二次根式单元测试题经典3套
(完整版)二次根式经典单元测试题(含答案)
d for some o 24.计算题:
go (1)
;
g are (2)
.
in
ir be 25.计算:( ﹣ )2 the
in 26.计算:
.
ll things
A 27.计算:12
.
d
time an 28.(2010•鄂尔多斯)(1)计算﹣22+
﹣( )﹣1×(π﹣ )0;
y one thing at a (2)先化简,再求值:
go A.
B.(﹣3)﹣2=﹣
C.a0=1
D.3 D.
are 4.(2011•泸州)设实数 a,b 在数轴上对应的位置如图所示,化简 g 是( )
的结果
10.(2002•鄂州)若 x<0,且常数 m 满足条件
,则化简
所得的结果是( )
A.x
B.﹣x
二.填空题(共 12 小题)
11.(2013•盘锦)若式子
d 14.计算: 12 27 18
; (3 48 4 27 2 3)
。
ir being are goo 选择题(共 10 小题) e 1.B 2.D 3.A 4.D 5.A
th 11. x≥﹣1 且 x≠0 .
in 12. x≤2 且 x≠1 . s 13. 1 . ing 14. n= 3 .
b
A.a,b 均为非负数 C.a≥0,b>0
B.a,b 同号
D. a 0 b
g and S 5.已知 a<b,化简二次根式 a3b 的正确结果是( )
thin A. a ab
B. a ab
me C.a ab
D. a ab
r so 6.把 m 1 根号外的因式移到根号内,得( ) fo m
(完整版)二次根式单元测试题
二次根式单元测试题班级:姓名: 成绩:一、选择题〔每题 3 分,共 30 分〕1.假设 3 m 为二次根式,那么 m 的取值为〔 〕A .m ≤ 3B .m <3C .m ≥ 3D .m > 32.假设式子x 2有意义,那么 x 的取值范围是〔 〕x 3A 、x ≥2B 、x ≠3C 、x >2 且 x ≠3D 、 x ≥ 2 且 x ≠3 3.假设8 n 是整数,那么正整数 n 的最大值是〔〕A 、4 B、 6 C、7D 、84.化简二次根式 ( 5) 2 3 得〔〕A . 53B .5 3C . 53D .305.以下二次根式中,最简二次根式是〔 〕A . 3a2B .1 C . 153D . 14336.计算:a ab1 等于〔 〕babA .1abB .1abC . ab 2ab7.化简:x 2 y xy =〔〕x1abD . b abbA 、xyB 、yC 、xD 、 x y8.直角三角形的两直角边长分别是 4 和 6,那么其斜边长是〔〕A 、4B 、6C 、10D 、2 139.以下各式与 3 不是同类二次根式的是〔 〕A 、 12B 、 27C 、 8D 、751二、填空题〔每题 3 分,共 30 分〕11.当 x___________时,34x 在实数范围内有意义.12.计算:①(3)2=;② ( 25)2=13.比较大小: 3 2 ______ 2 3.14.化简:① 11721082=;② (96150)6 =15.在实数范围内分解因式x2 5 =16.当 x时,2x1212x17.要切一块面积为 6400 cm2的正方形大理石地板砖,那么它的边长要切成㎝18.:x2x y 20,那么 x2xy19.若是x225 ,那么 x;若是 x 3 29 ,那么 xv 220.:在公式中g v为速度,那么vr三、解答题〔共60 分〕21.化简〔每题 4 分,共 8 分〕〔 1〕 ( 144) ( 169)〔2〕m2 n18 22.计算:〔每题 4 分,共 16 分〕〔1〕12838414.〔2〕112213.22335〔3〕45458 4 2〔4〕(56)( 56)23.假设最简二次根式222 与n212是同类二次根式,求m、n 的值.〔 7 分〕33m4m 1024.化简求值:x22x x,其中 x 3 2〔7分〕x 1 1 x x125.假设二次根式2x 3 和x 1 都有意义,求x 的取值范围〔 7 分〕26.实数a, b在数轴上的对应点以以下图,化简:(a b) 2a2〔7分〕27. Rt△ABC 中,∠ ACB=90 °, AC= 2 2,BC=10 ,求AB上的高CD的长〔8 分〕CB D A。
《二次根式》单元测试题含答案
《二次根式》单元测试题含答案work Information Technology Company.2020YEAR《二次根式》单元测试题(一)判断题:(每小题1分,共5分)1.ab 2)2(-=-2ab .…………………( )【提示】2)2(-=|-2|=2.【答案】×. 2.3-2的倒数是3+2.( )【提示】231-=4323-+=-(3+2).【答案】×.3.2)1(-x =2)1(-x .…( )【提示】2)1(-x =|x -1|,2)1(-x =x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×. 4.ab 、31b a 3、b a x 2-是同类二次根式.…( )【提示】31b a 3、bax 2-化成最简二次根式后再判断.【答案】√. 5.x 8,31,29x +都不是最简二次根式.( )29x +是最简二次根式.【答案】×.(二)填空题:(每小题2分,共20分) 6.当x __________时,式子31-x 有意义.【提示】x 何时有意义?x ≥0.分式何时有意义?分母不等于零.【答案】x ≥0且x ≠9. 7.化简-81527102÷31225a =_.【答案】-2a a .【点评】注意除法法则和积的算术平方根性质的运用.8.a -12-a 的有理化因式是____________.【提示】(a -12-a )(________)=a 2-22)1(-a .a +12-a .【答案】a +12-a .9.当1<x <4时,|x -4|+122+-x x =________________.【提示】x 2-2x +1=( )2,x -1.当1<x <4时,x -4,x -1是正数还是负数?x -4是负数,x -1是正数.【答案】3.10.方程2(x -1)=x +1的解是____________.【提示】把方程整理成ax =b 的形式后,a 、b 分别是多少?12-,12+.【答案】x =3+22.11.已知a 、b 、c 为正数,d 为负数,化简2222dc abd c ab +-=______.【提示】22d c =|cd |=-cd .【答案】ab +cd .【点评】∵ ab =2)(ab (ab >0),∴ ab -c 2d 2=(cd ab +)(cd ab -). 12.比较大小:-721_________-341.【提示】27=28,43=48.【答案】<.【点评】先比较28,48的大小,再比较281,481的大小,最后比较-281与-481的大小. 13.化简:(7-52)2000·(-7-52)2001=______________. 【提示】(-7-52)2001=(-7-52)2000·(_________)[-7-52.](7-52)·(-7-52)=?[1.]【答案】-7-52. 【点评】注意在化简过程中运用幂的运算法则和平方差公式. 14.若1+x +3-y =0,则(x -1)2+(y +3)2=____________.【答案】40.【点评】1+x ≥0,3-y ≥0.当1+x +3-y =0时,x +1=0,y -3=0.15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________.【提示】∵ 3<11<4,∴ _______<8-11<__________.[4,5].由于8-11介于4与5之间,则其整数部分x =?小数部分y =?[x =4,y =4-11]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题3分,共15分)16.已知233x x +=-x 3+x ,则………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤0【答案】D .【点评】本题考查积的算术平方根性质成立的条件,(A )、(C )不正确是因为只考虑了其中一个算术平方根的意义.17.若x <y <0,则222y xy x +-+222y xy x ++=………………………( )(A )2x (B )2y (C )-2x (D )-2y 【提示】∵ x <y <0,∴ x -y <0,x +y <0. ∴222y xy x +-=2)(y x -=|x -y |=y -x .222y xy x ++=2)(y x +=|x +y |=-x -y .【答案】C .【点评】本题考查二次根式的性质2a =|a |. 18.若0<x <1,则4)1(2+-xx -4)1(2-+xx 等于………………………( )(A )x2 (B )-x2 (C )-2x (D )2x【提示】(x -x 1)2+4=(x +x 1)2,(x +x 1)2-4=(x -x1)2.又∵0<x <1,∴ x +x 1>0,x -x1<0.【答案】D .【点评】本题考查完全平方公式和二次根式的性质.(A )不正确是因为用性质时没有注意当0<x <1时,x -x1<0.19.化简aa 3-(a <0)得………………………………………………………………( )(A )a - (B )-a (C )-a - (D )a【提示】3a -=2a a ⋅-=a -·2a =|a |a -=-a a -.【答案】C .20.当a <0,b <0时,-a +2ab -b 可变形为………………………………………( )(A )2)(b a + (B )-2)(b a - (C )2)(b a -+- (D )2)(b a ---【提示】∵ a <0,b <0,∴ -a >0,-b >0.并且-a =2)(a -,-b =2)(b -,ab =))((b a --.【答案】C .【点评】本题考查逆向运用公式2)(a =a (a ≥0)和完全平方公式.注意(A )、(B )不正确是因为a <0,b <0时,a 、b 都没有意义.(四)在实数范围内因式分解:(每小题3分,共6分)21.9x 2-5y 2;【提示】用平方差公式分解,并注意到5y 2=2)5(y .【答案】(3x +5y )(3x -5y ).22.4x 4-4x 2+1.【提示】先用完全平方公式,再用平方差公式分解.【答案】(2x +1)2(2x -1)2. (五)计算题:(每小题6分,共24分) 23.(235+-)(235--);【提示】将35-看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=(35-)2-2)2(=5-215+3-2=6-215. 24.1145--7114--732+;【提示】先分别分母有理化,再合并同类二次根式. 【解】原式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7=1.25.(a 2m n -mab mn +m nn m )÷a 2b 2mn ; 【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式. 【解】原式=(a 2m n -mab mn +m nn m )·221b a nm=21bn m m n ⋅-mab 1n m mn ⋅+22b ma n n m n m ⋅ =21b-ab 1+221b a =2221b a ab a +-. 26.(a +ba abb +-)÷(b ab a ++a ab b --ab b a +)(a ≠b ).【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分. 【解】原式=ba abb ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+--=b a ba ++÷))((2222b a b a ab b a b ab b ab a a -++----=b a b a ++·)())((b a ab b a b a ab +-+-=-b a +. 【点评】本题如果先分母有理化,那么计算较烦琐.(六)求值:(每小题7分,共14分)27.已知x =2323-+,y =2323+-,求32234232y x y x y x xy x ++-的值. 【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值. 【解】∵ x =2323-+=2)23(+=5+26, y =2323+-=2)23(-=5-26.∴ x +y =10,x -y =46,xy =52-(26)2=1.32234232yx y x y x xy x ++-=22)())((y x y x y x y x x +-+=)(y x xy y x +-=10164⨯=652. 【点评】本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷. 28.当x =1-2时,求2222a x x a x x+-++222222a x x x a x x +-+-+221a x +的值.【提示】注意:x 2+a 2=222)(a x +,∴ x 2+a 2-x 22a x +=22a x +(22a x +-x ),x 2-x 22a x +=-x (22a x +-x ). 【解】原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)()()2(22222222222x a x a x x x a x x a x x a x x -++-+++-+-=)()(22222222222222x a x a x x x a x x a x a x x x-++-+++++-=)()(222222222x a x a x x a x x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++=x 1.当x =1-2时,原式=211-=-1-2.【点评】本题如果将前两个“分式”分拆成两个“分式”之差,那么化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)11(2222a x x a x +--+-)11(22x x a x --++221a x +=x1.七、解答题:(每小题8分,共16分) 29.计算(25+1)(211++321++431++…+100991+).【提示】先将每个部分分母有理化后,再计算. 【解】原式=(25+1)(1212--+2323--+3434--+…+9910099100--)=(25+1)[(12-)+(23-)+(34-)+…+(99100-)]=(25+1)(1100-) =9(25+1).【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法. 30.若x ,y 为实数,且y =x 41-+14-x +21.求xy y x ++2-xyy x +-2的值. 【提示】要使y 有意义,必须满足什么条件?].014041[⎩⎨⎧≥-≥-x x 你能求出x ,y 的值吗?].2141[⎪⎪⎩⎪⎪⎨⎧==y x【解】要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x ∴ x =41.当x =41时,y =21.又∵xy y x ++2-xy y x +-2=2)(xy y x+-2)(xy y x -=|xy yx +|-|xyy x -|∵ x =41,y =21,∴y x <xy . ∴ 原式=x y y x +-y x x y +=2yx 当x =41,y =21时,原式=22141=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.。
二次根式经典单元测试题(含答案)
一.选择题(共 10 小题)
1.(2013•宜昌)若式子
在实数范围内有意义,则 x 的取值范围是( )
A.x=1
B.x≥1
C.x>1
D.x<1
2.(2013•宜宾)二次根式
的值是( )
A.﹣3
B.3 或﹣3
C.9
3.(2013•新疆)下列各式计算正确的是( )
A.
,其中 x=2﹣ .
30.(2012•绵阳)(1)计算:(π﹣2)0﹣|
+ |×(﹣ );
(2)化简:(1+ )+(2x﹣ )
1.下列说法正确的是( )
A.若 a 2 a ,则 a<0
B. 若 a 2 a,则a 0
C. a 4b8 a 2b 4
D. 5 的平方根是 5
m 1
2.二次根式 3 2(m 3) 的值是( )
= 2+ .
22.(2011•威海)计算
的结果是 3 .
三.解答题(共 8 小题)
23.(2003•海南)先化简,后求值:(x+1)2﹣x(x+2y)﹣2x,其中
x= +1,y= ﹣1.
1﹣2xy=﹣3
24.计算题:
解:(1)原式=2×2 × × =3× = ;
(2)原式=(2 )2﹣( )2=12﹣5=7. 25.计算:( ﹣ )2=5﹣2 .
A. 3 2
B. 2 3
C. 2 2
D.0
3.化简| x y | x 2 (x y 0) 的结果是( )
A. y 2x
B. y
C. 2x y
D. y
a
4.若 是二次根式,则 a,b 应满足的条件是( )
《二次根式》单元测试卷3套(含答案解析)
(2)(4 分) 5 6 3 5 6 3
22.(1)(6 分) x y y x x y (x≥0,y≥0);
(2)(6 分)(a-b) 1 b a a2 2ab b2 (b>a).
ba
23.(6 分)已知 a=
2
-1,求
2a a 1
1
a
a
a
的值.
24.(8 分)已知
A. 2 3 -1
B.1+ 3
C.2+ 3
D.2 3 -1
7.已知两条线段的长分别为 3 cm、 5 cm,那么能与它们组成直角三角形的第三条线段
的长是 ( )
A. 2 cm
B.2 2 cm
C. 2 cm 或 2 2 cm D. 15 cm
二、填空题(每题 3 分,共 21 分)
8.当 x 满足_______时, 2x 4 4 x 在实数范围内有意义.
3.计算 8 2 的结果是 ( )
A.6
B. 6
C.2
D. 2
4.下列四个数中,与 11 最接近的数是 ( )
A.2
B.3
C.4
5.若 a、b 为实数,且满足 a 2 b2 0 ,则 b-a 的值为
A.2
B.0
C.-2
D.5 ()
D.以上都不对
6.如图,数轴上 A、B 两点对应的实数分别是 1 和 3 ,若点 A 关于点 B 的对称点为点 C, 则点 C 所对应的实数为 ( )
1 x=
2
,求
1 x
1 x x2 2x 1
x 1 x 12 x 12
的值.
25.(8 分)已知实数 x,y,a 满足: x y 8 8 x y 3x y a x 2y a 3 ,
二次根式单元测试题(卷)经典3套
二次根式单元测试题(卷)经典3套二次根式单元测试题一一、填空题(每题2分,共20分)1、当a=0时,有意义1-a=12、计算:(-3/2)^2=9/432)^2=10241-1/2)×(1+1/2)=3/43、计算:(1)×(-27)=-272)8a^3b^2c=8abc^2×a^2b4、计算:(a>0,b>0,c>0)5、计算:(1)=1/42)=3a/86、如果xy>0,化简-xy^2=-y^2x7、32+42=25,332+442=221,3332+4442= 则33×(32+44)×(42+25)=8、(2-1)2005×(2+1)2006=3×(3^2005)9、观察以下各式:1=2-1。
1/2=3-2。
1/3=4-3利用以上规律计算:1+1/2+1/3+…+1/2007)/[(2+1)+(3+2)+(4+3)+…+(2006+2005 )]=2007/401310、已知x=3+√2,y=3-√2,则(y/x+1)/(x/y+1)=1二、选择题(每题3分,共30分)11、若2x+3有意义,则x≤-3或x≥212、化简(2-a)^2+a^-2的结果是4+2a13、能使等式x/(x-3)=x/x成立的条件是x≠0且x≠314、下列各式中,是最简二次根式的是y/215、已知x+1/x=5那么x-1/x的值是2或-216、如果a^2-2ab+b^2=-1,则a≠b17、已知xy>0,化简二次根式√(x-y^2/x^2)的正确结果为(y/|x|)√(x-y^2)18、如图,Rt△AMC中,∠C=90°,∠AMC=30°,AM∥BN,MN=23cm,XXX=1cm,则AC的长度为3cm。
19、下列说法正确的个数是()①2的平方根是同类二次根式;②2-1与2+1互为倒数;③2^3/2与(2/3)^-2互为倒数;④3√2是同类三次根式。
(完整word版)二次根式单元测试题经典3套
二次根式单元测试题一一、 填空题(每题2分,共20分)1、当a 时, 有意义2、计算:3、计算:4、计算: (a 〉0,b >0,c >0)5、计算: = =6、7、 则 2006个3 2006个4 8、 9、观察以下各式:利用以上规律计算:10、已知 二、 选择题(每题3分,共30分) 11、若32+x 有意义,则 ( )A 、B 、C 、D 、12、化简 的结果是 ( )A 、0B 、2a -4C 、4D 、4-2a13、能使等式 成立的条件是 ( ) A 、x ≥0 B 、x ≥3 C 、x >3 D 、x >3或x <0 14、下列各式中,是最简二次根式的是 ( )A 、x 8B 、b a 25C 、2294b a +D 、 15、已知 ,那么 的值是 ( ) A 、1 B 、-1 C 、±1 D 、416、如果 ,则a 和b 的关系是 ( ) A 、a ≤b B 、a 〈b C 、a ≥b D 、a >b17、已知xy >0,化简二次根式 的正确结果为 ( ) A 、 B 、 C 、 D 、 18、如图,Rt △AMC 中,∠C=90°,∠AMC=30°,AM ∥BN,MN=2 cm , BC=1cm ,则AC 的长度为 ( ) A 、23cm B 、3cm C 、3.2cm D 、 19、下列说法正确的个数是 ( )①2的平方根是 ;② 是同类二次根式; ③ 互为倒数;④A 、1B 、2C 、3D 、4()=-231)(a-1()=2232)(=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛--2511)(==-⨯)()(27311=73)1(8=->2,0xy xy 化简如果=+=+=+222222444333443343,,=+22444333 =+-20062005)12()12(343412323112121-=+-=+-=+,,()=+⎪⎭⎫ ⎝⎛++++++++12006200520061341231121 =⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛+-=+=x y y x 11111313,则,23-≥x 23-≤x 32-≥x 32-≤x 2)2(2-+-a a 33-=-x xx x 2y51=+x x xx 1-12122-=+-⋅-b ab a ba 2x y x -y y -y -y --3M ANBC cm 323a a 2.05与21212+-与3223--的绝对值是20、下列四个算式,其中一定成立的是 ( )① ; ② ; ③④ A 、①②③④ B 、①②③ C 、①③ D 、① 三、解答题(共70分)21、求 有意义的条件(5分) 22、已知 求3x +4y 的值(5分)23、化简625①- ②627- (共8分)24、在实数范围内将下列各式因式分解(3+3+3+4=13分)① ② ③ ④25、已知实数a 满足 ,求a -20052的值 (5分)26、(共6分)设长方形的长与宽分别为a 、b ,面积为S①已知 ;②已知S= cm 2,b = cm,求 a27、(共8分)①已知 ; ②已知x =求x 2—4x -6的值28、已知Rt △ABC 中,∠ACB=90°,AC=22cm ,BC=10cm,求AB 上的高CD 长度(5分)29、计算: (5分) 11222+=+a a )(a a =2)(0>⋅=ab b a ab 11)1)(1(-⋅+=-+x x x x 11+-x x 214422-+-+-=x x x y 3322+-x x 752-x 44-x 44+x a a a =-+-200620057250S cm b cm a ,求,1022==11322+--=x x x ,求102-C AB D()()()()121123131302-+-+---+30、已知 ,求① ;② 的值(10分)数学二次根式测试题二第Ⅰ卷一、单项选择题(每小题3分,共30分)1。
二次根式单元测试题及答案
二次根式单元测试题及答案题目1. 化简下列根式:$\sqrt{12}$答案:$\sqrt{12} = \sqrt{4 \cdot 3}=2\sqrt{3}$题目2. 计算下列各根式的值并化简:$\sqrt{9}+\sqrt{16}$答案:$\sqrt{9}+\sqrt{16} = 3+4=7$题目3. 计算下列各根式的值:$\sqrt{25} - \sqrt{9}$答案:$\sqrt{25} - \sqrt{9} = 5 - 3 = 2$题目4. 计算下列各根式的值:$2\sqrt{8} - 3\sqrt{18}$答案:$2\sqrt{8} - 3\sqrt{18} = 2\sqrt{4 \cdot 2} - 3\sqrt{9 \cdot 2} \\ = 2 \cdot 2\sqrt{2} - 3 \cdot 3\sqrt{2} \\= 4\sqrt{2} - 9\sqrt{2} \\= -5\sqrt{2}$题目5. 求下列各根式的值:$(\sqrt{5}+2)^2$答案:$(\sqrt{5}+2)^2 = (\sqrt{5}+2)(\sqrt{5}+2) \\= 5 + 2\sqrt{5} + 2\sqrt{5} + 4 \\= 9 + 4\sqrt{5}$题目6. 将下列各根式化为最简根式:$\sqrt{72}$答案:$\sqrt{72} = \sqrt{36 \cdot 2} = \sqrt{6^2 \cdot 2} \\= 6\sqrt{2}$题目7. 将下列各根式化为最简根式:$2\sqrt{50}$答案:$2\sqrt{50} = 2 \cdot \sqrt{25 \cdot 2} = 2 \cdot 5\sqrt{2} \\ = 10\sqrt{2}$题目8. 将下列各根式化为最简根式:$3\sqrt{27}$答案:$3\sqrt{27} = 3\sqrt{9 \cdot 3} = 3 \cdot 3\sqrt{3} \\= 9\sqrt{3}$题目9. 求解下列方程:$x^2 - 4 = 0$答案:$x^2 - 4 = 0 \\(x - 2)(x + 2) = 0 \\x - 2 = 0 \quad \text{或} \quad x + 2 = 0 \\x = 2 \quad \text{或} \quad x = -2$题目10. 求解下列方程:$2x^2 - 16 = 0$答案:$2x^2 - 16 = 0 \\2(x^2 - 8) = 0 \\x^2 - 8 = 0 \\(x - \sqrt{8})(x + \sqrt{8}) = 0 \\x - \sqrt{8} = 0 \quad \text{或} \quad x + \sqrt{8} = 0 \\x = \sqrt{8} \quad \text{或} \quad x = -\sqrt{8} \\x = 2\sqrt{2} \quad \text{或} \quad x = -2\sqrt{2}$题目11. 求解下列方程:$x^2 + 5x + 6 = 0$答案:$x^2 + 5x + 6 = 0 \\(x + 2)(x + 3) = 0 \\x + 2 = 0 \quad \text{或} \quad x + 3 = 0 \\x = -2 \quad \text{或} \quad x = -3$题目12. 求解下列方程:$2x^2 + 7x + 3 = 0$答案:$2x^2 + 7x + 3 = 0 \\(2x + 1)(x + 3) = 0 \\2x + 1 = 0 \quad \text{或} \quad x + 3 = 0 \\x = -\frac{1}{2} \quad \text{或} \quad x = -3$题目13. 解方程组:$$\begin{cases}x^2 + y^2 = 25 \\x + y = 7\end{cases}$$答案:将第二个方程展开得到 $y = 7-x$,代入第一个方程得到:$$x^2 + (7-x)^2 = 25 \\x^2 + 49 - 14x + x^2 = 25 \\2x^2 - 14x + 24 = 0 \\x^2 - 7x + 12 = 0 \\(x - 3)(x - 4) = 0 \\x - 3 = 0 \quad \text{或} \quad x - 4 = 0 \\x = 3 \quad \text{或} \quad x = 4$$代入第二个方程可得:当 $x = 3$ 时,$y = 7 - 3 = 4$;当 $x = 4$ 时,$y = 7 - 4 = 3$。
【3套试卷】人教版数学八年级下第16章二次根式单元考试题(有答案)
人教版数学八年级下第16章二次根式单元考试题(有答案)人教版八年级数学下册第十六章二次根式单元检测卷总分:150分,时间:120分钟;姓名:;成绩:;一、选择题(4分×12=48分)1、下列二次根式是最简二次根式的是()C.B.2)A. B.C.3a能够取的值是()A. 0B. 1C. 2D.34有意义的条件是()A.x≥1B.x≤1C.x≠1D.x<15、若135a是整数,则a的最小正整数值是( )A.15 B.45 C.60 D.1356、则实数x的取值范围在数轴上的表示正确的是( )=-)7aA. -B.C. -D.8、已知(5m=n,如果n是整数,则m可能是()A. 5 C. 9、下列计算正确的是( )A. 4B. 1C. 3 210、若a 、b 、c ) A. 2a -2c B. -2c C. 2b D.2a11、已知a ,b a 、b ,则下列表示正确的是( ) A. 0.3ab B. 3ab C. 0.1ab D.0.9ab12、定义:m Δn =(m+n )2,m ※n =mn -2,则[(]Δ)的值是( )C. 5二、填空题(4分×6=24分)13= ;14、已知矩形的长为cm cm ,则矩形的面积为 ;15、当a = 时,16、已知a =,b =,则a 2b+ab 2= ;171x =成立的条件是 ;1822510b b +=,则a+b 的平方根是 ;三、22a 10分×2=20分)19、计算(1)21+( (2)2019+(-1)20、计算:(1)220,0)a a b >>(2)2(0,0)a a b m n ÷>>四、解答题(9分×4=36分)21、用四张一样大小的长方形纸片拼成一个正方形ABCD ,如图所示,它的面积是75,AE=22、化简求值:2(2)(2)(2)(43)a b a b a b b a b +-+--+,其中a 1,b ;23、观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式:121212)12)(12()12(1121-=--=-+-⨯=+ 232323)23)(23()23(1231-=--=-+-⨯=+同理可得:32321-=+从计算结果中找出规律,并利用这一规律计算.......1)的值24、已知a,b,c在数轴上如图所示,化简:+b c五、解答题(10分+12分=22分)25、现有一组有规律的数:1,-1,2,-2,3,-3,1,-1,2,-2,3,-3,…,其中1,-1,2,-2,3,-3这6个数按此规律重复出现.(1)第50个数是什么数?(2)把从第1个数开始的前2018个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方相加,如果和为520,那么一共是多少个数的平方相加?26、小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+()2.善于思考的小明进行了以下探索:设=()2(其中a、b、m、n均为整数),则有=m2+2n2∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若=()2,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若)2,且a 、m 、n 均为正整数,求a 的值?2019年春人教版数学八年级下第16章二次根式单元考试题答案一、选择题CDBDA CABDA AB 二、填空题13、1; 14、2; 15、6; 16、6; 17、x ≥-1; 18、±3三、解答题 19、计算:(1)5; (2)0;20、(1)12a 3b 2;(2)2221a ab a b -+;四、解答题21、22、; 23、2017; 24、-a 五、解答题25、(1)第50个数是-1.(2)从第1个数开始的前2018个数的和是0. (3)一共是261个数的平方相加.26、26、(1)223,2m n mn + (2)16,8,2,2(答案不唯一)(3)7或13.人教版八年级数学下册 第十六章 二次根式 单元测试题(含答案)一、选择题。
二次根式_单元测试题(2)含答案 (1)
二次根式 单元测试题一、选择题1、如果-3x+5是二次根式,则x 的取值范围是( ) A 、x≠-5 B 、x>-5 C 、x<-5 D 、x≤-52、等式x 2-1 =x+1 ·x -1 成立的条件是( )A 、x>1B 、x<-1C 、x ≥1D 、x ≤-13、已知a= 15 -2 ,b=15 +2,则a 2+b 2+7 的值为( ) A 、3 B 、4 C 、5 D 、64、下列二次根式中,x 的取值范围是x ≥2的是( )A 、2-xB 、x+2C 、x -2D 、1x -25、在下列根式中,不是最简二次根式的是( )A 、a 2 +1B 、2x+1C 、2b 4D 、0.1y 6、下面的等式总能成立的是( )A 、a 2 =aB 、a a 2 =a 2C 、 a · b =abD 、ab = a · b7、m 为实数,则m 2+4m+5 的值一定是( )A 、整数B 、正整数C 、正数D 、负数8、已知xy>0,化简二次根式x -y x2 的正确结果为( ) A 、y B 、-y C 、-y D 、--y9、若代数式(2-a)2 +(a -4)2 的值是常数2,则a 的取值范围是( )A 、a ≥4B 、a ≤2C 、2≤a ≤4D 、a=2或a=410、下列根式不能与48 合并的是( )A 、0.12B 、18C 、113D 、-75 11、如果最简根式3a -8 与17-2a 是同类二次根式,那么使4a -2x 有意义的x 的范围是( )A 、x ≤10B 、x ≥10C 、x<10D 、x>1012、若实数x 、y 满足x 2+y 2-4x -2y+5=0,则x +y3y -2x 的值是( )A 、1B 、32+ 2 C 、3+2 2 D 、3-2 2 二、填空题1、要使x -13-x 有意义,则x 的取值范围是 。
(完整版)二次根式经典单元测试题(含)
二次根式单元测试〔中考实战〕一.选择题〔共 10 小题〕1.〔2021?宜昌〕假设式子在实数范围内有意义,那么x 的取值范围是〔〕A .x=1B .x ≥1C .x >1D . x < 12.〔2021?宜宾〕二次根式的值是〔〕A .﹣3B .3 或﹣ 3C .9D . 33.〔2021?新疆〕以下各式计算正确的选项是〔 〕A .B . 〔﹣ 3〕 ﹣2=﹣C .a 0=1D .4.〔2021?泸州〕设实数 a ,b 在数轴上对应的地址以以下图,化简 的结果是〔〕A .﹣2a+bB .2a+bC .﹣ bD . b5.〔2021?凉山州〕,那么 2xy 的值为〔〕A .﹣15B .15C .D .6.〔2021?襄阳〕函数 y= 的自变量 x 的取值范围是〔〕A .x >0B .x ≥﹣ 2C .x >﹣ 2D . x ≠﹣27.〔2021?济宁〕 a 为实数,那么等于〔 〕A .aB .﹣aC .﹣1D . 0.〔 荆门〕假设 =〔 x+y 〕 2,那么 x ﹣y 的值为〔〕8 2021?A .﹣1B .1C .2D . 39.〔 2004?泰州〕假设代数式 +的值为 2,那么 a 的取值范围是〔〕A .a ≥4B .a ≤2C .2≤a ≤4D . a=2 或 a=410.〔 2002?鄂州〕假设 x <0,且常数 m 满足条件,那么化简所得的结果是〔〕A .xB .﹣xC .x ﹣2D . 2﹣ x二.填空题〔共 12 小题〕11.〔2021?盘锦〕假设式子有意义,那么x的取值范围是_________.12.〔2021?自贡〕函数中,自变量x的取值范围是_________.13.〔2021?眉山〕直线 y=〔3﹣a〕x+b﹣2 在直角坐标系中的图象以以下图,化简:=_________ .14.〔2021?孝感〕使是整数的最小正整数n= _________.15.〔2021?黔东南州〕把根号外的因式移到根号内后,其结果是_________.16.〔2002?娄底〕假设=﹣1,那么 x _________.17.〔2001?沈阳〕 x≤1,化简=_________ .18.〔2021?肇庆〕计算的结果是_________.19.〔2021?大连〕计算:〔〕〔〕=_________ .20.〔2006?厦门〕计算:〔?〔〕﹣1= _________.〕 +21.〔2007?河池〕化简:=_________.22.〔2021?威海〕计算的结果是_________ .三.解答题〔共 8 小题〕23.〔2003?海南〕先化简,后求值:〔x+1〕2﹣x〔x+2y〕﹣2x ,其中 x= +1,y=﹣1.24.计算题:〔1〕;〔2〕.25.计算:〔﹣〕226.计算:.27.计算: 12.28.〔2021?鄂尔多斯〕〔1〕计算﹣ 22+﹣〔〕﹣1×〔π﹣〕0;〔2〕先化简,再求值:÷〔a+〕,其中a=﹣1,b=1.30.〔2021?绵阳〕〔1〕计算:〔π﹣ 2〕0﹣|+ |×〔﹣〕;〔2〕化简:〔 1+ 〕+〔2x﹣〕1 .以下说法正确的选项是〔〕A.假设a2a,那么a<0B.假设a2,那么aaC. a 4b8 a 2b4D. 5 的平方根是5m 12 .二次根式32(m 3) 的值是〔〕A.3 2B.2 3C.2 2D. 03 .化简| x y| x 2 ( x y0) 的结果是〔〕A.y 2x B.y C.2x y D.y4 .假设a是二次根式,那么a, b 应满足的条件是〔〕bA.a, b 均为非负数B. a, b 同号C. a≥ 0, b>0D.ab5 . a<b,化简二次根式3〕a b 的正确结果是〔A.a ab B. a ab29.〔2021?仙桃〕先化简,再求值:,其中x=2﹣.C.a ab D.a ab16 .把m根号外的因式移到根号内,得〔〕m14.计算:122718;(348 4 27 2 3)。
二次根式单元测试题(含答案)
九年级上学期数学测试题(二次根式)一、选择题1.已知233x x +=-x 3+x ,则………………………………………………()A .x ≤0B .x ≤-3C .x ≥-3D .-3≤x ≤0 2.化简aa3-(a <0)得……………………………………………………………()A .a - B .-a C .-a - D .a3.当a <0,b <0时,-a +2ab -b 可变形为…………………………………( )A .2)(b a +B .-2)(b a -C .2)(b a -+- D .2)(b a ---4.在根式①22b a + ②5x ③xy x -2④ abc 27中,最简二次根式是(中,最简二次根式是( )A .①②.①②B .③④.③④C .①③.①③D .①④.①④5.下列二次根式中,可以合并的是…………………………………………………()A .23aa a 和 B .232a a 和 C .aaa a 132和 D .2423a a 和6.如果1122=+-+a a a ,那么a 的取值范围是……………………………()A .0=aB .1=aC .1£aD .10==a a 或 7.能使22-=-x x x x 成立的x 的取值范围是…………………………………())A .2¹xB B..0³xC C..2³xD D..x >2 8.若化简|1-x|x|--2x -8x+162x-5的结果是,则x 的取值范围是………………()A .x 为任意实数为任意实数B .1≤x ≤4 C .x ≥1 D .x <4 9.已知三角形三边为a 、b 、c ,其中a 、b 两边满足0836122=-++-b a a ,那,那么这个三角形的最大边c 的取值范围是……………………………………………()A .8>cB .148<<cC .86<<cD .142<<c 10.小明的作业本上有以下四题①24416a a =;②25105a a a =×;③③a aa a a=×=112; ④a a a =-23。
二次根式单元测试题及答案doc
二次根式单元测试题及答案doc一、选择题(每题3分,共30分)1. 下列哪个选项是二次根式?A. \( \sqrt{4} \)B. \( \sqrt[3]{8} \)C. \( \sqrt[4]{16} \)D. \( \sqrt{-1} \)答案:A2. 计算 \( \sqrt{9} \) 的值是多少?A. 3B. -3C. 3或-3D. 0答案:A3. 化简 \( \sqrt{49} \) 的结果是?A. 7B. -7C. 7或-7D. 0答案:A4. 已知 \( a > 0 \),那么 \( \sqrt{a^2} \) 等于?A. \( a \)B. \( -a \)C. \( |a| \)D. \( a^2 \)答案:C5. 计算 \( \sqrt{16} \) 的值是多少?A. 4B. -4C. 4或-4D. 0答案:A6. 化简 \( \sqrt{25} \) 的结果是?A. 5B. -5C. 5或-5D. 0答案:A7. 已知 \( b < 0 \),那么 \( \sqrt{b^2} \) 等于?A. \( b \)B. \( -b \)C. \( |b| \)D. \( b^2 \)答案:B8. 计算 \( \sqrt{81} \) 的值是多少?A. 9B. -9C. 9或-9D. 0答案:A9. 化简 \( \sqrt{36} \) 的结果是?A. 6B. -6C. 6或-6D. 0答案:A10. 已知 \( c = 0 \),那么 \( \sqrt{c^2} \) 等于?A. \( c \)B. \( -c \)C. \( |c| \)D. \( c^2 \)答案:C二、填空题(每题4分,共20分)1. 计算 \( \sqrt{144} \) 的值是 ________。
答案:122. 化简 \( \sqrt{64} \) 的结果是 ________。
答案:83. 已知 \( d > 0 \),那么 \( \sqrt{d^2} \) 等于 ________。
二次根式经典测试题(附答案解析)
二次根式经典测试题(附答案解析)1. 问题:求下列二次根式的值并化简:$$\sqrt{9}$$解析:根据定义,$\sqrt{9}$表示求一个数的平方根,而9的平方根等于3,因此$\sqrt{9}=3$。
2. 问题:计算下列二次根式的值:$$\sqrt{16}+\sqrt{25}$$解析:根据定义,$\sqrt{16}$表示求一个数的平方根,而16的平方根等于4;同样,$\sqrt{25}$表示求一个数的平方根,而25的平方根等于5。
将两个平方根相加得到$$\sqrt{16}+\sqrt{25}=4+5=9$$3. 问题:化简下列二次根式:$$\sqrt{18}$$解析:18可以分解为$2\times9$,而$\sqrt{16}=\sqrt{2\times9}=\sqrt{2}\times\sqrt{9}=\sqrt{2}\times3=\sq rt{18}=3\sqrt{2}$4. 问题:将下列二次根式化为最简形式:$$\sqrt{48}$$解析:48可以分解为$16\times3$,而$\sqrt{48}=\sqrt{16\times3}=\sqrt{16}\times\sqrt{3}=4\sqrt{3}$5. 问题:计算下列二次根式的值:$$\sqrt{64}+\sqrt{81}-2\sqrt{36}$$解析:根据定义,$\sqrt{64}=8$,$\sqrt{81}=9$,$\sqrt{36}=6$。
将这三个值代入原式得到 $$\sqrt{64}+\sqrt{81}-2\sqrt{36}=8+9-2\times6=8+9-12=5$$6. 问题:对于一个正实数x,求下列表达式的值:$$(\sqrt{x}+2)(\sqrt{x}-2)$$解析:根据乘法公式$$(a+b)(a-b)=a^2-b^2$$,将表达式$(\sqrt{x}+2)(\sqrt{x}-2)$代入公式得到 $$(\sqrt{x}+2)(\sqrt{x}-2)=\sqrt{x}^2-(2)^2=x-4$$7. 问题:求下列方程的解集:$$\sqrt{x^2+6x+9}=3$$解析:根据定义,$\sqrt{a}=b$可以转化为$a=b^2$,将方程$\sqrt{x^2+6x+9}=3$转化为$x^2+6x+9=(3)^2=9$。
(word完整版)二次根式单元测试附答案
二次根式单元测试一、填空题(3×10=30)1.数5的平方根是 ,算术平方根是 ;2。
4的平方根是 ,a 2的算数平方根是 ;3。
若二次根式有意义,则的取值范围是___________. 4。
已知,则。
5.比较大小:。
6。
在实数范围内因式分解:。
7。
若,则__________。
82111a a a +-=-成立的条件是 ; 9.16a -是整数,则非负整数a = ,16a -的值为 ;10.在一个半径为2m 的圆形纸片上截出一个面积最大的正方形,则这个正方形的边长是 .二。
选择题(3×8=24)11.2x -,二次根式能表示的最小实数是( )A 。
0 B.2 C 2 D 。
不存在4.若x<0,则xx x 2-的结果是( ) A .0 B .—2 C .0或—2 D .25.下列二次根式中属于最简二次根式的是( )A .14B .48C .ba D .44+a 6. 已知25523y x x =---则2xy 的值为( )A .15-B .15C .152-D . 152 7.化简6151+的结果为( ) A .3011 B .33030 C .30330 D .1130 8.小明的作业本上有以下四题:①24416a a =; ②a a a 25105=⨯; ③a aa a a =•=112;④a a a =-23.做错的题是( )A .①B .②C .③D .④9.若最简二次根式a a 241-+与的被开方数相同,则a 的值为( )A .43-=a B .34=a C .a=1 D .a= -1 10. 计算221-631+8的结果是( ) A .32-23 B .5-2C .5-3D .22 三.解答题(共66分)19。
(16分)计算:(1)21437⎪⎪⎭⎫ ⎝⎛- (2) )459(43332-⨯(3)2484554+-+ (4)2332326--20.(5分)化简求值:2a (a+b )-(a+b )2,其中ab;21。
《二次根式》单元测试题含答案
《二次根式》单元测试题含答案《二次根式》单元测试题(一)判断题:(每小题1分,共5分)1.ab 2)2(-=-2ab .…………………( )【提示】2)2(-=|-2|=2.【答案】×. 2.3-2的倒数是3+2.( )【提示】231-=4323-+=-(3+2).【答案】×.3.2)1(-x =2)1(-x .…( )【提示】2)1(-x =|x -1|,2)1(-x =x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×. 4.ab 、31b a 3、bax 2-是同类二次根式.…( )【提示】31b a 3、bax 2-化成最简二次根式后再判断.【答案】√. 5.x 8,31,29x +都不是最简二次根式.( )29x +是最简二次根式.【答案】×. (二)填空题:(每小题2分,共20分) 6.当x __________时,式子31-x 有意义.【提示】x 何时有意义?x ≥0.分式何时有意义?分母不等于零.【答案】x ≥0且x ≠9. 7.化简-81527102÷31225a =_.【答案】-2a a .【点评】注意除法法则和积的算术平方根性质的运用.8.a -12-a 的有理化因式是____________.【提示】(a -12-a )(________)=a 2-22)1(-a .a +12-a .【答案】a +12-a . 9.当1<x <4时,|x -4|+122+-x x =________________.【提示】x 2-2x +1=( )2,x -1.当1<x <4时,x -4,x -1是正数还是负数?x -4是负数,x -1是正数.【答案】3.10.方程2(x -1)=x +1的解是____________.【提示】把方程整理成ax =b 的形式后,a 、b 分别是多少?12-,12+.【答案】x =3+22.11.已知a 、b 、c 为正数,d 为负数,化简2222dc abd c ab +-=______.【提示】22d c =|cd |=-cd . 【答案】ab +cd .【点评】∵ ab =2)(ab (ab >0),∴ ab -c 2d 2=(cd ab +)(cd ab -).12.比较大小:-721_________-341.【提示】27=28,43=48.【答案】<.【点评】先比较28,48的大小,再比较281,481的大小,最后比较-281与-481的大小. 13.化简:(7-52)2000·(-7-52)2001=______________.【提示】(-7-52)2001=(-7-52)2000·(_________)[-7-52.](7-52)·(-7-52)=?[1.]【答案】-7-52. 【点评】注意在化简过程中运用幂的运算法则和平方差公式. 14.若1+x +3-y =0,则(x -1)2+(y +3)2=____________.【答案】40.【点评】1+x ≥0,3-y ≥0.当1+x +3-y =0时,x +1=0,y -3=0.15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________. 【提示】∵ 3<11<4,∴ _______<8-11<__________.[4,5].由于8-11介于4与5之间,则其整数部分x =?小数部分y =?[x =4,y =4-11]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了. (三)选择题:(每小题3分,共15分)16.已知233x x +=-x 3+x ,则………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤0【答案】D .【点评】本题考查积的算术平方根性质成立的条件,(A )、(C )不正确是因为只考虑了其中一个算术平方根的意义.17.若x <y <0,则222y xy x +-+222y xy x ++=………………………( )(A )2x (B )2y (C )-2x (D )-2y 【提示】∵ x <y <0,∴ x -y <0,x +y <0. ∴ 222y xy x +-=2)(y x -=|x -y |=y -x .222y xy x ++=2)(y x +=|x +y |=-x -y .【答案】C .【点评】本题考查二次根式的性质2a =|a |.18.若0<x <1,则4)1(2+-x x -4)1(2-+xx 等于………………………( )(A )x2 (B )-x2 (C )-2x (D )2x【提示】(x -x 1)2+4=(x +x 1)2,(x +x 1)2-4=(x -x1)2.又∵ 0<x <1,∴ x +x1>0,x -x1<0.【答案】D .【点评】本题考查完全平方公式和二次根式的性质.(A )不正确是因为用性质时没有注意当0<x <1时,x -x1<0. 19.化简aa 3-(a <0)得………………………………………………………………( ) (A )a - (B )-a (C )-a - (D )a 【提示】3a -=2a a ⋅-=a -·2a =|a |a -=-a a -.【答案】C .20.当a <0,b <0时,-a +2ab -b 可变形为………………………………………( )(A )2)(b a + (B )-2)(b a - (C )2)(b a -+- (D )2)(b a ---【提示】∵ a <0,b <0,∴ -a >0,-b >0.并且-a =2)(a -,-b =2)(b -,ab =))((b a --. 【答案】C .【点评】本题考查逆向运用公式2)(a =a (a ≥0)和完全平方公式.注意(A )、(B )不正确是因为a <0,b <0时,a 、b 都没有意义.(四)在实数范围内因式分解:(每小题3分,共6分) 21.9x 2-5y 2;【提示】用平方差公式分解,并注意到5y 2=2)5(y .【答案】(3x +5y )(3x -5y ). 22.4x 4-4x 2+1.【提示】先用完全平方公式,再用平方差公式分解.【答案】(2x +1)2(2x -1)2. (五)计算题:(每小题6分,共24分) 23.(235+-)(235--);【提示】将35-看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=(35-)2-2)2(=5-215+3-2=6-215.24.1145--7114--732+;【提示】先分别分母有理化,再合并同类二次根式. 【解】原式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7=1.25.(a 2mn -m ab mn +m nn m )÷a 2b 2mn ; 【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a 2m n -m ab mn +m n n m )·221b a nm =21b n m m n ⋅-mab 1n m m n ⋅+22b ma n nm n m ⋅ =21b -ab 1+221b a =2221b a ab a +-.26.(a +ba abb +-)÷(b ab a ++a ab b --ab b a +)(a ≠b ).【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分. 【解】原式=ba abb ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+--=ba ba ++÷))((2222b a b a ab b a b ab b ab a a -++----=ba ba ++·)())((b a ab b a b a ab +-+-=-b a +.【点评】本题如果先分母有理化,那么计算较烦琐.(六)求值:(每小题7分,共14分)27.已知x =2323-+,y =2323+-,求32234232y x y x y x xy x ++-的值. 【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值.【解】∵ x =2323-+=2)23(+=5+26, y =2323+-=2)23(-=5-26.∴ x +y =10,x -y =46,xy =52-(26)2=1.32234232y x y x y x xy x ++-=22)())((y x y x y x y x x +-+=)(y x xy y x +-=10164⨯=652. 【点评】本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷. 28.当x =1-2时,求2222ax x a x x+-++222222ax x x a x x +-+-+221ax +的值.【提示】注意:x 2+a 2=222)(a x +,∴ x 2+a 2-x 22a x +=22a x +(22a x +-x ),x 2-x 22a x +=-x (22a x +-x ). 【解】原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)()()2(22222222222x a x a x x x a x x a x x a x x -++-+++-+- =)()(22222222222222x a x a x x x a x x a x a x x x -++-+++++-=)()(222222222x a x a x x a x x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++=x1.当x =1-2时,原式=211-=-1-2.【点评】本题如果将前两个“分式”分拆成两个“分式”之差,那么化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)11(2222a x xa x +--+-)11(22x x a x --++221a x +=x1.七、解答题:(每小题8分,共16分) 29.计算(25+1)(211++321++431++…+100991+).【提示】先将每个部分分母有理化后,再计算. 【解】原式=(25+1)(1212--+2323--+3434--+…+9910099100--)=(25+1)[(12-)+(23-)+(34-)+…+(99100-)]=(25+1)(1100-) =9(25+1).【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法. 30.若x ,y 为实数,且y =x 41-+14-x +21.求xy y x ++2-xyy x +-2的值. 【提示】要使y 有意义,必须满足什么条件?].014041[⎩⎨⎧≥-≥-x x 你能求出x ,y 的值吗?].2141[⎪⎪⎩⎪⎪⎨⎧==y x【解】要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x ∴ x =41.当x=41时,y =21. 又∵xyy x ++2-xyy x +-2=2)(xy y x+-2)(xy y x -=|xy y x +|-|xyy x -|∵ x =41,y =21,∴y x<x y .∴ 原式=x y y x +-y x x y +=2yx 当x =41,y =21时,原式=22141=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式单元测试题一一、填空题(每题2分,共20分)1、当a 时, 有意义2、计算:3、计算:4、计算:(a >0,b >0,c >0)5、计算:==6、 7、 则2006个3 2006个48、 9、观察以下各式:利用以上规律计算:10、已知二、选择题(每题3分,共30分)11、若有意义,则 ( )32+x A 、 B 、 C 、 D 、12、化简 的结果是 ( )A 、0 B 、2a -4 C 、4 D 、4-2a13、能使等式 成立的条件是 ( )A 、x ≥0 B 、x ≥3 C 、x >3 D 、x >3或x <014、下列各式中,是最简二次根式的是 ( )A 、B 、C 、D 、x 8b a 252294b a +15、已知 ,那么的值是 ( )A 、1 B 、-1 C 、±1 D 、416、如果 ,则a 和b 的关系是 ( )A 、a ≤b B 、a <b C 、a ≥b D 、a >b17、已知xy >0,化简二次根式 的正确结果为 ( )A 、 B 、 C 、 D 、 18、如图,Rt△AMC ∠AMC=30°,AM∥BN,MN=2 BC=1cm ,则AC 的长度为 ( A 、2cmB 、3cm3()=-231)(a-1()=2232)(=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛--2511)((=-262)(=-⨯)()(27311=c b a 2382)(73)1(a38)2(=->2,0xy xy 化简如果=+=+=+222222444333443343,,=+22444333 =+-20062005)12()12(343412323112121-=+-=+-=+,,()=+⎪⎭⎫⎝⎛++++++++12006200520061341231121 =⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛+-=+=x y y x 11111313,则,23-≥x 23-≤x 32-≥x 32-≤x 2)2(2-+-a a 33-=-x xx x 2y51=+x x xx 1-12122-=+-⋅-b ab a ba 2xy x -y y -y -y --3B cm33C 、3.2cmD 、 19、下列说法正确的个数是 ( )①2的平方根是 ;② 是同类二次根式; ③ 互为倒数;④ A 、1 B 、2 C 、3 D 、420、下列四个算式,其中一定成立的是 ( )① ; ② ; ③ ④A 、①②③④ B 、①②③ C 、①③ D 、①三、解答题(共70分)21、求 有意义的条件(5分) 22、已知求3x +4y 的值(5分)23、化简 ② (共8分)625①-627-24、在实数范围内将下列各式因式分解(3+3+3+4=13分)① ② ③ ④ 25、已知实数a 满足 ,求a -20052的值 (5分)26、(共6分)设长方形的长与宽分别为a 、b ,面积为S①已知 ;②已知S= cm 2,b = cm,求 a27、(共8分)①已知; ②已知x =求x 2-4x -6的值a a 2.05与21212+-与3223--的绝对值是11222+=+a a )(a a =2)(0>⋅=ab b a ab 11)1)(1(-⋅+=-+x x x x 11+-x x 214422-+-+-=x x x y 3322+-x x 752-x 44-x 44+x aa a =-+-200620057250S cm b cm a ,求,1022==11322+--=x x x 102-28、已知Rt△ABC 中,∠ACB=90°,BC=cm ,求AB 上的高CD 长度(5分)1029、计算: (5分)30、已知 ,求①;② 的值(10分)数学二次根式测试题二第Ⅰ卷一、单项选择题(每小题3分,共30分)1.下列式子一定是二次根式的是( )A.B.C. D.2--x x 22+x 22-x 3若,则( )b b -=-3)3(2A.b>3B.b<3C.b≥3D.b≤33.若有意义,则m 能取的最小整数值是 ( )13-m A.m=0 B.m=1C.m=2D.m=34.化简得( ))22(28+-A.—2B.C.2D.22-224-5.下列根式中,最简二次根式是( )A. B.C.D.a 2522b a +2a5.06.如果那么( ))6(6-=-⋅x x x x A.x≥0 B.x≥6C.0≤x≤6D.x 为一切实数7.若x <2,化简的正确结果是( ) x x -+-3)2(2A.-1B.1C.2x-5D.5-2x8.设,则a 、b 大小关系是( )ab a 1,322=-=()()()()121123131302-+-+---+23232323+-=-+=y x ,y x 11+yxx y +A.a=bB.a >bC.a <bD.a >-b9.若最简二次根式是同类二次根式,则a 的值为( )a a 241-+与A. B. C. D.43-=a 34=a 1=a 1-=a 10.已知,则x 等于 (1018222=++x x x x )A.4B.±2C.2D.±4二、填空题(每小题3分,共30分)1.的绝对值是__________,它的倒数__________.52-2.当x___________时,有意义,若有意义,则x________.52+x xx-23.化简_________,_____________.=⨯04.0225=-221081174. ,.=⋅y xy 82=⋅27125.比较大小: .(填“>”、“=”、“<”)32136.在实数范围内分解因式___________.=-94x 7.已知矩形长为cm ,宽为cm ,那么这个矩形对角线长为_____cm.3268.的关系是.23231+-与9.当x=时,二次根式取最小值,其最小值为.1+x 10.若的整数部分是a ,小数部分是b ,则.3=-b a 3三、计算题(每小题4分,共16分)1.21418122-+- ;2.;3)154276485(÷+-3. ;21)2()12(18---+++4. .; x xx x 3)1246(÷- 四、化简并求值(每小题5分,共10分)1.已知:,求的值.132-=x 12+-x x 2.已知:.22,211881的值求代数式-+-+++-+-=xyy x xy y x x x y 五、应用题(6分)站在水平高度为h 米的地方看到可见的水平距离为d 米,它们近似地符号公式为。
某一登山者从海58hd =拔n 米处登上海拔2n 米高的山顶,那么他看到的水平线的距离是原来的多少倍?六、综合题(8分)1.阅读下面问题:;12)12)(12()12(1121-=-+-⨯=+;23)23)(23(23231-=-+-=+.34)34)(34(34341-=-+-=+……试求: (1)的值; (2)的值; (3)(n671+17231+nn ++11为正整数)的值.2.计算:.20062007)56()56(-⨯+3.已知a ,b ,c 为三角形的三边,化简.222)()()(a c b a c b c b a -++--+-+4.已知x 为奇数,且的值.18721,969622+-+⋅++--=--x x x x x x x xx 求七、甲、乙两人对题目“化简并求值:,其中”有不同的解答,21122-++a aa 51=a 甲的解答是:,乙的解答是:549211)1(1211222=-=-+=-+=-++a a a a a a a a a a a ,谁的解答是错误的?为什么?5111)1(1211222==-+=-+=-++a a a a a a a a aa二次根式单元测试题三姓名班级 总分一、填空题(每小题3分,共30分)①3是的平方根,的算术平方根是。
49②如果,那么;如果,那么。
252=x =x ()932=-x =x ③已知:在公式中,则 。
()为速度v rv g 2==v ④当x时,式子有意义,当x时,式子有意义1+x 422--x x ⑤已知:,则。
()022=+++y x x =-xy x 2⑥化简: ;;。
=24=3a =322⑦当x 时,。
()x x 21122-=-⑧在,,,中与是同类二次根式有 。
81227183⑨,。
()=-231()=-25334⑩要切一块面积为6400的正方形大理石地板砖,则它的边长要切成㎝。
2cm (二)、精心选一选(每小题3分,共30分)1、下列说法中,正确的是( )(A)、-0.64没有立方根 (B )、 27的立方根是3±(C )、9的立方根是3 (D )、-5是的平方根()25-2、下列计算正确的是( )(A )、 (B )、 (C )、(D )、36=39-=-39=393=3、下列各数中,没有平方根的是()(A )、65(B )、(C )、(D )、()22-22-214、要使式子有意义,字母x 的取值必须满足( )32+x (A )、 (B )、 (C )、 (D )、0≥x 23≥x 32≥x 23-≥x 5、下列运算正确的是 ( )(A )、 (B )、 235=-312914=(C )、(D )、32321+=-()52522-=-6、三角形的一边长是,这边上的高是,则这个三角形的面积是 ( )cm 42cm 30(A )、 (B )、 (C )、 (D )、2356cm 2353cm 21260cm 2126021cm 7、下列各式是二次根式的是( )(A )、 (B )、 (C )、 (D )、7-m 12+a 338、-27的立方根与的平方根的和是( )81(A )、0(B )、6(C )、0或-6 (D )、-69、计算:的结果为()3133⨯÷(A )3 (B )、9 (C )、1(D )、3310、是经过化简的二次根式,且与是同类二次根式,则x 为( )x 26-2(A )、-2 (B )、2 (C )、4 (D )、-4三、耐心算一算(每小题4分,共24分)1、 221223+- 2、3222233--+3、4、5、6、32218+-273()()13132+-222333---四、解答下列各题(共16分)1、(8分)若,且y 的算术平方根是,求:的值()1222+-=x y 5y x 2+2、(8分)当时,求的值121-=x 12+-x x 九年级数学第二十一章二次根式测试题(B )时间:45分钟分数:100分一、选择题(每小题2分,共20分)1.下列说法正确的是( )A .若,则a<0B . a a -=20,2>=a a a 则若C . D . 5的平方根是4284b a b a =52.二次根式的值是( )13)3(2++m m A .B .C .D .02332223.化简的结果是( ))0(||2<<--y x x y x A .x y 2- B .y C .y x -2D .y-4.若是二次根式,则a ,b 应满足的条件是( )baA .a ,b 均为非负数B .a ,b 同号C .a≥0,b>0D .0≥ba 5.已知a<b ,化简二次根式的正确结果是( )b a 3-A . B . ab a --ab a -C . D .ab a aba -6.把根号外的因式移到根号内,得( )mm 1-14.计算:;。