.(2,6)B.(4,6)C.(3,﹣5)D.(3,5)4.将二次函数y=x2+2x﹣1转化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣1)2B.y=(x+1)2C.y=(x+1)2﹣1D.y=(x+1)2﹣2 5.已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣66.顶点坐标为(3,1),形状与函数y=的图象相同且开口方向相反的抛物线的解析式为()A.y=+1B.y=+1C.y=﹣+1D.y=﹣+17.已知点A(﹣1,y1),B(1,y2),C(2,y3)都在二次函数y=(x﹣1)2的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1 8.抛物线y=ax2+bx+c纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则下列说法中正确的个数是()①方程ax2+bx+c=0,有两根为x1=﹣2,x2=3;②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=1;④抛物线开口向上.A.1B.2C.3D.49.如图,在正方形ABCD中,AB=4,AC与BD交于点O,E,F分别为边BC,CD上的点(点E,F不与线段BC,CD的端点重合),BE=CF,连接OE,OF,EF.关于以下三个结论,下列判断正确的是()结论Ⅰ:∠BOF始终是90°;结论Ⅱ:△OEF面积的最小值是2;结论Ⅲ:四边形OECF的面积始终是8.A.结论Ⅰ和Ⅱ都对,结论Ⅲ错B.结论Ⅰ和Ⅱ都对,结论Ⅱ错C.结论Ⅱ和Ⅲ都对,结论Ⅰ错D.三个结论都对10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.37.5°B.40°C.42.5°D.45°二.填空题(共6小题)11.函数是二次函数,则m的值为.12.已知抛物线y=x2﹣4x+c.与直线y=m相交于A,B两点,若点A的横坐标;x A=﹣1,则点B的横坐标.x B的值为.13.已知二次函数y=ax2开口向上,且|2﹣a|=3,则a=.14.已知抛物线y=x2﹣3x+1的图象上有一点A(m,n),则m﹣n的最大值是.15.如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c与x轴交于点A、B,与y轴交于点C,过点C作CD∥x轴,交抛物线于另一点D,若AB+CD=3,则c的值为.16.如图,在矩形ABCD中,AB=12,BC=16,点E、F分别是边AB、BC上的动点,且EF=10,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为.三.解答题(共7小题)17.看图回答.(1)当y=0时,求x的值;(2)当y>5时,求x的范围;(3)y随x的增大而增大时,求x的范围.18.已知二次函数y=x2﹣6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.19.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5r2+20t,求小球飞行高度达到最高时的飞行时间.20.“阳光玫瑰葡萄”品种是近几年来广受各地消费者青睐的优质新品种,在云南省广泛种植.长沙市某品牌水果经销商计划在2023年五一期间进行商业促销活动,经过调查往年的统计数据发现,云南省批发“阳光玫瑰葡萄”的最低价格为每斤15元若按每斤30元的价格到市区销售,平均每天可售出60斤若每斤“阳光玫瑰葡萄”的售价每降低1元,那么平均每天的销售量会增加10斤,为了尽快减少库存,该水果商决定降价销售.(1)若降价2元,则每天的销售利润是多少元(2)若该经销商计划销售“阳光玫瑰葡萄”每天盈利1100元,那么每斤“阳光玫瑰葡萄”的售价应降至每斤多少元?(其它成本忽略不计)(3)将商品的销售单价定为多少元时,商场每天销售该商品获得的利润w最大?最大利润是多少元?21.如图,抛物线与x轴交于A(﹣1,0)、B(4,0),与y轴交于C.(1)求抛物线的解析式;(2)如图1,已知线段DE与线段BC关于平面内某点成中心对称,其中DE的两端点刚好一个落在抛物线上,一个落在对称轴上,求落在对称轴上的点的坐标;(3)如图2,点M为第二象限抛物线上,作MN∥BC交抛物线于点N,直线NB、MC 交于点P,求P点的横坐标.22.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y'),给出如下定义:若y'=,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)点(﹣5,﹣2)的“可控变点”坐标为;(2)若点P在函数y=﹣x2+16的图象上,其“可控变点”Q的纵坐标y′是7,求“可控变点”Q的横坐标;(3)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16≤y′≤16,求实数a的取值范围.23.在平面直角坐标系中,抛物线y=x2+bx+c经过A(﹣4,0),点M为抛物线的顶点,点B在y轴上,直线AB与抛物线在第一象限交于点C(2,6),如图①.(1)求抛物线解析式;(2)直线AB的函数解析式为,点M的坐标为.(3)在y轴上找一点Q,使得△AMQ的周长最小,具体作法如图②,作点A关于y轴的对称点A',连接MA′交y轴于点Q,连接AM,AQ,此时△AMQ的周长最小,请求出点Q的坐标;(4)在坐标平面内是否存在点N,使以点A,O,C,N为顶点的四边形是平行四边形?若存在请直接写出点N的坐标;若不存在,请说明理由.参考答案一.选择题(共10小题)1.下列各式中,是y关于x的二次函数的是()A.y=4x B.y=3x﹣5C.y=D.y=2x2+1解:A.根据二次函数的定义,y=4x是一次函数,不是二次函数,故A不符合题意.B.根据二次函数的定义,y=3x﹣5不是二次函数,是一次函数,故B不符合题意.C.根据二次函数的定义,y=是反比例函数,不是二次函数,故C不符合题意.D.根据二次函数的定义,y=2x2+1是二次函数,故D符合题意.故选:D.2.已知:a>b>c,且a+b+c=0,则二次函数y=ax2+bx+c的图象可能是下列图象中的()A.B.C.D.解:A、由图知a>0,﹣=1,c>0,即b<0,∵已知a>b>c,故本选项错误;B、由图知a<0,而已知a>b>c,且a+b+c=0,必须a>0,故本选项错误;C、图C中条件满足a>b>c,且a+b+c=0,故本选项正确;D、∵a+b+c=0,即当x=1时a+b+c=0,与图中与x轴的交点不符,故本选项错误.故选:C.3.二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是()A.(2,6)B.(4,6)C.(3,﹣5)D.(3,5)解:∵二次函数可化为y=(x﹣3)2+5,∴二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是(3,5),故选:D.4.将二次函数y=x2+2x﹣1转化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣1)2B.y=(x+1)2C.y=(x+1)2﹣1D.y=(x+1)2﹣2解:y=x2+2x﹣1=(x2+2x+1)﹣2=(x+1)2﹣2,即y=(x+1)2﹣2.故选:D.5.已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣6解:y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2,∴当x<2时,y随着x增大而增大,∴当x=时有最大值y=﹣2(﹣2)2+2=﹣2.5,故选:C.6.顶点坐标为(3,1),形状与函数y=的图象相同且开口方向相反的抛物线的解析式为()A.y=+1B.y=+1C.y=﹣+1D.y=﹣+1解:设所求的抛物线解析式为y=a(x﹣3)2+1,∵所求抛物线与函数y=的图象相同且开口方向相反,∴a=﹣,∴所求的抛物线解析式为y=﹣(x﹣3)2+1.故选:D.7.已知点A(﹣1,y1),B(1,y2),C(2,y3)都在二次函数y=(x﹣1)2的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1解:当x=﹣1时,y1=(x﹣1)2=(﹣1﹣1)2=4;当x=1时,y2=(x﹣1)2=(1﹣1)2=0;当x=2时,y3=(x﹣1)2=(2﹣1)2=1,所以y2<y3<y1.故选:C.8.抛物线y=ax2+bx+c纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则下列说法中正确的个数是()①方程ax2+bx+c=0,有两根为x1=﹣2,x2=3;②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=1;④抛物线开口向上.A.1B.2C.3D.4解:根据表格数据可知:抛物线的对称轴是直线x==,∴③错误;∵抛物线与x轴的一个交点为(﹣2,0),∴抛物线与x轴的另一个交点为(3,0),∴方程ax2+bx+c=0有两根为x1=﹣2,x2=3;故①正确;从表格可知当x=0时,y=6,∴抛物线与y轴的交点为(0,6);∴②正确;从表格可知:当x<时,y随x的增大而增大,当x>时,y随x的增大而减小,∴抛物线开口向下,故④错误.故选:B.9.如图,在正方形ABCD中,AB=4,AC与BD交于点O,E,F分别为边BC,CD上的点(点E,F不与线段BC,CD的端点重合),BE=CF,连接OE,OF,EF.关于以下三个结论,下列判断正确的是()结论Ⅰ:∠BOF始终是90°;结论Ⅱ:△OEF面积的最小值是2;结论Ⅲ:四边形OECF的面积始终是8.A.结论Ⅰ和Ⅱ都对,结论Ⅲ错B.结论Ⅰ和Ⅱ都对,结论Ⅱ错C.结论Ⅱ和Ⅲ都对,结论Ⅰ错D.三个结论都对解:∵四边形ABCD是正方形,∴OB=OC,∠BOC=90°,∴∠OBE=∠OCF=45°,∵BE=CF,∴△BOE≌△COF,∴OE=OF,∠BOE=∠COF,∴∠BOE+∠COE=∠COF+∠COE,即∠EOF=∠BOC=90°,且S△COE+S△COF=S△COE+S△BOE,即S四边形OECF=S△BOC=S正方形ABCD=×4×4=4,由垂线段最短可得,当OE⊥BC时,OE=BC=×4=2,△OEF面积取最小值为×2×2=2,∴结论Ⅰ和Ⅱ都对,结论Ⅲ错,故选:A.10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.37.5°B.40°C.42.5°D.45°解:把(25,0.725),(50,0.06),(60,0.09)代入y=ax2+bx+c得:,解得,∴y=0.0001x2﹣0.008x+0.21=0.0001(x﹣40)2+0.05,∵0.0001>0,∴x=40时,y最小为0.05,∴燃气灶烧开一壶水最节省燃气的旋钮角度约为40°,故选:B.二.填空题(共6小题)11.函数是二次函数,则m的值为3.解:∵函数是二次函数,∴m2﹣7=2且m+3≠0,解得:m=3.则m的值为3.故答案为:3.12.已知抛物线y=x2﹣4x+c.与直线y=m相交于A,B两点,若点A的横坐标;x A=﹣1,则点B的横坐标.x B的值为5.解:∵y=x2﹣4x+c,∴抛物线开口向上,对称轴为直线x=﹣=2,∴点A,B关于直线x=2对称,∵点A横坐标为﹣1,∴点B横坐标为5,故答案为:5.13.已知二次函数y=ax2开口向上,且|2﹣a|=3,则a=5.解:∵|2﹣a|=3,∴2﹣a=±3,解得:a=﹣1或5,又二次函数y=ax2开口向上,则a>0,故a=5.故答案为:5.14.已知抛物线y=x2﹣3x+1的图象上有一点A(m,n),则m﹣n的最大值是3.解:∵点A(m,n)在抛物线y=x2﹣3x+1上,∴n=m2﹣3m+1,∴m﹣n=﹣m2+4m﹣1=﹣(m﹣2)2+3,∴当m=2时,m﹣n有最大值为3,故答案为:3.15.如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c与x轴交于点A、B,与y轴交于点C,过点C作CD∥x轴,交抛物线于另一点D,若AB+CD=3,则c的值为﹣.解:设A(x1,0),B(x2,0),令y=0,则y=﹣x2+2x+c=0,由根与系数的关系得:x1+x2=2,x1•x2=﹣c,则AB=|x1﹣x2|===2,令x=0,则y=c,∴C(0,c),∵CD∥x轴,∴点D纵坐标为c,当y=c时,则﹣x2+2x+c=c,解得:x=2,或x=0,∴D(2,c),∴CD=2,∵AB+CD=3,∴2+2=3,解得:c=﹣,故答案为:﹣.16.如图,在矩形ABCD中,AB=12,BC=16,点E、F分别是边AB、BC上的动点,且EF=10,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为142.解:连接AC,过B作BH⊥AC于H,以B为圆心,BG为半径作圆,交BH于G',如图:∵四边形ABCD是矩形,∴∠EBF=90°,∵EF=10,点G是EF的中点,∴BG=EF=10=5,∴G在以B为圆心,5为半径的弧上,当G运动到G'时,S△ACG最小,此时四边形AGCD 面积的最小值,最小值即为四边形AG'CD的面积,∵AB=12=CD,BC=16=AD,∴AC=20,S△ACD=×12×16=96,∴BH==,∴G'H=BH﹣5=﹣5=,∴S△ACG'=AC•G'H=×20×=46,∴S四边形AG'CD=S△ACD+S△ACG'=46+96=142,即四边形AGCD面积的最小值是142.故答案为:142.三.解答题(共7小题)17.看图回答.(1)当y=0时,求x的值;(2)当y>5时,求x的范围;(3)y随x的增大而增大时,求x的范围.解:(1)由图象可知,抛物线经过点(﹣1,0),对称轴为直线x=1,∴抛物线与x轴的另一个交点为(3,0),∴当y=0时,x的值为﹣1和3;(2)∵抛物线经过点(﹣1,0),(3,0),(0,﹣3),∴设抛物线的解析式为y=a(x+1)(x﹣3),代入(0,﹣3)得,﹣3=﹣3a,解得a=1,∴抛物线的解析式为y=(x+1)(x﹣3),令y=5得5=(x+1)(x﹣3),解得x1=4,x2=﹣2,∴当y>5时,求x的范围是x>4或x<﹣2;(3)∵y=(x+1)(x﹣3)=(x﹣1)2+4,∴抛物线开口向上,顶点为(1,4),对称轴为直线x=1,∴y随x的增大而增大时,x的范围是x>1.18.已知二次函数y=x2﹣6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.解:(1)y=x2﹣6x+8=x2﹣6x+9﹣1=(x﹣3)2﹣1;(2)开口向上,对称轴是直线x=3,顶点坐标是(3,﹣1);(3)x>3时,y随x的增大而增大;x<3时,y随x增大而减小.19.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5r2+20t,求小球飞行高度达到最高时的飞行时间.解:∵h=﹣5t2+20t=﹣5(t﹣2)2+20,且﹣5<0,∴当t=2时,h取最大值20,答:小球飞行高度达到最高时的飞行时间为2s.20.“阳光玫瑰葡萄”品种是近几年来广受各地消费者青睐的优质新品种,在云南省广泛种植.长沙市某品牌水果经销商计划在2023年五一期间进行商业促销活动,经过调查往年的统计数据发现,云南省批发“阳光玫瑰葡萄”的最低价格为每斤15元若按每斤30元的价格到市区销售,平均每天可售出60斤若每斤“阳光玫瑰葡萄”的售价每降低1元,那么平均每天的销售量会增加10斤,为了尽快减少库存,该水果商决定降价销售.(1)若降价2元,则每天的销售利润是多少元(2)若该经销商计划销售“阳光玫瑰葡萄”每天盈利1100元,那么每斤“阳光玫瑰葡萄”的售价应降至每斤多少元?(其它成本忽略不计)(3)将商品的销售单价定为多少元时,商场每天销售该商品获得的利润w最大?最大利润是多少元?解:(1)根据题意,降价2元则销售量为60+2×10=80(斤),销售利润为:(30﹣15﹣2)×80=1040(元),。
人教版初中数学九年级上册课后提升训练试卷(22.1.4 二次函数y=ax2+bx+c第的图象和性质)
2020年秋绵阳南山双语学校初中数学(人教版)九年级上册第二十二章二次函数22.1 二次函数的图象和性质22.1.4 二次函数y=ax2+bx+c第的图象和性质1.(2020湖北十堰丹江口期中)关于抛物线y=x2-2x-1,下列说法中错误的是 ( )A.开口方向向上B.对称轴是直线x=1C.当x>1时,y随x的增大而减小D.顶点坐标为(1,-2)2.(2019吉林四平铁西期中)二次函数y=-2x2-3x+1的图象大致是 ( )3.(2020重庆八中月考)如图,已知抛物线y=ax2+bx+c(a≠0)经过点(-2,0),对称轴为直线x=1,下列结论中正确的是 ( ) A.abc>0 B.b=2aC.9a+3b+c<0D.8a+c=04.(2020天津和平期中)抛物线的顶点为(1,-4),与y轴交于点(0,-3),则该抛物线的解析式为 ()A.y=x2-2x-3B.y=x2+2x-3C.y=x2-2x+3D.y=2x2-3x-35.(2020浙江嘉兴秀洲期中)二次函数y=ax2+bx+c的图象经过点A(-4,0)、B(-1,0)和C(-2,-2),则下列说法正确的是 ()A.抛物线的开口向下B.当x>-3时,y随x的增大而增大C.二次函数的最小值是-2D.抛物线的对称轴是直线x=- 526.(2020天津和平期中)二次函数y=x2+bx+c(b,c是常数)中的自变量x与函数值y的部分对应值如下表:下列结论正确的是 ( )A.当x=2时,y有最大值1B.当x<2时,y随x的增大而增大C.点(5,9)在该函数的图象上D.若A(m,y1),B(m+1,y2)两点都在该函数的图象上,则当m>3/2 时,y1<y27.(2019天津南开期中)函数y=ax2+ax+a(a≠0)的图象可能是下列图象中的 ( )8.(2019重庆中考)抛物线y=-3x2+6x+2的对称轴是 ()A.直线x=2B.直线x=-2C.直线x=1D.直线x=-19.(2019辽宁葫芦岛中考)二次函数y=ax2+bx的图象如图所示,则一次函数y=ax+b的图象大致是 ( )10.(2019四川遂宁中考)二次函数y=x2-ax+b的图象如图所示,对称轴为直线x=2,下列结论不正确的是 ()A.a=4B.当b=-4时,顶点的坐标为(2,-8)C.当x=-1时,b>-5D.当x>3时,y随x的增大而增大11.(2020独家原创试题)已知A(a,m),B(b,n)是抛物线y=x2-2x-2 020上的两点,且a<b<1.若k=a-b,c=m-n,则一次函数y=kx+c的图象经过的象限是 ()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限12.(2019江苏徐州铜山二模)二次函数y=x2+2x+2的图象先向上平移2个单位长度,再向右平移3个单位长度,则平移后二次函数图象的顶点坐标是.13.已知二次函数y=ax2+bx+c的图象如图所示,则点P(a,bc)在第象限.14.(2020山东青岛莱西期中)顶点为(-6,0),开口向下,形状与函数x2的图象相同的抛物线的表达式是. y= 1215.(2019北京西城期中)已知二次函数y=ax2+bx+c(a,b,c为常数,a≠0),其中自变量x与函数值y之间满足下面的对应关系:则a+b+c= .16.(2020重庆巴南期中)已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:若一次函数y=bx+ac的图象不经过第m象限,则m=17.(2020湖北孝感孝南期中)如图,抛物线y=ax2+bx+c的图象经过(-1,0),对称轴为x=1,则下列三个结论:①abc<0;②10a+3b+c>0;③am2+bm+a≥0,其中正确的结论为(填序号).18.(2019福建莆田秀屿月考)若函数y=a(x-h)2+k的图象经过原点,最小值为-8且形状与抛物线y=-2x2-2x+3相同,则此函数关系式为.19.(2020北京三十九中期中)把抛物线y=-x2+4x-3先向左平移3个单位,再向下平移2个单位,则变换后的抛物线解析式是.20.(2019福建龙岩上杭月考)如图,二次函数图象过A,B,C三点,点A的坐标为(-1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC.(1)求点C的坐标;(2)求二次函数的解析式.21.(2019山东淄博临淄期中)已知二次函数y=ax2+bx+c中,y与x的部分对应值如下表:(1)求这个二次函数的解析式;(2)写出这个二次函数图象的顶点坐标.参考答案1.答案 C∵a=1>0,∴开口方向向上,故A说法正确;对称轴是故B说法正确;当x>1时,y随x的增大而增大,故C说法错误;y=x2-2x-1=(x-1)2-2,顶点坐标为(1,-2),故D说法正确.故选C.2.答案 B因为a=-2<0,所以抛物线y=-2x2-3x+1开口向下,故C、D不符合题意;抛物线y=-2x2-3x+1的对称轴是直线故A不符合题意.故选B.3.答案 D ∵抛物线开口向下,∴a<0,∵抛物线对称轴为直线x=1,∴-b/2a =1,∴b=-2a>0,故B错误;∵抛物线与y轴的正半轴相交,∴c>0,∴abc<0,故A错误;∵对称轴为直线x=1,又点(-2,0)关于直线x=1的对称点的坐标为(4,0),∴当x=3时,y=9a+3b+c>0,故C错误;∵抛物线y=ax2+bx+c经过点(-2,0),∴4a-2b+c=0,∵b=-2a,∴4a+4a+c=0,即8a+c=0,故D正确.故选D.4.答案 A 设抛物线的解析式为y=a(x-1)2-4,将(0,-3)代入y=a(x-1)2-4,得-3=a(0-1)2-4,解得a=1,∴抛物线的解析式为y=(x-1)2-4=x2-2x-3.故选A.5.答案 D ∵二次函数y=ax2+bx+c的图象经过点A(-4,0)、B(-1,0)和C(-2,-2),∴a>0,∴抛物线开口向上,故A错误;对称轴为直线y随x的增大而增大,故B错误,D正确;∴函数的最小值小于-2,故C错误.故选D.6.答案 D 观察表格知,函数的图象经过点(1,2)和(3,2),∴对称轴为x=2.∵函数图象开口向上且经过点(2,1),∴x=2时,y有最小值1,故A错误.易知当x<2时,y随x的增大而减小,故B错误.∵对称轴是直线x=2,点(-1,10)关于x=2的对称点是(5,10),∴点(5,10)在该函数的图象上,点(5,9)不在该函数的图象上,故C错误.∵当m>3/2 时,|2-m|<|m+1-2|,∴y1<y2,故D正确.故选D.7.答案 C 在函数y=ax2+ax+a(a≠0)中,当a<0时,该函数图象开口向下,顶点在y轴左侧,抛物线与y轴的负半轴相交,故C正确、D错误;当a>0时,该函数图象开口向上,顶点在y轴左侧,抛物线与y轴的正半轴相交,故A、B错误.故选C.8.答案 C9.答案 D10.答案 C 由题意得,对称轴为直线x=2,∴a=4,故A正确;当b=-4时,y=x2-4x-4=(x-2)2-8,∴顶点的坐标为(2,-8),故B正确;当x=-1时,由图象知此时y<0,即1+4+b<0,∴b<-5,故C不正确;∵对称轴为直线x=2且图象开口向上,∴当x>3时,y随x的增大而增大,故D正确.故选C.11.答案 B y=x2-2x-2 020=(x-1)2-2 021,∴抛物线开口向上,对称轴为x=1,当x<1时,y随x的增大而减小.∵A(a,m),B(b,n)是抛物线y=x2-2x-2 020上的两点,且a<b<1,∴m>n.∵k=a-b<0,c=m-n>0,∴一次函数y=kx+c 的图象经过的象限是第一、二、四象限.故选B.12.答案(2,3)∵y=x2+2x+2=(x+1)2+1,顶点为(-1,1),∴将图象向上平移2个单位长度,再向右平移3个单位长度,平移后的二次函数图象的顶点坐标为(2,3).13.答案一14.解析设所求的抛物线的表达式为y=a(x-h)2+k,∵顶x2点为(-6,0),∴h=-6,k=0,又∵开口向下,形状与函数y= 12 ,∴抛物线的表达式为的图象相同,∴a=-1215.答案-1.5∵x=3时,y=2.5;x=5时,y=2.5,∴抛物线的对称轴为直线x=4,∴x=1和x=7的函数值相等,而x=7时,y=-1.5,∴x=1时,y=a+b+c=-1.5.16.答案 3解析由表中的数据可知抛物线开口向上,顶点为(1,3),与y轴的交点为(0,4),∴b<0,∴ac>0,∴函数y=bx+ac的图象经过第一、二、四象限,不经过第三象限,∴m=3.17.答案②③解析①观察图象可知,a>0,b<0,c<0,∴abc>0.∴①错误.②观察图象可知,当x=3时,y=0,即9a+3b+c=0,∵a>0,∴10a+3b+c>0.∴②正确.③∵对称轴为x=1,∴b=-2a,∴am2+bm+a=am2-2am+a=a(m-1)2≥0,∴am2+bm+a≥0.∴③正确.18.答案y=2x2+8x或y=2x2-8x函数y =a (x -h )2+k 的图象经过原点,把(0,0)代入解析式,得ah 2+k =0,∵最小值为-8,∴函数图象的开口向上,a >0,顶点的纵坐标k =-8,又∵形状与抛物线y =-2x 2-2x +3相同,∴二次项系数a =2,把a =2,k =-8代入ah 2+k =0中,得h =±2,∴函数解析式是y =2(x +2)2-8或y =2(x -2)2-8,即y =2x 2+8x 或y =2x 2-8x .19. 答案 y =-x 2-2x -2 ∵抛物线y =-x 2+4x -3=-(x -2)2+1,∴顶点坐标为(2,1),将顶点向左平移3个单位,再向下平移2个单位得到的点是(-1,-1),则变换后的抛物线解析式为y =-(x +1)2-1=-x 2-2x -2.20. 解析 (1)∵点A 的坐标为(-1,0),点B 的坐标为(4,0),∴AB =4-(-1)=5,∵AB =OC ,∴OC =5,∴点C 的坐标为(0,5).(2)解法一:设过点A ,B ,C 的抛物线的解析式为y =ax 2+bx +c , 把A (-1,0),B (4,0),C (0,5)分别代入y =ax 2+bx +c 中,得 解得 -0,1640,5,a b c a b c c +=⎧⎪++=⎨⎪=⎩5-,415,45,a b c ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩所以二次函数的解析式为解法二:设过点A ,B 的抛物线的解析式为y =a (x +1)(x -4), 把点C (0,5)代入,得5=a (0+1)(0-4),所以二次函数的解析式为21. 解 (1)把(0,1),(1,-2),(2,1)代入y =ax 2+bx +c 中,得 解得 所以二次函数解析式为y =3x 2-6x +1.(2)由(1)知抛物线解析式为y =3x 2-6x +1,即y =3(x 2-2x )+1=3(x 2-2x +1-1)+1=3(x -1)2-2,所以抛物线的顶点坐标为(1,-2).1,-2,421,c a b c a b c =⎧⎪++=⎨⎪++=⎩3,-6,1,a b c =⎧⎪=⎨⎪=⎩。
人教版九年级数学上册第二十二章 《二次函数》培优训练题(含答案)
人教版九年级数学上册第二十二章《二次函数》培优训练题(含答案)一.选择题1.在同一坐标系内,函数y=kx2和y=kx+2(k≠0)的图象大致如图()A.B.C.D.2.抛物线y=x2的图象向左平移3个单位,所得抛物线的解析式为()A.y=x2﹣3 B.y=(x﹣3)2C.y=x2+3 D.y=(x+3)23.对于二次函数y=3(x﹣2)2+1的图象,下列说法正确的是()A.顶点坐标是(2,1)B.对称轴是直线x=﹣2C.开口向下D.与x轴有两个交点4.已知二次函数y=ax2﹣4ax+4,当x分别取x1、x2两个不同的值时,函数值相等,则当x取x1+x2时,y的值为()A.6 B.5 C.4 D.35.如图是抛物线形拱桥,当拱顶高离水面2m时,水面宽4m,水面下降2.5m,水面宽度增加()A.1 m B.2 m C.3 m D.6 m6.某商场降价销售一批名牌衬衫,已知所获利利y(元)与降价金额x(元)之间满足函数关系式y=﹣2x2+60x+800,则获利最多为()A.15元B.400元C.800元D.1250元7.“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且a<b,则a、b、m、n的大小关系是()A.m<a<b<n B.a<m<n<b C.a<m<b<n D.m<a<n<b8.已知二次函数y=mx2﹣3mx﹣4m(m≠0)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C 且∠ACB=90°,则m的值为()A.±2 B.±4 C.±D.±9.抛物线y=ax2+bx+c的顶点D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c>0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确的结论是()A.③④B.②④C.②③D.①④二.填空题 10.若抛物线的顶点坐标为(2,9),且它在x 轴截得的线段长为6,则该抛物线的表达式为 . 11.若抛物线y =a (x ﹣h )2+k 经过(﹣1,0)和(5,0)两点,则关于x 的一元二次方程a (x +h ﹣2)2+k =0的解为 .12.抛物线经过原点O ,还经过A (2,m ),B (4,m ),若△AOB 的面积为4,则抛物线的解析式为 . 13.如图,有一座抛物线形拱桥,在正常水位时水面AB 的宽为20m ,如果水位上升3m 达到警戒水位时,水面CD 的宽是10m .如果水位以0.25m /h 的速度上涨,那么达到警戒水位后,再过 h 水位达到桥拱最高点O .14.如图,抛物线解析式为y =x 2,点A 1的坐标为(1,1),连接OA 1;过A 1作A 1B 1⊥OA 1,分别交y 轴、抛物线于点P 1、B 1;过B 1作B 1A 2⊥A 1B 1分别交y 轴、抛物线于点P 2、A 2;过A 2作A 2B 2⊥B 1A 2,分别交y 轴、抛物线于点P 3、B 2…;则点P n 的坐标是 .三.解答题16.已知抛物线G :y =mx 2﹣2mx ﹣3有最低点P .(1)求二次函数y =mx 2﹣2mx ﹣3的最小值(用含m 的式子表示);(2)若点P 关于坐标系原点O 的对称点仍然在抛物线上,求此时m 的值;(3)将抛物线G 向右平移m 个单位得到抛物线G 1.经过探究发现,随着m 的变化,抛物线G 1顶点的纵坐标y 与横坐标x 之间存在一个函数关系,求这个函数关系式,并写出自变量x 的取值范围.17.“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降2元,则每月可多销售10条,设每条裤子的售价为x 元(x 为正整数),每月的销售量为y 条.(1)直接写出y 与x 的函数关系式;(2)设该网店每月获得的利润为w 元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少? (3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生,为了保证捐款后每月利润不低于4175元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?18.在平面直角坐标系中,抛物线y =mx 2﹣4mx +n (m >0)与x 轴交于A ,B 两点,点B 在点A 的右侧,顶点为C ,抛物线与y 轴交于点D ,直线CA 交y 轴于E ,且S △ABC :S △BCE =3:4.(1)求点A ,点B 的坐标;(2)将△BCO 绕点C 逆时针旋转一定角度后,点B 与点A 重合,点O 恰好落在y 轴上,①求直线CE 的解析式;②求抛物线的解析式.19.如图,二次函数y=ax2+bx+4的图象与坐标轴分别交于A、B、C三点,其中A(﹣3,0),点B在x轴正半轴上,连接AC、BC.点D从点A出发,沿AC向点C移动;同时点E从点O出发,沿x轴向点B移动,它们移动的速度都是每秒1个单位长度,当其中一点到达终点时,另一点随之停止移动,连接DE,设移动时间为ts.(1)若t=3时,△ADE与△ABC相似,求这个二次函数的表达式;(2)若△ADE可以为直角三角形,求a的取值范围.20.某班“数学兴趣小组”对函数y=﹣x2+3|x|+4的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x…﹣5 ﹣4 ﹣3 ﹣2 ﹣1 0 1 2 3 4 5 …y…﹣6 0 4 6 6 4 6 6 4 0 m…其中,m=.(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)直线y=kx+b经过(,),若关于x的方程﹣x2+3|x|+4=kx+b有4个不相等的实数根,则b的取值范围为.参考答案一.选择题1.解:由一次函数解析式为:y=kx+2可知,图象应该与y轴交在正半轴上,故A、B、C错误;D符合题意;故选:D.2.解:∵抛物线y=x2的图象向左平移3个单位,∴平移后的抛物线的顶点坐标为(﹣3,0),∴所得抛物线的解析式为y=(x+3)2.故选:D.3.解:A、顶点坐标是(2,1),说法正确;B、对称轴是直线x=2,故原题说法错误;C、开口向上,故原题说法错误;D、与x轴没有交点,故原题说法错误;故选:A.4.解:∵y=ax2﹣4ax+4=a(x﹣2)2﹣4a+4,当x分别取x1、x2两个不同的值时,函数值相等,∴x1+x2=4,∴当x取x1+x2时,y=a(4﹣2)2﹣4a+4=4,故选:C.5.解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),设顶点式y=ax2+2,把A点坐标(﹣2,0)代入得a=﹣0.5,∴抛物线解析式为y=﹣0.5x2+2,当水面下降2.5米,通过抛物线在图上的观察可转化为:当y=﹣2.5时,对应的抛物线上两点之间的距离,也就是直线y=﹣2.5与抛物线相交的两点之间的距离,可以通过把y=﹣2.5代入抛物线解析式得出:﹣2.5=﹣0.5x2+2,解得:x=±3,2×3﹣4=2,所以水面下降2.5m,水面宽度增加2米.故选:B.6.解:对于抛物线y=﹣2x2+60x+800=﹣2(x﹣15)2+1250,∵a=﹣2<0,∴x=15时,y有最大值,最大值为1250,故选:D.7.解:∵m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,∴二次函数y=﹣(x﹣a)(x﹣b)+1的图象与x轴交于点(m,0)、(n,0),∴将y=﹣(x﹣a)(x﹣b)+1的图象往下平移一个单位可得二次函数y=﹣(x﹣a)(x﹣b)的图象,二次函数y=﹣(x﹣a)(x﹣b)的图象与x轴交于点(a,0)、(b,0).画出两函数图象,观察函数图象可知:m<a<b<n.故选:A.8.解:设y=0,则=mx2﹣3mx﹣4m=0,解得:m=4或m=﹣1,∵点A在点B的左侧,∴OA=1,OB=4,设x=0,则y=﹣4m,∴OC=|﹣4m|,∵∠ACO+∠OCB=90°,∠CAO+∠ACO=90°,∴∠CAO=∠BCO,又∵∠AOC=∠BOC=90°,∴△AOC∽△COB,∴,∴OC2=OA•OB,即16m2=4,解得:m=±,故选:C.9.解:∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以①错误;∵抛物线y=ax2+bx+c的顶点D(﹣1,2),∴抛物线的对称轴为直线x=﹣1,而抛物线与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,∴抛物线与x轴的另一个交点A在点(0,0)和(1,0)之间,∴x=1时,y<0,∴a﹣b+c<0,所以②错误;∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a,∵x=﹣1时,y=2,即a﹣b+c=2,∴a﹣2a+c=2,即c﹣a=2,所以③正确;∵抛物线y=ax2+bx+c的顶点D(﹣1,2),即x=﹣1时,y有最大值2,∴抛物线与直线y=2只有一个公共点,∴方程ax2+bx+c﹣2=0有两个相等的实数根,所以④正确.故选:A.二.填空题(共5小题)10.解:∵抛物线的顶点坐标为(2,9),∴抛物线的对称轴为直线x=2,∵抛物线在x轴截得的线段长为6,∴抛物线与x轴的交点为(﹣1,0),(5,0),设此抛物线的解析式为:y=a(x﹣2)2+9,代入(5,0)得,9a+9=0,解得a=﹣1,∴抛物线的表达式为y=﹣(x﹣2)2+9,故答案为y=﹣(x﹣2)2+9.11.解:将抛物线y=a(x﹣h)2+k关于y轴对称得新抛物线为y′=a(x+h)2+k,∵抛物线y=a(x﹣h)2+k经过(﹣1,0)和(5,0)两点,∴抛物线为y′=a(x+h)2+k与x轴的交点为(﹣5,0)和(1,0),将新抛物线y′=a(x+h)2+k向右平移2个单位得抛物线y″=a(x+h﹣2)2+k,其与x轴的两个交点为(﹣3,0)和(3,0),∴方程a(x+h﹣2)2+k=0的解为x1=3,x2=﹣3,故答案为x1=3,x2=﹣3.12.解:∵抛物线经过A(2,m),B(4,m),∴对称轴是:x=3,AB=2,∵△AOB的面积为4,∴AB•|m|=4,m=±4,当m=4时,则A(2,4),B(4,4),设抛物线的解析式为:y=a(x﹣3)2+h,把(0,0)和(2,4)代入得:,解得:,∴抛物线的解析式为:y=﹣(x﹣3)2+,即y=﹣x2+3x;当m=﹣4时,则A(2,﹣4),B(4,﹣4),设抛物线的解析式为:y=a(x﹣3)2+h,把(0,0)和(2,﹣4)代入得:,解得:,∴抛物线的解析式为:y=(x﹣3)2﹣=x2﹣3x;综上所述,抛物线的解析式为:y=﹣x2+3x或y=x2﹣3x,故答案为y=﹣x2+3x或y=x2﹣3x.13.解:设抛物线解析式为y=ax2,因为抛物线关于y轴对称,AB=20,所以点B的横坐标为10,设点B(10,n),点D(5,n+3),由题意:,解得,∴y=﹣x2,当x=5时,y=﹣1,故t==4(h),答:再过4小时水位达到桥拱最高点O.故答案为:4.14.解:∵点A1的坐标为(1,1),∴直线OA1的解析式为y=x,∵A1B1⊥OA1,∴OP1=2,∴P1(0,2),设A1P1的解析式为y=kx+b1,∴,解得,∴直线A1P1的解析式为y=﹣x+2,解求得B1(﹣2,4),∵A2B1∥OA1,设B1P2的解析式为y=x+b2,∴﹣2+b2=4,∴b2=6,∴P2(0,6),解求得A2(3,9)设A1B2的解析式为y=﹣x+b3,∴﹣3+b3=9,∴b3=12,∴P3(0,12),…∴P n(0,n2+n),故答案为(0,n2+n).三.解答题(共6小题)15.证明:(1)∵点E为CD中点,∴CE=DE.∵EF=BE,∴四边形DBCF是平行四边形.(2)∵四边形DBCF是平行四边形,∴CF∥AB,DF∥BC.∴∠FCG=∠A=30°,∠CGF=∠CGD=∠ACB=90°.在Rt△FCG中,CF=6,∴,.∵DF=BC=4,∴DG=1.在Rt△DCG中,CD==216.解:(1)∵y=mx2﹣2mx﹣3=m(x﹣1)2﹣m﹣3,抛物线有最低点,∴二次函数y=mx2﹣2mx﹣3的最小值为﹣m﹣3;(2)∵y=mx2﹣2mx﹣3=m(x﹣1)2﹣m﹣3,∴抛物线的顶点P为(1,﹣m﹣3),∴点P关于坐标系原点O的对称点(﹣1,m+3),∵对称点仍然在抛物线上,∴m+3=m+2m﹣3,解得m=3;(3)∵抛物线G:y=m(x﹣1)2﹣m﹣3∴平移后的抛物线G1:y=m(x﹣1﹣m)2﹣m﹣3∴抛物线G1顶点坐标为(m+1,﹣m﹣3)∴x=m+1,y=﹣m﹣3∴x+y=m+1﹣m﹣3=﹣2即x+y=﹣2,变形得y=﹣x﹣2∵m>0,m=x﹣1∴x﹣1>0∴x>1∴y与x的函数关系式为y=﹣x﹣2(x>1).17.解:(1)由题意可得:y=100+×10=100+5(80﹣x)=﹣5x+500,∴y与x的函数关系式为:y=﹣5x+500;(2)由题意得:w=(x﹣40)(﹣5x+500)=﹣5x2+700x﹣20000=﹣5(x﹣70)2+4500,∵a=﹣5<0,∴当x=70时,w有最大利润,最大利润是4500元;∴应降价80﹣70=10(元).∴当销售单价降低10元时,每月获得的利润最大,最大利润是4500元;(3)由题意得:﹣5(x﹣70)2+4500=4175+200,解得:x1=65,x2=75,∵抛物线开口向下,对称轴为直线x=70,∴当65≤x≤75时,符合该网店要求,而为了让顾客得到最大实惠,故x=65.∴当销售单价定为65元时,既符合网店要求,又能让顾客得到最大实惠.18.解:(1)如图,过点C作CF⊥AB于F,∵抛物线y=mx2﹣4mx+n(m>0),∴对称轴为直线x=2,∴AF=BF,点F(2,0),即OF=2,∵S△ABC :S△BCE=3:4,∴S△ABC =3S△ABE,∴3××AB×OE=AB×CF,∴CF=3OE,∵CF⊥AB,OE⊥AB,∴CF∥OE,∴,∴AF=3OA,∵OF=OA+AF=2,∴OA=,AF=,∴点A坐标为(,0),∵AB=2AF=3,∴OB=,∴点B坐标为(,0);(2)①∵抛物线y=mx2﹣4mx+n(m>0)过点A(,0),∴0=m﹣2m+n,∴n=m,∴y=mx2﹣4mx+n=m(x﹣2)2﹣m,∴点C(2,﹣m),如图2,过点C作CF⊥OB于F,CH⊥y轴于H,又∵∠FOH=90°,∴四边形OFCH是矩形,∴CF=OH=m,∵将△BCO绕点C逆时针旋转一定角度后,点B与点A重合,点O恰好落在y轴上,∴OC=O'C,OB=O'A=,又∵CH⊥OO',∴OO'=2OH=m,∵OA2+O'O2=O'A2,∴+m2=,∴m=,∴点C坐标为(2,﹣),设直线CE的解析式为y=kx+b,∴,解得:∴直线CE的解析式为y=﹣x+;②∵m=,∴y=x2﹣x+.19.解:(1)∵二次函数y=ax2+bx+4的图象与y轴交于点C,∴C(0,4),∴OC=4,∵A(﹣3,0),∴OA=3,∴AC===5,∵t=3,∴AD=OE=3,AE=6,当△ADE∽△ACB时,∴,即,∴AB=10,∴B(7,0),∵二次函数y=ax2+bx+4的图象过点A(﹣3,0),点B(7,0),∴解得:∴抛物线解析式为:,当△ADE∽△ABC时,,即,∴(舍去),综上,二次函数的表达式为:;(2)若△ADE可以为直角三角形,显然∠ADE=90°,∴△ADE∽△AOC,∴,∴,解得:.设B(x,0),则,设抛物线对称轴为直线,∵A(﹣3,0),∴①.把x=﹣3,y=0代入y=ax2+bx+4,得②,把②代入①,∵a<0,解得:.20.解:(1)把x=5代入函数y=﹣x2+3|x|+4中,得y=﹣25+15+4=﹣6,∴m=﹣6,故答案为:﹣6;(2)连线得,(3)由函数图象可知①该函数的图象关于y轴对称:②该函数的图象有最高点:(答案不唯一)(4)∵直线y=kx+b经过(,),∴,∴k=∵关于x的方程﹣x2+3|x|+4=kx+b有4个不相等的实数根,∴x2﹣3x﹣4+kx+b=0和方程x2+3x﹣4+kx+b=0各有两个不相等的实数根,即方程x2﹣(3﹣)x﹣4+b=和0x2+(3+)x﹣4+b=0各有两个不相等的实数根,∴,解得b≠,且b>或b<,∴b的取值范围为b>或b<.故答案为:b>或b<.。
苏教版九年级数学第五章《二次函数》提优测试卷(含答案)
第五章《二次函数》提优测试卷(: 90 分分:100分)一、 (每小 3 分,共 30 分 )1.于抛物 y 2x212x17 ,以下正确的选项是()A. 称是点 (3,0)且平行于y的直,有最大1B. 称是点 (3,0)且平行于y的直,有最小–1C. 称是点 (–3, 0)且平行于y的直,有最大1D. 称是点 (–3, 0)且平行于y的直,有最小–12.若一条抛物 y ax2bx c 的点在第二象限,交于y 的正半,与x 有两个交点,以下正确的选项是()A. a 0,bc 0B.a0,bc 0C. a 0,bc0D. a 0,bc 03.二次函数 y ax2 bx c 像上部分点的坐足下表:x⋯–3–2–101⋯y⋯–3–2–3–6–11 ⋯函数像的点坐()A. ( –3, –3)B. ( –2, –2)C. ( –1, –3)D. (0, –6)4.假如一种是将抛物向右平移2 个位或向上平移 1 个位,我把种称抛物的,已知抛物两次后的一条抛物是y x2 1,原抛物的分析式不行能的是()A. y x21;B. y x26x 5 ;C. y x24x 4 ;D. y x28x 175.二次函数 y x2bx c ,若b c 0,它的像必定点()A. ( –1, –1)B. (1, –1)C. ( –1, 1)D. (1, 1)6.已知点 (1, y1 ) 、( 3 1, y2 ) 、(1, y3 ) 在函数y3x2 6 x 12 的像上, y1, y2 , y3的22大小关系()A. y1y2y3;B.y2y1y3;C. y2y3y1;D. y3y1y27.已知二次函数 y x23x m ( m 常数)的像与x 的一个交点(1,0),对于x的一元二次方程 x 2 3x m 0 的两实数根是( )A. x 11, x 2 1; B. x 1 1,x 22 ; C. x 1 1,x 2 0 ;D. x 1 1,x 2 38. 如图,察看二次函数 yax 2 bxc 的图像,以下结论: ① a bc 0 ;② 2a b 0 ;③ b 24ac 0 ;④ ac0 .此中正确的选项是( )A. ①②B. ①④C. ②③D. ③④9. 假如二次函数yaxbx cy bx c 和反比率函数2的图像以下图,那么一次b()y 在同一坐标系中的图像大概是 x10.如图,在Rt ABC 中, C 90 , AC =4cm , BC =6cm ,动点 P 从点 C 沿 CA ,以1cm/s 的速度向点A 运动,同时动点 O 从点 C 沿 CB ,以 2cm/s 的速度向点 B 运动,其中一个动点抵达终点时, 另一个动点也停止运动, 则运动过程中所组成的CPO的面积 y(cm 2)与运动时间x (s)之间的函数图像大概是()二、填空题(每题2 分,共16 分 )11.把二次函数yx 212x 化为形如ya(xh)2k 的形式:.12. 把抛物线y( x1)2 向下平移2 个单位,再向右平移1 个单位,所获取的抛物线是.13. 函数 : ①y1ax2ax1,②y2ax2ax1(此中a 常数,且a0 )的像如所示,写出一条与上述两条抛物相关的不一样型的:.14.若抛物y x2bx c 与 x 只有一个交点,且点 A ( m , n ) ,B(m 6,n),n =.15.将函数 y x2x 的像先向右平移 a( a 0)个位,再向下平移 b 个位,获取函数y x22x 的像, a =, b =.16.如,抛物y x2bx9与 y 订交于点 A ,与点 A 平行于x的直订交于2点 B (点 B 在第一象限).抛物的点C在直OB上,称与x订交于点 D .平移抛物,使其点 A 、 D ,平移后的抛物的分析式.17.如,以扇形OAB的点O原点,半径OB所在的直x ,成立平面直角坐系,点 B 的坐(2,0),若抛物y 1 x2k 与扇形 OAB 的界有两个公共点,数2k 的取范是.18. 二次函数y 2x2的像如所示,点A0位于坐原点,点A1,A2, A,⋯, A2015在33y 的正半上,点B1, B2, B3,⋯, B2015在二次函数y 2x2位于第一象限的像3上,若A 0B 1 A 1, A 1 B 2 A 2 , A 2 B 3 A 3 , ⋯ , A 2014B 2015 A 2015 都 等 三角形,A 2014B2015A2015的=.三、解答 (共 54 分 )19. (8 分 )已知二次函数yx 2 2x m .(1) 假如二次函数的 像与 x 有两个交点,求 m 的取 范 ;(2) 如 ,二次函数的 像 点A(3,0) ,与 y 交于点 B ,直 AB 与 个二次函数像的 称 交于点P ,求点 P 的坐 .20. (8 分 )如 ,二次函数ymx 2 4m 的 点坐 (0,2),矩形 ABCD 的 点 B,C 在 x上, A, D 在抛物 上,矩形ABCD 在抛物 与x 所 成的 形内.(1) 求二次函数的表达式;(2) 点 A 的坐 ( x, y) , 求矩形 ABCD 的周 P 对于自 量 x 的函数表达式,并求出自 量 x 的取 范 .21.(10 分 )在“母亲节”时期,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得收益捐给慈善机构,依据市场检查,这类许愿瓶一段时间内的销售量y(个 )与销售单价x( 元 /个 )之间的对应关系以下图.(1) 试判断y 与x 之间的函数关系,并求出函数表达式;(2) 若许愿瓶的进价为 6 元 /个,依据上述市场检查的销售规律,求销售收益w (元)与销售单价 x (元/个)之间的函数表达式;(3)在 (2) 的前提下,若许愿瓶的进货成本不超出900 元,要想获取最大的收益,试确立这种许愿瓶的销售单价,并求出此时的最大收益.22.(8 分 )甲船和乙船分别从A港和C港同时出发,各沿图中箭头所指的方向航行,如图所示,现已知甲、乙两船的速度分别为 16 海里 /时和 12 海里 /时,且A,C两港之间的距离为 10 海里 .问:经过多长时间甲船和乙船之间的距离最短?23. (9 分 )某企业计划从甲、乙两种产品中选择一种生产并销售,每年产销x 件.已知产销两种产品的相关信息以下表:产品每件售价(万元)每件成本(万元)每年其余花费(万元)每年最大产销量(件)甲6a20200乙201040+ 0.05x280此中 a 为常数,且3≤a≤5.(1)若产销甲、乙两种产品的年收益分别为y1万元、 y2万元,直接写出y1、 y2与 x 的函数关系式;(2)分别求出产销两种产品的最大年收益;(3)为获取最大年收益,该企业应当选择产销哪一种产品?请说明原因.24. (10 分 )如图,已知抛物线y x2bx c 与向来线订交于A( 1,0) , C(2,3) 两点,与y轴交于点 N ,其极点为 D .(1)求抛物线及直线 AC 的函数表达式;(2)设点 M (3, m) ,求使MN MD 的值最小时m的值;(3)若抛物线的对称轴与直线AC 订交于点B, E为直线 AC 上的随意一点,过点 E 作EF // BD 交抛物线于点F,以B,D ,E,F为极点的四边形可否为平行四边形?若能,求点的坐标;若不可以,请说明原因.25. (10分 )已知抛物线y=a(x+3)( x﹣ 1)( a≠0),与x 轴从左至右挨次订交于A、 B 两点,与 y 轴订交于点C,经过点 A 的直线y=﹣x+b 与抛物线的另一个交点为D.(1)若点 D 的横坐标为 2,求抛物线的函数分析式;(2)若在第三象限内的抛物线上有点 P,使得以 A、B、 P 为极点的三角形与△ ABC 相像,求点 P 的坐标;(3)在( 1)的条件下,设点 E 是线段 AD 上的一点(不含端点),连结 BE.一动点 Q 从点 B 出发,沿线段 BE 以每秒 1 个单位的速度运动到点E,再沿线段ED 以每秒个单位的速度运动到点 D 后停止,问当点 E 的坐标是多少时,点Q 在整个运动过程中所用时间最少?参照答案一、选择题1. B 2. B 3. B 4. B 5. D6. C 7. B8. C9. A10. C二、填空题11. y (x 6)2 3612.y x 2 213. 答案不独一,如函数①张口向下,函数②张口向上14. 915.3 32416. yx 29 x92 217.21k218. 201519. (1) 二次函数的图像与 x 轴有两个交点,22 4m 0, m1.(2) P(1,2)20. (1) 二次函数 ymx 2 4m 的极点坐标为 (0,2),4m 2,m1 .21二次函数的表达式为yx 2 2 .2 (2)A 点在 x 轴的负半轴上,x0.由题意剖析得:AD // x 轴,AD 的长为2 x , AB 的长为 y ,周长 P2 y 4xx 24x 4 .A 点在 y 轴左边,x 0 , y 0 ,2 x 2 ,2 x 0.P x 24x 4, 此中 2 x 0 .21. (1) 设函数表达式为 ykx b ,则其图像过点 (10,300), (12,240) 代入,得10k b300,解得 k30, b 600 .12k b240y30 x 600(2)w ( x 6)( 30x 600) 30x2 780x 3600(3)由题意得6(30x600) 900 ,解得 x 15 .w30 x2780x3600 图像的对称轴为 x78013 ,2( 30)当x 15 时,w最大=1350.22.设经过 x h,甲、乙两船分别抵达 A , B,此时距离近来,A B(10 16 x) 2(12x)2 4 0 0x(22 ) 3 65当 x 26 海里.时,最小值 A B523.( 1) y1 =(6- a)x-20( 0< x≤ 200), y2=-0.05x2+10x-40(0< x≤80);(2)甲产品:∵ 3≤a≤5,∴ 6-a> 0,∴ y1随 x 的增大而增大.∴当 x= 200 时, y1max=1180- 200a(3≤a≤5)乙产品: y2=-0.05 x2+10x-40( 0<x≤ 80)∴当 0< x≤80时, y2随 x 的增大而增大.当 x= 80 时, y2max= 440(万元).∴产销甲种产品的最大年收益为 (1180-200a)万元,产销乙种产品的最大年收益为440 万元;(3) 1180- 200> 440,解得 3≤a< 3.7 时,此时选择甲产品;1180- 200= 440,解得 a=3.7 时,此时选择甲乙产品;1180- 200< 440,解得 3.7< a≤5时,此时选择乙产品.∴当 3≤a< 3.7 时,生产甲产品的收益高;当a=3.7 时,生产甲乙两种产品的收益同样;当3.7< a≤5时,上产乙产品的收益高.24. (1) y x 1(2)作N点对于x 3 的对称点 N ,可得 DN的表达式为 y 121上时,x,当 M (3, m) 在直线 DN55MN MD 的值最小,则 m 18. 5(3)能为平行四边形,E为(0,1)、(1 17 , 317) 、 (117 , 317 ).2222 25. ( 1)∵ y=a( x+3)( x﹣ 1),∴点 A 的坐标为(﹣ 3, 0)、点 B 两的坐标为( 1, 0),∵直线 y=﹣x+b 经过点 A,∴b=﹣ 3 ,∴y=﹣ x﹣ 3 ,当 x=2 时, y=﹣ 5,则点 D 的坐标为( 2,﹣ 5),∵点 D 在抛物线上,∴a( 2+3 )(2﹣ 1) =﹣ 5 ,解得, a=﹣,则抛物线的分析式为y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;(2)作 PH⊥x 轴于 H,设点P 的坐标为( m, n),当△ BPA∽△ ABC 时,∠ BAC=∠ PBA,∴tan ∠BAC=tan∠ PBA,即=,∴=,即n=﹣a(m﹣1),∴,解得, m1=﹣ 4, m2=1(不合题意,舍去),当m=﹣ 4 时, n=5a,∵△ BPA∽△ ABC,∴= ,即 AB 2=AC?PB,∴42=?,解得, a1=(不合题意,舍去), a2=﹣,则 n=5 a=﹣,∴点 P 的坐标为(﹣ 4,﹣);当△ PBA∽△ ABC 时,∠ CBA=∠ PBA,∴tan ∠CBA=tan∠ PBA,即=,∴∴=,即n=﹣ 3a( m﹣1),,解得, m1=﹣ 6, m2=1(不合题意,舍去),当m=﹣ 6 时, n=21a,∵△ PBA∽△ ABC,∴= ,即 AB 2=BC?PB,∴42=?,解得, a1=(不合题意,舍去), a2=﹣,则点 P 的坐标为(﹣ 6,﹣),综上所述,切合条件的点P 的坐标为(﹣4,﹣)和(﹣ 6,﹣);(3)作 DM ∥ x 轴交抛物线于M,作 DN ⊥x 轴于 N,作 EF⊥ DM 于 F,则 tan∠ DAN = ==,∴∠ DAN =60°,∴∠ EDF =60°,∴DE ==EF,∴Q 的运动时间t=+=BE+EF,∴当 BE 和 EF 共线时, t 最小,则 BE⊥DM , y=﹣ 4.7、我们各样习惯中再没有一种象战胜骄傲那麽难的了。
九年级数学上册 二次函数(提升篇)(Word版 含解析)
九年级数学上册二次函数(提升篇)(Word版含解析)一、初三数学二次函数易错题压轴题(难)1.如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,其中A(3,0),B(﹣1,0),与y轴交于点C,抛物线的对称轴交x轴于点D,直线y=kx+b1经过点A,C,连接CD.(1)求抛物线和直线AC的解析式:(2)若抛物线上存在一点P,使△ACP的面积是△ACD面积的2倍,求点P的坐标;(3)在抛物线的对称轴上是否存在一点Q,使线段AQ绕Q点顺时针旋转90°得到线段QA1,且A1好落在抛物线上?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1)2y x2x3=-++;3y x=-+;(2)(﹣1,0)或(4,﹣5);(3)存在;(1,2)和(1,﹣3)【解析】【分析】(1)将点A,B坐标代入抛物线解析式中,求出b,c得出抛物线的解析式,进而求出点C 的坐标,再将点A,C坐标代入直线AC的解析式中,即可得出结论;(2)利用抛物线的对称性得出BD=AD,进而判断出△ABC的面积和△ACP的面积相等,即可得出结论;(3)分点Q在x轴上方和在x轴下方,构造全等三角形即可得出结论.【详解】解:(1)把A(3,0),B(﹣1,0)代入y=﹣x2+bc+c中,得93010b cb c-++=⎧⎨--+=⎩,∴23bc=⎧⎨=⎩,∴抛物线的解析式为y=﹣x2+2x+3,当x=0时,y=3,∴点C的坐标是(0,3),把A(3,0)和C(0,3)代入y=kx+b1中,得11303k bb+=⎧⎨=⎩,∴113kb=-⎧⎨=⎩∴直线AC的解析式为y=﹣x+3;(2)如图,连接BC,∵点D是抛物线与x轴的交点,∴AD=BD,∴S△ABC=2S△ACD,∵S△ACP=2S△ACD,∴S△ACP=S△ABC,此时,点P与点B重合,即:P(﹣1,0),过B点作PB∥AC交抛物线于点P,则直线BP的解析式为y=﹣x﹣1①,∵抛物线的解析式为y=﹣x2+2x+3②,联立①②解得,1xy=-⎧⎨=⎩或45xy=⎧⎨=-⎩,∴P(4,﹣5),∴即点P的坐标为(﹣1,0)或(4,﹣5);(3)如图,①当点Q在x轴上方时,设AC与对称轴交点为Q',由(1)知,直线AC的解析式为y=﹣x+3,当x=1时,y=2,∴Q'坐标为(1,2),∵Q'D=AD=BD=2,∴∠Q'AB=∠Q'BA=45°,∴∠AQ'B=90°,∴点Q'为所求,②当点Q在x轴下方时,设点Q(1,m),过点A1'作A1'E⊥DQ于E,∴∠A1'EQ=∠QDA=90°,∴∠DAQ+∠AQD=90°,由旋转知,AQ=A1'Q,∠AQA1'=90°,∴∠AQD+∠A1'QE=90°,∴∠DAQ=∠A1'QE,∴△ADQ≌△QEA1'(AAS),∴AD =QE =2,DQ =A 1'E =﹣m , ∴点A 1'的坐标为(﹣m +1,m ﹣2), 代入y =﹣x 2+2x +3中, 解得,m =﹣3或m =2(舍), ∴Q 的坐标为(1,﹣3),∴点Q 的坐标为(1,2)和(1,﹣3).【点睛】本题考查的是二次函数的综合题,涉及解析式的求解,与三角形面积有关的问题,三角形“k ”字型全等,解题的关键是利用数形结合的思想,设点坐标并结合几何图形的性质列式求解.2.如图,抛物线()250y ax bx a =+-≠经过x 轴上的点1,0A 和点B 及y 轴上的点C ,经过B C 、两点的直线为y x n =+.(1)求抛物线的解析式.(2)点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 秒,求t 为何值时,PBE △的面积最大并求出最大值.(3)过点A 作AM BC ⊥于点M ,过抛物线上一动点N (不与点B C 、重合)作直线AM 的平行线交直线BC 于点Q .若点A M N Q 、、、为顶点的四边形是平行四边形,求点N 的横坐标.【答案】(1)265y x x =-+- (2)2t =;(3或4【解析】 【分析】(1)先确定A 、B 、C 三点的坐标,然后用待定系数法解答即可;(2)先求出AB 、BC 的长并说明△BOC 是等腰直角三角形,再求出点P 到BC 的高d为)454d BP sin t =⋅︒=-,则12PBESBE d =⨯⨯)()1244222t t t =⨯⨯-=-,再根据二次函数的性质即可确定最大值;(3)先求出454AM AB sin =⋅︒==N 作直线AM 的平行线交直线BC 于点,Q 则,再说明四边形AMNQ是平行四边形,得到NQ AM ==;再过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H 结合题意说明NQH 为等腰直角三角形,求得4NH ===;设()2,65N m m m -+-,则(),0G m ,(),5H m m -,最后分点N 在x 轴上方时、点N 在x 轴下方且5m >时和1m <三种情况解答即可. 【详解】解:()1因为直线y x n =+经过B C 、两点,且点B 在x 轴上,点C 在y 轴上, ∵()(),,00,B n C n -∴抛物线25y ax bx =+-经过点1,0A ,点(),0B n -,点()0,C n ,∴250505a b an bn n +-=⎧⎪--=⎨⎪-=⎩,解得51,6n a b =-⎧⎪=-⎨⎪=⎩所以抛物线的解析式为265y x x =-+-.()2∵()()()1,05,0,0,,5,A B C -∴4,AB BC BOC ==为等腰直角三角形, ∴45,ABC ∠=由题意得4,2,02BP t BE t t =-=<≤点P 到BE 的距离()4542d BP sin t =⋅︒=- 所以12PBESBE d =⨯⨯)()1244222t t t t =⨯⨯-=-;∵二次函数()()4f t t =-的函数图象开口向下,零点为0和4, ∴0422t +==时,∴()()()2242max f t f ==⨯-=即2t =时,PBE △的面积最大,且最大值为()3由题意得4542AM AB sin =⋅︒=⨯= 过点N 作直线AM 的平行线交直线BC 于点,Q 则,NQ BC ⊥ ∵点,A M N Q 、、为顶点的四边形是平行四边形,∴NQ AM ==过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H ∵:5BC l y x =-,∴NQH 为等腰直角三角形,∴4,NH ===设()2,65N m m m -+-, 则(),0G m ,(),5H m m -,①点N 在x 轴上方时,此时()()2655,NH m m m =-+---∴()()26554m m m -+---=,即()()140,m m --=解得1m =(舍,因为此时点N 与点A 重合)或4m =;②点N 在x 轴下方且5m >时,此时()()2565,NH m m m =---+- ∴()()25654m m m ---+-=,即2540,m m --=解得552m -=<(舍)或52m =③点N 在x 轴下方且1m <时,此时()()2565,NH m m m =---+-∴()()25654m m m ---+-=,即2540,m m --=解得5412m -=或5412m +=(舍)综上所述,5414,2m m +==,5412m -=符合题意, 即若点,A M N Q 、、为顶点的四边形是平行四边形, 点N 的横坐标为541-或4或541+.【点睛】本题主要考查了二次函数的性质、平行四边形的判定与性质,掌握二次函数的性质以及分类讨论思想是解答本题的关键3.如图1,抛物线2:C y x =经过变换可得到抛物线()1111:C y a x x b =-,1C 与x 轴的正半轴交于点1A ,且其对称轴分别交抛物线C 、1C 于点1B 、1D ,此时四边形111D OB A 恰为正方形;按上述类似方法,如图2,抛物线()1111:C y a x x b =-经过变换可得到抛物线()2222:C y a x x b =-,2C 与x 轴的正半轴交于点2A ,且对称轴分别交抛物线1C 、2C 于点2B 、2D ,此时四边形222OB A D 也恰为正方形;按上述类似方法,如图3,可得到抛物线()3333:C y a x x b =-与正方形333OB A D ,请探究以下问题: (1)填空:1a = ,1b = ; (2)求出2C 与3C 的解析式;(3)按上述类似方法,可得到抛物线():n n n n C y a x x b =-与正方形n n n OB A D (1n ≥). ①请用含n 的代数式直接表示出n C 的解析式;②当x 取任意不为0的实数时,试比较2018y 与2019y 的函数值的大小关系,并说明理由.【答案】(1)11a =,12b =;(2)22132y x x =-,23126y x x =-;(3)①()2212123n n y x x n -=-≥⨯,②20182019y y >. 【解析】 【分析】(1)求与x 轴交点A 1坐标,根据正方形对角线性质表示出B 1的坐标,代入对应的解析式即可求出对应的b 1的值,写出D 1的坐标,代入y 1的解析式中可求得a 1的值; (2)求与x 轴交点A 2坐标,根据正方形对角线性质表示出B 2的坐标,代入对应的解析式即可求出对应的b 2的值,写出D 2的坐标,代入y 2的解析式中可求得a 2的值,写出抛物线C 2的解析式;再利用相同的方法求抛物线C 3的解析式;(3)①根据图形变换后二次项系数不变得出a n =a 1=1,由B 1坐标(1,1)、B 2坐标(3,3)、B 3坐标(7,7)得B n 坐标(2n -1,2n -1),则b n =2(2n -1)=2n +1-2(n ≥1),写出抛物线C n 解析式.②根据规律得到抛物线C 2015和抛物线C 2016的解析式,用求差法比较出y 2015与y 2016的函数值的大小. 【详解】解:(1)y 1=0时,a 1x (x -b 1)=0, x 1=0,x 2=b 1, ∴A 1(b 1,0),由正方形OB 1A 1D 1得:OA 1=B 1D 1=b 1, ∴B 1(12b ,12b ),D 1(12b ,12b-), ∵B 1在抛物线c 上,则12b =(12b )2, 解得:b 1=0(不符合题意),b 1=2, ∴D 1(1,-1),把D 1(1,-1)代入y 1=a 1x (x -b 1)中得:-1=-a 1,∴a 1=1, 故答案为1,2;(2)当20y =时,有()220a x x b -=, 解得2x b =或0x =,()22,0A b ∴. 由正方形222OB A D ,得2222B D OA b ==,222,22b b B ⎛⎫∴ ⎪⎝⎭,222,22b b D ⎛⎫- ⎪⎝⎭. 2B 在抛物线1C 上,2222222b b b ⎛⎫∴=- ⎪⎝⎭. 解得24b =或20b =(不合舍去),()22,2D ∴-2D 在抛物线2C 上,()22224a ∴-=-.解得212a =. 2C ∴的解析式是()2142y x x =-,即22122y x x =-. 同理,当30y =时,有()330a x x b -=, 解得3x b =,或0x =.()33,0A b ∴.由正方形333OB A D ,得3333B D OA b ==,333,22b b B ⎛⎫∴ ⎪⎝⎭,333,22bb D ⎛⎫- ⎪⎝⎭.3B 在抛物线2C 上,2333122222b b b⎛⎫∴=-⋅ ⎪⎝⎭. 解得312b =或30b =(不合舍去),()36,6D ∴-3D 在抛物线3C 上,()366612a ∴-=-.解得316a =. 3C ∴的解析式是()31126y x x =-,即23126y x x =-.(3)解:①n C 的解析式是()2212123n n y x x n -=-≥⨯. ②由①可得2201820161223y x x =-⨯,2201920171223y x x =-⨯. 当0x ≠时,220182019201620171110233y y x >⎛⎫-=-⎪⎝⎭, 20182019y y ∴>.【点睛】本题是二次函数与方程、正方形的综合应用,将函数知识与方程、正方形有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用正方形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.就此题而言:①求出抛物线与x 轴交点坐标⇔把y =0代入计算,把函数问题转化为方程问题;②利用正方形对角线相等且垂直平分表示出对应B 1、B 2、B 3、B n 的坐标;③根据规律之间得到解析式是关键.4.如图,直线y =12x ﹣2与x 轴交于点B ,与y 轴交于点A ,抛物线y =ax 2﹣32x+c 经过A ,B 两点,与x 轴的另一交点为C . (1)求抛物线的解析式;(2)M 为抛物线上一点,直线AM 与x 轴交于点N ,当32MN AN =时,求点M 的坐标; (3)P 为抛物线上的动点,连接AP ,当∠PAB 与△AOB 的一个内角相等时,直接写出点P 的坐标.【答案】(1)y =12x 2﹣32x ﹣2;(2)点M 的坐标为:(5,3)或(﹣2,3)或(2,﹣3)或(1,﹣3);(3)点P 的坐标为:(﹣1,0)或(32,﹣258)或(173,509)或(3,﹣2). 【解析】 【分析】(1)根据题意直线y =12x ﹣2与x 轴交于点B ,与y 轴交于点A ,则点A 、B 的坐标分别为:(0,-2)、(4,0),即可求解;(2)由题意直线MA的表达式为:y=(12m﹣32)x﹣2,则点N(43m-,0),当MNAN =32时,则NHON=32,即4343mmm---=32,进行分析即可求解;(3)根据题意分∠PAB=∠AOB=90°、∠PAB=∠OAB、∠PAB=∠OBA三种情况,分别求解即可.【详解】解:(1)直线y=12x﹣2与x轴交于点B,与y轴交于点A,则点A、B的坐标分别为:(0,﹣2)、(4,0),则c=﹣2,将点B的坐标代入抛物线表达式并解得:a=12,故抛物线的表达式为:y=12x2﹣32x﹣2①;(2)设点M(m,12m2﹣32m﹣2)、点A(0,﹣2),将点M、A的坐标代入一次函数表达式:y=kx+b并解得:直线MA的表达式为:y=(12m﹣32)x﹣2,则点N(43m-,0),当MNAN=32时,则NHON=32,即:4343mmm---=32,解得:m=5或﹣2或2或1,故点M的坐标为:(5,3)或(﹣2,3)或(2,﹣3)或(1,﹣3);(3)①∠PAB=∠AOB=90°时,则直线AP的表达式为:y=﹣2x﹣2②,联立①②并解得:x=﹣1或0(舍去0),故点P(﹣1,0);②当∠PAB=∠OAB时,当点P在AB上方时,无解;当点P在AB下方时,将△OAB沿AB折叠得到△O′AB,直线OA交x轴于点H、交抛物线为点P,点P为所求,则BO=OB=4,OA=OA=2,设OH=x,则sin∠H=BO OAHB HA'=,即:2444x x=++,解得:x=83,则点H(﹣83,0),.则直线AH的表达式为:y=﹣34x﹣2③,联立①③并解得:x=32,故点P(32,﹣258);③当∠PAB=∠OBA时,当点P在AB上方时,则AH=BH,设OH=a,则AH=BH=4﹣a,AO=2,故(4﹣a)2=a2+4,解得:a=32,故点H(32,0),则直线AH的表达式为:y=43x﹣2④,联立①④并解得:x=0或173(舍去0),故点P (173,509); 当点P 在AB 下方时,同理可得:点P (3,﹣2); 综上,点P 的坐标为:(﹣1,0)或(32,﹣258)或(173,509)或(3,﹣2). 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形、勾股定理的运用等,要注意分类讨论,解题全面.5.已知函数222222(0)114(0)22x ax a x y x ax a x ⎧-+-<⎪=⎨---+≥⎪⎩(a 为常数). (1)若点()1,2在此函数图象上,求a 的值. (2)当1a =-时,①求此函数图象与x 轴的交点的横坐标.②若此函数图象与直线y m =有三个交点,求m 的取值范围.(3)已知矩形ABCD 的四个顶点分别为点()2,0A -,点()3,0B ,点()3,2C ,点()2,2D -,若此函数图象与矩形ABCD 无交点,直接写出a 的取值范围.【答案】(1)1a =或3a =-;(2)①1x =--1x =+;②724m ≤<或21m -<<-;(3)3a <--或1a ≤<-或a >【解析】 【分析】(1)本题根据点(1,2)横坐标大于零,故将点代入对应解析式即可求得a 的取值. (2)①本题将1a =-代入解析式,分别令两个函数解析式y 值为零即可求得函数与x 轴交点横坐标;②本题可求得分段函数具体解析式,继而求得顶点坐标,最后平移直线y m =观察其与图像交点,即可得到答案.(3)本题可根据对称轴所在的位置分三种情况讨论,第一种为当2a <-,将2222y x ax a =-+-函数值与2比大小,将2211422y x ax a =---+与0比大小;第二种为当20a -≤<,2222y x ax a =-+-函数值与0比大小,且该函数与y 轴的交点和0比大小,2211422y x ax a =---+函数值与2比大小,且该函数与y 轴交点与2比大小;第三种为2222y x ax a =-+-与y 轴交点与2比大小,2211422y x ax a =---+与y 轴交点与0比大小.【详解】(1)将()1,2代入2211422y x ax a =---+中,得2112422a a =---+,解得1a =或3a =-.(2)当1a =-时,函数为2221,(0)17(0)22x x x y x x x ⎧+-<⎪=⎨-++≥⎪⎩,①令2210x x +-=,解得1x =--1x =- 令217022x x -++=,解得1x =+或1x =-综上,1x =--1x =+.②对于函数()2210y x x x =+-<,其图象开口向上,顶点为()1,2--; 对于函数217(0)22y x x x =-++≥,其图象开口向下,顶点为()1,4,与y 轴交于点70,2⎛⎫⎪⎝⎭. 综上,若此函数图象与直线y m =有三个交点,则需满足724m ≤<或21m -<<-. (3)2222y x ax a =-+-对称轴为x a =;2211422y x ax a =---+对称轴为x a =-. ①当2a <-时,若使得2222y x ax a =-+-图像与矩形ABCD 无交点,需满足当2x =-时,2222y x ax a =-+-24+422a a =->+,解不等式得0a >或4a ,在此基础上若使2211422y x ax a =---+图像与矩形ABCD 无交点,需满足当3x =时,2221111493422220y x ax a a a =---+=⨯--+<-,解得3a >或3a <--,综上可得:3a <--.②当20a -≤<时,若使得2222y x ax a =-+-图像与矩形ABCD 无交点,需满足2x =-时,2222y x ax a =-+-24+420a a =+-<;当0x =时,22222=20y x ax a a =-+--≤;得2a ≤<,在此基础上若使2211422y x ax a =---+图像与矩形ABCD 无交点,需满足0x =时,2221114=42222y x ax a a ---+->=;3x =时,2221111493422222y x ax a a a =---+=⨯--+>-;求得21a -<<-; 综上:21a -≤<-.③当0a ≥时,若使函数图像与矩形ABCD 无交点,需满足0x =时,22222=22y x ax a a =-+--≥且2221114+40222y x ax a a =---+=-<;求解上述不等式并可得公共解集为:22a >.综上:若使得函数与矩形ABCD 无交点,则322a <--或21a -≤<-或22a >. 【点睛】本题考查二次函数综合,求解函数解析式常用待定系数法,函数含参数讨论时,往往需要分类讨论,分类讨论时需要先选取特殊情况以用来总结规律,继而将规律一般化求解题目.6.二次函数22(0)63m my x x m m =-+>的图象交y 轴于点A ,顶点为P ,直线PA 与x 轴交于点B .(1)当m =1时,求顶点P 的坐标; (2)若点Q (a ,b )在二次函数22(0)63m my x x m m =-+>的图象上,且0b m ->,试求a 的取值范围;(3)在第一象限内,以AB 为边作正方形ABCD . ①求点D 的坐标(用含m 的代数式表示);②若该二次函数的图象与正方形ABCD 的边CD 有公共点,请直接写出符合条件的整数m 的值.【答案】(1)P (2,13);(2)a 的取值范围为:a <0或a >4;(3)①D (m ,m +3); ②2,3,4. 【解析】 【分析】(1)把m =1代入二次函数22(0)63m m y x x m m =-+>解析式中,进而求顶点P 的坐标即可;(2)把点Q (a ,b )代入二次函数22(0)63m my x x m m =-+>解析式中,根据0b m ->得到关于a 的一元二次不等式即一元一次不等式组,解出a 的取值范围即可;(3)①过点D 作DE ⊥x 轴于点E ,过点A 作AF ⊥DE 于点F ,求出二次函数与y 轴的交点A 的坐标,得到OA 的长,再根据待定系数法求出直线AP 的解析式,进而求出与x 轴的交点B 的坐标,得到OB 的长;通过证明△ADF ≌△ABO ,得到AF=OA=m ,DF=OB=3,DE=DF+EF= DF+OA=m+3,求出点D 的坐标;②因为二次函数的图象与正方形ABCD 的边CD 有公共点,由①同理可得:C (m+3,3),分当x 等于点D 的横坐标时与当x 等于点C 的横坐标两种情况,进行讨论m 可能取的整数值即可. 【详解】解:(1)当m =1时,二次函数为212163y x x =-+, ∴顶点P 的坐标为(2,13); (2)∵点Q (a ,b )在二次函数22(0)63m m y x x m m =-+>的图象上, ∴2263m mb a a m =-+, 即:2263m mb m a a -=- ∵0b m ->,∴2263m m a a ->0, ∵m >0,∴2263a a ->0, 解得:a <0或a >4,∴a 的取值范围为:a <0或a >4;(3)①如下图,过点D 作DE ⊥x 轴于点E ,过点A 作AF ⊥DE 于点F ,∵二次函数的解析式为2263m m y x x m =-+, ∴顶点P (2,3m), 当x=0时,y=m , ∴点A (0,m ), ∴OA=m ;设直线AP 的解析式为y=kx+b(k≠0), 把点A (0,m ),点P (2,3m)代入,得: 23m b mk b =⎧⎪⎨=+⎪⎩, 解得:3m k b m⎧=-⎪⎨⎪=⎩,∴直线AP 的解析式为y=3m-x+m , 当y=0时,x=3, ∴点B (3,0); ∴OB=3;∵四边形ABCD 是正方形, ∴AD=AB ,∠DAF+∠FAB=90°, 且∠OAB+∠FAB =90°, ∴∠DAF=∠OAB , 在△ADF 和△ABO 中,DAF OAB AFD AOB AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△ABO (AAS ),∴AF=OA=m ,DF=OB=3,DE=DF+EF= DF+OA=m+3, ∴点D 的坐标为:(m ,m+3); ②由①同理可得:C (m+3,3),∵二次函数的图象与正方形ABCD 的边CD 有公共点,∴当x =m 时,3y m ≤+,可得322363m mm m -+≤+,化简得:32418m m -≤.∵0m >,∴2184m m m -≤,∴218(2)4m m--≤, 显然:m =1,2,3,4是上述不等式的解,当5m ≥时,2(2)45m --≥,18 3.6m ≤,此时,218(2)4m m-->, ∴符合条件的正整数m =1,2,3,4;当x = m +3时,y ≥3,可得2(3)2(3)363m m m m m ++-+≥,∵0m >,∴21823m m m ++≥,即218(1)2m m++≥, 显然:m =1不是上述不等式的解,当2m ≥时,2(1)211m ++≥,189m ≤,此时,218(1)2m m++>恒成立, ∴符合条件的正整数m =2,3,4;综上:符合条件的整数m 的值为2,3,4. 【点睛】本题考查二次函数与几何问题的综合运用,熟练掌握二次函数的图象和性质、一次函数的图象和性质、正方形的性质是解题的关键.7.如图1所示,抛物线223y x bx c =++与x 轴交于A 、B 两点,与y 轴交于点C ,已知C 点坐标为(0,4),抛物线的顶点的横坐标为72,点P 是第四象限内抛物线上的动点,四边形OPAQ 是平行四边形,设点P 的横坐标为m . (1)求抛物线的解析式;(2)求使△APC 的面积为整数的P 点的个数;(3)当点P 在抛物线上运动时,四边形OPAQ 可能是正方形吗?若可能,请求出点P 的坐标,若不可能,请说明理由;(4)在点Q 随点P 运动的过程中,当点Q 恰好落在直线AC 上时,则称点Q 为“和谐点”,如图(2)所示,请直接写出当Q 为“和谐点”的横坐标的值.【答案】(1)2214433y x x =-+;(2)9个 ;(3)33,22或44,;(4)33【解析】 【分析】(1)抛物线与y 轴交于点C ,顶点的横坐标为72,则472223cb ,即可求解; (2)APC ∆的面积PHAPHCSSS,即可求解;(3)当四边形OPAQ 是正方形时,点P 只能在x 轴的下方,此时OAP 为等腰直角三角形,设点(,)P x y ,则0x y +=,即可求解; (4)求出直线AP 的表达式为:2(1)(6)3y m x ,则直线OQ 的表达式为:2(1)3ym x ②,联立①②求出Q 的坐标,又四边形OPAQ 是平行四边形,则AO 的中点即为PQ 的中点,即可求解. 【详解】解:(1)抛物线与y 轴交于点C ,顶点的横坐标为72,则472223cb ,解得1434b c, 故抛物线的抛物线为:2214433y x x =-+; (2)对于2214433y x x =-+,令0y =,则1x =或6,故点B 、A 的坐标分别为(1,0)、(6,0);如图,过点P 作//PH y 轴交AC 于点H ,设直线AC 的表达式为:y kx b =+ 由点A (6,0)、C (0,4)的坐标得460b kb,解得423b k, ∴直线AC 的表达式为:243y x =-+①, 设点2214(,4)33P x x x ,则点2(,4)3H x x ,APC ∆的面积221122146(44)212(16)22333PHAPHCSSSPH OA x x x x x,当1x =时,10S =,当6x =时,0S =, 故使APC ∆的面积为整数的P 点的个数为9个;(3)当四边形OPAQ 是正方形时,点P 只能在x 轴的下方, 此时OAP 为等腰直角三角形,设点(,)P x y ,则0x y +=, 即2214433yx x x ,解得:32x =或4, 故点P 的坐标为3(2,3)2或(4,4)-; (4)设点2214(,4)33P m m m ,为点(6,0)A ,设直线AP 的表达式为:y kx t =+,由点A ,P 的坐标可得260214433kt kmt m m ,解之得:2(1)326(1)3km tm∴直线AP 的表达式为:2(1)(6)3ym x , //AP OQ ,则AP 和OQ 表达式中的k 值相同,故直线OQ 的表达式为:2(1)3ym x ②,联立①②得:2(1)3243ym x yx ,解得:446mm y x ,则点6(Q m ,44)m, 四边形OPAQ 是平行四边形,则AO 的中点即为PQ 的中点, 如图2,作QC x ⊥轴于点C ,PD x ⊥轴于点D ,∴OC AD =, 则有,66m m ,解得:33m,经检验,33m 是原分式方程得跟,则633m,故Q 的横坐标的值为33 【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、平行四边形正方形的性质、面积的计算等,能熟练应用相关性质是解题的关键.8.定义:在平面直角坐标系中,O 为坐标原点,设点P 的坐标为(x ,y ),当x <0时,点P 的变换点P′的坐标为(﹣x ,y );当x ≥0时,点P 的变换点P′的坐标为(﹣y ,x ). (1)若点A (2,1)的变换点A′在反比例函数y=kx的图象上,则k= ; (2)若点B (2,4)和它的变换点B'在直线y=ax+b 上,则这条直线对应的函数关系式为 ,∠BOB′的大小是 度.(3)点P 在抛物线y=x 2﹣2x ﹣3的图象上,以线段PP′为对角线作正方形PMP'N ,设点P 的横坐标为m ,当正方形PMP′N 的对角线垂直于x 轴时,求m 的取值范围.(4)抛物线y=(x ﹣2)2+n 与x 轴交于点C ,D (点C 在点D 的左侧),顶点为E ,点P 在该抛物线上.若点P 的变换点P′在抛物线的对称轴上,且四边形ECP′D 是菱形,求n 的值.【答案】(1) -2;(2) y=13x+103,90;(3) m <0,m=12+或m=32;(4) n=﹣8,n=﹣2,n=﹣3.【解析】【分析】 (1)先求出A 的变换点A ′,然后把A ′代入反比例函数即可得到结论;(2)确定点B ′的坐标,把问题转化为方程组解决;(3)分三种情形讨论:①当m <0时;②当m ≥0,PP '⊥x 轴时;③当m ≥0,MN ⊥x 轴时.(4)利用菱形的性质,得到点E 与点P '关于x 轴对称,从而得到点P '的坐标为(2,﹣n ).分两种情况讨论:①当点P 在y 轴左侧时,点P 的坐标为(﹣2,﹣n ),代入抛物线解析式,求解即可;②当点P 在y 轴右侧时,点P 的坐标为(﹣n ,﹣2).代入抛物线解析式,求解即可.【详解】(1)∵A (2,1)的变换点为A ′(-1,2),把A ′(-1,2)代入y =k x中,得到k =-2. 故答案为:-2.(2)点B (2,4)的变换点B ′(﹣4,2),把(2,4),(﹣4,2)代入y =ax +b 中. 得到:2442a b a b +=⎧⎨-+=⎩,解得:13103a b ⎧=⎪⎪⎨⎪=⎪⎩,∴11033y x =+. ∵OB 2=2224+=20,OB ′2=2224+=20,BB ′2=22(42)(24)--+-=40,∴OB 2+OB ′2=BB ′2,∴∠BOB ′=90°.故答案为:y =13x +103,90. (3)①当m <0时,点P 与点P '关于y 轴对称,此时MN 垂直于x 轴,所以m <0. ②当m ≥0,PP '⊥x 轴时,则点P '的坐标为(m ,m ),点P 的坐标为(m ,﹣m ). 将点P (m ,﹣m )代入y =x 2﹣2x ﹣3,得:﹣m =m 2﹣2m ﹣3.解得:12m m ==(不合题意,舍去).所以m = ③当m ≥0,MN ⊥x 轴时,则PP '∥x 轴,点P 的坐标为(m ,m ).将点P (m ,m )代入y =x 2﹣2x ﹣3,得:m =m 2﹣2m ﹣3.解得:123322m m ==(不合题意,舍去).所以3212m+=.综上所述:m的取值范围是m<0,m=113+或m=321+.(4)∵四边形ECP'D是菱形,∴点E与点P'关于x轴对称.∵点E的坐标为(2,n),∴点P'的坐标为(2,﹣n).①当点P在y轴左侧时,点P的坐标为(﹣2,﹣n).代入y=(x﹣2)2+n,得:﹣n=(﹣2﹣2)2+n,解得:n=﹣8.②当点P在y轴右侧时,点P的坐标为(﹣n,﹣2).代入y=(x﹣2)2+n,得:﹣2=(﹣n﹣2)2+n.解得:n1=﹣2,n2=﹣3.综上所述:n的值是n=﹣8,n=﹣2,n=﹣3.【点睛】本题是二次函数综合题、一次函数的应用、待定系数法、变换点的定义等知识,解题的关键是理解题意,学会用分类讨论的射线思考问题,学会用方程的思想思考问题,属于中考压轴题.9.在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的关系解析式;(2)求直线AC的函数解析式;(3)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;【答案】(1)y=﹣23x2﹣43x+2;(2)223y x=+;(3)存在,(35,22-)【解析】【分析】(1)直接用待定系数法即可解答;(2)先确定C点坐标,设直线AC的函数解析式y=kx+b,最后用待定系数法求解即可;(3)连接PO,作PM⊥x轴于M,PN⊥y轴于N,然后求出△ACP面积的表达式,最后利用二次函数的性质求最值即可.【详解】解:(1)∵抛物线y=ax2+bx+2过点A (﹣3,0),B (1,0),∴093202a b a b =-+⎧⎨=++⎩ 解得2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩, ∴二次函数的关系解析式为y=﹣23x 2﹣43x+2; (2)∵当x=0时,y=2,∴C (0,2)设直线AC 的解析式为y kx b =+,把A 、C 两点代入得 0=32k b b -+⎧⎨=⎩ 解得232k b ⎧=⎪⎨⎪=⎩ ∴直线AC 的函数解析式为223y x =+; (3)存在.如图: 连接PO ,作PM⊥x 轴于M ,PN⊥y 轴于N设点P 坐标为(m ,n ),则n=224233m m --+),PN=-m ,AO=3 当x=0时,y=22400233-⨯-⨯+=2,∴点C 的坐标为(0,2),OC=2∵PAC PAO PCO ACO S S S S =+-212411322()3223322m m m ⎛⎫=⨯⋅--++⨯⋅--⨯⨯ ⎪⎝⎭ =23m m --∵a=-1<0∴函数S △PAC =-m 2-3m 有最大值∴b 当m=()33212-=--⨯-∴当m=32-时,S △PAC 有最大值n=222423435223332322m m ⎛⎫--+=-⨯-⨯+= ⎪⎝⎭ ∴当△ACP 的面积最大时,P 的坐标为(35,22-). 【点睛】 本题是二次函数压轴题,综合考查了二次函数的图象与性质、待定系数法、二次函数极值等知识点,根据题意表示出△PAC 的面积是解答本题的关键.10.如图,已知顶点为M (32,258)的抛物线过点D (3,2),交x 轴于A ,B 两点,交y 轴于点C ,点P 是抛物线上一动点.(1)求抛物线的解析式;(2)当点P 在直线AD 上方时,求△PAD 面积的最大值,并求出此时点P 的坐标; (3)过点P 作直线CD 的垂线,垂足为Q ,若将△CPQ 沿CP 翻折,点Q 的对应点为Q '.是否存在点P ,使Q '恰好落在x 轴上?若存在,求出点P 的坐标;若不存在,说明理由.【答案】(1)213222y x x =-++;(2)最大值为4,点P (1,3);(3)存在,点P 139313-+). 【解析】【分析】 (1)用待定系数法求解即可;(2)由△PAD 面积S =S △PHA +S △PHD ,即可求解;(3)结合图形可判断出点P 在直线CD 下方,设点P 的坐标为(a ,213222a a -++),当P 点在y 轴右侧时,运用解直角三角形及相似三角形的性质进行求解即可.【详解】解:(1)设抛物线的表达式为:y =a (x ﹣h )2+k =a (x ﹣32)2+258, 将点D 的坐标代入上式得:2=a (3﹣32)2+258,解得:a =﹣12, ∴抛物线的表达式为:213222y x x =-++; (2)当x =0时,y =﹣12x 2+32x +2=2, 即点C 坐标为(0,2), 同理,令y =0,则x =4或﹣1,故点A 、B 的坐标分别为:(﹣1,0)、(4,0),过点P 作y 轴的平行线交AD 于点H ,由点A 、D 的坐标得,直线AD 的表达式为:y =12(x +1), 设点P (x ,﹣12x 2+32x +2),则点H (x ,12x +12), 则△PAD 面积为:S =S △PHA +S △PHD =12×PH ×(x D ﹣x A )=12×4×(﹣12x 2+32x +2﹣12x 12-)=﹣x 2+2x +3, ∵﹣1<0,故S 有最大值,当x =1时,S 有最大值,则点P (1,3);(3)存在满足条件的点P ,显然点P 在直线CD 下方,设直线PQ 交x 轴于F ,点P 的坐标为(a ,﹣12a 2+32a +2),当P 点在y 轴右侧时(如图2),CQ =a ,PQ =2﹣(﹣12a 2+32a +2)=12a 2﹣32a ,又∵∠CQ ′O +∠FQ ′P =90°,∠COQ ′=∠Q ′FP =90°,∴∠FQ ′P =∠OCQ ′,∴△COQ ′∽△Q ′FP ,'''Q C Q P CO FQ =,即213222'a a a Q F-=, ∴Q ′F =a ﹣3,∴OQ ′=OF ﹣Q ′F =a ﹣(a ﹣3)=3,CQ =CQ ′== 此时aP92-+). 【点睛】此题考查了二次函数的综合应用,综合考查了翻折变换、相似三角形的判定与性质,解答此类题目要求我们能将所学的知识融会贯通,属于中考常涉及的题目.。
人教版九年级数学上册 22.2 二次函数与一元一次方程 同步提高训练(含答案)
人教版九年级数学上册22.2 二次函数与一元一次方程同步提高训练(含答案)一、选择题(本大题共7道小题)1. 抛物线y=-x2+4x-4与坐标轴的交点个数为()A.0 B.1 C.2 D.32. 已知二次函数y=x2-x+14m-1的图象与x轴有交点,则m的取值范围是()A.m≤5 B.m≥2 C.m<5 D.m>23. 已知二次函数y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c=0的解是()A.x1=-3,x2=1 B.x1=3,x2=1C.x=-3 D.x=-24. 下面的表格列出了函数y=ax2+bx+c(a,b,c是常数,且a≠0)的x与y的部分对应值,那么方程ax2+bx+c=0的一个根x的取值范围是()A.6<x<6.17 B.6.17<x<6.18C.6.18<x<6.19 D.6.19<x<6.205. 函数y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0成立的x的取值范围是()A.x<-4或x>2 B.-4<x<2C.x<0或x>2 D.0<x<26. 若二次函数y=ax2-2ax+c的图象经过点(-1,0),则方程ax2-2ax+c=0的解为()A. x1=-3,x2=-1B. x1=1,x2=3C. x1=-1,x2=3D. x1=-3,x2=17. 抛物线y=2x2-22x+1与坐标轴的交点个数是()A. 0B. 1C. 2D. 3二、填空题(本大题共7道小题)8. 若一元二次方程ax2+bx+c=0的根为x1=2,x2=12,则二次函数y=ax2+bx+c的图象与x轴的交点坐标为______________.9. 若函数y=x2+2x-m的图象与x轴有且只有一个交点,则m的值为________.10. 设A,B,C三点分别是抛物线y=x2-4x-5与y轴的交点以及与x轴的两个交点,则△ABC的面积是________.11. 如图,抛物线y=ax2与直线y=bx+c的两个交点分别为A(-2,4),B(1,1),则方程ax2=bx+c的解是____________.12. 如图,抛物线y=ax2+c与直线y=mx+n交于A(-1,p),B(3,q)两点,则不等式ax2-mx+c>n的解集是________.13. 二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:△b>0;△a-b +c=0;△一元二次方程ax2+bx+c+1=0(a≠0)有两个不相等的实数根;△当x <-1或x>3时,y>0.上述结论中正确的是________.(填上所有正确结论的序号)14. 已知函数y =⎩⎨⎧-x 2+2x (x >0),-x (x ≤0)的图象如图所示,若直线y =x +m 与该图象恰有三个不同的交点,则m 的取值范围为________.三、解答题(本大题共2道小题)15. 二次函数y =ax 2+bx +c 的图象如图所示,根据图象解答下列问题:(1)写出方程ax 2+bx +c =0的根;(2)当x 为何值时,y >0?当x 为何值时,y <0? (3)写出y 随x 的增大而减小时自变量x 的取值范围.16. 已知函数y =(m -1)x 2+4x +2.(1)当m 为何值时,函数图象与x 轴有两个公共点? (2)当m 为何值时,函数图象与x 轴只有一个公共点?人教版九年级数学上册 22.2 二次函数与一元一次方程 同步提高训练-答案一、选择题(本大题共7道小题)1. 【答案】C [解析] 当x =0时,y =-x 2+4x -4=-4,则抛物线与y 轴的交点坐标为(0,-4); 当y =0时,-x 2+4x -4=0,解得x 1=x 2=2,则抛物线与x 轴的交点坐标为(2,0),所以抛物线与坐标轴有2个交点. 故选C.2. 【答案】A[解析] ∵抛物线y =x 2-x +14m -1与x 轴有交点,∴b 2-4ac≥0,即(-1)2-4×1×(14m -1)≥0,解得m≤5.3. 【答案】A[解析] ∵抛物线与x 轴的一个交点的坐标是(1,0),对称轴是直线x =-1,∴抛物线与x 轴的另一个交点的坐标是(-3,0).故一元二次方程ax 2+bx +c =0的解是x 1=-3,x 2=1.故选A.4. 【答案】C [解析] 由表格中的数据,得在6.17<x <6.20范围内,y 随x 的增大而增大,当x =6.18时,y =-0.01,当x =6.19时,y =0.02,故方程ax 2+bx +c =0的一个根x 的取值范围是6.18<x <6.19.5. 【答案】A [解析] 抛物线的对称轴是直线x =-2a2a=-1,∴抛物线与x 轴的另一个交点坐标是(-4,0).∵a <0,∴抛物线开口向下,∴使y <0成立的x 的取值范围是x <-4或x >2.故选A.6. 【答案】C 【解析】∵图象过点(-1,0),∴将点(-1,0)代入方程得a +2a +c =0,即3a +c =0.当x =3时,将(3,0)代入方程也得到3a +c =0成立,当x =-3时,将(-3,0)代入方程也得到15a +c =0(与3a +c =0不相符),∴方程的两个根为x 1=-1,x 2=3.7. 【答案】C 【解析】抛物线y =2x 2-22x +1,令x =0,得到y =1,即抛物线与y 轴交点坐标为(0,1);令y =0,得到2x 2-22x +1=0,即(2x -1)2=0,解得:x 1=x 2=22,即抛物线与x 轴交点坐标为(22,0),则抛物线与坐标轴的交点个数是2.二、填空题(本大题共7道小题)8. 【答案】(2,0),⎝ ⎛⎭⎪⎫12,09. 【答案】-1[解析] 依题意可知Δ=0,即b 2-4ac =22-4×1×(-m)=0,解得m =-1.10. 【答案】15[解析] 当x =0时,y =-5,∴点A 的坐标为(0,-5);当y =0时,x 2-4x -5=0,解得x 1=-1,x 2=5,不妨设点B 在点C 的左侧, ∴点B 的坐标为(-1,0),点C 的坐标为(5,0),则BC =6, ∴△ABC 的面积为12×6×5=15.11. 【答案】x 1=-2,x 2=1[解析] 方程ax 2=bx +c 的解即抛物线y =ax 2与直线y =bx +c 交点的横坐标.∵交点是A(-2,4),B(1,1),∴方程ax 2=bx +c 的解是x 1=-2,x 2=1.12. 【答案】.x <-1或x >313. 【答案】②③④[解析] 由图可知,抛物线的对称轴为直线x =1,与x 轴的一个交点坐标为(3,0),∴b =-2a ,抛物线与x 轴的另一个交点坐标为(-1,0). ①∵a >0,∴b <0,∴①错误; ②当x =-1时,y =0, ∴a -b +c =0,∴②正确;③一元二次方程ax 2+bx +c +1=0的解是函数y =ax 2+bx +c 的图象与直线y =-1的交点的横坐标,由图象可知函数y =ax 2+bx +c 的图象与直线y =-1有两个不同的交点, ∴一元二次方程ax 2+bx +c +1=0(a≠0)有两个不相等的实数根, ∴③正确;④由图象可知,y >0时,x <-1或x >3, ∴④正确.14. 【答案】⎝⎛⎭⎪⎫23,00<m<14 [解析] 联立y =x +m 与y =-x 2+2x ,得x +m =-x 2+2x ,整理得x 2-x +m =0,当有两个交点时,b 2-4ac =(-1)2-4m>0,解得m<14.当直线y =x +m 经过原点时,与函数y =⎩⎨⎧-x 2+2x (x>0)x (x≤0)的图象有两个不同的交点,再向上平移,有三个交点,∴m>0, ∴m 的取值范围为0<m<14.故答案为0<m<14.三、解答题(本大题共2道小题)15. 【答案】解:(1)由图象可得:x1=1,x2=3.(2)结合图象可得:当1<x<3时,y>0;当x<1或x>3时,y<0.(3)根据图象可得:当x>2时,y随x的增大而减小.16. 【答案】解:(1)由题意得Δ>0且m≠1,即16-4(m-1)×2>0且m≠1,∴m<3且m≠1.故当m<3且m≠1时,函数图象与x轴有两个公共点.(2)由题意得Δ=0或m=1,∴m=3或m=1.故当m=1或m=3时,函数图象与x轴只有一个公共点.。
人教版数学九年级上册第22章《二次函数》综合训练提高题(含答案)
《二次函数》综合训练提高题一.选择题1.对于抛物线y=﹣2(x﹣1)2+3,下列判断正确的是()A.抛物线的开口向上B.抛物线的顶点坐标是(﹣1,3)C.对称轴为直线x=1D.当x>1时,y随x的增大而增大2.对于抛物线y=3(x+2)2﹣1,下列判断不正确的是()A.抛物线的开口向上B.抛物线的顶点坐标为(﹣2,﹣1)C.对称轴为直线x=﹣2D.若y随x的增大而增大,则x>23.已知抛物线y=(x﹣3)2﹣1与y轴交于点C,则点C的坐标为()A.(3,6)B.(0,8)C.(0,﹣1)D.(4,0)或(2,0)4.关于抛物线y1=(2+x)2与y2=(2﹣x)2的说法,不正确的是()A.y1与y2的顶点关于y轴对称B.y1与y2的图象关于y轴对称C.y1向右平移4个单位可得到y2的图象D.y1绕原点旋转180°可得到y2的图象5.某单车公司第一个月投放a辆单车,计划第三个月投放单车y辆,该公司第二、三两个月投放单车数量的月平均增长率为x,那么y与x的函数关系是()A.y=a(1﹣x)2B.y=a(1+x)2C.y=ax2D.y=x2+a6.二次函数y=x2﹣2ax+3(a为常数)在自变量x的值满足2≤x≤3时,其对应的函数值y 有最小值2a,则a的值为()A.﹣3B.1C.D.7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.a﹣b+c>0D.ax2+bx+c﹣3=0有两个不相等的实数根8.二次函数y=﹣x2+bx+c的图象如图所示,若点A(﹣1,y1),B(2,y2),C(4,y3)在此函数图象上,则y1,y2与y3的大小关系是()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y19.已知二次函数y=ax2+bx+c中的y与x的部分对应值如下表:下列结论中:①抛物线的开口向下;②其图象的对称轴为x=1;③当x<1时,函数值y随x的增大而增大;④方程ax2+bx+c=0有一个根大于4;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=3,其中正确的结论有()A.①②③B.①②③④⑤C.①③⑤D.①③④⑤10.如图,二次函数y=ax2+bx+c的图象开口向上,图象经过点(﹣1,2)和(1,0),且与y轴相交于负半轴,给出五个结论:①a+b+c=0,②abc<0,③2a+b>0,④a+c=1,⑤当﹣1<x<1时,y<0;其中正确的结论的序号()A.①③⑤B.②③④C.①③④D.②③⑤11.已知二次函数y=ax2+k的图象如图所示,则对应a,k的符号正确的是()A.a>0,k>0B.a>0,k<0C.a<0,k>0D.a<0,k<0 12.在同一直角坐标系中,一次函数y=ax﹣b和二次函数y=﹣ax2﹣b的大致图象是()A.B.C.D.13.下列四个说法中正确的是()①已知反比例函数y=,则当y≤时自变量x的取值范围是x≥4;②点(x1,y1)和点(x2,y2)在反比例函数y=﹣的图象上,若x1<x2,则y1<y2;③二次函数y=2x2+8x+13(﹣3≤x≤0)的最大值为13,最小值为7④已知函数y=x2+mx+1的图象当x≤时,y随着x的增大而减小,则m=﹣.A.④B.①②C.③④D.四个说法都不对14.在平面直角坐标系中,对于点P(x,y)和Q(x,y′),给出如下定义:若y′=,则称点Q为点P的“亲密点”.例如:点(1,2)的“亲密点”为点(1,3),点(﹣1,3)的“亲密点”为点(﹣1,﹣3).若点P在函数y=x2﹣2x﹣3的图象上,则其“亲密点”Q的纵坐标y′关于x的函数图象大致正确的是()A.B.C.D.二.填空题15.若实数a,b满足a+b2=3,则a2+8b2的最小值为.16.如图,Rt△ABC中,∠ACB=90°,AC=BC=8,D为AB中点,E、F是边AC、BC 上的动点,E从A出发向C运动,同时F以相同的速度从C出发向B运动,F运动到B停止,当AE为时,△ECF的面积最大.17.已知点A(﹣1,y1),B(﹣2,y2),C(3,y3)在二次函数y=﹣(x﹣2)2+4的图象上,则y1,y2,y3的大小关系是.18.若函数y=a(x﹣h)2+k(a≠0)的图象经过原点,最大值为16,且形状与抛物线y=4x2+2x﹣3相同,则此函数的关系式为.19.“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题;若p、q(p<q)是关于x 的方程2﹣(x﹣a)(x﹣b)=0的两根,且a<b,则请用“<”来表示a、b、p、q的大小关系是.20.如图,将抛物线C1:y=x2+2x沿x轴对称后,向右平移3个单位长度,再向下平移5个单位长度,得到抛物线C2,若抛物线C1的顶点为A,点P是抛物线C2上一点,则△POA的面积的最小值为三.解答题21.如图,用6米的铝合金型材做个如图所示的“日”字形矩形窗框,应做成长,宽各多少米时,才能使做成的矩形窗框透光面积S(平方米)最大,最大透光面积是多少?设矩形窗框的宽为x米(铝合金型材宽度不计).22.“双十一”时,电商小王经销某种商品,进价是50元/件,试销一段时间后发现:当售价是80元/件时,每周可卖出160件:若售价每件可降低2元,则每周可多卖出20件,设售价每件降纸x元(x为偶数),每周销售量为y件.(1)请直接写出y与x的函数表达式;(2)当售价为多少元时,每周销售利润最大,最大利润是多少?23.2019年在法国举办的女足世界杯,为人们奉献了一场足球盛宴.某商场销售一批足球文化衫,已知该文化衫的进价为每件40元,当售价为每件60元时,每个月可售出100件.根据市场行情,现决定涨价销售,调查表明,每件商品的售价每上涨1元,每个月会少售出2件,设每件商品的售价为x元,每个月的销量为y件.(1)求y与x之间的函数关系式;(2)当每件商品的售价定为多少元时,每个月的利润恰好为2250元;(3)当每件商品的售价定为多少元时,每个月获得利润最大?最大月利润为多少?24.在平面直角坐标系中,点A是y轴上一点,其坐标为(0,6),点B在x轴的正半轴上.点P,Q均在线段AB上,点P的横坐标为m,点Q的横坐标大于m,在△PQM中,若PM ∥x轴,QM∥y轴,则称△PQM为点P,Q的“肩三角形.(1)若点B坐标为(4,0),且m=2,则点P,B的“肩三角形”的面积为;(2)当点P,Q的“肩三角形”是等腰三角形时,求点B的坐标;(3)在(2)的条件下,作过O,P,B三点的抛物线y=ax2+bx+c①若M点必为抛物线上一点,求点P,Q的“肩三角形”面积S与m之间的函数关系式,并写出自变量m的取值范围.②当点P,Q的“肩三角形”面积为3,且抛物线=ax2+bx+c与点P,Q的“肩三角形”恰有两个交点时,直接写出m的取值范围.25.如图,已知:抛物线y=a(x+1)(x﹣3)与x轴相交于A、B两点,与y轴的交于点C(0,﹣3).(1)求抛物线的解析式的一般式.(2)若抛物线上有一点P,满足∠ACO=∠PCB,求P点坐标.(3)直线l:y=kx﹣k+2与抛物线交于E、F两点,当点B到直线l的距离最大时,求△BEF的面积.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点 Q 的坐标是
.
14.
抛物线在
2
y=x -2x-3
在 x 轴上截得的线段长度是
.
15. 抛物线 y 2x2 8x m 与 x 轴只有一个公共点,则 m 的值为
.
16. 已知函数 y
x2 2x c的部图象如图所示 , 则 c=______,
当 x______时 , y 随 x 的增大而减小 .
1
o
17. 设矩形窗户的周长为
二次函数提高性试题训练一
一、填空题:
1.若 y= (2 - m) xm2 3 是二次函数,且开口向上,则 m的值为 __________.
2.抛物线 y= x2+ 8x-4 与直线 x= 4 的交点坐标是 __________. 3.若抛物线 y=( k+2) x2+ ( k-2) x+( k2+ k- 2) 经过原点,则 k=________. 4.已知点 P( a,m) 和 Q( b, m) 是抛物线 y= 2x2+4x-3 上的两个不同点,则 a+b=_____. 5.函数 y=mx2+ x-2m( m是常数 ) ,图象与 x 轴的交点有 _____个.
(1)求 y 与 x 之间的函数关系式; ( 4 分) (2)设公司获得的总利润(总利润=总销售额 - 总成本)为 P 元,求 P 与 x 之间的函数关系 式,并写出自变量 x 的取值范围; 根据题意判断: 当 x 取何值时, P 的值最大?最大值是多少? ( 6 分)
26、桂林红桥位于桃花江上, 是桂林两江四湖的一道亮丽的风景线, 该桥的部分横截面如图所 示,上方可看作是一个经过A、C、B三点的抛物线,以桥面的水平线为X轴,经过抛物线 的顶点C与X轴垂直的直线为Y轴, 建立直角坐标系, 已知此桥垂直于桥面的相邻两柱之间 距离为2米(图中用线段AD、CO、BE等表示桥柱)CO=1米,FG=2米
且
2
2
x1 +x2 =
29
,则
m 的值
4
10. 如图,正方形 ABCD 的边长为 10,四个全等的小正方形的对称中心分别在正方形
ABCD 的顶点上,且它们的各边与正方形 ABCD 各边平行或垂直.若小正方形的边长
为 x ,且 0 x ≤ 10 ,阴影部分的面积为 y ,则能反映 y 与 x 之间函数关系的大致图象
最低点距地面的距离为
米.
19. 一名男生推铅球,铅球行进高度 y (单位: m)与水
平距离 x (单位: m)之间的关系是 y
则他将铅球推出的距离是
m
1 x2 2 x 12 3
0.5米
1米
5
.
3
O 2米
2.5 米 x
20. 初三数学课本上, 用“描点法” 画二次函数 y ax2 bx c的图象时, 列了如下表格:
是( )
x
y
A
D
100
y 100
y 100
y 100
B
C
x
x
O1
O1
A.
B.
二、填空题
11. 抛物线 y=-2x+x 2+ 7 的开口向
,对称轴是
12. 若二次函数 y=mx2 -3x+2m-m2 的图像过原点,则 m的值是
x O 51 C.
x O1
D.
,顶点是
.
.
13. 已知抛物线 y x2 2x 3 ,若点 P ( 2 ,5)与点 Q 关于该抛物线的对称轴对称,则
C. 2008
D. 2009
2. 如图,抛物线 y ax 2 bx c(a 0) 的对称轴是直线 x 1,且经过点 P (3, 0),
则 a b c 的值为( )
A. 0 B.
- 1 C. 1
D. 2
3. 抛物线 y=x2-8x+c 的顶点在 x 轴上,则 c 等于 ( )
A.-16
B.-4
C.8
D.16
-4-
25. 某宾馆客房部有 60 个房间供游客居住,当每个房间的定价为每天
200 元时,房间可以住
满.当每个房间每天的定价每增加 10 元时,就会有一个房间空闲.对有游客入住的房间,
宾馆需对每个房间每天支出 20 元的各种费用.设每个房间每天的定价增加
x 元.求:
( 1)房间每天的入住量 y (间)关于 x (元)的函数关系式.
为 1 米.
(1) 求这条抛物线的关系式;
(2) 若不计其它因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外.
-2-
一、选择题
二次函数提高性试题训练二
1. 已知抛物线 y x2 x 1 与 x 轴的一个交点为 (m,0) ,则代数式 m2 m 2008 的值
为( ) A. 2006
B. 2007
A. 0< S<2 B . S> 1 C .1<S<2 D .- 1< S< 1
三、解答题
y C AO x
19.已知 y 是 x 的二次函数,且其图象在 x 轴上截得的线段 AB长 4 个单位,若当 x=3 时, y 取得最小值为- 2.(1) 求这个二次函数的解析式; (2) 若此函数图象上有一点 P,使△ PAB的面 积等于 12 个平方单位,求点 P 的坐标.
22. 把抛物线 y=ax2+bx+c 向左平移 2 个单位,同时向下平移 l 个单位后,恰好与抛物线 y=2x2+4x+1 重合.请求出 a、b、 c 的值,并画出一个比较准确的示意图.
24. 二次函数 y=ax2+bx+c 的图像的一部分如下图,已知它的顶点 M在第二象限,且该函数图 像经过点 A (l,0 )和点 B(0,1). (1 )请判断实数 a 的取值范围,并说明理由; (2 )设此二次函数的图像与 x 轴的另一个交点为 c,当△ AMC的面积为△ ABC面积的 1.25 倍时,求 a 的值.
-3-
x
,
2
1
0
1
2
,
y
,
61
4
2
21
2
2
21 , 2
根据表格上的信息回答问题:该二次函数 y ax2 bx c 在 x 3 y
三、解答题 21. 徐州 . 已知二次函数的图象以 A(- 1, 4)为顶点,且过点 B(2,- 5)
①求该函数的关系式;
②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时, 两点随图象移至 A′、 B′,求△ O A′ B′的面积 .
()
6. 已知抛物线 y=-x 2+mx+n的顶点坐标是( -1 , - 3 ) ,则 m和 n 的值分别是(
)
A.2,4
B.-2,-4
C.2,-4 D.-2,0
7. 对于函数 y=-x 2+2x-2 使得 y 随 x 的增大而增大的 x 的取值范围是 ( )
A.x>-1 B.x
≥0 C.x ≤0 D.x<-1
车距离”,刹车距离是分析交通事故的重要依据。在一条限速
120 km/ h 的高速公路上,甲、
乙两车相向而行,发现情况不对,同时刹车,但还是相撞了。事后现场测得甲车的刹车距离
为 21 m ,乙车的刹车距离超过 20 m ,但小于 21 m .
根据两车车型查阅资料知:
甲车的车速 x km / h 与刹车距离 s甲 m 之间有下述关系: s甲 0.01x 0.002x 2 ;
6m,则窗户面积
2
S(m
)与窗户宽
x (m) 之间的函数关系式是
3x
,
自变量 x 的取值范围是
.
18. 如图,小明的父亲在相距 2 米的两棵树间拴了一根绳
y
(第 7题)
子,给他做了一个简易的秋千,拴绳子的地方距地面高都
是 2.5 米,绳子自然下垂呈抛物线状,身高 1 米的小明距
较近的那棵树 0.5 米时,头部刚好接触到绳子,则绳子的
.y
1 x
0
C . y x 1 D . y x2 x 0
x
12.如果抛物线 y= x2-6x+c-2 的顶点到 x 轴的距离是 3,那么 c 的值等于 ( ) .
A. 8
B
. 14
C
. 8 或 14
D
.-8 或- 14
13.若 b 0 ,则二次函数 y x 2 bx 1的图象的顶点在 ( ) .
A.第一象限
10.二次函数 y=x2- (12 -k) x+ 12,当 x>1 时, y 随着 x 的增大而增大,当 x<1 时, y 随着
x 的增大而减小,则 k 的值应取 ( ) .
A. 12
B
. 11
C
. 10
D
.9
11.下列四个函数中, y 的值随着 x 值的增大而减小的是 ( ) .
A. y 2 x
B
8. 抛物线 y=x2-(m+2)x+3(m-1) 与 x 轴(
)
A. 一定有两个交点; B .只有一个交点; C .有两个或一个交点; D .没有交点
9. 二次函数
y=2x
2
+mx-5
的图像与
x 轴交于点
A (x 1, 0 )、B(x 2,0),
为( ) A.3 B.-3 C.3
或-3 D. 以上都不对
B .第二象限
C .第三象限 D .第四象限
14.已知抛物线
y=
2
ax
+
bx,当
a> 0,b<0
时,它的图象经过
(
)
.
A.一、二、三象限
B
.一、二、四象限
y
C.一、三、四象限
D
.一、二、三、四象限
15.如果二次函数 y ax2 bx c ( a> 0) 的顶点在 x 轴上方,那么 ( ) .