往年解析几何高考题分析(带答案)

合集下载

高中数学解析几何大题(附有答案及详解)

高中数学解析几何大题(附有答案及详解)

47. 已知椭圆E :()222210x y a b a b +=>>,其短轴为2.(1)求椭圆E 的方程;(2)设椭圆E 的右焦点为F ,过点()2,0G 作斜率不为0的直线交椭圆E 于M ,N 两点,设直线FM 和FN 的斜率为1k ,2k ,试判断12k k +是否为定值,若是定值,求出该定值;若不是定值,请说明理由.48. 如图,椭圆()2222:10x y C a b a b +=>>⎛ ⎝⎭,P 为椭圆上的一动点.(1)求椭圆C 的方程;(2)设圆224:5O x y +=,过点P 作圆O 的两条切线1l ,2l ,两切线的斜率分别为1k ,2k . ①求12k k 的值;①若1l 与椭圆C 交于P ,Q 两点,与圆O 切于点A ,与x 轴正半轴交于点B ,且满足OPA OQB S S =△△,求1l 的方程.49. 已知椭圆E :22221x y a b +=(a >b >0)的左、右焦点分別为12,F F ,离心率为e =左焦点1F 作直线1l 交椭圆E 于A ,B 两点,2ABF 的周长为8. (1)求椭圆E 的方程;(2)若直线2l :y =kx +m (km <0)与圆O :221x y +=相切,且与椭圆E 交于M ,N 两点,22MF NF +是否存在最小值?若存在,求出22MF NF +的最小值和此时直线2l 的方程.50. 已知动点M 与两个定点()0,0O ,()3,0A 的距离的比为12,动点M 的轨迹为曲线C .(1)求C 的轨迹方程,并说明其形状;(2)过直线3x =上的动点()()3,0P p p ≠分别作C 的两条切线PQ 、PR (Q 、R 为切点),N 为弦QR 的中点,直线l :346x y +=分别与x 轴、y 轴交于点E 、F ,求NEF 的面积S的取值范围.51. 在平面直角坐标系xOy 中,已知直线l :20x y ++=和圆O :221x y +=,P 是直线l 上一点,过点P 作圆C 的两条切线,切点分别为A ,B . (1)若PA PB ⊥,求点P 的坐标; (2)求线段PA 长的最小值;(3)设线段AB 的中点为Q ,是否存在点T ,使得线段TQ 长为定值?若存在,求出点T ;若不存在,请说明理由.52. 已知以1C 为圆心的圆221:1C x y +=.(1)若圆222:(1)(1)4C x y -+-=与圆1C 交于,M N 两点,求||MN 的值;(2)若直线:l y x m =+和圆1C 交于,P Q 两点,若132PC PQ ⋅=,求m 的值. 53. 已知圆()22:21M x y +-=,点P 是直线:20l x y +=上的一动点,过点P 作圆M 的切线P A ,PB ,切点为A ,B .(1)当切线P A P 的坐标;(2)若PAM △的外接圆为圆N ,试问:当P 运动时,圆N 是否过定点?若存在,求出所有的定点的坐标;若不存在,请说明理由; (3)求线段AB 长度的最小值.54. 已知圆22:2O x y +=,直线:2l y kx =-.(1)若直线l 与圆O 交于不同的两点,A B ,当90AOB ∠=︒时,求实数k 的值;(2)若1,k P =是直线l 上的动点,过P 作圆O 的两条切线PC 、PD ,切点为C 、D ,试探究:直CD 是否过定点.若存在,请求出定点的坐标;否则,说明理由.55. 在平面直角坐标系xOy中,(A,B ,C 是满足π3ACB ∠=的一个动点. (1)求ABC 垂心H 的轨迹方程;(2)记ABC 垂心H 的轨迹为Γ,若直线l :y kx m =+(0km ≠)与Γ交于D ,E 两点,与椭圆T :2221x y +=交于P ,Q 两点,且||2||DE PQ =,求证:||k > 56. 平面上一动点C的坐标为),sin θθ.(1)求点C 轨迹E 的方程;(2)过点()11,0F -的直线l 与曲线E 相交于不同的两点,M N ,线段MN 的中垂线与直线l 相交于点P ,与直线2x =-相交于点Q .当MN PQ =时,求直线l 的方程.答案及解析47.(1)2212x y +=;(2)是定值,该定值为0.【分析】(1)依题意求得,a b ,进而可得椭圆E 的方程;(2)设直线MN 的方程为()()20y k x k =-≠,与椭圆E 方程联立,利用韦达定理和斜率公式即可求得12k k +的值. 【详解】(1)由题意可知:22b =,1b =,椭圆的离心率c e a ==a =①椭圆E 的标准方程:2212x y +=;(2)设直线MN 的方程为()()20y k x k =-≠.22(2)12y k x x y =-⎧⎪⎨+=⎪⎩,消去y 整理得:()2222128820k x k x k +-+-=.设()11,M x y ,()22,N x y , 则2122812k x x k +=+,21228212k x x k -=+,()()()1212121212121212222211111k x k x y y x x k k k x x x x x x x x ⎡⎤--+-+=+=+=-⎢⎥-----++⎢⎥⎣⎦222222228242122208282111212k k k k k k k k k k ⎡⎤-⎢⎥⎛⎫-+=-=-=⎢⎥ ⎪--⎝⎭⎢⎥-+⎢⎥++⎣⎦. ①120k k +=为定值.【点睛】关键点点睛:第(2)问的关键点是:得出()12121212221x x k k k x x x x ⎡⎤+-+=-⎢⎥-++⎢⎥⎣⎦.48.(1)2214x y +=;(2)①14- ;①yy =+【分析】(1)根据已知条件结合222c a b =-列关于,a b 的方程,解方程即可求解;(2)①设()00,P x y ,切线:l 00()y y k x x -=-,利用圆心到切线的距离列方程,整理为关于k 的二次方程,计算两根之积结合点P 在椭圆上即可求12k k ;①由OPA OQB S S =△△可得PA BQ =,可转化为A B P Q x x x x +=+,设1l :y kx m =+,与椭圆联立可得P Q x x +,再求出A x 、B x ,即可求出k 的值,进而可得出m 的值,以及1l 的方程. 【详解】(1)因为22222234c a b e a a -===,所以2a b =,因为点⎛ ⎝⎭在椭圆上,所以221314a b +=即2213144b b +=, 解得:1b =,2a =,所以椭圆方程为:2214x y +=;(2)①设()00,P x y ,切线:l 00()y y k x x -=-即000kx y y kx -+-= 圆心()0,0O到切线的距离d r ==整理可得:2220000442055x k x y k y ⎛⎫--+-= ⎪⎝⎭,所以2020122200441451544455x y k k x x ⎛⎫-- ⎪-⎝⎭===---,①因为OPA OQB S S =△△所以PA BQ =,所以A P Q B x x x x -=-,所以A B P Q x x x x +=+, 设切线为1:l y kx m =+,由2244y kx m x y =+⎧⎨+=⎩可得:()222418440k x kmx m +++-= 所以2841P Q kmx x k -+=+, 令0y =可得B mx k=-,设(),A A A x kx m +, 则1A OA A kx m k x k +==-,所以21A km x k -=+, 所以228411P Q km m kmx x k k k --+==-+++, 整理可得:()()()2222814121k k k k +=++,所以221k =,解得:k =, 因为圆心()0,0O 到1:l y kx m =+距离d ,所以mm =,因为0B mx k=->,所以当k =m =k =时,m =;所以所求1l的方程为y =或y = 【点睛】思路点睛:圆锥曲线中解决定值、定点的方法(1)从特殊入手,求出定值、定点、定线,再证明定值、定点、定线与变量无关; (2)直接计算、推理,并在计算、推理的过程中消去变量是此类问题的特点,设而不求的方法、整体思想和消元思想的运用可以有效的简化运算.49.(1)2214x y +=;(2)最小值为2,0x =或0x +-=.【分析】(1)由椭圆定义结合已知求出a ,半焦距c 即可得解;(2)由直线2l 与圆O 相切得221m k =+,联立直线2l 与椭圆E 的方程消去y ,借助韦达定理表示出22MF NF +,利用函数思想方法即可作答. 【详解】(1)依题意,结合椭圆定义知2ABF 的周长为4a ,则有4a =8,即a =2,又椭圆的离心率为c e a =c =2221b a c =-=, 所以椭圆E 的方程为2214x y +=;(2)因直线2l :y =kx +m (km <0)与圆O :221x y +=1=,即221m k =+,设()()()112212,,,,2,2M x y N x y x x ≤≤,而点M 在椭圆E 上,则221114x y +=,即221114x y =-,又2F ,21|2|MF x =-=12x -,同理222NF x =,于是得)22124MF NF x x +=+, 由2214y kx mx y =+⎧⎪⎨+=⎪⎩消去y 得:()222148440k x kmx m +++-=,显然Δ0>,则122814km x x k +=-+, 又km <0,且221m k =+,因此得1228||14km x x k +=+令2411t k =+≥,则12x x +=113t =,即t =3时等号成立,于是得22MF NF +存在最小值,且)221242MF NF x x +=+≥,22MF NF +的最小值为2,由2221413m k k ⎧=+⎨+=⎩,且km <0,解得k m ⎧=⎪⎪⎨⎪=⎪⎩或k m ⎧=⎪⎪⎨⎪=⎪⎩. 所以所求直线2l的方程为y x =y x =0x =或0x +=.【点睛】关键点睛:解决直线与椭圆的综合问题时,要注意:(1)观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题. 50.(1)()2214x y ++=,曲线C 是以1,0为圆心,半径为2的圆;(2)5542⎡⎤⎢⎥⎣⎦,.【分析】(1)设出动点M 坐标,代入距离比关系式,化简方程可得;(2)先求切点弦方程,再根据切点弦过定点及弦中点性质得出N 点轨迹,然后求出动点N 到定直线EF 的距离最值,最后求出面积最值.切点弦方程的求法可用以下两种方法.法一:由两切点即为两圆公共点,利用两圆相交弦方程(两圆方程作差)求出切点弦方程;法二:先分别求过Q 、R 两点的切线方程,再代入点P 坐标,得到Q 、R 两点都适合的同一直线方程,即切点弦方程. 【详解】解:(1)设(),M x y ,由12MO MA =12=. 化简得22230x y x ++-=,即()2214x y ++=. 故曲线C 是以1,0为圆心,半径为2的圆.(2)法一(由两圆相交弦方程求切点弦方程):由题意知,PQ 、PR 与圆相切,Q 、R 为切点,则DQ PQ ⊥,DR PR ⊥,则D 、R 、P 、Q 四点共圆,Q 、R 在以DP 为直径的圆上(如图).设()1,0D -,又()()3,0P p p ≠,则DP 的中点为1,2p ⎛⎫⎪⎝⎭,DP .以线段DP 为直径的圆的方程为()22212p x y ⎛⎫-+-= ⎪⎝⎭⎝⎭, 整理得22230x y x py +---=①(也可用圆的直径式方程()()()()1300x x y y p +-+--=化简得. ) 又Q 、R 在C :22230x y x ++-=①上, 由两圆方程作差即①-①得:40x py +=. 所以,切点弦QR 所在直线的方程为40x py +=. 法二(求Q 、R 均满足的同一直线方程即切点弦方程): 设()1,0D -,()11,Q x y ,()22,R x y .由DQ PQ ⊥,可得Q 处的切线上任一点(,)T x y 满足0QT DQ ⋅=(如图), 即切线PQ 方程为()()()()1111100x x x y y y -++--=.整理得()221111110x x y y x y x ++---=.又22111230x y x ++-=,整理得()111130x x y y x +++-=.同理,可得R 处的切线PR 方程为()222130x x y y x +++-=. 又()3,P p 既在切线PQ 上,又在切线PR 上,所以()()11122231303130x py x x py x ⎧+++-=⎪⎨+++-=⎪⎩,整理得11224040x py x py +=⎧⎨+=⎩. 显然,()11,Q x y ,()22,R x y 的坐标都满足直线40x py +=的方程. 而两点确定一条直线,所以切点弦QR 所在直线的方程为40x py +=. 则QR 恒过坐标原点()0,0O .由()2240,14x py x y +=⎧⎪⎨++=⎪⎩消去x 并整理得()22168480p y py +--=. 设()11,Q x y ,()22,R x y ,则122816py y p +=+.点N 纵坐标1224216N y y py p +==+. 因为0p ≠,显然0N y ≠,所以点N 与点()1,0D -,()0,0O 均不重合.(或者由对称性可知,QR 的中点N 点在x 轴上当且仅当点P 在x 轴上,因为0p ≠,点P 不在x 轴上,则点N 也不在x 轴上,所以点N 与D 、O 均不重合.) 因为N 为弦QR 的中点,且()1,0D -为圆心,由圆的性质,可得DN QR ⊥,即DN ON ⊥(如图).所以点N 在以OD 为直径的圆上,圆心为1,02G ⎛⎫- ⎪⎝⎭,半径12r =.因为直线346x y +=分别与x 轴、y 轴交于点E 、F ,所以()2,0E ,30,2F ⎛⎫⎪⎝⎭,52EF =.又圆心1,02G ⎛⎫- ⎪⎝⎭到直线3460x y +-=的距离32d ==. 设NEF 的边EF 上的高为h ,则点N 到直线346x y +=的距离h 的最小值为31122d r -=-=; 点N 到直线346x y +=的距离h 的最大值为31222d r +=+=(如图).则S 的最小值min 1551224S =⨯⨯=,最大值max 1552222S =⨯⨯=.因此,NEF 的面积S 的取值范围是5542⎡⎤⎢⎥⎣⎦,.【点睛】设00(,)P x y 是圆锥曲线外一点,过点P 作曲线的两条切线,切点为A 、B 两点,则 A 、B 两点所在的直线方程为切点弦方程.常见圆锥曲线的切点弦方程有以下结论: 圆222()()x a y b r -+-=的切点弦方程:200()()()()x a x a y b y b r --+--=, 圆220x y Dx Ey F ++++=的切点弦方程: 0000022x x y yx x y y D E F ++++++= 椭圆22221x y a b+=的切点弦方程:00221x x y y a b +=;双曲线22221x y a b-=的切点弦方程:00221x x y y a b -=;抛物线22y px =的切点弦方程为:00()y y p x x =+.特别地,当00(,)P x y 为圆锥曲线上一点时,可看作两切线重合,两切点A 、B 重合,以上切点弦方程即曲线在P 处的切线方程.51.(1)()1,1P --;(2)1;(3)存在点11,44T ⎛⎫-- ⎪⎝⎭,使得线段TQ 长为定值.理由见解析.【分析】(1)依题意可得四边形PAOB 为正方形,设(),2P x x --,利用平面直角坐标系上两点的距离公式得到方程,计算可得;(2)由221PA PO =-可知当线段PO 长最小时,线段PA 长最小,利用点到线的距离公式求出PO 的最小值,即可得解;(3)设()00,2P x x --,求出以OP 为直径的圆的方程,即可求出公共弦AB 所在直线方程,从而求出动点Q 的轨迹方程,即可得解; 【详解】解:(1)若PA PB ⊥,则四边形PAOB 为正方形, 则P①P 在直线20x y ++=上,设(),2P x x --,则OP =,解得1x =-,故()1,1P --.(2)由221PA PO =-可知当线段PO 长最小时,线段PA 长最小. 线段PO 长最小值即点O 到直线l的距离,故min PO ==所以min 1PA =.(3)设()00,2P x x --,则以OP 为直径的圆的方程为()2222000022224x x x x x y +----⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭, 化简得()220020x x x x y y -+++=,与221x y +=联立,可得AB 所在直线方程为()0021x x x y -+=,联立()002221,1,x x x y x y ⎧-+=⎨+=⎩得()222000002443024x x x x x x x ++----=, ①Q 的坐标为002200002,244244x x x x x x --++++⎛⎫⎪⎝⎭,可得Q 点轨迹为22111448x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,圆心11,44⎛⎫-- ⎪⎝⎭,半径R =.其中原点()0,0为极限点(也可以去掉).故存在点11,44T ⎛⎫-- ⎪⎝⎭,使得线段TQ 长为定值.【点睛】本题考查了直线与圆的位置关系、方程思想、数形结合方法、转化方法,考查运算求解能力和应用意识.52.(1;(2)m = 【分析】(1)由两个圆相交,可将两个圆的方程相减求得直线MN 的方程.利用圆心到直线的距离,结合垂径定理即可求得||MN 的值.(2)设()()1122,,,P x y Q x y ,利用向量的坐标运算表示出1,PC PQ .将直线方程与圆的方程联立,化简后由>0∆求得m 的取值范围,并表示出12x x +,12x x ,进而由直线方程表示出12y y .根据平面向量数量积的坐标运算,代入化简计算即可求得m 的值. 【详解】(1)直线MN 的方程为2222(1)(1)410x y x y -+----+=, 即2 2 10x y ++=;故圆1C 的圆心到2210x y ++=的距离d =故||MN == (2)设()()1122,,,P x y Q x y ,则()()1112121,,,PC x y PQ x x y y =--=--,由22,1,y x m x y =+⎧⎨+=⎩化简可得222210x mx m ++-=, 故()222481840,m m m ∆=--=->解得m < 12x x m +=-,2121,2m x x -=所以()()()212121212y y x m x m x x m x x m =++=+++,又()()2211121211212113,,2PC PQ x y x x y y x x y y x y ⋅=--⋅--=--++=, 又22111x y +=故121212x x y y +=-,故()21212122x x m x x m +++=-, 将12x x m +=-,2121,2m x x -=代入可得222112m m m --+=-,解得m =又因为m <所以2m =± 【点睛】本题考查了圆与圆的位置关系及公共弦长度的求法,直线与圆位置关系的综合应用,由韦达定理求参数的值,平面向量数量积的运算,综合性强,计算量大,属于难题.53.(1)()0,0P 或84,55P ⎛⎫- ⎪⎝⎭;(2)圆过定点()0,2,42,55⎛⎫- ⎪⎝⎭;(3)当25b =时,AB 有最小【分析】(1)设()2,P b b -,由MP b ,得出结果;(2)因为A 、P 、M 三点的圆N 以MP 为直径,所以圆N 的方程为()()222242224b b b x b y +-+⎛⎫++-=⎪⎝⎭,化简为()()222220x y b x y y -+++-=,由方程恒成立可知2222020x y x y y -+=⎧⎨+-=⎩,即可求得动圆所过的定点; (3)由圆M 和圆N 方程作差可得直线AB 方程,设点()0,2M 到直线AB 的距离d ,则AB =.【详解】(1)由题可知,圆M 的半径1r =,设()2,P b b -, 因为P A 是圆M 的一条切线,所以90MAP ∠=︒,所以2MP ==,解得0b =或45b =, 所以点P 的坐标为()0,0P 或84,55P ⎛⎫- ⎪⎝⎭.(2)设()2,P b b -,因为90MAP ∠=︒, 所以经过A 、P 、M 三点的圆N 以MP 为直径, 其方程为()()222242224b b b x b y +-+⎛⎫++-=⎪⎝⎭, 即()()222220x y b x y y -+++-=,由2222020x y x y y -+=⎧⎨+-=⎩, 解得02x y =⎧⎨=⎩或4525x y ⎧=-⎪⎪⎨⎪=⎪⎩,所以圆过定点()0,2,42,55⎛⎫- ⎪⎝⎭.(3)因为圆N 方程为()()222242224b b b x b y +-+⎛⎫++-=⎪⎝⎭, 即()222220x y bx b y b ++-++=①又圆22:430M x y y +-+=①①-①得圆M 方程与圆N 相交弦AB 所在直线方程为 ()22230bx b y b --+-=.点()0,2M 到直线AB的距离d =所以相交弦长AB == 所以当25b =时,AB【点睛】本题考查直线和圆的位置关系,考查定点问题和距离的最值问题,难度较难. 54.(1)k =(2)直线CD 过定点(1,1)- 【分析】(1)由已知结合垂径定理求得圆心到直线的距离,再由点到直线的距离公式列式求得k ; (2)解法1:设切点11(,)C x y ,22(,)D x y ,动点00(,)P x y ,求出两条切线方程,计算出直线CD 的方程,从而得到定点坐标;解法2:由题意可知,O 、P 、C 、D 四点共圆且在以OP为直径的圆上,求出公共弦所在直线方程,再由直线系方程求得定点坐标. 【详解】(1)2AOB π∠=,∴点O 到l 的距离2d r =,k = (2)解法1:设切点11(,)C x y ,22(,)D x y ,动点00(,)P x y ,则圆在点C 处的切线方程为 1111()()0y y y x x x -+-=,所以221111x x y y x y +=+,即112x x y y +=同理,圆在点D 处的切线方程为222x x y y += 又点00(,)P x y 是两条切线的交点, 10102x x y y ∴+=,20202x x y y +=,所以点()11,C x y ,()22,D x y 的坐标都适合方程002x x y y +=, 上述方程表示一条直线,而过C 、D 两点的直线是唯一的, 所以直线CD 的方程为:002x x y y +=. 设(,2)P t t -,则直线CD 的方程为(2)2tx t y +-=, 即()(22)0x y t y +-+=, ∴0220x y y +=⎧⎨+=⎩,解得11x y =⎧⎨=-⎩,故直线CD 过定点(1,1)-.解法2:由题意可知:O 、P 、C 、D 四点共圆且在以OP 为直径的圆上, 设(,2)P t t -,则此圆的方程为:()(2)0x x t y y t -+-+=, 即:22(2)0x tx y t y -+--=, 又C 、D 在圆22:2O x y +=上,两圆方程相减得():220CD l tx t y +--=, 即()(22)0x y t y +-+=, ∴0220x y y +=⎧⎨+=⎩,解得11x y =⎧⎨=-⎩,故直线CD 过定点(1,1)-. 【点睛】本题考查了直线与圆的相交问题,由弦长求直线斜率,只需结合弦长公式计算圆心到直线的距离,然后求得结果,在求直线恒过定点坐标时,一定要先表示出直线方程,然后在求解. 55.(1)22(1)4x y ++=(2y ≠-);(2)证明见解析. 【分析】(1)由题可求出顶点C 的轨迹方程,再利用相关点法可求垂心H 的轨迹方程;(2)利用弦长公式可求||DE ,再利用韦达定理法求||PQ ,由||2||DE PQ =得出2221m k ≥+,然后结合判别式大于零即可证. 【详解】设ABC 的外心为1O ,半径为R ,则有22sin ABR ACB==∠,所以1πcos 13OO R ==即1(0,1)O ,设(,)C x y ,()00,H x y ,有1O C R =,即有22(1)4x y +-=(0y ≠), 由CH AB ⊥,则有0x x =,由AH BC ⊥,则有(00(0AH BC x x y y ⋅=+=,所以有(220(3(1)12x x x y y y yy y---=-===-,则有()220014x y ++=(02y ≠-),所以ABC 垂心H 的轨迹方程为22(1)4x y ++=(2y ≠-); (2)记点(0,1)-到直线l 的距离为d ,则有d =所以||DE==,设()11,P x y,()22,Q x y,联立2221y kx mx y=+⎧⎨+=⎩,有()2222210k x kmx m+++-=,所以()224220k m∆=+->,||PQ==由||2||DE PQ=,可得()()()()()2222222222222418141(1)8412222k m k km mk k kk k++++-=-≤-+++++,所以()22222248(1)212m mk kk++≤+++,即有()()()22222224181(1)22k k mmk k+++≤+++,所以()()()22222222418122(1)22k k mm mk k+++--≥-++,即22222222222221(1)101222k k m k mm mk k k k⎛⎫-=-⇒-≥⇒≥+⎪+++⎝⎭又0∆>,可得2212km<+,所以222112kk+<+,解得22k>,故||k>56.(1)2212xy+=;(2)10x y±-=.【分析】(1)利用22sin cos1θθ+=求得点C的轨迹E的方程.(2)设直线l的方程为1x my=-,联立直线l的方程和曲线E的方程,化简写出根与系数关系,求得MN、PQ,由1PQMN=求得m的值,从而求得直线l的方程.【详解】 (1)设(),C x y ,则,sin x y θθ⎧=⎪⎨=⎪⎩,即cos sin yθθ⎧=⎪⎨⎪=⎩, 所以2212x y +=,所以E 的方程为2212x y +=.(2)由题意知,直线l 的斜率不为0,设直线:1l x my =-,()()()1122,,,,,p p M x y N x y P x y .联立2221,1x y x my ⎧+=⎨=-⎩,消去x ,得()22+2210m y my --=,此时()281m ∆=+0>,且12222m y y m +=+,12212y y m =-+又由弦长公式得MN =整理得2212m MN m ++. 又122+=22p y y m y m =+,所以2212p p x my m -=-=+,所以222222p m PQ x m ++=+,所以1PQMN =, 所以21m =,即1m =±.综上,当1m =±,即直线l 的斜率为±1时,MN PQ =, 此时直线l 为10x y ±-=. 【点睛】求解直线和圆锥曲线相交所得弦长,往往采用设而不求,整体代入的方法来求解.。

高三数学复习 解析几何(含答案)

高三数学复习  解析几何(含答案)

苏州市高三数学 解析几何一.填空题【考点一】:直线方程及直线与直线的位置关系例1.若直线ax +(2a -1)y +1=0和直线3x +ay +3=0垂直,则a 的值为_________. 【答案】a =0或a =-1.【解析】由两直线垂直得3a +(2a -1)a =0,解得a =0或a =-1.例2.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的范围是_________. 【答案】⎝⎛⎭⎫π6,π2.【解析】方法一:由⎩⎨⎧y =kx -3,2x +3y -6=0,解得:⎩⎪⎨⎪⎧x =6+332+3k ,y =6k -232+3k .因为交点在第一象限,所以⎩⎪⎨⎪⎧6+332+3k >0,6k -232+3k >0,解得:k >33. 所以,直线l 的倾斜角的范围是⎝⎛⎭⎫π6,π2.方法二:因为直线l :y =kx -3恒过定点(0,-3),直线2x +3y -6=0与x 轴,y 轴交点的坐标分别为(3,0),(0,2) .又点(0,-3)与点(3,0)连线的斜率为0+33-0=33,点(0,-3)与点(0,2)连线的斜率不存在,所以要使直线l 与直线2x +3y -6=0的交点位于第一象限,则k >33,所以直线l 的倾斜角的范围是⎝⎛⎭⎫π6,π2.例3.已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是 . 【答案】⎝⎛⎭⎫1-22,12.【解析】由⎩⎪⎨⎪⎧x +y =1,y =ax +b 消去x ,得y =a +ba +1,当a >0时,直线y =ax +b 与x 轴交于点⎝⎛⎭⎫-b a ,0,结合图形知12×a +b a +1×⎝⎛⎭⎫1+b a =12,化简得(a +b )2=a (a +1),则a =b 21-2b.∵a >0,∴b 21-2b >0,解得b <12.考虑极限位置,即a =0,此时易得b =1-22,故答案为⎝⎛⎭⎫1-22,12. 例4.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则P A ·PB 的最大值是 . 【答案】5.【解析】因为直线x +my =0与mx -y -m +3=0分别过定点A ,B ,所以A (0,0),B (1,3). 当点P 与点A (或B )重合时,P A ·PB 为零; 当点P 与点A ,B 均不重合时,因为P 为直线x +my =0与mx -y -m +3=0的交点,且易知此两直线垂直, 所以△APB 为直角三角形,所以AP 2+BP 2=AB 2=10,所以P A ·PB ≤P A 2+PB 22=102=5,当且仅当P A =PB 时,上式等号成立.【考点二】: 圆方程及直线与圆的位置关系例5.圆心在直线y =-4x 上,且与直线l :x +y -1=0相切于点P (3,-2),则该圆的标准方程是 . 【答案】(x -1)2+(y +4)2=8.【解析】方法一: 如图,设圆心(x 0,-4x 0),依题意得4x 0-23-x 0=1,∴x 0=1,即圆心坐标为(1,-4),半径r =22, 故圆的方程为(x -1)2+(y +4)2=8.方法二:设所求方程为(x -x 0)2+(y -y 0)2=r 2,根据已知条件得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+=--+--=r y x r y x x y 2|1|)2()3(4002202000,解得⎪⎩⎪⎨⎧=-==224100r y x ,因此所求圆的方程为(x -1)2+(y +4)2=8.例6.已知圆C :(x -3)2+(y -4)2=1和两点A (-m ,0),B (m ,0)(m >0).若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为________. 【答案】6【解析】如图所示,则圆心C 的坐标为(3,4),半径r =1,且AB =2m .因为∠APB =90°,连接OP ,易知OP =12AB =m .要求m 的最大值,即求圆C 上的点P 到原点O 的最大距离.因为OC =32+42=5, 所以OP max =OC +r =6, 即m 的最大值为6.例7.在平面直角坐标系xOy 中,(2,0)A ,O 是坐标原点,若在直线0x y m ++=上总存在点P,使得PA ,则实数m 的取值范围是 .【答案】11m +≤.【解析】设P (x ,y ),由PA =得,化简得22(1)3x y ++=,所以点P 是直线0x y m ++=与圆22(1)3x y ++=,的公共点,即直线与圆,解得11m -≤.例8.已知圆C :22(1)5x y +-=,A 为圆C 与x 负半轴的交点,过点A 作圆的弦AB ,记线段AB 的中点为M .若OA OM =,则直线AB 的斜率 . 【答案】2k =.【解析】设直线AB :(2)y k x =+. 因为CM AB ⊥,直线CM :11y x k=-+. 将它与直线AB 的方程联立得222(12)2(,)11k k k kM k k -+++.因为2OA OM ==2=,2k =±. 当2k =-不符合,故2k =.例9.已知直线3y ax =+与圆22280x y x ++-=相交于,A B 两点,点00(,)P x y 在直线2y x =上,且PB PA =,则0x 的取值范围为 .【答案】(1,0)(0,2)-.【解析】先从第一个条件出发,确定参数a 的取值范围.因为P 在线段AB 的中垂线上,从而用a 的代数式表示直线PC 的斜率后得到00211x x a=-+, 3,04a a <->解得:0x 的取值范围为(1,0)(0,2)-.例10.设P 为直线3x +4y +3=0上的动点,过点P 作圆C :x 2+y 2-2x -2y +1=0的两条切线,切点分别为A ,B ,则四边形P ACB 的面积的最小值为________. 【答案】3.【解析】圆C :(x -1)2+(y -1)2=1的圆心是点C (1,1),半径是1, 易知PC 的最小值等于圆心C (1,1)到直线3x +4y +3=0的距离,即105=2,而四边形P ACB 的面积等于2S △P AC =2×(12P A ·AC )=P A ·AC =P A =PC 2-1=22-1=3,因此四边形P ACB 的面积的最小值是3.例11.在平面直角坐标系xOy 中,已知圆()41:22=-+y x C .若等边PAB ∆的一边AB为圆C 一条弦,则PC 的最大值为 . 【答案】4.【解析】由PAB ∆为等腰三角形,PAB ∆为等边三角形,故PC 与AB 垂直,设PC 与AB 交于点H ,记,,AH BH x PH y PC t ====,则CH =,满足()224,0x y x y t y ⎧+=>⎪⎨=+⎪⎩求PC的最小值.记直线:l y t =+,利用线性规划作图,可知当直线l 与圆弧()224,0x y x y +=>相切时,则t 取最大值,求得max 4t =,即PC 的最大值为4.例12.已知圆C 的方程为22(1)(1)9x y -+-=,直线:3l y kx =+与圆C 交于,A B 两点,M 为弦AB 上一动点,以M 为圆心,2为半径的圆与圆C 总有公共点,则实数k 的范围________. 【答案】k ≥34-. 【解析】因为5MC <,只要MC ≥1对于任意的点M 恒成立, 只需点位于的中点时存在公共点即可. 点(1,1)到直线的距离d =≥1,解得:k ≥34-. 【考点三】: 圆锥曲线方程与性质例13.若椭圆2215x y m+=的离心率e =,则m 的值是________.【答案】3或253. 【解析】当焦点在x轴上时,e ==3m =; 当焦点在y轴上时,e ==253m =. 例14.设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32ax =上的一点,∆21F PF 是底角为30的等腰三角形,则E 的离心率为________. 【答案】34.【解析】∆21F PF 是底角为30的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔== .例15.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若AB =10,BF =8,cos ∠ABF =45,则C 的离心率为________.【答案】35.【解析】如图,设AF =x ,则cos ∠ABF =82+102-x 22×8×10=45. 解得x =6,∴∠AFB =90°,由椭圆及直线关于原点对称可知AF 1=8,∠F AF 1=∠F AB +∠FBA =90°,△F AF 1是直角三角形,所以F 1F =10,故2a =8+6=14,2c =10,∴c a =57.例16.若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP 的最大值为 . 【答案】6.【解析】由题意,F (-1,0),设点P 00(,)x y ,则有2200143x y +=,解得22003(1)4x y =-, 因为00(1,)FP x y =+,00(,)OP x y =,所以2000(1)OP FP x x y ⋅=++=00(1)OP FP x x ⋅=++203(1)4x -=20034x x ++,此二次函数对应的抛物线的对称轴为02x =-,因为022x -≤≤,所以当02x =时,OP FP ⋅取得最大值222364++=.例17.设P 是有公共焦点F 1,F 2的椭圆C 1与双曲线C 2的一个交点,且PF 1⊥PF 2,椭圆C 1的离心率为e 1,双曲线C 2的离心率为e 2.若e 2=3e 1,则e 1=________.【答案】53. 【解析】设椭圆C 1的长半轴长为a 1,短半轴长为b 1,双曲线C 2的实半轴长为a 2,虚半轴长为b 2.∵ PF 1⊥PF 2,根据椭圆的性质可得S △PF 1F 2=b 21,又e 1=c a 1,∴ a 1=c e 1,∴ b 21=a 21-c 2=c 2⎝⎛⎭⎫1e 21-1.根据双曲线的性质可得S △PF 1F 2=b 22,∵ e 2=c a 2,a 2=c e 22,∴ b 22=c 2-a 22=c 2⎝⎛⎭⎫1-1e 22,∴ c 2⎝⎛⎭⎫1e 21-1=c 2⎝⎛⎭⎫1-1e 22,即1e 21+1e 22=2.∵ 3e 1=e 2,∴ e 1=53. 例18.已知直线:20l x y m -+=上存在点M 满足与两点(2,0)A -,(2,0)B 连线的斜率34MA MB K K =-,则实数m 的值是___________.【答案】[]4,4-.【解析】点M 的轨迹为221(2)43x y x +=≠. 把直线:2l x y m =-代入椭圆方程得,221612(312)0y my m -+-=. 根据条件,上面方程有非零解,得△≥0,解得-4≤m ≤4.例19.已知椭圆2222:1(0)x y C a b a b+=>>.双曲线221x y -=的渐近线与椭圆C 有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆C 的方程为 .【答案】152022=+y x . 【解析】因为椭圆的离心率为23, 所以23==a c e ,2243a c =,222243b a ac -==,所以2241a b =,即224b a =. 双曲线的渐近线为x y ±=,代入椭圆得12222=+bx a x ,即1454222222==+b x b x b x . 所以b x b x 52,5422±==,2254b y =,b y 52±=, 则第一象限的交点坐标为)52,52(b b .四边形的面积为16516525242==⨯⨯b b b ,故52=b .因此,椭圆方程为152022=+y x . 例20.已知双曲线22221(00)x y a b a b-=>>,的左、右焦点分别为12F F ,,以12F F 为直径的圆与双曲线在第一象限的交点为P .若1230PF F ∠=︒,则该双曲线的离心率为 .1.【解析】由双曲线定义易得,12122,PF PF a PF -==,1212212F F ce a PF PF ===-. 例21.已知圆O :224x y +=与x 轴负半轴的交点为A ,点P 在直线l0y a +-=上,过点P 作圆O 的切线,切点为T .(1)若a =8,切点1)T -,求直线AP 的方程; (2)若P A =2PT ,求实数a 的取值范围.【解析】由题意,直线PT 切于点T ,则OT ⊥PT ,又切点T 的坐标为(4,3)-,所以OT k =,1PT OT k k =-=,故直线PT的方程为1y x +-40y --=. 联立直线l 和PT,40,80,y y --=+-=解得2,x y ⎧=⎪⎨=⎪⎩即2)P ,所以直线AP的斜率为k ===,故直线AP的方程为2)y x =+,即1)21)0x y -+=,即1)20x y -+=.(2)设(,)Pxy ,由P A =2PT ,可得2222(2)4(4)x y x y ++=+-,即22334200x y x ++-=,即满足P A =2PT 的点P 的轨迹是一个圆22264()39x y -+=,所以问题可转化为直线0y a +-=与圆22264()39x y -+=有公共点,所以83d =,即16|3a -≤a . 例22.已知圆C :x 2+(y -1)2=5,直线l :mx -y +1-m =0. (1)求证:对m ∈R ,直线l 与圆C 总有两个交点;(2)设直线l 与圆C 交于点A ,B ,若AB =17,求直线l 的倾斜角;(3)设直线l 与圆C 交于A ,B ,若定点P (1,1)满足2AP →=PB →,求此时直线l 的方程. 【解析】(1)证明 直线l 恒过定点P (1,1),由12+(1-1)2<5知点P 在圆C 内, 所以直线l 与圆C 总有两个交点.(2)圆心到直线的距离d =222⎪⎭⎫ ⎝⎛-AB r =32,又d =|0-1+1-m |m 2+1,所以32=|0-1+1-m |m 2+1,解得m =±3,所以,l 的倾斜角为π3或2π3.(3)方法一:设A (x 1,y 1),B (x 2,y 2).由2AP →=PB →得:2(1-x 1,1-y 1)=(x 2-1,y 2-1), 所以x 2+2x 1=3,①直线l 的斜率存在,设其方程为y -1=k (x -1),⎩⎨⎧=-+-=-5)1()1(122y x x k y ⇒(k 2+1)x 2-2k 2x +k 2-5=0, 所以⎪⎪⎩⎪⎪⎨⎧+-=+=+③②,15,1222212221k k x x k k x x由①②③消去x 1,x 2解得k =±1,故所求直线l 的方程为x -y =0或x +y -2=0.方法二:如图,过点C 作CD ⊥AB 于D ,设AP =t ,则PB =2t ,AD =1.5t ,PD =0.5t .在Rt △CDP 中,有CP 2=CD 2+PD 2,得CD 2=1-(0.5t )2,在Rt △CDA 中,CD 2=5-()1.5t 2,所以t =2, 从而,CD =22,又直线AB 的方程为mx -y +1-m =0,d =|m |m 2+1=22, 解得m =±1,故所求直线l 的方程为x -y =0或x +y -2=0.例23.如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 为椭圆上一点(在x 轴上方),连结PF 1并延长交椭圆于另一点Q ,设PF 1→=λF 1Q →.(1) 若点P 的坐标为⎝⎛⎭⎫1,32,且△PQF 2的周长为8,求椭圆C 的方程; (2) 若PF 2垂直于x 轴,且椭圆C 的离心率e ∈⎣⎡⎦⎤12,22,求实数λ的取值范围.【解析】 (1) 因为F 1,F 2为椭圆C 的两焦点,且P ,Q 为椭圆上的点,所以PF 1+PF 2=QF 1+QF 2=2a , 从而△PQF 2的周长为4a .由题意,得4a =8,解得a =2.因为点P 的坐标为⎝⎛⎭⎫1,32, 所以1a 2+94b2=1,解得b 2=3.所以椭圆C 的方程为x 24+y 23=1.(2) (法1)因为PF 2⊥x 轴,且P 在x 轴上方,故设P (c ,y 0),y 0>0.设Q (x 1,y 1). 因为P 在椭圆上,所以c 2a 2+y 20b 2=1,解得y 0=b 2a ,即P ⎝⎛⎭⎫c ,b 2a .因为F 1(-c ,0),所以PF 1→=⎝⎛⎭⎫-2c ,-b 2a ,F 1Q →=(x 1+c ,y 1).由PF 1→=λF 1Q →,得-2c =λ(x 1+c ),-b 2a=λy 1,解得x 1=-λ+2λc ,y 1=-b2λa ,所以Q ⎝⎛⎭⎪⎫-λ+2λc ,-b 2λa .因为点Q 在椭圆上,所以⎝⎛⎭⎫λ+2λ2e 2+b2λ2a2=1,即(λ+2)2e 2+(1-e 2)=λ2,(λ2+4λ+3)e 2=λ2-1.因为λ+1≠0,所以(λ+3)e 2=λ-1,从而λ=3e 2+11-e 2=41-e 2-3. 因为e ∈⎣⎡⎦⎤12,22,所以14≤e 2≤12,即73≤λ≤5.所以λ的取值范围是⎣⎡⎦⎤73,5.(法2)因为PF 2⊥x 轴,且P 在x 轴上方, 故设P (c ,y 0),y 0>0.因为P 在椭圆上,所以c 2a 2+y 20b 2=1,解得y 0=b 2a,即P ⎝⎛⎭⎫c ,b 2a . 因为F 1(-c ,0),故直线PF 1的方程为y =b 22ac(x +c ).由⎩⎨⎧y =b22ac(x +c ),x 2a 2+y2b 2=1,得(4c 2+b 2)x 2+2b 2cx +c 2(b 2-4a 2)=0.因为直线PF 1与椭圆有一个交点为P ⎝⎛⎭⎫c ,b 2a ,设Q (x 1,y 1),则x 1+c =-2b 2c 4c 2+b 2,即-c -x 1=2b 2c4c 2+b 2.因为PF 1→=λF 1Q →所以λ=2c -c -x 1=4c 2+b 2b 2=3c 2+a 2a 2-c 2=3e 2+11-e 2=41-e 2-3. 因为e ∈⎣⎡⎦⎤12,22,所以14≤e 2≤12,即73≤λ≤5.所以λ的取值范围是⎣⎡⎦⎤73,5.例24.如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点P (1,32),离心率e =12,直线l 的方程为x=4.(1)求椭圆C 的方程;(2)AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记P A ,PB ,PM 的斜率分别为k 1,k 2,k 3.问:是否存在常数λ,使得k 1+k 2=λk 3?若存在,求λ的值;若不存在,说明理由.【解析】(1)由P ⎝⎛⎭⎫1,32在椭圆上得,1a 2+94b 2=1.① 依题设知a =2c ,则b 2=3c 2.② ②代入①解得c 2=1,a 2=4,b 2=3. 故椭圆C 的方程为x 24+y 23=1.(2)法一:由题意可设直线AB 的斜率为k , 则直线AB 的方程为y =k (x -1).③代入椭圆方程3x 2+4y 2=12并整理,得(4k 2+3)x 2-8k 2x +4(k 2-3)=0. 设A (x 1,y 1),B (x 2,y 2),则有 x 1+x 2=8k 24k 2+3,x 1x 2=4(k 2-3)4k 2+3.④在方程③中令x =4得,M 的坐标为(4,3k ). 从而k 1=y 1-32x 1-1,k 2=y 2-32x 2-1,k 3=3k -324-1=k -12.由于A ,F ,B 三点共线,则有k =k AF =k BF ,即有y 1x 1-1=y 2x 2-1=k . 所以k 1+k 2=y 1-32x 1-1+y 2-32x 2-1=y 1x 1-1+y 2x 2-1-32⎝⎛⎭⎫1x 1-1+1x 2-1=2k -32·x 1+x 2-2x 1x 2-(x 1+x 2)+1.⑤④代入⑤得k 1+k 2=2k -32·8k 24k 2+3-24(k 2-3)4k 2+3-8k 24k 2+3+1=2k -1,又k 3=k -12,所以k 1+k 2=2k 3.故存在常数λ=2符合题意.法二:设B (x 0,y 0)(x 0≠1),则直线FB 的方程为y =y 0x 0-1(x -1),令x =4,求得M ⎝⎛⎭⎫4,3y 0x 0-1,从而直线PM 的斜率为k 3=2y 0-x 0+12(x 0-1),联立⎩⎨⎧y =y 0x 0-1(x -1),x 24+y23=1,得A ⎝⎛⎭⎪⎫5x 0-82x 0-5,3y 02x 0-5,则直线P A 的斜率为k 1=2y 0-2x 0+52(x 0-1),直线PB 的斜率为k 2=2y 0-32(x 0-1),所以k 1+k 2=2y 0-2x 0+52(x 0-1)+2y 0-32(x 0-1)=2y 0-x 0+1x 0-1=2k 3,故存在常数λ=2符合题意.例25.如图6,已知椭圆22:1124x y C +=,点B 是其下顶点,过点B 的直线交椭圆C 于另一点A (A 点在x 轴下方),且线段AB 的中点E 在直线y x =上. (1)求直线AB 的方程;(2)若点P 为椭圆C 上异于,A B 的动点,且直线,AP BP 分别交直线y x =于点,M N ,证明:OM ON ⋅为定值.【解析】(1)设点E (m ,m ),由B (0,-2)得A (2m ,2m +2). 代入椭圆方程得224(22)1124m m ++=,即22(1)13m m ++=, 解得32m =-或0m =(舍). 所以A (3-,1-).故直线AB 的方程为360x y ++=.(2)设00(,)P x y ,则22001124x y +=,即220043x y =-. 设),(M M y x M ,由M P A ,,三点共线, ∴)3)(1()1)(3(00++=++M M x y y x . 又点M 在直线x y =上,图6解得M 点的横坐标000032M y x x x y -=-+.设),(N N y x N ,由N P B ,,三点共线, ∴00(2)(2)N N x y y x +=+.点N 在直线y x =上,解得N 点的横坐标00022N x x x y -=--.所以OM ON ⋅0|0|M N x x --=2||||M N x x ⋅=200003||2y x x y --+0002||2x x y -⋅--=2000200262||()4x x y x y ---=2000220000262||23x x y x x x y ---=2000200032||3x x y x x y --=6. 例26.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F (-1,0),左准线方程为x =-2.(1) 求椭圆C 的标准方程;(2) 已知直线l 交椭圆C 于A ,B 两点.① 若直线l 经过椭圆C 的左焦点F ,交y 轴于点P ,且满足P A →=λAF →,PB →=μBF →.求证:λ+μ为定值;② 若OA ⊥OB (O 为原点),求△AOB 面积的取值范围.【解析】(1)由题设知c =1,a 2c=2,a 2=2c ,∴ a 2=2,b 2=a 2-c 2=1,∴ 椭圆C :x 22+y 2=1.(2) ① 证明:由题设知直线l 的斜率存在,设直线l 的方程为y =k (x +1),则P (0,k ).设A (x 1,y 1),B (x 2,y 2),直线l 方程代入椭圆方程,得x 2+2k 2(x +1)2=2,整理得(1+2k 2)x 2+4k 2x +2k 2-2=0,∴ x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k 2.由P A →=λAF →,PB →=μBF →知,λ=-x 11+x 1,μ=-x 21+x 2,∴ λ+μ=-x 1+x 2+2x 1x 21+x 1+x 2+x 1x 2=--4k 21+2k 2+4k 2-41+2k 21+-4k 21+2k 2+2k 2-21+2k2=--4-1=-4(定值). ②当直线OA ,OB 分别与坐标轴重合时,易知△AOB 的面积S =22.当直线OA ,OB 的斜率均存在且不为零时,设OA :y =kx ,OB :y =-1kx .设A (x 1,y 1),B (x 2,y 2),将y =kx 代入椭圆C 方程,得x 2+2k 2x 2=2,∴ x 21=22k 2+1,y 21=2k 22k 2+1,同理可得x 22=2k 22+k 2,y 22=22+k 2, △AOB 的面积S =OA ·OB 2=(k 2+1)2(2k 2+1)(k 2+2).令t =k 2+1∈[1,+∞),则S =t 2(2t -1)(t +1)=12+1t -1t2;令u =1t∈(0,1),则S =1-u 2+u +2=1-⎝⎛⎭⎫u -122+94∈⎣⎡⎭⎫23,22. 综上所述,S ∈⎣⎡⎦⎤23,22,即△AOB 面积的取值范围是⎣⎡⎦⎤23,22.三.课本改编题1.课本原题(必修2第112页习题2.2第12题):已知点(,)M x y 与两个定点(0,0),(3,0)O A 的距离之比为12,那么点M 的坐标应满足什么关系?画出满足条件的点M 所构成的曲线.改编1:(2008高考江苏卷第13题)满足条件2,AB AC ==的三角形ABC 的面积的最大值为 .改编2:(2013高考江苏卷第18题)如图,在平面直角坐标系xOy 中,点A (0,3),直线l :y=2x -4.设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线方程; (2)若圆C 上存在点M ,使MA =2MO ,求圆心C 的横坐标a 的取值范围.[说明]:利用阿波罗尼斯圆进行命题的经典考题很多,最著名的当属高考中出现的这两题.课本上虽未出现阿波罗尼斯圆的字眼,但是必修2教材上的这道习题已经体现了这类问题的本质.如果我们平时能钻研教材,对这道习题有所研究,那么我们的数学意识就会有所增强,再碰到此类问题时就会得心应手.2.课本原题(1)(选修2-1第42页习题第5题)在ABC D 中,(6,0),(6,0)B C -,直线AB 、AC 的斜率乘积为94,求顶点A 的轨迹.原题(2)(选修2-2第105页复习题第14题):已知椭圆具有如下性质:设M 、N 是椭圆22221(0)x y a b a b+=>>上关于原点对称的两点,点P 是椭圆上的任意一点.若直线PM 、PN 的斜率都存在并分别记为,PM PN k k ,则P M P N k k ×是与点P 的位置无关的定值.试类比椭圆,写出双曲线22221(0,0)x y a b a b-=>>的一个类似性质,并加以证明.改编1:(2012年南通市高三数学第二次模拟考试第13题)在平面直角坐标系xOy 中,F 1,F 2分别为椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,B 、C 分别为椭圆的上、下顶点,直线BF 2与椭圆的另一交点为D .若cos ∠F 1BF 2=725,则直线CD 的斜率为____.改编2:(2013苏北四市期末18题第2、3问)如图,在平面直角坐标系xOy 中,椭圆E的方程为22143x y +=.若点A ,B 分别是椭圆E 的左、右顶点,直线l 经过点B 且垂直于x 轴,点P 是椭圆 上异于A ,B 的任意一点,直线AP 交l 于点.M(1)设直线OM 的斜率为,1k 直线BP 的斜率为2k ,求证:21k k 为定值;(2)设过点M 垂直于PB 的直线为m .求证:直线m 过定点,并求出定点的坐标.改编3:(2011年高考江苏卷第18题)如图,在平面直角坐标系xOy中,M、N分别是椭圆22142x y+=的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线P A的斜率为k.(1)当直线P A平分线段MN,求k的值;(2)当k=2时,求点P到直线AB的距离d;(3)对任意k>0,求证:P A⊥PB.[说明]原题是推理与证明中的复习题,教学中可以把握教材前后的联系,在椭圆的学习中就可以对该结论进行探究.利用该结论进行命题的经典考题非常多,以上几例利用这个结论会大大降低运算的难度.平时我们要多留意课本上的常见结论,加强知识储备,这对提高我们的解题能力大有帮助.3.课本原题(必修2 P88思考运用13):已知直线l 过点(2,3),与两坐标轴在第一象限围成的三角形面积为16,求该直线l 的方程改编1:过点(-5,-4)且与两坐标轴围成的三角形面积为5的直线方程是 . [解析]设所求直线方程为)5(4+=+x k y .依题意有5)45)(54(21=--k k. ∴01630252=+-k k (无解)或01650252=+-k k ,解得52=k ,或58=k . ∴直线的方程是01052=--y x ,或02058=+-y x .改编2:(2006年上海春季卷)已知直线l 过点)1,2(P ,且与x 轴、y 轴的正半轴分别交于A 、B 两点,O 为坐标原点,则△OAB 面积的最小值为 . [解析]设直线AB 的方程为)0()2(1<-=-k x k y ,则1111111(2)(12)44[4(4)()][442222OAB S k k k k k k ∆=--=--=+-+-+=≥,当且仅当k k 14-=-即21-=k 时取等号, ∴当21-=k 时,OAB S ∆有最小值4. 改编3:已知射线)0(4:>=x x y l 和点)4,6(M ,在射线l 上求一点N ,使直线MN 与l 及x 轴围成的三角形面积S 最小. [解析]设)1)(4,(000>x x x N ,则直线MN 的方程为0)4)(6()6)(44(00=-----y x x x .令0=y 得1500-=x x x , ∴]211)1[(101]1)1[(101104)15(2100020020000+-+-=-+-=-=⋅-=x x x x x x x x x S2]40=≥, 当且仅当11100-=-x x 即20=x 时取等号. ∴当N 为(2,8)时,三角形面积S 最小.[说明]原题的本质是建立三角形的面积与斜率之间的方程关系,通过解方程求出未知量,而变体题则是建立这两者之间的函数关系,利用求函数最值的知识解决问题。

高三数学总复习专题10 解析几何(答案及解析)

高三数学总复习专题10 解析几何(答案及解析)

高三数学总复习专题10 解析几何方法点拨1.圆锥曲线中的最值 (1)椭圆中的最值12,F F 为椭圆()222210+=>>x y a b a b的左、右焦点,P 为椭圆上的任意一点,B 为短轴的一个端点,O 为坐标原点,则有: ①[],∈OP b a ; ②[]1,∈-+PF a c a c ;③2212,⎡⎤⋅∈⎣⎦PF PF b a ;④1212∠≤∠F PF F BF . (2)双曲线中的最值12,F F 为双曲线()222210,0-=>>x y a b a b的左、右焦点,P 为双曲线上的任一点,O 为坐标原点,则有:①≥OP a ;②1≥-PF c a . (3)抛物线中的最值点P 为抛物线()220=>y px p 上的任一点,F 为焦点,则有: ①2≥pPF ;②(),A m n 为一定点,则+PA PF 有最小值. 2.定点、定值问题(1)由直线方程确定定点,若得到了直线方程的点斜式:()00-=-y y k x x ,则直线必过定点()00,x y ;若得到了直线方程的斜截式:=+y kx m ,则直线必过定点()0,m . (2)解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等和题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值. 3.圆锥曲线中范围、最值的求解策略(1)数形结合法:利用待求量的几何意义,确定出临界位置后数形结合求解. (2)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解.(3)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域. 4.定点问题的l 过定点问题的解法:设动直线方程(斜率存在)为=+y kx t 由题设条件将t 用k 表示为=t mk ,得()=+y k x m ,故动直线过定点(),0-m .(2)动曲线C 过定点问题的解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.(3)从特殊位置入手,找出定点,再证明该点符合题意. 5.求解定值问题的两大途径(1)首先由特例得出一个值(此值一般就是定值)然后证明定值:即将问题转化为证明待证式与参数(某些变量)无关.(2)先将式子用动点坐标或动线中的参数表示,再利用其满足的约束条件使其绝对值相等的正负项抵消或分子、分母约分得定值. 6.解决探索创新问题的策略存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时,要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件. (3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.经典试题汇编一、选择题.1.(陕西省渭南市临渭区2021届高三一模)若直线:3=-l y kx 与直线2360+-=x y 的交点位于第一象限,则直线l 的倾斜角的取值范围是( )A .ππ,43⎡⎫⎪⎢⎣⎭B .ππ,32⎡⎫⎪⎢⎣⎭C .ππ,42⎛⎫⎪⎝⎭ D .ππ,32⎛⎫⎪⎝⎭2.(安徽省淮北市2020-2021学年高三一模)过圆2216+=x y 上的动点作圆22:4+=C x y 的两条切线,两个切点之间的线段称为切点弦,则圆C 内不在任何切点弦上的点形成的区域的面积为( ) A .πB .32πC .2πD .3π3.(山西省大同市天镇县实验中学2021-2022学年高三一模)圆222440+-+-=x y x y 与直线2140()---=∈R tx y t t 的位置关系为( ) A .相离B .相切C .相交D .以上都有可能4.(吉林省长春市2022届高三一模)已知圆22:(2)(3)2-+-=C x y ,直线l 过点(3,4)A 且与圆C 相切,若直线l 与两坐标轴交点分别为,M N ,则MN =( )A .B .6C .D .85.(河南省联考2021-2022学年高三一模)若点()2,1--P 为圆229+=x y 的弦AB 的中点,则弦AB 所在直线的方程为( )A .250++=x yB .250+-=x yC .250-+=x yD .250--=x y6.(四川省南充市2021-2022学年高三一模)若A ,B 是O :224+=x y 上两个动点,且2⋅=-OA OB ,A ,B 到直线l 40+-=y 的距离分别为1d ,2d ,则12+d d 的最大值是( ) A .3B .4C .5D .67.(湖南省长沙市雅礼中学2021届高三一模)过双曲线2214-=y x 的左焦点1F 作一条直线l 交双曲线左支于P ,Q 两点,若4=PQ ,2F 是双曲线的右焦点,则2△PF Q 的周长是( ) A .6B .8C .10D .128.(四川省成都市2020-2021学年高三一模)已知抛物线24=x y 的焦点为F ,过F的直线l 与抛物线相交于A ,B 两点,70,2⎛⎫⎪⎝-⎭P .若⊥PB AB ,则=AF ( )A .32B .2C .52D .39.(湖南省湘潭市2021-2022学年高三上学期一模)已知抛物2:2C y px =(0>p )的焦点为F ,点T 在C 上,且52=FT ,若点M 的坐标为()0,1,且⊥MF MT ,则C 的方程为( ) A .22=y x 或28=y x B .2=y x 或28=y x C .22=y x 或24=y xD .2=y x 或24=y x10.(河南省联考2021-2022学年高三一模)点F 为抛物线22=y px ()0>p 的焦点,l 为其准线,过F 的一条直线与抛物线交于A ,B 两点,与l 交于点C .已知点B 在线段CF 上,若BF ,AF ,BC 按照某种排序可以组成一个等差数列,则AFBF的值为( ) A .32或3B .2或4C .32或4D .2或311.(贵州省遵义市2021届高三一模)双曲线221927-=x y 上一点P 到右焦点2F 距离为6,1F 为左焦点,则12∠F PF 的角平分线与x 轴交点坐标为( )A .()1,0-B .()0,0C .()1,0D .()2,012.(吉林省长春市2022届高三一模)已知P 是抛物线24=y x 上的一动点,F 是抛物线的焦点,点(3,1)A ,则||||+PA PF 的最小值为( )A .3B .C .4D .13.(多选)(湖南省湘潭市2021-2022学年高三一模)已知双曲线2222:1-=x y C a b(0>a ,0>b )的左,右焦点为1F ,2F ,右顶点为A ,则下列结论中,正确的有( )A .若=a b ,则CB .若以1F 为圆心,b 为半径作圆1F ,则圆1F 与C 的渐近线相切C .若P 为C 上不与顶点重合的一点,则12△PF F 的内切圆圆心的横坐标=x aD .若M 为直线2=a x c(=c 0的一点,则当M 的纵坐标为时,2MAF 外接圆的面积最小 14.(江西省赣州市2021届高三3月一模)已知M 、N 是双曲线()2222:10,0-=>>x y C a b a b上关于原点对称的两点,P 是C 上异于M 、N 的动点,设直线PM 、PN 的斜率分别为1k 、2k .若直线12=y x 与曲线C 没有公共点,当双曲线C 的离心率取得最大值时,且123≤≤k ,则2k 的取值范围是( ) A .11,128⎡⎤⎢⎥⎣⎦B .11,812⎡⎤--⎢⎥⎣⎦ C .11,32⎡⎤⎢⎥⎣⎦D .11,23⎡⎤--⎢⎥⎣⎦15.(四川省成都市2021-2022学年高三一模)已知双曲线()222210,0-=>>x y a b a b的一条渐近线方程为=y ,则该双曲线的离心率为( )A B C .2D .316.(四川省成都市2020-2021学年高三一模)已知平行于x 轴的一条直线与双曲线()222210,0-=>>x y a b a b 相交于P ,Q 两点,4=PQ a ,π3∠=PQO (O 为坐标原点),则该双曲线的离心率为( )A B C D17.(甘肃省嘉谷关市第一中学2020-2021学年高三一模)已知双曲线22221(0,0)-=>>y x a b a b与抛物线2=x 共焦点F ,过点F 作一条渐近线的垂线,垂足为M ,若三角形OMF 的面积为2,则双曲线的离心率为( )AB .16C D .4或4318.(四川省乐山市高中2022届一模)已知双曲线()222210,0-=>>x y a b a b,过原点的直线与双曲线交于A ,B 两点,以线段AB 为直径的圆恰好过双曲线的右焦点F ,若ABF 的面积为22a ,则双曲线的离心率为( )AB C D .219.(四川省达州市2021-2022学年高三一模)双曲线()222210,0-=>>x y a b a b的左顶点为A ,右焦点(),0F c ,若直线=x c 与该双曲线交于B 、C 两点,ABC 为等腰直角三角形,则该双曲线离心率为( )A .2BCD .320.(陕西省汉中市2022届高三一模)已知F 是椭圆2222:1(0)+=>>x y C a b a b 的右焦点,点P 在椭圆C 上,线段PF 与圆22239⎛⎫-+= ⎪⎝⎭c b x y 相切于点Q ,且2=PQ QF ,则椭圆C 的离心率等于( )A B .23C .2D .1221.(广西柳州市2022届高三一模)已知1F ,2F 分别为双曲线C :22221-=x y a b()0,0>>a b 的左,右焦点,以12F F 为直径的圆与双曲线C 的右支在第一象限交于A 点,直线2AF 与双曲线C 的右支交于B 点,点2F 恰好为线段AB 的三等分点(靠近点A ),则双曲线C 的离心率等于( )A B C .3D .12+ 二、填空题.22.(贵州省遵义市2021届高三一模)直线1=-+y kx k 与圆224+=x y 交于,A B 两点,则AB 最小值为________.23.(湖南省长沙市雅礼中学2021届高三一模)若抛物线22=y px 上一点()02,P y 到其准线的距离为4,则抛物线的标准方程为___________.24.(四川省成都市第七中学2021-2022学年高三一模)已知12,F F 为双曲线22:1169-=x y C 的两个焦点,,P Q 为C 上关于坐标原点对称的两点,且12=PQ F F ,则四边形12PF QF 的面积为________.25.(四川省达州市2021-2022学年高三一模)设直线()y kx k =∈R 交椭圆221164+=x y 于A ,B 两点,将x 轴下方半平面沿着x 轴翻折与x 轴上方半平面成直二面角,则AB 的取值范围是___________.26.(四川省成都市2021-2022学年高三一模)已知斜率为13-且不经过坐标原点O的直线与椭圆22+197x y =相交于A ,B 两点,M 为线段AB 的中点,则直线OM 的斜率为________. 三、解答题.27.(四川省成都市第七中学2021-2022学年高三一模)已知两圆221:(2)54C x y -+=,222:(2)6C x y ++=,动圆M 在圆1C 内部且和圆1C 内切,和圆2C 外切.(1)求动圆圆心M 的轨迹C 的方程;(2)过点()3,0A 的直线与曲线C 交于,P Q 两点,P 关于x 轴的对称点为R ,求ARQ 面积的最大值.28.(四川省成都市2020-2021学年高三一模)已知椭圆()2222:10+=>>x y C a b a b的离心率为2,且直线1+=x ya b与圆222+=x y 相切. (1)求椭圆C 的方程;(2)设直线l 与椭圆C 相交于不同的两点A ﹐B ,M 为线段AB 的中点,O 为坐标原点,射线OM 与椭圆C 相交于点P ,且O 点在以AB 为直径的圆上.记AOM ,△BOP的面积分别为1S ,2S ,求12S S 的取值范围. 29.(陕西省汉中市2022届高三一模)已知椭圆2222:1(0)+=>>x y C a b a b 的离心率为12,左、右焦点分别为12,F F ,O 为坐标原点,点P 在椭圆C 上,且满足2122,3π=∠=PF F PF .(1)求椭圆C 的方程;(2)已知过点(1,0)且不与坐标轴垂直的直线l 与椭圆C 交于M ,N 两点,在x 轴上是否存在定点Q ,使得∠=∠MQO NQO ,若存在,求出点Q 的坐标;若不存在,说明理由.30.(四川省南充市2021-2022学年高三一模)已知椭圆()2222:10+=>>x y C a b a b的离心率为2,椭圆C 的下顶点和上顶点分别为1B ,2B ,且122=B B ,过点()0,2P 且斜率为k 的直线l 与椭圆C 交于M ,N 两点.(1)求椭圆C 的标准方程; (2)当1=k 时,求OMN 的面积;(3)求证:直线1B M 与直线2B N 的交点T 的纵坐标为定值.31.(江西省赣州市2021届高三3月一模)设离心率为12的椭圆2222:1(0)+=>>x y E a b a b 的左,右焦点分别为1F ,2F ,点P 在E 上,且满足1260∠=︒F PF ,12△PF F(1)求a ,b 的值;(2)设直线:2(0)=+>l y kx k 与E 交于M ,N 两点,点A 在x轴上,且满足0⋅+⋅=AM MN AN MN ,求点A 横坐标的取值范围.32.(广西柳州市2022届高三一模)已知椭圆C :22221+=x y a b()0>>a b 的左右焦点分别为1F ,2F ,过2F 且与x 轴垂直的直线与椭圆C 交于A ,B 两点,AOB 的面积为﹐点P 为椭圆C 的下顶点,2=PF . (1)求椭圆C 的标准方程;(2)椭圆C 上有两点M ,N (异于椭圆顶点且MN 与x 轴不垂直).当OMN 的面积最大时,直线OM 与ON 的斜率之积是否为定值,若是,求出该定值;若不是,请说明理由. 33.(湖南省湘潭市2021-2022学年高三一模)已知圆锥曲线E 上的点M 的坐标(),x y=.(1)说明E 是什么图形,并写出其标准方程;(2)若斜率为1的直线l 与E 交于y 轴右侧不同的两点A ,B ,点P 为()2,1. ①求直线l 在y 轴上的截距的取值范围; ②求证:∠APB 的平分线总垂直于x 轴.34.(四川省乐山市高中2022届一模)如图,从椭圆22221(0)+=>>x y a b a b上一点P 向x轴作垂线,垂足恰为左焦点1F .又点A 是椭圆与x 轴正半轴的交点,点B 是椭圆与y轴正半轴的交点,且=OP AB k ,13=F A . (1)求椭圆的方程;(2)直线l 交椭圆于M 、Q 两点,判断是否存在直线l ,使点2F 恰为MQB △的重心?若存在,求出直线l 的方程;若不存在,请说明理由.35.(安徽省淮北市2020-2021学年高三一模)已知椭圆2222:1(0)+=>>x y C a b a b的离心率为12,左顶点为A ,右焦点F ,3=AF .过F 且斜率存在的直线交椭圆于P ,N 两点,P 关于原点的对称点为M . (1)求椭圆C 的方程;(2)设直线AM ,AN 的斜率分别为1k ,2k ,是否存在常数λ,使得12λ=k k 恒成立?若存在,请求出λ的值;若不存在,请说明理由.36.(湖南省长沙市雅礼中学2021届高三一模)已知椭圆()222210:x y a b a bC +=>>,连接椭圆上任意两点的线段叫作椭圆的弦,过椭圆中心的弦叫做椭圆的直径.若椭圆的两直径的斜率之积为22-b a,则称这两直径为椭圆的共轭直径.特别地,若一条直径所在的斜率为0,另一条直径的斜率不存在时,也称这两直径为共轭直径.现已知椭圆22:143x y E +=.(1)已知点31,2⎛⎫ ⎪⎝⎭A ,31,2⎛⎫-- ⎪⎝⎭B 为椭圆E 上两定点,求AB 的共轭直径的端点坐标;(2)过点()作直线l 与椭圆E 交于1A 、1B 两点,直线1A O 与椭圆E 的另一个交点为2A ,直线1B O 与椭圆E 的另一个交点为2B .当11A OB 的面积最大时,直径12A A 与直径12B B 是否共轭,请说明理由;(3)设CD 和MN 为椭圆E 的一对共轭直径,且线段CM 的中点为T .已知点P 满足:λ=OP OT ,若点P 在椭圆E 的外部,求λ的取值范围.参考答案一、选择题. 1CACCADDDADDC 13.【答案】ABD【解析】对于A 中,因为=a b ,所以222=a c ,故C的离心率==ce a所以A 正确; 对于B 中,因为()1,0-F c 到渐近线0-=bx ay的距离为==d b ,所以B 正确;对于C 中,设内切圆与12△PF F 的边1221,,F F F P F P 分别切于点1,,A B C , 设切点1A (,0)x ,当点P 在双曲线的右支上时,可得121212-=+--=-PF PF PC CF PB BF CF BF1112=-A F A F ()()22=+--==c x c x x a ,解得=x a ,当点P 在双曲线的左支上时,可得=-x a ,所以12△PF F 的内切圆圆心的横坐标=±x a ,所以C 不正确; 对于D 中,由正弦定理,可知2MAF 外接圆的半径为222sin =∠AF R AMF ,所以当2sin ∠AMF 最大时,R 最小,因为2<a a c,所以2∠AMF 为锐角,故2sin ∠AMF 最大,只需2tan ∠AMF 最大,由对称性,不妨设2,⎛⎫ ⎪⎝⎭a M t c (0>t ),设直线2=a x c 与x 轴的交点为N ,在直角2△NMF 中,可得222tan ==∠-a c NF NM NMF ct , 在直角△NMA 中,可得2tan =-=∠a a NA A NM NM c t,又由2222tan tan tan tan()1tan tan NMF NMAAMF NMF NMA NMF NMA∠-∠∠=∠-∠=∠⋅+∠222222()1c c a ab c a a a a c ct t a a c t a c c t tc t -==≤+-----⨯-+, 当且仅当()22-=ab c a t c t ,即=t 2tan ∠AMF 取最大值, 由双曲线的对称性可知,当=t 2tan ∠AMF 也取得最大值,所以D 正确,故选ABD . 14.【答案】A【解析】因为直线12=y x 与双曲线()2222:10,0-=>>x y C a b a b 没有公共点,所以双曲线C 的渐近线的斜率12=≤bk a ,而双曲线C的离心率====c e a 当双曲线C 的离心率取最大值时,b a 取得最大值12,即12=b a ,即2=a b ,则双曲线C 的方程为222214-=x y b b,设()11,M x y 、()11,--N x y 、()00,P x y ,则2211222200221414⎧-=⎪⎪⎨⎪-=⎪⎩x y b b x y b b , 两式相减得()()()()10101010224+-+-=x x x x y y y y b b ,即1010101014-+⋅=-+y y y y x x x x , 即1214⋅=k k , 又123≤≤k ,211,128⎡⎤∈⎢⎥⎣⎦k ,故选A . 15.【答案】B【解析】双曲线22221-=x y a b 的渐近线方程为=±by x a,因为渐近线方程为=y ,所以=ba故可得====e B . 16.【答案】D【解析】如图,由题可知,△POQ 是等边三角形,4=PQ a ,()2,∴P a ,将点P 代入双曲线可得22224121-=a a a b ,可得224=b a,∴离心率===c e a D .17.【答案】C【解析】抛物线2=x 的交点坐标为(F ,又双曲线22221(0,0)-=>>y x a b a b与抛物线2=x 共焦点,∴双曲线的半焦距=c ,三角形OMF 的面积为2,且=OM a ,=MF b ,∴122=⋅ab ,即4=ab , 有22217+==a b c ,∴1=a 或4=a ,∴双曲线的离心率为=e ,故选C .18.【答案】B【解析】设双曲线的左焦点为'F ,连接'AF ,'BF , 因为以AB 为直径的圆恰好经过双曲线的右焦点(),0F c , 所以⊥AF BF ,圆心为()0,0O ,半径为c , 根据双曲线的对称性可得四边形'AFBF 是矩形,设=AF m ,=BF n ,则222224122⎧⎪-=⎪+=⎨⎪⎪=⎩n m a n m c mn a ,由()2222-=+-n m m n mn ,可得222484-=c a a ,所以223=c a ,所以2223==c e a,所以=e ,故选B .19.【答案】A【解析】联立22222221=⎧⎪⎪-=⎨⎪=+⎪⎩x cxy a b c a b,可得2=±b y a ,则22=b BC a ,易知点B 、C 关于x 轴对称,且F 为线段BC 的中点,则=AB AC ,又因为ABC 为等腰直角三角形,所以2=BC AF ,即()222=+b c a a, 即()222+==-a c a b c a ,所以=-a c a ,可得2=c a , 因此,该双曲线的离心率为2==ce a,故选A . 20.【答案】A【解析】圆22239⎛⎫-+= ⎪⎝⎭c b x y 的圆心为,03⎛⎫ ⎪⎝⎭c A ,半径为3=b r . 设左焦点为1F ,连接1PF ,由于124,33==AF c AF c , 所以12==AF PQAF QF,所以1//AQ PF ,所以12,2==-PF b PF a b , 由于⊥AQ PF ,所以1⊥PF PF , 所以()()()22222224+-==-b a b c a b ,2320,3-==b b a a ,===c e a ,故选A .21.【答案】C【解析】设2=AF x ,则22=BF x ,由双曲线的定义可得1222=+=+AF AF a a x ,12222=+=+BF BF a a x , 因为点A 在以12F F 为直径的圆上,所以190∠=F AB ,所以22211+=AF AB BF ,即()()()2222322++=+a x x a x ,解得23=x a , 在12△AF F 中,1823=+=AF a x a ,223=AF a ,122=F F c , 由2221212+=AF AF F F 可得()22282233⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭a a c ,即22179=a c ,所以双曲线离心率为3===e ,故选C .二、填空题. 22.【答案】【解析】直线1=-+y kx k 过定点过()1,1M , 因为点()1,1M在圆的内部,且OM == 由圆中弦的性质知当直线与OM 垂直时,弦长最短, 此时结合垂径定理可得AB ==故答案为 23.【答案】28=y x【解析】抛物线的准线方程为2=-p x ,点()02,P y 到其准线的距离为22+p , 由题意可得242+=p,解得4=p , 故抛物线的标准方程为28=y x ,故答案为28=y x . 24.【答案】18【解析】由双曲线的对称性以及12=PQ F F 可知,四边形12PF QF 为矩形,所以1222212284100⎧-==⎪⎨+==⎪⎩PF PF a PF PF c ,解得1218=PF PF , 所以四边形12PF QF 的面积为1218=PFPF , 故答案为18.25.【答案】(⎤⎦【解析】设1122(,),(,)A x y B x y ,联立方程组221164=⎧⎪⎨+=⎪⎩y kx x y ,可得22(14)160+-=k x , 可得1212216,014=-+=+x x x x k ,所以221221614==+x x k , 将椭圆x 轴下方半平面沿着x 轴翻折与x 轴上方半平面成直二面角, 分别作,⊥⊥BC x AD x 于点,C D ,如图所示, 则2222=++AB BC CD AD ,又由222222222211,====BC y k x AD y k x ,2222212*********64()2()414=-=+-=+-=+CD x x x x x x x x x x k, 所以222222221226414=++=+++AB BC CD AD k x k x k 2222232648(417)78(1)141414+⋅++===⋅++++k k k k k , 因为∈R k ,所以20≥k ,所以2411+≥k ,所以270741<≤+k ,所以2788(1)6414<⋅+≤+k ,即2864<≤AB,所以8<≤AB ,所以AB的取值范围是(⎤⎦,故答案为(⎤⎦.26.【答案】73【解析】设直线AB 的方程为13=-+y x b ,联立2213197⎧=-+⎪⎪⎨⎪+=⎪⎩y x b x y ,得221()3197-++=x b x ,即22869630-+-=x bx b ,由223632(963)0b b ∆=-->,得-<<b 设11(,)A x y ,22(,)B x y ,00(,)M x y ,则120328+==x x b x ,0011373388=-+=-⨯+=b by x b b , 即37(,)88b bM ,则直线OM 的斜率为0073==y k x ,故答案为73.三、解答题.27.【答案】(1)2212420+=x y ;(2.【解析】(1)依题意,圆1C 的圆心()12,0C,半径1=r 圆2C 的圆心()22,0-C,半径2=r设圆M 的半径为r ,则有11=-MC r r ,22=+MC r r ,因此,1212124+=+=>=MC MC r r C C ,于是得点M 的轨迹是以12,C C为焦点,长轴长2=a 此时,焦距24=c ,短半轴长b 有22220=-=b a c ,所以动圆圆心M 的轨迹C 的方程为2212420+=x y .(2)显然直线PQ 不垂直于坐标轴,设直线PQ 的方程为3(0)=+≠x my m ,1122(,),(,)P x y Q x y ,由22356120=+⎧⎨+=⎩x my x y ,消去x 得22(56)30750++-=m x my , 则1226350+=-+m y y m ,1227556=-+y y m , 点P 关于x 轴的对称点11(,)-R x y ,1211|2|||2=⋅⋅-PQRSy x x ,111232=⋅⋅-APRS y x ,如图,显然1x 与2x 在3的两侧,即21-x x 与13-x 同号, 于是得()()()1211121133=-=---=⋅---AQRPQRAPRSSSy x x x y x x x121212275|||75|||3|||||||6565|||==⋅-==⋅==++≤m y x y my my y m m m , 当且仅当65||||=m m ,即=m 时取“=”,因此,当=m 时,max ()=AQR S,所以ARQ 面积的最大值4. 28.【答案】(1)22163+=x y;(2)⎣⎦.【解析】(1)∵椭圆的离心率为2,∴2=c a (c 为半焦距), ∵直线1+=xy ab与圆222+=x y=,又∵222+=c b a ,∴26=a ,23=b ,∴椭圆C 的方程为22163+=x y .(2)∵M 为线段AB 的中点,∴12==AOM BOP OMS S S S OP△△. (ⅰ)当直线l 的斜率不存在时,由⊥OA OB 及椭圆的对称性,不妨设OA 所在直线的方程为=y x ,得22=Ax .则22=Mx ,26=P x,∴123==OM S S OP ; (ⅱ)当直线l 的斜率存在时,设直线():0=+≠l y kx m m ,()11,A x y ,()22,B x y ,由22163=+⎧⎪⎨+=⎪⎩y kx mx y ,消去y ,得()222214260++-=+k x kmx m , ∴()()()2222221682138630k m k m k m ∆=-+-=-+>,即22630-+>k m .∴122421+=-+kmx x k ,21222621-=+m x x k .∵点O 在以AB 为直径的圆上,∴0⋅=OA OB ,即12120+=x x y y , ∴()()221212121210+=++++=x x y y k x x km x x m ,∴()22222264102121-⎛⎫++-+= ⎪++⎝⎭m km k km m k k . 化简,得2222=+m k ,经检验满足0∆>成立, ∴线段AB 的中点222,2121⎛⎫-⎪++⎝⎭km m M k k , 当0=k 时,22=m,此时123==S S ; 当0≠k 时,射线OM 所在的直线方程为12=-y x k, 由2212163⎧=-⎪⎪⎨⎪+=⎪⎩y x k x y ,消去y ,得2221221=+P k x k ,22321=+P y k , ∴==M P OM y OP y ∴12==S S12,33⎛∈ ⎝⎭S S , 综上,12S S的取值范围为⎣⎦.29.【答案】(1)22143+=x y ;(2)存在,()4,0.【解析】(1)在12△PF F 中,1122,2=-=cPF a a ,所以,由余弦定理()224(22)4222=-+--c a a,解得2,==a b ,所以,椭圆方程为22143+=x y .(2)假设存在点(),0Q m 满足条件,设直线l 的方程为()10=+≠x ty t ,设()()1122,,,M x y N x y ,联立()22221,34690143=+⎧⎪++-=⎨+=⎪⎩x ty t y ty x y , 121212221269,,3434--+==+=+++--MQ NQy y t y y y y k K t t x m x m, 又因为∠=∠MQO NQO ,所以0+=MQ NQ K K ,即1212=--y y x m m x , 即()()1211-=-y m x y m x ,将11221,1=+=+x ty x ty 代入化简得()()121212-+=m y y ty y , 即()2261183434---=++t m tt t ,计算得4=m ,所以存在()4,0点使得∠=∠MQO NQO .30.【答案】(1)2212+=x y ;(2)面积不存在;(3)证明见解析.【解析】(1)因为122=B B ,所以22=b ,即1=b ,因为离心率为2,所以2=c a ,设=c m,则=a ,0>m , 又222=-c a b ,即2222=-m m b ,解得1=m 或1-(舍去),所以=a 1=b ,1=c ,所以椭圆的标准方程为2212+=x y .(2)由22122⎧+=⎪⎨⎪=+⎩x y y x ,得()222220++-=x x ,23860++=x x ,284360∆=-⨯⨯<,所以直线与椭圆无交点,故OMN 的面积不存在.(3)由题意知,直线l 的方程为2=+y kx ,设()11,M x y ,()22,N x y ,则22212=+⎧⎪⎨+=⎪⎩y kx x y ,整理得()2221860+++=k x kx ,则()()22122122846120821621Δk k k x x k x x k ⎧=-⨯+>⎪⎪⎪+=-⎨+⎪⎪=⎪+⎩,因为直线和椭圆有两个交点,所以()()22824210k k ∆=-+>,则232>k ,设(),T m n ,因为1B ,T ,M 在同一条直线上,则111111313+++===+y kx n k m x x x , 因为2B ,T ,N 在同一条直线上,则222221111-+-===+y kx n k m x x x , 由于()21212283311213440621⎛⎫⋅- ⎪++-+⎝⎭+⋅=+=+=+k x x n n k k k m m x x k ,所以12=n , 则交点T 恒在一条直线12=y 上,故交点T 的纵坐标为定值12.31.【答案】(1)2=a,=b (2)6⎡⎫-⎪⎢⎪⎣⎭. 【解析】(1)设椭圆短轴的端点为B ,则21sin 2∠=OBF ,所以26π∠=OBF ,123π∠=F BF ,所以点P 即为点B,所以12122=⋅⋅==△PF F S c b bc ,又12=c a ,222=-a b c ,所以2=a,=b(2)设(,0)A m ,()11,M x y ,()22,N x y ,MN 的中点()00,H x y ,由2223412=+⎧⎨+=⎩y kx x y ,得()22431640+++=k x kx , 所以()()222(16)164348410k k k ∆=-+=->, 又0>k ,所以12>k ,所以1221643+=-+kx x k , 所以12028243+==-+x x k x k ,0026243=+=+y kx k ,即2286,4343⎛⎫- ⎪++⎝⎭k H k k , 因为()20⋅+⋅=+⋅=⋅=AM MN AN MN AM AN MN AH MN , 所以⊥AH MN ,所以226143843+=---+k k k mk ,得2223434=-=-++k m k k k , 因为12>k,所以34+≥k k,当且仅当=k =”号,所以⎡⎫∈⎪⎢⎪⎣⎭m , 故点A的横坐标的取值范围是6⎡⎫-⎪⎢⎪⎣⎭. 32.【答案】(1)22184+=x y ;(2)12-,理由见解析.【解析】(1)由题意可得:在2OPF Rt 中,22222+=OP OF PF ,即)222+=b c ,所以=b c ,椭圆C :22221+=x y a b 中,令=x c 可得2422221⎛⎫=-= ⎪⎝⎭c b y b a a,所以2=±b y a ,可得22=b AB a,所以22122=⋅⋅==AOBb bc Sc a a所以2=b c ,因为=b c ,222=+a b c,所以34====b b , 可得24=b ,所以2==c b ,2228=+=a b c ,所以椭圆C 的标准方程为22184+=x y .(2)设直线MN 的方程为=+y kx t ,()11,M x y ,()22,N x y ,由22184=+⎧⎪⎨+=⎪⎩y kx tx y ,可得()222214280+++-=k x ktx t , ()()222216421280k t k t ∆=-+->,即2284<+t k ,122412-+=+ktx x k,21222812-=+t x x k , 所以()()()2212121212=++=+++y y kx t kx t k x x kt x x t()()22222222222228124812121212-+-=-+=++++k t k t k t t k k k k k,12=-=MN x==, 点()0,0O 到直线=+y kx t的距离=d所以OMN的面积为1122⋅==MN d222284212+-+≤=+t k t k, 当且仅当22284=-+t k t 即2224-=t k 时等号成立,2222222122222128128241122828282-+--+⋅==⨯===-+---OM ONy y t k k t k t t k k x x k t t t , 所以当OMN 的面积最大时,直线OM 与ON 的斜率之积是12-.33.【答案】(1)E是以(),)为焦点,长轴长为22163+=x y ;(2)①(3,-;②证明见解析. 【解析】(1)圆锥曲线E是以(),)为焦点,长轴长为的椭圆,其标准方程为22163+=x y .(2)①设直线l :=+y x m ,()11,A x y ,()22,B x y ,由22163⎧+=⎪⎨⎪=+⎩x y y x m ,消去y ,得2234260++-=x mx m , 由题意,有()()22122124432604032603m m mx x m x x ∆⎧=-⨯->⎪⎪⎪+=->⎨⎪⎪-=>⎪⎩,解得3-<<m , 所以直线l 在y轴上的截距的取值范围为(3,-.②因为点P 在椭圆上,若直线l 过点P ,即点A (或点B )与P 重合,则l 与E 的另一个交点为25,33⎛⎫--⎪⎝⎭,不合题意,所以点A (或点B )与P 不重合; 若AP 或BP 的斜率不存在,则直线l 过点()2,1-,此时,l 与E 只有一个交点, 所以AP 与BP 的斜率都存在,设直线AP 的斜率为1k ,直线BP 的斜率为2k , 因为A ,B 在轴的右侧,结合图象,可知,要证∠APB 的平分线总垂直于x 轴,只要证120=+k k , 因为11112-=-y k x ,22212-=-y k x ,也即证()()()()122112120--+--=y x y x ,而()()()()()()()()1221122112121212--+--=+--++--y x y x x m x x m x()()()2121241242344344033-⎛⎫=+-+-+=+---+= ⎪⎝⎭m m x x m x x m m m 成立, 故∠APB 的平分线总垂直于x 轴.34.【答案】(1)22143+=x y ;(2)存在,:80--=l y .【解析】(1)由题可知,(,0)A a ,(0,)B b ,2,⎛⎫- ⎪⎝⎭b P c a ,因为=OP AB k,则200--=---b b a c a,解得=b ,故有2223+=⎧⎪=⎨⎪+=⎩a cb bc a ,解得2=a,=b椭圆方程为22143+=x y .(2)法一:假设存在,易知直线l 的斜率存在, 设直线l 的方程为=+y kx m ,()11,M x y ,()22,Q x y ,联立22143=+⎧⎪⎨+=⎪⎩y kx mx y ,得()2223484120+++-=k x kmx m , 则122212283441234⎧+=-⎪⎪+⎨-⎪=⎪+⎩km x x k m x x k , 因为2F 为MQB △的重心,则121201303++⎧=⎪⎪⎨++⎪=⎪⎩x x y y,解得12123+=⎧⎪⎨+=⎪⎩x x y y则122128334⎧+=-=⎪+⎨⎪+++=⎩km x x k kx m kx m,化简得228334634⎧=-⎪⎪+⎨⎪=⎪+⎩km k m k,解得⎧=⎪⎪⎨⎪=⎪⎩k m ,所以直线:80--=l y .法二:设()11,M x y ,()22,Q x y ,因为2F 为MQB △的重心,则120130++⎧=⎪⎪=x x,解得12123+=⎧⎪⎨+=⎪⎩x x y y设MQ 的中点R,则3,2⎛ ⎝⎭R , 因为M ,Q 在椭圆22143+=x y 上,则22112222143143⎧+=⎪⎪⎨⎪+=⎪⎩x y x y ,两式相减得34⋅=-MQ OR k k,即=MQ k所以直线:80--=l y .35.【答案】(1)22143+=x y ,(2)3λ=.【解析】(1)因为离心率为12,所以12==c e a , 又3=AF ,所以3+=a c ,解得2=a ,1=c , 又222=-c a b ,所以23=b ,所以椭圆方程为22143+=x y .(2)由(1)知()1,0F ,()2,0-A ,设直线PN 的方程为1=+x my ,()11,P x y ,()22,N x y , 因为M 与P 关于原点对称,所以()11,--M x y , 所以1112=-y x k ,2222=+yk x , 若存在λ,使得12λ=k k 恒成立,所以121222λ=-+y yx x , 所以()()122122λ+=-y x y x ,两边同乘1y 得()()21221122λ+=-y x y y x ,又因为()11,P x y 在椭圆上,所以2211143+=x y ,所以()()2112113223144-+⎛⎫=-= ⎪⎝⎭x x x y ,所以()()()()112211322224λ-++=-x x x y y x ,当12≠x 时,则()()12213224λ-++=x x y y , 所以()21212136124λ--+-=x x x x y y ①; 当12=x 时,M 与A 重合,联立方程221143=+⎧⎪⎨+=⎪⎩x my x y ,消元得()2234690++-=m y my ,所以212212934634-⎧=⎪⎪+⎨-⎪+=⎪+⎩y y m m y y m ,所以()212128234+=++=+x x m y y m ,()222121212412134-=+++=+m x x m y y m y y m ,代入①得22221236489124343434λ-+--+-=+++m m m m , 整理得10836λ-=-,解得3λ=. 36.【答案】(1)2-⎭和2⎛ ⎝⎭;(2)直径12A A 与直径12B B 共轭,理由见解析;(3)λ>λ< 【解析】(1)由题设知32=AB k ,设所求直线方程为=y kx ,则34⋅=-AB k k ,则12=-k , 故共轭直径所在直线方程为12=-y x .联立椭圆与12=-y x ,即2212143⎧=-⎪⎪⎨⎪+=⎪⎩y x x y 可得23=x,=x故端点坐标为⎭和⎛ ⎝⎭.(2)由题设知,l 不与x 轴重合,故设l:=x my ()111,A x y 、()122,B x y ,联立方程()22223430143⎧=⎪⇒+--=⎨+=⎪⎩x my m y x y ,则12234+=+y y m ,122334-=+y y m ,2122121234-=+m x x m ,122223434=-=⋅=++S y mm 63=≤=,当且仅当2313+=m ,即223=m 时取等号, 此时121221222123312124-⋅===-=--A A B By y b k k x x m a,故直径12A A 与直径12B B 共轭. (3)设点()11,C x y ,()22,M x y ,当CD 不与坐标轴重合时,设CD l :=y kx ,则MN l :34=-y x k, 联立2222211221212,3434143=⎧⎪⇒==⎨+++=⎪⎩y kx k x y x y k k , 同理可得22221634=+k x k ,222934=+y k. 由椭圆的对称性,不妨设C 在第一象限,则M 必在第二象限或第四象限,则1=x1=y若M在第二象限,则2=x2=y ,从而 ⎪⎝⎭T ,则⎫⎪⎪⎪ ⎪⎝⎭P .又P在椭圆外,则223412⎫⎪⎪+>⎪ ⎪ ⎪⎝⎭⎝⎭, 化简可得22λ>,即λ>λ<若M 在第四象限,同理可得22λ>,即λ>λ<当CD 与x 轴垂直或重合时,由椭圆的对称性,不妨取()2,0C,(M ,则λ⎛⎫⎪ ⎪⎝⎭P . 又P 在椭圆外,则2223341224λλλ+⋅>⇒>,即λ>λ<综上:λ>λ<。

高三数学解析几何试题答案及解析

高三数学解析几何试题答案及解析

高三数学解析几何试题答案及解析1.(本小题满分12分)已知椭圆:的焦点分别为、,点在椭圆上,满足,.(Ⅰ)求椭圆的方程;(Ⅱ)已知点,试探究是否存在直线与椭圆交于、两点,且使得?若存在,求出的取值范围;若不存在,请说明理由.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)本题求椭圆的方程只需确定一个未知数,建立一个方程即可,利用椭圆定义及焦点三角形,结合余弦定理可解:由,得,由余弦定理得,(Ⅱ)表明点在线段DE中垂线上,利用韦达定理列等量关系,求出与的关系,再根据判别式大于零,可解出的取值范围试题解析:(1)由,得,由余弦定理得,∴所求的方程为.(2)假设存在直线满足题设,设,将代入并整理得,由,得①又设中点为,,得②将②代入①得化简得,解得或所以存在直线,使得,此时的取值范围为.【考点】直线与椭圆位置关系2.抛物线:的准线的方程是____;以的焦点为圆心,且与直线相切的圆的方程是____.【答案】,.【解析】分析题意可知,∴准线方程为,焦点为,半径,∴所求圆方程为.【考点】1.抛物线的标准方程;2.直线与圆的位置关系.3.如图,为外一点,是切线,为切点,割线与相交于点,,且,为线段的中点,的延长线交于点,若,则__________;_________.【答案】,.【解析】由切割线定理,∴,,再由相交弦定理,∵是的中点,∴,,则.【考点】1.切割线定理;2.相交弦定理.4.椭圆的左焦点为,若关于直线的对称点是椭圆上的点,则椭圆的离心率为()A.B.C.D.【答案】D.【解析】设关于直线的对称点的坐标为,则,所以,,将其代入椭圆方程可得,化简可得,解得,故应选.【考点】1、椭圆的定义;2、椭圆的简单几何性质;5.如图所示,过⊙O外一点A作一条直线与⊙O交于C,D两点,AB切⊙O于B,弦MN过CD的中点P.已知AC=4,AB=6,则MP·NP= .【答案】【解析】由已知及圆的弦切割线定理得,,又知点P是CD的中点,所以,再由相交弦定理得;故答案为:.【考点】圆的性质.6.已知椭圆C:,为左右焦点,点在椭圆C上,△的重心为,内心为,且有(为实数),则椭圆方程为()A.B.C.D.【答案】A【解析】设点距轴的距离为,因为IG∥,则点距轴的距离为,连接,则,,所以,所以,所以椭圆方程为.【考点】椭圆的标准方程.7.已知双曲线(,)的焦距为,若、、顺次组成一个等比数列,则其离心率为.【答案】【解析】根据题意,有,即,式子两边同时除以,得,结合双曲线的离心率的取值范围,可求得.【考点】双曲线的离心率.8.设椭圆E:的右顶点为A、右焦点为F,B为椭圆E在第二象限上的点,直线BO交椭圆E于点C,若直线BF平分线段AC,则椭圆E的离心率是.【答案】【解析】如图,设AC中点为M,连接OM,则OM为的中位线,于是,且,即.【考点】椭圆的离心率.9.点M(χ,)是抛物线χ2=2P(P>0)上一点,若点M到该抛物线的焦点的距离为2,则点M到坐标原点的距离为()A.B.C.D.【答案】D【解析】抛物线()的准线方程是,因为点到该抛物线的焦点的距离为,所以,解得:,所以该抛物线的方程是,因为点是抛物线上的一点,所以,所以点到坐标原点的距离是,故选D.【考点】1、抛物线的定义;2、抛物线的标准方程.10.已知抛物线的焦点为,准线为,过点的直线交抛物线于两点,过点作准线的垂线,垂足为,当点的坐标为时,为正三角形,则此时的面积为()A.B.C.D.【答案】A【解析】如图所示,过点作的垂线,垂足为,则为的中点.因为点的坐标为,所以,,所以,即,所以抛物线的方程为,此时,,所以直线的方程为,将其代入抛物线方程可得,,解得或,所以或,所以的面积为,故应选.【考点】1、抛物线的定义;2、抛物线的简单几何性质.【思路点睛】本题考查了抛物线的定义、标准方程及其简单的几何性质的应用,属中档题.其解题的一般思路为:首先过点作的垂线,垂足为,则为的中点,然后利用点的坐标为,可求出,进而得出抛物线的方程,从而得出直线的方程,最后将其与抛物线的方程联立求出点的坐标,即可求出的面积.其解题的关键是求出抛物线的方程和直线的方程.11.已知、、c为正数,(1)若直线2x-(b-3)y+6=0与直线bx+ay-5=0互相垂直,试求的最小值;(2)求证:.【答案】(1)25;(2)证明见解析.【解析】(1)先利用两直线垂直得到关于正数的关系,再利用基本不等式进行求解;(2)先对不等式左边的每个括号进行因式分解,再利用基本不等式进行证明.试题解析:(1)由已知,有:即:、为正数,当且仅当时取等号,此时:故当时,的最小值是25.(2)、、c为正数,【考点】基本不等式.12.如图,已知抛物线的焦点为,椭圆的中心在原点,为其右焦点,点为曲线和在第一象限的交点,且.(1)求椭圆的标准方程;(2)设为抛物线上的两个动点,且使得线段的中点在直线上,为定点,求面积的最大值.【答案】(1)椭圆的标准方程为;(2)面积的最大值为.【解析】(1)由已知得,跟据抛物线定义,得,所以点;据椭圆定义,得.所以椭圆的标准方式是.(2)因为为线段的中点,得直线的方程为;联立,得,由弦长公式和点到直线的距离,得.再根据函数的单调性得面积的最大值为.试题解析:(1)设椭圆的方程为,半焦距为.由已知,点,则.设点,据抛物线定义,得.由已知,,则.从而,所以点.设点为椭圆的左焦点,则,.据椭圆定义,得,则.从而,所以椭圆的标准方式是.(2)设点,,,则.两式相减,得,即.因为为线段的中点,则.所以直线的斜率.从而直线的方程为,即.联立,得,则.所以.设点到直线的距离为,则.所以.由,得.令,则.设,则.由,得.从而在上是增函数,在上是减函数,所以,故面积的最大值为.【考点】1、抛物线的定义;2、椭圆的方程;3、最值问题.【方法点睛】本题考查抛物线的定义和简单几何性质、待定系数法求椭圆的标准方程、直线和椭圆相交中的有关中点弦的问题,综合性强,属于难题;对于直线和圆锥曲线相交中的中点弦问题,解决此类题目的最有效方法是点差法,两式直接相减就可以表示出斜率;而第二问中面积公式求出后,函数单调性的研究更是加深了此题的难度,运算量也比较大,不容易拿高分.13.已知抛物线()的焦点与双曲线的右焦点重合,抛物线的准线与轴的交点为,点在抛物线上且,则点的横坐标为()A.B.C.D.【答案】B【解析】抛物线的焦点为,准线为.双曲线的右焦点为,所以,即,即,过作准线的垂线,垂足为,则,即,设,则代入,解得.故应选B.【考点】圆锥曲线的性质.【思路点睛】根据双曲线得出其右焦点坐标,可知抛物线的焦点坐标,从而得到抛物线的方程和准线方程,进而可求得的坐标,设,过点向准线作垂线,则,根据及,进而可求得点坐标.14.已知抛物线:,过焦点F的直线与抛物线交于两点(在第一象限).(1)当时,求直线的方程;(2)过点作抛物线的切线与圆交于不同的两点,设到的距离为,求的取值范围.【答案】(1);(2)【解析】(1)因为,故,设,,则可得则,由此可求直线的方程;(2)由于,因此故切线的方程为,化简得,则圆心(0,-1)到的距离为,且,故则,则点F到距离,则,然后再根据基本不等式即可求出结果.试题解析:(1)因为,故设,,则故则因此直线的方程为;(2)由于,因此故切线的方程为,化简得则圆心(0,-1)到的距离为,且,故则,则点F到距离则今则,故.【考点】1.直线与抛物线的位置关系;2.点到直线的距离公式;2.基本不等式.15.在直角坐标系中,直线的参数方程为(t为参数),再以原点为极点,以x正半轴为极轴建立坐标系,并使得它与直角坐标系有相同的长度单位,在该极坐标系中圆C的方程为.(1)求圆C的直角坐标方程;(2)设圆C与直线将于点、,若点的坐标为,求的值.【答案】(1);(2).【解析】(1)极坐标与直角坐标之间的关系是,由此可实现极坐标方程与直角坐标方程的转化;(2)由直线参数方程的标准形式(即参数的几何意义),直线过点,直线上的标准参数方程为,把它代入圆的方程,其解满足,.试题解析:(1)由得,又,则有,配方得圆的标准方程为.(2)直线的普通方程为,点在直线上的标准参数方程为,代入圆方程得:.设对应的参数分别为,则,,于是.【考点】极坐标方程与直角坐标方程的互化,直线参数方程的应用.16.如图,在平面直角坐标系中,已知椭圆:的离心率,左顶点为,过点作斜率为的直线交椭圆于点,交轴于点.(1)求椭圆的方程;(2)已知为的中点,是否存在定点,对于任意的都有,若存在,求出点的坐标;若不存在说明理由;(3)若过点作直线的平行线交椭圆于点,求的最小值.【答案】(1);(2);(3)【解析】(1)确定椭圆标准方程,只需两个独立条件即可:一个是左顶点为,所以,另一个是,所以,(2)实质利用斜率k表示点,P ,E,假设存在定点,使得,因此,即恒成立,从而即(3)利用斜率k表示点M,因此,本题思路简单,但运算量较大.试题解析:(1)因为左顶点为,所以,又,所以又因为,所以椭圆C的标准方程为.(2)直线的方程为,由消元得,.化简得,,所以,.当时,,所以.因为点为的中点,所以的坐标为,则.直线的方程为,令,得点坐标为,假设存在定点,使得,则,即恒成立,所以恒成立,所以即因此定点的坐标为.(3)因为,所以的方程可设为,由得点的横坐标为,由,得,当且仅当即时取等号,所以当时,的最小值为.【考点】直线与椭圆位置关系17.选修4-4:坐标系与参数方程:在直角坐标系中,直线的参数方程为(t为参数),再以原点为极点,以x正半轴为极轴建立坐标系,并使得它与直角坐标系有相同的长度单位,在该极坐标系中圆C的方程为。

解析几何(解答题)--五年(2020-2024)高考数学真题分类汇编(解析版)

解析几何(解答题)--五年(2020-2024)高考数学真题分类汇编(解析版)

专题解析几何(解答题)考点五年考情(2020-2024)命题趋势考点01椭圆及其性质2024Ⅰ甲卷北京卷天津卷2023北京乙卷天津2022乙卷北京卷浙江卷2021北京卷Ⅱ卷2020ⅠⅡ卷新ⅠⅡ卷椭圆轨迹标准方程问题,有关多边形面积问题,定值定点问题,新结构中的新定义问题是高考的一个高频考点考点02双曲线及其性质2024Ⅱ卷2023Ⅱ新课标Ⅱ2022Ⅰ卷2021Ⅰ双曲线离心率问题,轨迹方程有关面积问题,定值定点问题以及斜率有关的证明问题以及新结构中的新定义问题是高考的高频考点考点03抛物线及其性质2023甲卷2022甲卷2021浙江甲卷乙卷2020浙江抛物线有关三角形面积问题,关于定直线问题,有关P 的证明类问题考点01:椭圆及其性质1(2024·全国·高考Ⅰ卷)已知A (0,3)和P 3,32 为椭圆C :x 2a 2+y 2b 2=1(a >b >0)上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求l 的方程.【答案】(1)12(2)直线l 的方程为3x -2y -6=0或x -2y =0.【详解】(1)由题意得b =39a 2+94b2=1,解得b 2=9a 2=12 ,所以e =1-b 2a2=1-912=12.(2)法一:k AP =3-320-3=-12,则直线AP 的方程为y =-12x +3,即x +2y -6=0,AP =0-3 2+3-322=352,由(1)知C :x 212+y 29=1,设点B到直线AP的距离为d,则d=2×9352=1255,则将直线AP沿着与AP垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B,设该平行线的方程为:x+2y+C=0,则C+65=1255,解得C=6或C=-18,当C=6时,联立x212+y29=1x+2y+6=0,解得x=0y=-3或x=-3y=-32,即B0,-3或-3,-3 2,当B0,-3时,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当B-3,-3 2时,此时k l=12,直线l的方程为y=12x,即x-2y=0,当C=-18时,联立x212+y29=1x+2y-18=0得2y2-27y+117=0,Δ=272-4×2×117=-207<0,此时该直线与椭圆无交点.综上直线l的方程为3x-2y-6=0或x-2y=0.法二:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B x0,y0,则x0+2y0-65=1255x2012+y209=1,解得x0=-3y0=-32或x0=0y0=-3,即B0,-3或-3,-3 2,以下同法一.法三:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B23cosθ,3sinθ,其中θ∈0,2π,则有23cosθ+6sinθ-65=1255,联立cos2θ+sin2θ=1,解得cosθ=-32sinθ=-12或cosθ=0sinθ=-1,即B0,-3或-3,-3 2,以下同法一;法四:当直线AB的斜率不存在时,此时B0,-3,S△PAB=12×6×3=9,符合题意,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当线AB的斜率存在时,设直线AB的方程为y=kx+3,联立椭圆方程有y =kx +3x 212+y 29=1,则4k 2+3 x 2+24kx =0,其中k ≠k AP ,即k ≠-12,解得x =0或x =-24k 4k 2+3,k ≠0,k ≠-12,令x =-24k 4k 2+3,则y =-12k 2+94k 2+3,则B -24k 4k 2+3,-12k 2+94k 2+3同法一得到直线AP 的方程为x +2y -6=0,点B 到直线AP 的距离d =1255,则-24k4k 2+3+2×-12k 2+94k 2+3-65=1255,解得k =32,此时B -3,-32 ,则得到此时k l =12,直线l 的方程为y =12x ,即x -2y =0,综上直线l 的方程为3x -2y -6=0或x -2y =0.法五:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当l 的斜率存在时,设PB :y -32=k (x -3),令P x 1,y 1 ,B x 2,y 2 ,y =k (x -3)+32x 212+y 29=1 ,消y 可得4k 2+3 x 2-24k 2-12k x +36k 2-36k -27=0,Δ=24k 2-12k 2-44k 2+3 36k 2-36k -27 >0,且k ≠k AP ,即k ≠-12,x 1+x 2=24k 2-12k 4k 2+3x 1x 2=36k 2-36k -274k 2+3,PB =k 2+1x 1+x 2 2-4x 1x 2=43k 2+13k 2+9k +2744k 2+3 ,A 到直线PB 距离d =3k +32k 2+1,S △PAB =12⋅43k 2+13k 2+9k +2744k 2+3⋅3k +32k 2+1=9,∴k =12或32,均满足题意,∴l :y =12x 或y =32x -3,即3x -2y -6=0或x -2y =0.法六:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当直线l 斜率存在时,设l :y =k (x -3)+32,设l 与y 轴的交点为Q ,令x =0,则Q 0,-3k +32,联立y =kx -3k +323x 2+4y 2=36,则有3+4k 2 x 2-8k 3k -32x +36k 2-36k -27=0,3+4k2x2-8k3k-3 2x+36k2-36k-27=0,其中Δ=8k23k-3 22-43+4k236k2-36k-27>0,且k≠-1 2,则3x B=36k2-36k-273+4k2,x B=12k2-12k-93+4k2,则S=12AQx P-x B=123k+3212k+183+4k2=9,解的k=12或k=32,经代入判别式验证均满足题意.则直线l为y=12x或y=32x-3,即3x-2y-6=0或x-2y=0.2(2024·全国·高考甲卷)已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F,点M1,32在C上,且MF⊥x轴.(1)求C的方程;(2)过点P4,0的直线交C于A,B两点,N为线段FP的中点,直线NB交直线MF于点Q,证明:AQ⊥y 轴.【答案】(1)x24+y23=1(2)证明见解析【详解】(1)设F c,0,由题设有c=1且b2a=32,故a2-1a=32,故a=2,故b=3,故椭圆方程为x24+y23=1.(2)直线AB的斜率必定存在,设AB:y=k(x-4),A x1,y1,B x2,y2,由3x2+4y2=12y=k(x-4)可得3+4k2x2-32k2x+64k2-12=0,故Δ=1024k4-43+4k264k2-12>0,故-12<k<12,又x1+x2=32k23+4k2,x1x2=64k2-123+4k2,而N52,0,故直线BN:y=y2x2-52x-52,故y Q=-32y2x2-52=-3y22x2-5,所以y1-y Q=y1+3y22x2-5=y1×2x2-5+3y22x2-5=k x1-4×2x2-5+3k x2-42x2-5=k 2x1x2-5x1+x2+82x2-5=k2×64k2-123+4k2-5×32k23+4k2+82x2-5=k 128k2-24-160k2+24+32k23+4k22x2-5=0,故y1=y Q,即AQ⊥y轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意Δ的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.3(2024·北京·高考真题)已知椭圆E :x 2a 2+y 2b 2=1a >b >0 ,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点0,t t >2 且斜率存在的直线与椭圆E 交于不同的两点A ,B ,过点A 和C 0,1 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.【答案】(1)x 24+y 22=1,e =22(2)t =2【详解】(1)由题意b =c =22=2,从而a =b 2+c 2=2,所以椭圆方程为x 24+y 22=1,离心率为e =22;(2)直线AB 斜率不为0,否则直线AB 与椭圆无交点,矛盾,从而设AB :y =kx +t ,k ≠0,t >2 ,A x 1,y 1 ,B x 2,y 2 ,联立x 24+y 22=1y =kx +t,化简并整理得1+2k 2 x 2+4ktx +2t 2-4=0,由题意Δ=16k 2t 2-82k 2+1 t 2-2 =84k 2+2-t 2 >0,即k ,t 应满足4k 2+2-t 2>0,所以x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-42k 2+1,若直线BD 斜率为0,由椭圆的对称性可设D -x 2,y 2 ,所以AD :y =y 1-y 2x 1+x 2x -x 1 +y 1,在直线AD 方程中令x =0,得y C =x 1y 2+x 2y 1x 1+x 2=x 1kx 2+t +x 2kx 1+t x 1+x 2=2kx 1x 2+t x 1+x 2 x 1+x 2=4k t 2-2 -4kt +t =2t =1,所以t =2,此时k 应满足4k 2+2-t 2=4k 2-2>0k ≠0 ,即k 应满足k <-22或k >22,综上所述,t =2满足题意,此时k <-22或k >22.4(2024·天津·高考真题)已知椭圆x 2a 2+y 2b 2=1(a >b >0)椭圆的离心率e =12.左顶点为A ,下顶点为B ,C 是线段OB 的中点,其中S △ABC =332.(1)求椭圆方程.(2)过点0,-32 的动直线与椭圆有两个交点P ,Q .在y 轴上是否存在点T 使得TP ⋅TQ ≤0.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.【答案】(1)x 212+y 29=1(2)存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.【详解】(1)因为椭圆的离心率为e =12,故a =2c ,b =3c ,其中c 为半焦距,所以A -2c ,0 ,B 0,-3c ,C 0,-3c 2 ,故S △ABC =12×2c ×32c =332,故c =3,所以a =23,b =3,故椭圆方程为:x 212+y 29=1.(2)若过点0,-32 的动直线的斜率存在,则可设该直线方程为:y =kx -32,设P x 1,y 1 ,Q x 2,y 2 ,T 0,t ,由3x 2+4y 2=36y =kx -32可得3+4k 2 x 2-12kx -27=0,故Δ=144k 2+1083+4k 2 =324+576k 2>0且x 1+x 2=12k 3+4k 2,x 1x 2=-273+4k2,而TP =x 1,y 1-t ,TQ=x 2,y 2-t ,故TP ⋅TQ =x 1x 2+y 1-t y 2-t =x 1x 2+kx 1-32-t kx 2-32-t =1+k 2 x 1x 2-k 32+t x 1+x 2 +32+t 2=1+k 2 ×-273+4k 2-k 32+t ×12k 3+4k 2+32+t 2=-27k 2-27-18k 2-12k 2t +332+t 2+3+2t 2k 23+4k 2=3+2t2-12t -45 k 2+332+t 2-273+4k 2,因为TP ⋅TQ ≤0恒成立,故3+2t 2-12t -45≤0332+t 2-27≤0,解得-3≤t ≤32.若过点0,-32的动直线的斜率不存在,则P 0,3 ,Q 0,-3 或P 0,-3 ,Q 0,3 ,此时需-3≤t ≤3,两者结合可得-3≤t ≤32.综上,存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.5(2023年全国乙卷理科)已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的离心率是53,点A -2,0 在C 上.(1)求C方程;(2)过点-2,3 的直线交C 于P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.【答案】(1)y 29+x 24=1(2)证明见详解解析:(1)由题意可得b =2a 2=b 2+c 2e =c a =53,解得a =3b =2c =5,所以椭圆方程为y 29+x 24=1.(2)由题意可知:直线PQ 的斜率存在,设PQ :y =k x +2 +3,P x 1,y 1 ,Q x 2,y 2 ,联立方程y =k x +2 +3y 29+x 24=1,消去y 得:4k 2+9 x 2+8k 2k +3x +16k 2+3k =0,则Δ=64k 22k +3 2-644k 2+9 k 2+3k =-1728k >0,解得k <0,可得x 1+x 2=-8k 2k +34k 2+9,x 1x 2=16k 2+3k 4k 2+9,因为A -2,0 ,则直线AP :y =y 1x 1+2x +2 ,令x =0,解得y =2y 1x 1+2,即M 0,2y 1x 1+2,同理可得N 0,2y 2x 2+2,则2y 1x 1+2+2y2x 2+22=k x 1+2 +3 x 1+2+k x 2+2 +3 x 2+2=kx 1+2k +3 x 2+2 +kx 2+2k +3 x 1+2x 1+2 x 2+2=2kx 1x 2+4k +3 x 1+x 2 +42k +3x 1x 2+2x 1+x 2 +4=32k k 2+3k 4k 2+9-8k 4k +3 2k +34k 2+9+42k +3 16k 2+3k 4k 2+9-16k 2k +34k 2+9+4=10836=3,所以线段MN 的中点是定点0,3 .6(2020年高考课标Ⅱ)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)C 1:x 236+y 227=1,C 2:y 2=12x .解析:(1)∵F c ,0 ,AB ⊥x 轴且与椭圆C 1相交于A 、B 两点,则直线AB 的方程为x =c ,联立x =c x 2a 2+y 2b 2=1a 2=b 2+c 2,解得x =c y =±b 2a,则AB =2b 2a ,抛物线C 2的方程为y 2=4cx ,联立x =cy 2=4cx ,解得x =cy =±2c,∴CD =4c ,∵CD =43AB ,即4c =8b 23a ,2b 2=3ac ,即2c 2+3ac -2a 2=0,即2e 2+3e -2=0,∵0<e <1,解得e =12,因此,椭圆C 1的离心率为12;(2)由(1)知a =2c ,b =3c ,椭圆C 1的方程为x 24c 2+y 23c 2=1,联立y 2=4cxx24c2+y 23c 2=1,消去y 并整理得3x 2+16cx -12c 2=0,解得x =23c 或x =-6c (舍去),由抛物线的定义可得MF =23c +c =5c3=5,解得c =3.因此,曲线C 1的标准方程为x 236+y 227=1,曲线C 2的标准方程为y 2=12x .7(2021年新高考全国Ⅱ卷)已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (2,0),且离心率为63.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线x 2+y 2=b 2(x >0)相切.证明:M ,N ,F 三点共线的充要条件是|MN |=3.【答案】解析:(1)由题意,椭圆半焦距c =2且e =c a =63,所以a =3,又b 2=a 2-c 2=1,所以椭圆方程为x 23+y 2=1;(2)由(1)得,曲线为x 2+y 2=1(x >0),当直线MN 的斜率不存在时,直线MN :x =1,不合题意;当直线MN 的斜率存在时,设M x 1,y 1 ,N x 2,y 2 ,必要性:若M ,N ,F 三点共线,可设直线MN :y =k x -2 即kx -y -2k =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得2kk 2+1=1,解得k =±1,联立y =±x -2x23+y 2=1 可得4x 2-62x +3=0,所以x 1+x 2=322,x 1⋅x 2=34,所以MN =1+1⋅x 1+x 22-4x 1⋅x 2=3,所以必要性成立;充分性:设直线MN :y =kx +b ,kb <0 即kx -y +b =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得bk 2+1=1,所以b 2=k 2+1,联立y =kx +bx 23+y 2=1可得1+3k 2 x 2+6kbx +3b 2-3=0,所以x 1+x 2=-6kb 1+3k 2,x 1⋅x 2=3b 2-31+3k 2,所以MN =1+k 2⋅x 1+x 22-4x 1⋅x 2=1+k2-6kb 1+3k22-4⋅3b 2-31+3k 2=1+k 2⋅24k 21+3k 2=3,化简得3k 2-1 2=0,所以k =±1,所以k =1b =-2或k =-1b =2 ,所以直线MN :y =x -2或y =-x +2,所以直线MN 过点F (2,0),M ,N ,F 三点共线,充分性成立;所以M ,N ,F 三点共线的充要条件是|MN |=3.8(2020年高考课标Ⅰ卷)已知A 、B 分别为椭圆E :x 2a2+y 2=1(a >1)左、右顶点,G 为E 的上顶点,AG ⋅GB =8,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E方程;(2)证明:直线CD 过定点.【答案】(1)x 29+y 2=1;(2)证明详见解析.【解析】(1)依据题意作出如下图象:由椭圆方程E :x 2a2+y 2=1(a >1)可得:A -a ,0 , B a ,0 ,G 0,1∴AG =a ,1 ,GB =a ,-1 ∴AG ⋅GB =a 2-1=8,∴a 2=9∴椭圆方程为:x 29+y 2=1(2)证明:设P 6,y 0 ,则直线AP 的方程为:y =y 0-06--3x +3 ,即:y =y 09x +3 联立直线AP 的方程与椭圆方程可得:x 29+y 2=1y =y 09x +3 ,整理得:y 02+9 x 2+6y 02x +9y 02-81=0,解得:x =-3或x =-3y 02+27y 02+9将x =-3y 02+27y 02+9代入直线y =y 09x +3 可得:y =6y 0y 02+9所以点C 的坐标为-3y 02+27y 02+9,6y 0y 02+9 .同理可得:点D 的坐标为3y 02-3y 02+1,-2y 0y 02+1∴直线CD 的方程为:y --2y 0y 02+1=6y 0y 02+9--2y 0y 02+1-3y 02+27y 02+9-3y 02-3y 02+1x -3y 02-3y 02+1,整理可得:y +2y 0y 02+1=8y 0y 02+3 69-y 04x -3y 02-3y 02+1 =8y 063-y 02 x -3y 02-3y 02+1整理得:y =4y 033-y 02 x +2y 0y 02-3=4y 033-y 02x -32故直线CD 过定点32,09(2020年新高考全国Ⅰ卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.【答案】(1)x 26+y 23=1;(2)详见解析.解析:(1)由题意可得:c a =324a 2+1b 2=1a 2=b 2+c 2,解得:a 2=6,b 2=c 2=3,故椭圆方程为:x 26+y 23=1.(2)设点M x 1,y 1 ,N x 2,y 2 .因为AM ⊥AN ,∴AM·AN=0,即x 1-2 x 2-2 +y 1-1 y 2-1 =0,①当直线MN 的斜率存在时,设方程为y =kx +m ,如图1.代入椭圆方程消去y 并整理得:1+2k 2 x 2+4kmx +2m 2-6=0x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-61+2k 2②,根据y 1=kx 1+m ,y 2=kx 2+m ,代入①整理可得:k 2+1 x 1x 2+km -k -2 x 1+x 2 +m -1 2+4=0将②代入,k 2+1 2m 2-61+2k 2+km -k -2 -4km1+2k2+m -1 2+4=0,整理化简得2k +3m +1 2k +m -1 =0,∵A (2,1)不在直线MN 上,∴2k +m -1≠0,∴2k +3m +1=0,k ≠1,于是MN 的方程为y =k x -23 -13,所以直线过定点直线过定点E 23,-13.当直线MN 的斜率不存在时,可得N x 1,-y 1 ,如图2.代入x 1-2 x 2-2 +y 1-1 y 2-1 =0得x 1-2 2+1-y 22=0,结合x 216+y 213=1,解得x 1=2舍 ,x 1=23,此时直线MN 过点E 23,-13,由于AE 为定值,且△ADE 为直角三角形,AE 为斜边,所以AE 中点Q 满足QD 为定值(AE 长度的一半122-232+1+132=423).由于A 2,1 ,E 23,-13 ,故由中点坐标公式可得Q 43,13.故存在点Q 43,13,使得|DQ |为定值.10(2022年高考全国乙卷)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A 0,-2 ,B 32,-1两点.(1)求E 的方程;(2)设过点P 1,-2 的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT =TH.证明:直线HN 过定点.【答案】(1)y 24+x 23=1(2)(0,-2)解析:设椭圆E 的方程为mx 2+ny 2=1,过A 0,-2 ,B 32,-1,则4n =194m +n =1 ,解得m =13,n =14,所以椭圆E 的方程为:y 24+x 23=1.【小问2详解】A (0,-2),B 32,-1,所以AB :y +2=23x ,①若过点P (1,-2)的直线斜率不存在,直线x =1.代入x 23+y 24=1,可得M 1,-263 ,N 1,263 ,代入AB 方程y =23x -2,可得T -6+3,-263 ,由MT =TH 得到H -26+5,-263 .求得HN 方程:y =2+263x -2,过点(0,-2).②若过点P (1,-2)的直线斜率存在,设kx -y -(k +2)=0,M (x 1,y 1),N (x 2,y 2).联立kx -y -(k +2)=0x 23+y 24=1,得(3k 2+4)x 2-6k (2+k )x +3k (k +4)=0,可得x 1+x 2=6k (2+k )3k 2+4x 1x 2=3k (4+k )3k 2+4,y 1+y 2=-8(2+k )3k 2+4y 2y 2=4(4+4k -2k 2)3k 2+4,且x 1y 2+x 2y 1=-24k 3k 2+4(*)联立y =y 1y =23x -2,可得T 3y12+3,y 1 ,H (3y 1+6-x 1,y 1).可求得此时HN :y -y 2=y 1-y 23y 1+6-x 1-x 2(x -x 2),将(0,-2),代入整理得2(x 1+x 2)-6(y 1+y 2)+x 1y 2+x 2y 1-3y 1y 2-12=0,将(*)代入,得24k +12k 2+96+48k -24k -48-48k +24k 2-36k 2-48=0,显然成立,综上,可得直线HN 过定点(0,-2).11(2020年新高考全国卷Ⅱ)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【答案】(1)x 216+y 212=1;(2)18.解析:(1)由题意可知直线AM 的方程为:y -3=12(x -2),即x -2y =-4.当y =0时,解得x =-4,所以a =4,椭圆C :x 2a 2+y 2b 2=1a >b >0 过点M (2,3),可得416+9b 2=1,解得b 2=12.所以C 的方程:x 216+y 212=1.(2)设与直线AM 平行的直线方程为:x -2y =m ,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程x -2y =m 与椭圆方程x 216+y 212=1,可得:3m +2y 2+4y 2=48,化简可得:16y 2+12my +3m 2-48=0,所以Δ=144m 2-4×163m 2-48 =0,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:x -2y =8,直线AM 方程为:x -2y =-4,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d =8+41+4=1255,由两点之间距离公式可得|AM |=(2+4)2+32=35.所以△AMN 的面积的最大值:12×35×1255=18.12(2020年高考课标Ⅲ卷)已知椭圆C :x 225+y 2m 2=1(0<m <5)的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,求△APQ 的面积.【答案】(1)x 225+16y 225=1;(2)52.解析:(1)∵C :x 225+y 2m 2=1(0<m <5)∴a =5,b =m ,根据离心率e =ca=1-b a2=1-m 5 2=154,解得m =54或m =-54(舍),∴C 的方程为:x 225+y 2542=1,即x 225+16y 225=1;(2)不妨设P ,Q 在x 轴上方∵点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,过点P 作x 轴垂线,交点为M ,设x =6与x 轴交点为N 根据题意画出图形,如图∵|BP |=|BQ |,BP ⊥BQ ,∠PMB =∠QNB =90°,又∵∠PBM +∠QBN =90°,∠BQN +∠QBN =90°,∴∠PBM =∠BQN ,根据三角形全等条件“AAS ”,可得:△PMB ≅△BNQ ,∵x 225+16y 225=1,∴B (5,0),∴PM =BN =6-5=1,设P 点为(x P ,y P ),可得P 点纵坐标为y P =1,将其代入x 225+16y 225=1,可得:x P 225+1625=1,解得:x P =3或x P =-3,∴P 点为(3,1)或(-3,1),①当P 点为(3,1)时,故MB =5-3=2,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=2,可得:Q 点为(6,2),画出图象,如图∵A (-5,0),Q (6,2),可求得直线AQ 的直线方程为:2x -11y +10=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =2×3-11×1+1022+112=5125=55,根据两点间距离公式可得:AQ =6+52+2-0 2=55,∴△APQ 面积为:12×55×55=52;②当P 点为(-3,1)时,故MB =5+3=8,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=8,可得:Q 点为(6,8),画出图象,如图∵A (-5,0),Q (6,8),可求得直线AQ 的直线方程为:8x -11y +40=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =8×-3 -11×1+4082+112=5185=5185,根据两点间距离公式可得:AQ =6+52+8-0 2=185,∴△APQ 面积为:12×185×5185=52,综上所述,△APQ 面积为:52.1313(2023年北京卷)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)离心率为53,A 、C 分别是E 的上、下顶点,B ,D 分别是E 的左、右顶点,|AC |=4.(1)求E 的方程;(2)设P 为第一象限内E 上的动点,直线PD 与直线BC 交于点M ,直线PA 与直线y =-2交于点N .求证:MN ⎳CD .【答案】(1)x 29+y 24=1(2)证明见解析:(1)依题意,得e =c a =53,则c =53a ,又A ,C 分别为椭圆上下顶点,AC =4,所以2b =4,即b =2,所以a 2-c 2=b 2=4,即a 2-59a 2=49a 2=4,则a 2=9,所以椭圆E 的方程为x 29+y 24=1.(2)因为椭圆E 的方程为x 29+y 24=1,所以A 0,2 ,C 0,-2 ,B -3,0 ,D 3,0 ,因为P 为第一象限E 上的动点,设P m ,n 0<m <3,0<n <2 ,则m 29+n 24=1,易得k BC =0+2-3-0=-23,则直线BC 的方程为y =-23x -2,k PD =n -0m -3=n m -3,则直线PD 的方程为y =n m -3x -3 ,联立y =-23x -2y =n m -3x -3,解得x =33n -2m +63n +2m -6y =-12n 3n +2m -6,即M 33n -2m +6 3n +2m -6,-12n 3n +2m -6,而k PA =n -2m -0=n -2m ,则直线PA 的方程为y =n -2mx +2,令y =-2,则-2=n -2m x +2,解得x =-4m n -2,即N -4mn -2,-2 ,又m 29+n 24=1,则m 2=9-9n 24,8m 2=72-18n 2,所以k MN =-12n3n +2m -6+233n -2m +6 3n +2m -6--4mn-2=-6n +4m -12 n -29n -6m +18 n -2 +4m 3n +2m -6=-6n 2+4mn -8m +249n 2+8m 2+6mn -12m -36=-6n 2+4mn -8m +249n 2+72-18n 2+6mn -12m -36=-6n 2+4mn -8m +24-9n 2+6mn -12m +36=2-3n 2+2mn -4m +12 3-3n 2+2mn -4m +12 =23,又k CD =0+23-0=23,即k MN =k CD ,显然,MN 与CD 不重合,所以MN ⎳CD .14(2023年天津卷)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左右顶点分别为A 1,A 2,右焦点为F ,已知A 1F =3,A 2F =1.(1)求椭圆方程及其离心率;(2)已知点P 是椭圆上一动点(不与端点重合),直线A 2P 交y 轴于点Q ,若三角形A 1PQ 的面积是三角形A 2FP 面积的二倍,求直线A 2P 的方程.【答案】(1)椭圆的方程为x 24+y 23=1,离心率为e =12.(2)y =±62x -2 .解析:(1)如图,由题意得a +c =3a -c =1,解得a =2,c =1,所以b =22-12=3,所以椭圆的方程为x 24+y 23=1,离心率为e =c a =12.(2)由题意得,直线A 2P 斜率存在,由椭圆的方程为x 24+y 23=1可得A 22,0 ,设直线A 2P 的方程为y =k x -2 ,联立方程组x 24+y 23=1y =k x -2,消去y 整理得:3+4k 2 x 2-16k 2x +16k 2-12=0,由韦达定理得x A 2⋅x P =16k 2-123+4k 2,所以x P =8k 2-63+4k 2,所以P 8k 2-63+4k 2,--12k3+4k 2,Q 0,-2k .所以S △A 2QA 1=12×4×y Q ,S △A 2PF =12×1×y P ,S △A 1A 2P =12×4×y P ,所以S △A 2QA 1=S △A 1PQ +S △A 1A 2P =2S △A 2PF +S △A 1A 2P ,所以2y Q =3y P ,即2-2k =3-12k3+4k 2,解得k =±62,所以直线A 2P 的方程为y =±62x -2 .15(2022高考北京卷)已知椭圆:E :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,1),焦距为23.(1)求椭圆E 的方程;(2)过点P (-2,1)作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N ,当|MN |=2时,求k 的值.【答案】解析:(1)依题意可得b =1,2c =23,又c 2=a 2-b 2,所以a =2,所以椭圆方程为x 24+y 2=1;(2)解:依题意过点P -2,1 的直线为y -1=k x +2 ,设B x 1,y 1 、C x 2,y 2 ,不妨令-2≤x 1<x 2≤2,由y -1=k x +2x 24+y 2=1,消去y 整理得1+4k 2 x 2+16k 2+8k x +16k 2+16k =0,所以Δ=16k 2+8k 2-41+4k 2 16k 2+16k >0,解得k <0,所以x 1+x 2=-16k 2+8k 1+4k 2,x 1⋅x 2=16k 2+16k1+4k2,直线AB 的方程为y -1=y 1-1x 1x ,令y =0,解得x M =x 11-y 1,直线AC 的方程为y -1=y 2-1x 2x ,令y =0,解得x N =x 21-y 2,所以MN =x N -x M =x 21-y 2-x 11-y 1=x 21-k x 2+2 +1 -x 11-k x 1+2 +1=x 2-k x 2+2 +x 1k x 1+2=x 2+2 x 1-x 2x 1+2k x 2+2 x 1+2=2x 1-x 2k x 2+2 x 1+2=2,所以x 1-x 2 =k x 2+2 x 1+2 ,即x 1+x 22-4x 1x 2=k x 2x 1+2x 2+x 1 +4即-16k 2+8k 1+4k22-4×16k 2+16k 1+4k 2=k 16k 2+16k 1+4k 2+2-16k 2+8k 1+4k2+4 即81+4k 22k 2+k 2-1+4k 2 k 2+k =k1+4k216k2+16k -216k 2+8k +41+4k 2整理得8-k =4k ,解得k =-416(2022年浙江省高考)如图,已知椭圆x 212+y 2=1.设A ,B 是椭圆上异于P (0,1)的两点,且点Q 0,12 在线段AB 上,直线PA ,PB 分别交直线y =-12x +3于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值;(2)求|CD |的最小值.【答案】解析:(1)设Q (23cos θ,sin θ)是椭圆上任意一点,P (0,1),则|PQ |2=12cos 2θ+(1-sin θ)2=13-11sin 2θ-2sin θ=-11sin θ+111 2+14411≤14411,当且仅当sin θ=-111时取等号,故|PQ |的最大值是121111.(2)设直线AB :y =kx +12,直线AB 方程与椭圆x 212+y 2=1联立,可得k 2+112 x 2+kx -34=0,设A x 1,y 1 ,B x 2,y 2 ,所以x 1+x 2=-kk 2+112x 1x 2=-34k 2+112 ,因为直线PA :y =y 1-1x 1x +1与直线y =-12x +3交于C ,则x C=4x 1x 1+2y 1-2=4x 1(2k +1)x 1-1,同理可得,x D =4x 2x 2+2y 2-2=4x 2(2k +1)x 2-1.则|CD |=1+14x C -x D =524x 1(2k +1)x 1-1-4x 2(2k +1)x 2-1=25x 1-x 2(2k +1)x 1-1 (2k +1)x 2-1=25x 1-x 2(2k +1)2x 1x 2-(2k +1)x 1+x 2 +1=352⋅16k 2+13k +1=655⋅16k 2+1916+13k +1≥655×4k ×34+1×123k +1=655,当且仅当k =316时取等号,故CD 的最小值为655.17(2021高考北京)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)一个顶点A (0,-2),以椭圆E 的四个顶点为顶点的四边形面积为45.(1)求椭圆E 的方程;(2)过点P (0,-3)的直线l 斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与直线交y =-3交于点M ,N ,当|PM |+|PN |≤15时,求k 的取值范围.【答案】(1)x 25+y 24=1;(2)[-3,-1)∪(1,3].解析:(1)因为椭圆过A 0,-2 ,故b =2,因为四个顶点围成的四边形的面积为45,故12×2a ×2b =45,即a =5,故椭圆的标准方程为:x 25+y 24=1.(2)设B x 1,y 1 ,C x 2,y 2 , 因为直线BC 的斜率存在,故x 1x 2≠0,故直线AB :y =y 1+2x 1x -2,令y =-3,则x M =-x1y 1+2,同理x N =-x 2y 2+2直线BC :y =kx -3,由y =kx -34x 2+5y 2=20可得4+5k 2 x 2-30kx +25=0,故Δ=900k 2-1004+5k 2 >0,解得k <-1或k >1.又x 1+x 2=30k 4+5k 2,x 1x 2=254+5k 2,故x 1x 2>0,所以x M x N >0又PM +PN =x M +x N =x 1y 1+2+x 2y 2+2=x1kx1-1+x2kx2-1=2kx1x2-x1+x2k2x1x2-k x1+x2+1=50k4+5k2-30k4+5k225k24+5k2-30k24+5k2+1=5k故5k ≤15即k ≤3,综上,-3≤k<-1或1<k≤3.考点02双曲线及其性质1(2024·全国·高考Ⅱ)已知双曲线C:x2-y2=m m>0,点P15,4在C上,k为常数,0<k<1.按照如下方式依次构造点P n n=2,3,...:过P n-1作斜率为k的直线与C的左支交于点Q n-1,令P n为Q n-1关于y轴的对称点,记P n的坐标为x n,y n .(1)若k=12,求x2,y2;(2)证明:数列x n-y n是公比为1+k1-k的等比数列;(3)设S n为△P n P n+1P n+2的面积,证明:对任意正整数n,S n=S n+1.【答案】(1)x2=3,y2=0(2)证明见解析(3)证明见解析【详解】(1)由已知有m=52-42=9,故C的方程为x2-y2=9.当k=12时,过P15,4且斜率为12的直线为y=x+32,与x2-y2=9联立得到x2-x+322=9.解得x=-3或x=5,所以该直线与C的不同于P1的交点为Q1-3,0,该点显然在C的左支上.故P23,0,从而x2=3,y2=0.(2)由于过P n x n,y n且斜率为k的直线为y=k x-x n+y n,与x2-y2=9联立,得到方程x2-k x-x n+y n2=9.展开即得1-k2x2-2k y n-kx nx-y n-kx n2-9=0,由于P n x n,y n已经是直线y=k x-x n+y n和x2 -y2=9的公共点,故方程必有一根x=x n.从而根据韦达定理,另一根x=2k y n-kx n1-k2-x n=2ky n-x n-k2x n1-k2,相应的y=k x-x n+y n=y n+k2y n-2kx n1-k2.所以该直线与C 的不同于P n 的交点为Q n2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n ,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k 1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW=c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV ⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW=12UV⋅UW 1-UV ⋅UWUV ⋅UW 2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2c 2+d 2-ac +bd2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n=121-k 1+k m -1+k 1-k mx 2n -y 2n=921-k 1+k m -1+k 1-k m .而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2=x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1 =12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1 =12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k-921-k 1+k 2-1+k 1-k 2.这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m .这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k=x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.2(2023年新课标全国Ⅱ卷)已知双曲线C 的中心为坐标原点,左焦点为-25,0 ,离心率为5.(1)求C的方程;(2)记C左、右顶点分别为A1,A2,过点-4,0的直线与C的左支交于M,N两点,M在第二象限,直线MA1与NA2交于点P.证明:点P在定直线上.【答案】(1)x24-y216=1(2)证明见解析.解析:(1)设双曲线方程为x2a2-y2b2=1a>0,b>0,由焦点坐标可知c=25,则由e=ca=5可得a=2,b=c2-a2=4,双曲线方程为x24-y216=1.(2)由(1)可得A1-2,0,A22,0,设M x1,y1,N x2,y2,显然直线的斜率不为0,所以设直线MN的方程为x=my-4,且-12<m<12,与x24-y216=1联立可得4m2-1y2-32my+48=0,且Δ=64(4m2+3)>0,则y1+y2=32m4m2-1,y1y2=484m2-1,直线MA1的方程为y=y1x1+2x+2,直线NA2的方程为y=y2x2-2x-2,联立直线MA1与直线NA2的方程可得:x+2 x-2=y2x1+2y1x2-2=y2my1-2y1my2-6=my1y2-2y1+y2+2y1my1y2-6y1=m⋅484m2-1-2⋅32m4m2-1+2y1m×484m2-1-6y1=-16m4m2-1+2y148m4m2-1-6y1=-13,由x+2x-2=-13可得x=-1,即x P=-1,据此可得点P在定直线x=-1上运动.3(2022新高考全国II卷)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点为F(2,0),渐近线方程为y=±3x.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点P x1,y1,Q x2,y2在C上,且.x1>x2>0,y1>0.过P 且斜率为-3的直线与过Q 且斜率为3的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ ∥AB ;③|MA |=|MB |.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1)x 2-y 23=1(2)见解析:(1)右焦点为F (2,0),∴c =2,∵渐近线方程为y =±3x ,∴ba=3,∴b =3a ,∴c 2=a 2+b 2=4a 2=4,∴a =1,∴b =3.∴C 的方程为:x 2-y 23=1;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而x 1=x 2,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为y =k x -2 ,则条件①M 在AB 上,等价于y 0=k x 0-2 ⇔ky 0=k 2x 0-2 ;两渐近线方程合并为3x 2-y 2=0,联立消去y 并化简整理得:k 2-3 x 2-4k 2x +4k 2=0设A x 3,y 3 ,B x 3,y 4 ,线段中点N x N ,y N ,则x N =x 3+x 42=2k 2k 2-3,y N =k x N -2 =6kk 2-3,设M x 0,y 0 , 则条件③AM =BM 等价于x 0-x 3 2+y 0-y 3 2=x 0-x 4 2+y 0-y 4 2,移项并利用平方差公式整理得:x 3-x 4 2x 0-x 3+x 4 +y 3-y 4 2y 0-y 3+y 4 =0,2x 0-x 3+x 4 +y 3-y 4x 3-x 42y 0-y 3+y 4 =0,即x 0-x N +k y 0-y N =0,即x 0+ky 0=8k 2k 2-3;由题意知直线PM 的斜率为-3, 直线QM 的斜率为3,∴由y 1-y 0=-3x 1-x 0 ,y 2-y 0=3x 2-x 0 ,∴y 1-y 2=-3x 1+x 2-2x 0 ,所以直线PQ 的斜率m =y 1-y 2x 1-x 2=-3x 1+x 2-2x 0 x 1-x 2,直线PM :y =-3x -x 0 +y 0,即y =y 0+3x 0-3x ,代入双曲线的方程3x 2-y 2-3=0,即3x +y 3x -y =3中,得:y 0+3x 0 23x -y 0+3x 0 =3,解得P 的横坐标:x 1=1233y 0+3x 0+y 0+3x 0,。

高三数学解析几何试题答案及解析

高三数学解析几何试题答案及解析

高三数学解析几何试题答案及解析1.中心在原点,其中一个焦点为(-2,0),且过点(2,3),则该椭圆方程为;【答案】【解析】略2.(本题满分10分)选修4-4:坐标系与参数方程选讲在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为(1)求曲线的普通方程与曲线的直角坐标方程;(2)设点,曲线与曲线交于,求的值.【答案】(1);(2)。

【解析】(1)两式相加消去参数可得曲线的普通方程,由曲线的极坐标方程得,整理可得曲线的直角坐标方程。

(2)由(1)知曲线的方程为,且点在曲线上,所以把直线的参数方程与曲线的方程联立,利用韦达定理可得试题解析:(1)(2)将代人直角坐标方程得【考点】(1)极坐标方程、参数方程与直角坐标方程的互化;(2)直线参数方程中参数的几何意义。

3.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是是参数.(1)将曲线的极坐标方程化为直角坐标方程;(2)若直线与曲线相交于、两点,且,求直线的倾斜角的值.【答案】(1)(2)或【解析】第一问注意极坐标和直角坐标的转换,第二问注意用好公式即可,注意直线的参数方程中参数的几何意义的应用.试题解析:(1)由得,于是有,化简可得(2)将代入圆的方程得,化简得.设、两点对应的参数分别为、,则,,,,或.【考点】极坐标方程与直角坐标方程的转换,直线被曲线截得的弦长问题,直线的参数方程中参数的几何意义的应用.4.已知抛物线y2 =8x的焦点为F,直线y=k(x+2)与抛物线交于A,B两点,则直线FA与直线FB的斜率之和为A.0B.2C.-4D.4【答案】A【解析】由题可知,如图,,设,联立,化为,由于,所以,因此,直线FA与直线FB的斜率之和为;【考点】抛物线的简单性质5.若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为_______.【答案】【解析】∵圆心与点(1,0)关于直线y=x对称,∴圆心为,又∵圆C的半径为1,∴圆C的标准方程为.【考点】圆的标准方程.6.已知是圆的切线,切点为,.是圆的直径,与圆交于点,,则圆的半径.【答案】【解析】在直角三角形中,由切割线定理可得,即,解得.【考点】1.勾股定理;2.切割线定理.7.如图,双曲线的中心在坐标原点,分别是双曲线虚轴的上、下顶点,是双曲线的左顶点,为双曲线的左焦点,直线与相交于点.若双曲线的离心率为2,则的余弦值是()A.B.C.D.【答案】【解析】可设双曲线方程为,即得,,,所以直线方程为,直线方程为,又把和的直线方程联立解得,又,所以,即所以有,,则,又故答案选【考点】双曲线的简单性质.8.已知抛物线,则A.它的焦点坐标为B.它的焦点坐标为C.它的准线方程是D.它的准线方程是【答案】C【解析】将抛物线化为标准方程得,所以其焦点坐标为,准线方程为.【考点】抛物线的标准方程及几何性质.9.已知双曲线的离心率为,则的值为A.B.3C.8D.【答案】B【解析】试题分析:由题意知,,所以,解之得,故应选.【考点】1、双曲线的概念;2、双曲线的简单几何性质;10.已知抛物线:的焦点为,抛物线上的点到焦点的距离为3,椭圆:的一个焦点与抛物线的焦点重合,且离心率为.(1)求抛物线和椭圆的方程;(2)已知直线:交椭圆于、两个不同的点,若原点在以线段为直径的圆的外部,求的取值范围.【答案】(1)抛物线的方程为:;椭圆的方程为;(2)或.【解析】(1)由抛物线的定义并结合已知条件可得,,进而得出抛物线的方程;再由椭圆的一个焦点与抛物线的焦点重合,可得椭圆半焦距,即,又由椭圆的离心率为,即可联立方程组解出,的值,进而得出椭圆的方程;(2)首先设出、,然后联立直线与椭圆的方程并整理得到一元二次方程,由韦达定理可得,,以及判别式得出参数的取值范围,最后由原点在以线段为直径的圆的外部即得到关于的不等式,进而求出的取值范围.试题解析:(1)由题意可知,解得,所以抛物线的方程为:.∴抛物线的焦点,∵椭圆的一个焦点与抛物线的焦点重合,∴椭圆半焦距,.∵椭圆的离心率为,∴,解得,,∴椭圆的方程为.(2)设、,由得,∴,,由,即,解得或.①∵原点在以线段为直径的圆的外部,则,∴,解得.②由①②解得实数的范围是或.【考点】1、抛物线;2、椭圆的标准方程;3、直线与椭圆相交的综合问题.11.如图,已知椭圆()经过点,离心率,直线的方程为.(1)求椭圆的标准方程;(2)是经过椭圆右焦点的任一弦(不经过点),设直线与相交于点,记,,的斜率分别为,,,问:是否存在常数,使得?若存在,求出的值;若不存在,说明理由.【答案】(1);(2)存在常数符合题意.【解析】(1)根据点在椭圆上,可将其代入椭圆方程,又且解方程组可得的值.(2)设直线的方程为,与椭圆方程联立消去可得关于的一元二次方程,从而可得两根之和,两根之积.根据斜率公式可用表示出.从而可得的值.试题解析:解:(Ⅰ)由点在椭圆上得,,①又,所以,②由①②得,故椭圆的方程为.(Ⅱ)假设存在常数,使得,由题意可设则直线的方程为,③代入椭圆方程,并整理得,设,则有,④在方程③中,令得,,从而.又因为共线,则有,即有,所以=,⑤将④代入⑤得,又,所以,故存在常数符合题意.【考点】1椭圆的简单几何性质;2直线与椭圆的位置关系问题.12.【选修4-2:极坐标与参数方程】已知直线n的极坐标是,圆A的参数方程是(θ是参数)(1)将直线n的极坐标方程化为普通方程;(2)求圆A上的点到直线n上点距离的最小值.【答案】(1);(2).【解析】(1)利用,即可将极坐标方程化为平面直角坐标系方程;消去参数即可将圆的参数方程化为普通方程;(2)运用普通方程,并利用圆心到直线的距离减去半径即得最小值.试题解析:(1)由,展开为,化为;(2)圆A的(θ是参数)化为普通方程为,圆心,半径.∴圆心到直线n的距离.∴圆A上的点到直线n上点距离的最小值为:.【考点】(1)极坐标、参数方程化普通方程;(2)圆上点到直线距离的最值问题.13.已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)把的参数方程化为极坐标方程;(2)求与交点的极坐标().【答案】(1);(2),.【解析】(1)先得到的普通方程,进而得到极坐标方程;(2)先联立求出交点坐标,进而求出极坐标.试题解析:(1)将消去参数,化为普通方程5,即.将代入得,所以的极坐标方程为.(2)的普通方程为.由,解得或,所以与交点的极坐标分别为,.【考点】1、参数方程与普通方程的互化;2、极坐标方程与直角坐标方程的互化.14.已知双曲线的一条渐近线过点(2,),则双曲线的离心率为()A.B.C.D.【答案】B【解析】因为双曲线的方程为所以双曲线一条渐近线方程经过点可得,,解得离心率,故选D.【考点】1、双曲线的渐近线;2、双曲线的离心率.15.已知直线l经过点,倾斜角,圆C的极坐标方程为.(1)写出圆C的直角坐标方程;(2)设l与圆C相交于两点A、B,求A、B两点间的距离.【答案】(1);(2).【解析】(1)首先根据两角差的余弦公式展开,然后两边同时乘以,根据,,化简,得到圆的直角坐标方程;(2)根据定点和倾斜角写出直线的参数方程,代入圆的方程得到关于的二次方程,根据韦达定理和的几何意义,,即可求出结果.试题解析:解:(1)由得,所以,即,故圆C的直角坐标方程为.(2)直线l的参数方程为,即(t为参数),把(t为参数)代入得,设方程的两根为,,则,.故.【考点】1.极坐标方程与直角坐标方程的互化;2.弦长公式.【易错点睛】极坐标与参数方程的问题,属于基础题型,对于形如(t为参数)的参数方程,应先化为直线参数方程的标准形式后才能利用的几何意义解题.在参数方程与普通方程的互化中,必须使的取值范围保持一致.16.选修4-4:坐标系与参数方程已知直线(为参数),曲线(为参数).(1)设与相交于,两点,求;(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线的距离的最小值.【答案】(1);(2)【解析】(1)由得普通方程为,的普通方程为.联立方程组,即可求出结果;(2)的参数方程为(为参数),故点的坐标是,从而点到直线的距离,根据三角函数的性质即可求出结果.试题解析:(1)的普通方程为,的普通方程为,联立方程组,解得交点坐标为,,所以;(2)曲线(为参数).设所求的点为,则到直线的距离当时,取得最小值.【考点】1.极坐标;2.参数方程.17.若直线和直线将圆分成长度相等的四段弧,则.【答案】18【解析】由题意得直线和直线截得圆的弦所对圆周角相等,皆为直角,因此圆心到两直线距离皆为,即【考点】直线与圆位置关系18.已知椭圆:的左右焦点分别为,,离心率为,直线:,为点关于直线对称的点,若为等腰三角形,则的值为.【答案】.【解析】分析题意可知为等腰三角形可得,即点到直线距离为,∴,故填:.【考点】双曲线的标准方程及其性质.19.已知椭圆过定点,以其四个顶点为顶点的四边形的面积等于以其两个短轴端点和两个焦点为顶点的四边形面积的倍.(Ⅰ)求此椭圆的方程;(Ⅱ)若直线与椭圆交于,两点,轴上一点,使得为锐角,求实数的取值范围.【答案】(Ⅰ)椭圆的方程为;(Ⅱ)的取值范围.【解析】(Ⅰ)以四个顶点为顶点的四边形和以其两个短轴端点和两个焦点为顶点的四边形均为菱形,易求它们的对角线长,根据其面积关系可得,又再把点代入椭圆方程,可得,从而求得其方程;(Ⅱ)由为锐角,得,根据向量数量积的坐标运算可得两点坐标之间的关系,整理方程组,根据韦达定理把两根之和和两根之积代入上面的关系式,可得关于的不等式,解不等式即可求得参数的取值范围.试题解析:(Ⅰ)以椭圆四个顶点为顶点的四边形的面积,以两个短轴端点和两个焦点为顶点的四边形面积.,即.可设椭圆方程为,代入点可得.所求椭圆方程为.(Ⅱ)由为锐角,得,设,,则,,,联立椭圆方程与直线方程消去并整理得.所以,,进而求得,所以,即,解之得的取值范围【考点】待定系数法求椭圆方程及直线与椭圆位置关系的应用.【方法点睛】本题第一问主要考查了待定系数求椭圆方程,发现两个四边形的形状快速求得其面积是解答本问的突破口;第二问中,对条件“为锐角”的转化是关键,在直线与圆锥曲线的位置关系问题中,夹角为“锐角”、“钝角”、 “直角”及“点在圆外、圆内、圆上”等实际上都可以转化为向量的数量积问题,通过向量数量积的坐标运算可得直线与圆锥曲线的交点坐标之间的关系,再结合方程组和韦达定理即可建立函数、方程或不等式,这里面会考查到学生转化的数学思想,数形结合的数学思想及函数与方程的思想等,这类问题综合性较强,属于中高档题目.20. (2015秋•锦州校级期中)已知△ABC ,点A (2,8)、B (﹣4,0)、C (4,﹣6),则∠ABC 的平分线所在直线方程为 . 【答案】x ﹣7y+4=0【解析】先求出三角形ABC 是等腰直角三角形,作出∠ABC 的角平分线BD ,求出D 点坐标,BD 的斜率,再用点斜式求得所在直线方程即可.解:如图示:,∵k AB =,k BC =﹣,∴AB ⊥BC ,∵|AB|==10,|BC|==10,∴|AB|=|BC|, ∴△ABC 是等腰直角三角形, 作出∠ABC 的角平分线BD ,∴直线BD 是线段AC 的垂直平分线,D 是AC 的中点, ∴D (3,1), 由k AC =﹣7得:k BD =,∴直线BD 的方程是:y=1=(x ﹣3), 整理得:x ﹣7y+4=0, 故答案为:x ﹣7y+4=0.【考点】待定系数法求直线方程.21. 如图,分别是双曲线的左、右焦点,过的直线与的左、右两支分别交于点.若为等边三角形,则双曲线的离心率为()A.4B.C.D.【答案】B【解析】由双曲线的定义,知,.又==.又为等边三角形,所以=,即=,所以,所以,所以.在中,由余弦定理,得-=,即,所以,所以,故选B.【考点】1、双曲线的定义及几何性质;2、余弦定理.【方法点睛】离心率的求解中可以不求出的具体值,而是得出与的关系,从而求得,一般步骤如下:①根据已知条件得到齐次方程;②化简得到关于的一元二次方程;③求解的值;④根据双曲线离心率的取值范围进行取舍.22.在以坐标原点为极点,轴的正半轴为极轴建立的极坐标系中,曲线的极坐标方程为,正三角形的顶点都在上,且依逆时针次序排列,点的坐标为.(I)求点的直角坐标;(II)设是圆上的任意一点,求的取值范围.【答案】(I),;(II) .【解析】(I)先将曲线的极坐标方程化为普通方程,进而化为参数方程,再确定所求点的坐标;(II)设出点的参数坐标,化简表达式,利用三角恒等变形进行求解.试题解析:(1)由题意,得曲线的普通方程为,其参数方程为为参数,又因为点的坐标为,所以点的坐标为,即;点的坐标为,即.(2)由圆的参数方程,可设点,于是,∴的范围是.【考点】1.曲线的极坐标、普通方程、参数方程的转化;2.三角恒等变换.23.已知曲线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(为参数).(1)将曲线的极坐标方程化为直角坐标方程;(2)若直线与曲线相交于、两点,且,求直线的倾斜角的值.【答案】(1);(2)或.【解析】(1)把转化为 ,再利用,,转化为直角坐标方程;(2)将代入圆的方程化简得,.,求得,所以或.试题解析:(1)由得.∵,,,∴曲线的直角坐标方程为,即;(2)将代入圆的方程得,化简得.设两点对应的参数分别为、,则∴.∴,,或.【考点】参数方程、极坐标方程、直角坐标方程的互化及应用24.设双曲线的左、右焦点分别为,,离心率为,过的直线与双曲线的右支交于,两点,若是以为直角顶点的等腰直角三角形,则()A.B.C.D.【答案】C【解析】设,则,,,∵,∴,∴,∵为直角三角形,∴,∴,∵,∴,∴,故选C.【考点】1、双曲线的定义;2、双曲线的简单几何性质.25.已知抛物线的焦点F与双曲线的右焦点重合,抛物线的准线与轴的交点为K,点A在抛物线上且,则A点的横坐标为()A.B.3C.D.4【答案】B【解析】因为抛物线的焦点F与双曲线的右焦点重合,所以抛物线的标准方程为,,设点,则由,得,即,即,解得,即A点的横坐标为3;故选B.【考点】1.抛物线的定义;2.双曲线的定义.【技巧点睛】本题考查抛物线、双曲线的定义的应用和两点间的距离公式,属于基础题;在处理与抛物线的焦点有关的问题时,要注意利用抛物线的定义使抛物线的点到焦点的距离和到准线的距离进行相互转化,但要注意抛物线的标准方程的形式,如抛物线上的点到焦点的距离为,抛物线上的点到焦点的距离为,抛物线上的点到焦点的距离为,物线上的点到焦点的距离为.26.在平面直角坐标系中,直线的参数方程为(为参数),在以直角坐标系的原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.(1)求曲线的直角坐标方程和直线的普通方程;(2)若直线与曲线相交于两点,求的面积.【答案】(1),;(2).【解析】(1)利用极坐标与直角坐标的互化,可把极坐标方程化为普通方程;消去参数可得直线的直角坐标方程;(2)将直线的参数方程代入曲线的方程,得,由,即可求解的长度,再利用点到直线的距离公式求解的高,即可求解三角形的面积.试题解析:(1)由曲线的极坐标方程是:,得.∴由曲线的直角坐标方程是:.由直线的参数方程,得代入中消去得:,所以直线的普通方程为:(2)将直线的参数方程代入曲线的普通方程,得,设两点对应的参数分别为,所,因为原点到直线的距离,所以的面积是【考点】参数方程、极坐标方程与直角坐标方程的互化;直线参数的应用.27.如图,椭圆左、右焦点分别为,上顶点轴负半轴上有点,满足,且,若过三点的圆与直线相切.(Ⅰ)求椭圆的方程;(Ⅱ)若为椭圆上的点,且直线垂直于轴,直线与轴交于点,直线与交于点,求的面积的最大值.【答案】(Ⅰ) (Ⅱ)【解析】(Ⅰ)由题得,即的外接圆圆心为,半径,则由过三点的圆与直线相切可求得,进而得到,则椭圆的方程可求;(Ⅱ)首先证明点恒在椭圆上通过设、直线,利用三角形面积公式化简可知,通过联立直线与椭圆方程后由韦达定理、换元化简可知,,令求出的最大值进而即得结论.试题解析:(Ⅰ)由题得,即,的外接圆圆心为,半径,∵过三点的圆与直线相切,∴,解得:,∴所求椭圆方程为:.(Ⅱ)设,则,∴,与的方程分别为:.则,∵,∴点恒在椭圆上.设直线,则,记,,,令,则,∵函数在为增函数,∴当即时,函数有最小值4,即时,,又∵.故【考点】【名师】本题考查了椭圆离心率,方程的求法,以及直线与椭圆位置关系,属中档题.解题时注意设而不求思想的应用.以及基本不等式的综合应用,难点在于证明点恒在椭圆上28.以双曲线的右焦点为圆心,为半径的圆恰好与双曲线的两条渐近线相切,则该双曲线的离心率为 .【答案】【解析】由题意得【考点】双曲线渐近线29.设分别为椭圆()与双曲线()的公共焦点,它们在第一象限内交于点,,若椭圆的离心率,则双曲线的离心率的取值范围为()A.B.C.D.【答案】B【解析】设,则,又,,所以,,则,由得,又,所以,即,所以.故选B.【考点】椭圆与双曲线的性质.【名师】本题是椭圆与双曲线的综合题,解题时要注意它们性质的共同点和不同点,如离心率是相同的,准线方程是,但椭圆中有,,双曲线中有,,这在解题时要特别注意不能混淆,否则易出错.30.在直角坐标系中,直线为过点,且倾斜角为的直线,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线(1)写出直线的参数方程和曲线的直角坐标方程;(2)若直线与曲线相交于两点,且,求的长【答案】(1)直线:(为参数,其中),;(2).【解析】(1)过点,倾斜角为的直线的参数方程为,由此可写出题中直线的参数方程,利用公式,可把极坐标方程化为直角坐标方程;(2)考虑到参数方程中参数的几何意义,由于在椭圆内部,对应的参数分别为,则,因此把直线参数方程代入椭圆的直角坐标方程,整理后可得,利用可求得,从而得,而,由此可得弦长.试题解析:(1)直线:(为参数,其中),(2)把:代入,整理得,由于点在椭圆内,则恒成立,由韦达定理由于,由的几何意义知,所以,又,则所以【考点】参数方程与普通方程的互化,极坐标方程与直角坐标方程的互化.31.选修4—1:几何证明选讲如图,⊙O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交⊙O于N,过N点的切线交CA的延长线于P.(1)求证:PM2=PA·PC;(2)若⊙O的半径为,OA=OM,求:MN的长.【答案】(1)证明见解析;(2).【解析】(1)做出辅助线连接,根据切线得到直角,根据垂直得到直角,即且,根据同角的余角相等,得到角的相等关系,得到结论;(2)本题是一个求线段长度的问题,在解题时,应用相交弦定理,即,代入所给的条件,得到要求线段的长.试题解析:(1)连结,则,且为等腰三角形,则,,,.由条件,根据切割线定理,有,所以.(2),在中,.延长交⊙于点,连结.由条件易知∽,于是,即,得.所以.【考点】与圆有关的比例线段.32.、分别是椭圆:的左、右焦点,为坐标原点,是上任意一点,是线段的中点.已知的周长为,面积的最大值为.(Ⅰ)求的标准方程;(Ⅱ)过作直线交于两点,,以为邻边作平行四边形,求四边形面积的取值范围.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)连接,由椭圆定义知,是线段的中点,是线段的中点,,周长为,可得,……①又面积,可得,……②,由即可求出椭圆方程;(Ⅱ)设,,显然直线的斜率不能为0,故设直线的方程为,代入椭圆方程,整理得,,,, 9分设,则,,然后再利用基本不等式即可求出结果.试题解析:解:(Ⅰ)连接,由椭圆定义知,是线段的中点,是线段的中点,,周长为,即,……① 2分又面积,所以当时,最大,所以,……② 4分由解得,所以的标准方程为.(Ⅱ)设,,显然直线的斜率不能为0,故设直线的方程为,代入椭圆方程,整理得,,,,设,则,,因为,所以,当且仅当时,等号成立,所以,,四边形面积的取值范围.【考点】1.椭圆方程;2.直线与椭圆的位置关系.33.设是坐标原点,椭圆的左右焦点分别为,且是椭圆上不同的两点。

高中数学解析几何解答题(有答案)

高中数学解析几何解答题(有答案)

高中数学解析几何解答题(有答案)解析几何解答题1、椭圆G:的两个焦点为F1、F2,短轴两端点B1、B2,已知F1、F2、B1、B2四点共圆,且点N(0,3)到椭圆上的点最远距离为(1)求此时椭圆G的方程;(2)设斜率为k(k0)的直线m与椭圆G相交于不同的两点E、F,Q为EF的中点,问E、F两点能否关于过点P(0,)、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.解:(1)根据椭圆的几何性质,线段F1F2与线段B1B2互相垂直平分,故椭圆中心即为该四点外接圆的圆心…………………1分故该椭圆中即椭圆方程可为………3分设H(x,y)为椭圆上一点,则…………… 4分若,则有最大值…………………5分由(舍去)(或b2+3b+927,故无解)…………… 6分若…………………7分由所求椭圆方程为………………… 8分(1)设,则由两式相减得……③又直线PQ直线m直线PQ方程为将点Q()代入上式得,……④…………………11分由③④得Q()…………………12分而Q点必在椭圆内部,由此得 ,故当时,E、F两点关于点P、Q的直线对称14分2、已知双曲线的左、右顶点分别为,动直线与圆相切,且与双曲线左、右两支的交点分别为 .(Ⅰ)求的取值范围,并求的最小值;(Ⅱ)记直线的斜率为,直线的斜率为,那么,是定值吗?证明你的结论.解:(Ⅰ)与圆相切, ……①由 ,得 ,,故的取值范围为 .由于,当时,取最小值 .6分(Ⅱ)由已知可得的坐标分别为,由①,得,为定值.12分3、已知抛物线的焦点为F,点为直线与抛物线准线的交点,直线与抛物线相交于、两点,点A关于轴的对称点为D.(1)求抛物线的方程。

(2)证明:点在直线上;(3)设,求的面积。

.解:(1)设,,,的方程为.(2)将代人并整理得,从而直线的方程为,即令所以点在直线上(3)由①知,因为,故,解得所以的方程为又由①知故4、已知椭圆的中心在坐标原点,焦点在轴上,离心率为,点(2,3)、在该椭圆上,线段的中点在直线上,且三点不共线.(I)求椭圆的方程及直线的斜率;(Ⅱ)求面积的最大值.解:(I)设椭圆的方程为,则,得, .所以椭圆的方程为.…………………3分设直线AB的方程为 (依题意可知直线的斜率存在),设,则由,得,由,得,,设,易知,由OT与OP斜率相等可得,即,所以椭圆的方程为,直线AB的斜率为 (6)分(II)设直线AB的方程为,即,由得,,.………………8分点P到直线AB的距离为 .于是的面积为……………………10分设,,其中 .在区间内,,是减函数;在区间内,,是增函数.所以的最大值为 .于是的最大值为18.…………………12分5、设椭圆的焦点分别为、,直线:交轴于点,且.(Ⅰ)试求椭圆的方程;(Ⅱ)过、分别作互相垂直的两直线与椭圆分别交于、、、四点(如图所示),若四边形的面积为,求的直线方程.解:(Ⅰ)由题意, -------1分为的中点------------2分即:椭圆方程为 ------------3分(Ⅱ)当直线与轴垂直时,,此时,四边形的面积不符合题意故舍掉;------------4分同理当与轴垂直时,也有四边形的面积不符合题意故舍掉;------------5分当直线,均与轴不垂直时,设 : ,代入消去得: ------------6分设 ------------7分所以,------------8分所以,------------9分同理 ------------11分所以四边形的面积由,------------12分所以直线或或或 ---------13分6、已知抛物线P:x2=2py(p0).(Ⅰ)若抛物线上点到焦点F的距离为.(ⅰ)求抛物线的方程;(ⅱ)设抛物线的准线与y轴的交点为E,过E作抛物线的切线,求此切线方程;(Ⅱ)设过焦点F的动直线l交抛物线于A,B两点,连接,并延长分别交抛物线的准线于C,D两点,求证:以CD为直径的圆过焦点F.解:(Ⅰ)(ⅰ)由抛物线定义可知,抛物线上点到焦点F的距离与到准线距离相等,即到的距离为3;,解得.抛物线的方程为.4分(ⅱ)抛物线焦点,抛物线准线与y轴交点为,显然过点的抛物线的切线斜率存在,设为,切线方程为.由,消y得,6分,解得.7分切线方程为.8分(Ⅱ)直线的斜率显然存在,设:,设,,由消y得.且.∵ ,直线:,与联立可得,同理得.10分∵焦点,,,12分以为直径的圆过焦点.14分7、在平面直角坐标系中,设点,以线段为直径的圆经过(Ⅰ)求动点的轨迹的方程;(Ⅱ)过点的直线与轨迹交于两点,点关于轴的对称点为,试判断直线是否恒过一定点,并证明你的结论. 解:(I)由题意可得,2分所以,即 4分即,即动点的轨迹的方程为 5分(II)设直线的方程为 , ,则 .由消整理得,6分则,即 .7分.9分直线12分即所以,直线恒过定点 .13分8、已知椭圆的离心率为,且椭圆上一点与椭圆的两个焦点构成的三角形周长为.(Ⅰ)求椭圆的方程;(Ⅱ)设直线与椭圆交于两点,且以为直径的圆过椭圆的右顶点,求面积的最大值.解:(Ⅰ)因为椭圆上一点和它的两个焦点构成的三角形周所以,1分又椭圆的离心率为,即,所以,2分所以, .4分所以,椭圆的方程为 .5分(Ⅱ)方法一:不妨设的方程,则的方程为 . 由得,6分设,,因为,所以,7分同理可得,8分所以,,10分,12分设,则,13分当且仅当时取等号,所以面积的最大值为 .14分方法二:不妨设直线的方程 .由消去得,6分设,,则有,.①7分因为以为直径的圆过点,所以 .由,得 .8分将代入上式,得 .将①代入上式,解得或(舍).10分所以(此时直线经过定点,与椭圆有两个交点),所以.12分设,则 .所以当时,取得最大值 .14分9、过抛物线C: 上一点作倾斜角互补的两条直线,分别与抛物线交于A、B两点。

全国卷历年高考解析几何解答题真题归类分析(含答案)

全国卷历年高考解析几何解答题真题归类分析(含答案)

全国卷历年高考解析几何解答题真题归类分析(含答案)一、椭圆(2015年2卷)已知椭圆C:9x 2+y 2=m 2(m>0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A,B,线段AB 的中点为M.(1)证明:直线OM 的斜率与l 的斜率的乘积为定值.(2)若l 过点(,m),延长线段OM 与C 交于点P,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.分析:(1)将直线y=kx+b(k≠0,b≠0)与椭圆C:9x 2+y 2=m 2(m>0)联立,结合根与系数的关系及中点坐标公式证明.(2)由四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分求解证明. 解析】:(1)设直线l :y=kx+b(k≠0,b≠0),A(x 1,y 1),B(x 2,y 2),M(x M ,y M ). 将y=kx+b 代入9x 2+y 2=m 2得(k 2+9)x 2+2kbx+b 2-m 2=0,故92221+-=+=k kbx x x M , 992+=+=k b b k y M M .于是直线OM 的斜率kx y k M M OM 9-== 即k OM ·k=-9,所以直线OM 的斜率与l 的斜率的积是定值.(2)四边形OAPB 能为平行四边形,因为直线l 过点(,m),所以l 不过原点且与C 有两个交点的充要条件是k>0,k≠3,由(1)得OM 的方程为y=-x. 设点P 的横坐标为x p .由⎪⎩⎪⎨⎧=+-=22299m y x x k y ,得8192222+=k m k x p ,即932+±=k km x p . 将点),3(m m 的坐标代入l 的方程得3)3(k m b -=,因此)9(3)3(2+-=k k k x M 四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相评分,即P M x x =2.=,解得k k 12==因为k i >0,k i ≠3,i=1,2,所以当l 的斜率为4-或4+时,四边形OAPB 为平行四边形.(2016年1卷)设圆x 2+y 2+2x-15=0的圆心为A,直线l 过点B(1,0)且与x 轴不重合, l 交圆A 于C,D 两点,过B 作AC 的平行线交AD 于点E. (1)证明|EA|+|EB|为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M,N 两点,过B 且与l 垂直的直线与圆A 交于P,Q 两点,求四边形MPNQ 面积的取值范围.【解析】(1)圆A 整理为(x+1)2+y 2=16,点A 坐标为(-1,0),如图,∵BE ∥AC,则∠ACB=∠EBD,由|AC|=|AD|,则∠ADC=∠ACD,∴∠EBD=∠EDB,则|EB|=|ED|, ∴|AE|+|EB|=|AE|+|ED|=|AD|=4.所以E 的轨迹为一个椭圆,方程为2x 4+2y 3=1(y≠0);(2)C 1: 2x 4 +2y 3=1;设l :x=my+1,因为PQ ⊥l ,设PQ:y=-m(x-1),联立l 与椭圆C 1,22x my 1,x y 1,43⎧=+⎪⎨+=⎪⎩得(3m 2+4)y 2+6my-9=0; 则|MN|=M -y N |==()2212m13m 4++;圆心A 到PQ 距离d==,所以=,∴S MPNQ =12|MN|·|PQ|=12·()2212m 13m 4+⋅+=24[12,8).(2016年2卷)已知椭圆E :2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA. (I )当4t =,AM AN =时,求△AMN 的面积; (II )当2AM AN =时,求k 的取值范围.【解析】 ⑴当4t =时,椭圆E 的方程为22143x y +=,A 点坐标为()20-,,则直线AM 的方程为()2y k x =+.联立()221432x y y k x ⎧+=⎪⎨⎪=+⎩并整理得,()2222341616120k x k x k +++-=解得2x =-或228634k x k -=-+21234k + 因为AM AN ⊥,所以21212413341AN k kk ==⋅⎛⎫++⋅- ⎪⎝⎭因为AM AN =,0k >212124343k k k=++, 整理得()()21440k k k --+=,2440k k -+=无实根,所以1k =.所以AMN △的面积为221112144223449AM⎫==⎪+⎭. ⑵直线AM的方程为(y k x =+,联立(2213x y t y k x ⎧+=⎪⎨⎪=⎩并整理得, ()222223230tk x x t k t +++-=,解得x =或x =所以AM =,所以AN =因为2AM AN =,所以2=,整理得,23632k k t k -=-. 因为椭圆E 的焦点在x 轴,所以3t >,即236332k k k ->-,整理得()()231202k k k +-<-2k <<.(2017年1卷)已知椭圆()2222:=10x y C a b a b +>>,四点()111P ,,()201P ,,3–1P ⎛ ⎝⎭,41P ⎛ ⎝⎭中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过点2P 且与C 相交于A ,B 两点.若直线2P A 与直线2P B 的斜率的和为–1,求证:l 过定点.解析:(1)根据椭圆对称性,必过3P ,4P ,又4P 横坐标为1,椭圆必不过1P ,所以过234P P P ,,三点.将()23011P P ⎛- ⎝⎭,,代入椭圆方程得222113141b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得24a =, 21b =,所以椭圆C 的方程为2214x y +=.(2)①当斜率不存在时,设()():A A l x m A m y B m y =-,,,,, 221121A A P A P B y y k k m m m----+=+==-,得2m =,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设()1l y kx b b =+≠∶,()()1122A x y B x y ,,,,联立22440y kx bx y =+⎧⎨+-=⎩, 消去y 整理得()222148440k x kbx b +++-=,122814kb x x k -+=+,21224414b x x k -⋅=+, 则22121211P A P By y k k x x --+=+()()21212112x kx b x x kx b x x x +-++-=22228888144414kb k kb kbk b k --++==-+ ()()()811411k b b b -=-+-,又1b ≠21b k ⇒=--,此时64k ∆=-,存在k 使得0∆>成立.所以直线l 的方程为21y kx k =--.当2x =时,1y =-,所以l 过定点()21-,.(2017年2卷)设O 为坐标原点,动点M 在椭圆22:12x C y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.求证:过点P 且垂直于OQ 的直线l 过C 的左焦点F .解析:(1)设点()P x y ,,易知(0)N x ,,(0)NP y =,,又0NM NP ⎛== ⎝,所以点M x y ⎛⎫ ⎪⎝⎭.又M 在椭圆C上,所以2212x +=,即222x y +=. (2)由题知()1,0F -,设()3,Q t -,(),P m n ,则()3,OQ t =-,()1,PF m n =---,33OQ PF m tn ⋅=+-,(),OP m n =,()3,PQ m t n =---,由1O P P Q ⋅=,得2231m m tn n --+-=.又由(1)知222m n +=,所以330m tn +-=,从而0OQ PF ⋅=,即OQ PF ⊥.又过点P 存在唯一直线的垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过曲线C 的左焦点()1,0F -. 二、抛物线(2015年1卷)在直角坐标系xoy 中,曲线C :y=24x 与直线y kx a =+(a >0)交与M,N两点,(Ⅰ)当k=0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM=∠OPN ?说明理由.分析:(Ⅰ)先求出M,N 的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而不求思想即将y kx a =+代入曲线C 的方程整理成关于x 的一元二次方程,设出M,N 的坐标和P 点坐标,利用设而不求思想,将直线PM ,PN 的斜率之和用a 表示出来,利用直线PM ,PN 的斜率为0,即可求出,a b 关系,从而找出适合条件的P 点坐标.解析:(Ⅰ)由题设可得)M a,()N a -,或()M a -,)N a .∵12y x '=,故24x y =在x=C在,)a 处的切线方程为y a x --0y a --=.故24x y =在x=-处的到数值为C在(,)a -处的切线方程为y a x -=+0y a ++=.0y a --=0y a ++=. (Ⅱ)存在符合题意的点,证明如下:设P (0,b )为复合题意得点,11(,)M x y ,22(,)N x y ,直线PM ,PN 的斜率分别为12,k k .将y kx a =+代入C 得方程整理得2440x kx a --=.∴12124,4x x k x x a +==-.∴121212y b y b k k x x --+=+=1212122()()kx x a b x x x x +-+=()k a b a +. 当b a =-时,有12k k +=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM=∠OPN ,所以(0,)P a -符合题意.(2016年3卷)已知抛物线C:y 2=2x 的焦点为F,平行于x 轴的两条直线l 1,l 2分别交C 于A,B 两点,交C 的准线于P,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.【解析】(1)由题意可知F 1,02⎛⎫⎪⎝⎭,设l 1:y=a,l 2:y=b 且ab≠0,A 2a ,a 2⎛⎫ ⎪⎝⎭,B 2b ,b 2⎛⎫ ⎪⎝⎭P 1,a 2⎛⎫-⎪⎝⎭,Q 1,b 2⎛⎫- ⎪⎝⎭,R 1a b ,22⎛⎫+- ⎪⎝⎭,记过A,B 两点的直线方程为l,由点A,B 可得直线方程为2x-(a+b)y+ab=0,因为点F 在线段AB 上,所以ab+1=0,记直线AR 的斜率为k 1,直线FQ 的斜率为k 2,所以k 1=2a b1a -+,k 2=b 1122--=-b,又因为ab+1=0, 所以k 1=22a b a b 1aba a 1a a abb ---====-+-,所以k 1=k 2,即AR ∥FQ. (2)设直线AB 与x 轴的交点为D ()1x ,0,所以S △ABF =1111a b FD a b x 222-=--, 又S △PQF =a b 2-,所以由题意可得S △PQF =2S △ABF 即:a b 2- =2×12·11x 2a b ⋅--,解得x 1=0(舍)或x 1=1.设满足条件的AB 的中点为E(x,y). 当AB 与x 轴不垂直时,由k AB =k DE 可得2ya b x 1=+-(x≠1).而21a b y=+,所以y 2=x-1(x≠1).当AB 与x 轴垂直时,E 与D 重合,所以,所求轨迹方程为y 2=x-1.(2017年3卷)已知抛物线22C y x =:,过点()20,的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆.(1)求证:坐标原点O 在圆M 上;(2)设圆M 过点()42P -,,求直线l 与圆M 的方程.解析:(1)显然当直线斜率为0时,直线与抛物线交于一点,不符合题意.设:2l x my =+,11(,)A x y ,22(,)B x y ,联立222y xx my ⎧=⎨=+⎩,得2240y my --=,2416m ∆=+恒大于0,122y y m +=,124y y =-. ⋅1212OA OB x x y y ⋅=+u u r u u u r 1212(2)(2)my my y y =+++21212(1)2()4m y y m y y =++++= 24(1)2240m m m -++⋅+=,所以⊥,即点O 在圆M 上.(2)若圆M 过点P ,则⋅,即1212(4)(4)(2)(2)0x x y y --+++=,即1212(2)(2)(2)(2)0my my y y --+++=,即21212(1)(22)()80m y y m y y +--++=,化简得2210m m --=,解得12m =-或1.①当12m =-时,:240l x y +-=,设圆心为00(,)Q x y ,则120122y y y +==-,0019224x y =-+=,半径||r OQ =,则圆229185:4216M x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭. ②当1m =时,:20l x y --=,设圆心为00(,)Q x y ,12012y y y +==,0023x y =+=,半径r OQ =22:(3)(1)10M x y -+-=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档