高中数学三角恒等式变形解题常用方法
三角恒等式证明9种基本技巧窍门
三角恒等式证明9种基本技巧三角恒等式的证明是三角函数中一类重要问题,这类问题主要以无条件和有条件恒等式出现。
根据恒等式的特点,可采用各种不同的方法技巧,技巧常从以下各个方面表示出来。
1.化角观察条件及目标式中角度间联系,立足于消除角间存在的差异,或改变角的表达形式以便更好地沟通条件与结论使之统一,或有利于公式的运用,化角是证明三角恒等式时一种常用技巧。
例1求证:tan23x - tan 21x =xx x 2cos cos sin 2+ 思路分析:本题的关键是角度关系:x=23x -21x ,可作以下证明:2.化函数三角函数中有几组重要公式,它们不仅揭示了角间的关系,同时揭示了函数间的相互关系,三角变换中,以观察函数名称的差异为主观点,以化异为为同(如化切为弦等)的思路,恰当选用公式,这也是证明三角恒等式的一种基本技巧。
例2 设AB A tan )tan(-+A C22sin sin =1,求证:tanA 、tanC 、tanB 顺次成等比数列。
思路分析:欲证tan 2C = tanA ·tanB ,将条件中的弦化切是关键。
3.化幂应用升、降幂公式作幂的转化,以便更好地选用公式对面临的问题实行变换,这也是三角恒等式证明的一种技巧。
例3求证 cos4α-4cos2α+3=8sin 4α 思路分析:应用降幂公式,从右证到左:4.化常数将已知或目标中的常数化为特殊角的函数值以适应求征需要,这方面的例子效多。
如1=sin 2α+cos 2α=sec 2α-tan 2α=csc 2α-cot 2α=tan αcot α=sin αcsc α=cos αsec α,1=tan450=sin900=cos00等等。
如何对常数实行变换,这需要对具体问题作具体分析。
例4 求证αααα22sin cos cos sin 21--=ααtan 1tan 1+- 思路分析:将左式分子中“1”用“sin 2α+cos 2α”代替,问题便迎刃而解。
高中数学三角恒等式变形技巧
高中数学三角恒等式变形技巧在高中数学的学习中,三角恒等式是一个重要的知识点。
学生们常常会遇到需要根据已知的三角恒等式来推导出新的恒等式的情况。
在这个过程中,掌握一些三角恒等式的变形技巧是非常有帮助的。
本文将介绍几种常见的变形技巧,并通过具体的例题进行说明。
一、平方差公式的变形平方差公式是我们在学习三角函数时经常接触到的一个恒等式,即:sin^2x - cos^2x = 1在解题过程中,我们常常需要根据这个公式来进行变形。
例如,以下是一道常见的题目:已知 sin^2x = 1/4,求 cos^2x 的值。
解析:首先,我们可以利用平方差公式将已知条件进行变形:sin^2x - cos^2x = 11/4 - cos^2x = 1然后,我们可以通过移项和化简的方法求解出 cos^2x 的值:cos^2x = 1/4 - 1cos^2x = -3/4通过这个例题,我们可以看到,利用平方差公式进行变形可以帮助我们解决一些关于三角函数平方的问题。
二、和差化积公式的变形和差化积公式是我们在学习三角函数时另一个重要的恒等式,即:sin(x ± y) = sinxcosy ± cosxsiny在解题过程中,我们可以利用这个公式将已知条件进行变形,从而得到新的恒等式。
例如,以下是一道常见的题目:已知 sin2x = 2sinx,求 cos2x 的值。
解析:首先,我们可以利用和差化积公式将已知条件进行变形:sin2x = 2sinxsin(x + x) = 2sinx然后,我们可以利用和差化积公式的逆向思维,将 sin(x + x) 进行变形:sin(x + x) = sinxcosx + cosxsinx2sinxcosx = 2sinx接着,我们可以通过移项和化简的方法求解出 cos2x 的值:sinxcosx = sinxcos2x = cos^2x - sin^2xcos2x = cos^2x - (1 - cos^2x)cos2x = 2cos^2x - 1通过这个例题,我们可以看到,利用和差化积公式进行变形可以帮助我们解决一些关于三角函数和的问题。
高三数学9种常用三角恒等变换技巧总结
高中数学:9种常用三角恒等变换技巧总结三角恒等变换不但在三角函数式的化简、求值和证明三角恒等式中经常用到,而且.由于通过三角换元可将某些代数问题化归为三角问题;立体几何中的诸多位置关系以其交角来刻画,最后又以三角问题反映出来;由于参数方程的建立,又可将解析几何中的曲线问题归结为三角问题.因此,三角恒等变换在整个高中数学中涉及面广.是常见的解题“工具”.而且由于三角公式众多.方法灵活多变,若能熟练地掌握三角恒等变换,不但能增强对三角公式的记忆,加深对诸多公式内在联系的理解,而且对发展学生的逻辑思维能力,提高数学知识的综合运用能力都大有裨益。
“切割化弦”就是把三角函数中的正切、余切、正割、余割都化为正弦和余弦,以有利于问题的解决或发现解题途径.其实质是”‘归一”思想.在三角恒等变换中经常需要转化角的关系,在解题过程中必须认真观察和分析结论中是哪个角,条件中有没有这些角,哪些角发生了变化等等.因此角的拆变技巧,倍角与半角相对性等都十分重要,应用也相当广泛且非常灵活.常见的拆变方法有:α可变为(α+β)-β;2α可变为(α+β)+(α-β);2α-β可变为(α-β)+α;α可视为α/2的倍角等等.遇平方可用“降次”公式,这是常用的解题策略.本题中首先化异角为同角,消除角的差异,然后化简求值.关于积化和差、和差化积公式,教材中是以习题形式给出的,望引起重视.跟代数恒等变换一样.在三角变换时,有时适当地应用”‘加一项再减去这一项” . “乘一项再除以同一项”的方法常能使某些问题巧妙简捷地得以解决.根据题目的特点,总体设元,然后构造与其相应的对偶式,运用方程的思想来解决三角恒等变换,也是常用的方法,本题也可以采用降次、和积互化等方法。
.目前高考中,纯三角函数式的化简与证明已不多见,取而代之的题目经常是化简某一三角函数,并综合考查这一函数的其他性质.但。
凡是与三角函数有关的问题,都以恒等变形、条件变形为解题的基石,因此本专题内容的重要性不言而喻.至于在三角条件恒等证明中如何用三内角和的性质、正余弦定理进行边角关系转换等,我们就不另加赘述了.。
高一数学 三角恒等变换的技巧
高一数学三角恒等变换的技巧三角恒等变换以三角函数基本关系、诱导公式、两角和与差的三角函数公式,倍角公式、半角公式等三角公式为基础,常见策略是:(1)发现差异;(2)寻找联系;(3)合理转换.基础思想是根据试题特点,灵活运用三角公式,使用配凑角、切化弦、降次或升幂等技巧,达到解决问题的目的.三角函数公式众多,方法灵活多变,同学们若能熟练掌握三角函数变换的技巧和化简的方法,可达到事半功倍的效果.下面就三角函数恒等变换的部分方法予以简单介绍,供大家参考.一、直接利用公式【方法点拨】根据式子特征,直接用公式展开是三角函数化简常用的方法,基本思路是异名三角函数化为同名三角函数,异角化为同角,异次化为同次,切化弦,特殊值与特殊角的三角函数互化.化简的标准是三角函数名称尽量少,次数尽量低,最好不含分母,能求值的尽量求值.在化简时要注意角的取值范围.二、公式的逆用【方法点拨】直接运用两角和与差的正弦或余弦公式常能将某些三角函数式化简,但深入观察三角函数式的结构特征,有时能巧妙地逆用公式,不仅丰富了解题技巧,而且过程简捷,不易出错.逆用公式的一些常见变形:三、切化弦【方法点拨】切化弦一般适用于不知切值或式子不能构成有关正、余弦函数的齐次分式.不能整体化切时,一般考虑切化弦,其目的是将正切、余切函数用正弦、余弦函数表示,这是一种常用的解题方法.当涉及多种三角函数时,常用此法减少函数的种类.这里除用化切为弦外,也常用到化异角函数为同角函数的技巧.四、弦化切五、用已知角表未知角【方法点拨】本题主要考查同角三角函数的基本关系、两角和与差的正弦公式的应用,转化过程中要特别注意符号的选取.观察式子特征,若已知角与所求角之间存在和、差、倍角、互余、互补等关系,即可用已知角表未知角的方法来求解.六、拆分角七、配凑【方法点拨】配凑法与方法五的基本思路一致,也是三角恒等变换中十分经典的一种方法.在解答时通过对目标式子中的角进行配凑,再利用三角公式和已知条件求得目标函数的值.在转换过程中同样要注意角的取值范围.常见的凑角技巧:总结三角函数式的化简要遵循“三看”原则(1)一看“角”.这是最重要的一环,通过看角之间的区别和联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”.看函数名称之间的差异,从而确定使用的公式;(3)三看“结构特征”.观察和分析结构特征,可以帮助我们找到变形的方向.三角函数式的化简与求值是三角函数中的基础考点之一,也是高考中的常见题型,打好三角函数的基础对同学们高考也大有裨益.本文主要介绍了几种常用的方法,希望对同学们解决三角函数化简求值问题能有所帮助.。
9种常用三角恒等变换技巧总结
9种常用三角恒等变换技巧总结三角函数是数学中一种重要的函数,它广泛应用于几何、物理、工程等领域。
而在解题过程中,常常需要通过三角恒等变换技巧来简化或转换问题,以便更容易求解或证明。
下面我们将总结一下常用的九种三角恒等变换技巧。
1.正弦和余弦平方和恒等式:sin^2(x) + cos^2(x) = 1这是最基本的三角恒等式,即正弦和余弦的平方和等于1、它在很多场合都会被应用到,例如求解三角方程、证明三角函数的性质等。
2.余弦的二倍角公式:cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x)这个公式可以将一个角的余弦值转化为另一个角的余弦值,同时也可以将余弦值转化为正弦值。
它在解决一些二次方程和证明一些三角恒等式的时候非常有用。
3.正弦的二倍角公式:sin(2x) = 2sin(x)cos(x)这个公式可以将一个角的正弦值转化为另一个角的正弦值,或者将正弦值转化为余弦值。
它在解决一些二次方程和证明一些三角恒等式的时候非常有用。
4.正切的和差公式:tan(x±y) = (tan(x)±tan(y))/(1∓tan(x)tan(y))这个公式可以将两个角的正切值的和或差转化为一个角的正切值,或者将一个角的正切值转化为两个角的正切值之和或差。
它在解决一些三角方程和证明一些三角恒等式的时候非常有用。
5.两角和差公式:sin(x±y) = sin(x)cos(y)±cos(x)sin(y)cos(x±y) = cos(x)cos(y)∓sin(x)sin(y)这些公式可以将两个角的正弦值或余弦值的和或差转化为一个角的正弦值或余弦值,或者将一个角的正弦值或余弦值转化为两个角的正弦值或余弦值之和或差。
它们在解决一些三角方程和证明一些三角恒等式的时候非常有用。
6.正切的和公式:tan(x+y) = (tan(x)+tan(y))/(1-tan(x)tan(y))这个公式可以将两个角的正切值的和转化为一个角的正切值,或者将一个角的正切值转化为两个角的正切值之和。
高中数学三角恒等式解题技巧
高中数学三角恒等式解题技巧在高中数学中,三角恒等式是一个重要的概念,经常出现在各种数学考试中。
掌握解题技巧对于学生来说是至关重要的。
本文将介绍一些常见的三角恒等式解题技巧,并通过具体的题目来说明这些技巧的应用。
一、基本的三角恒等式首先,我们需要掌握一些基本的三角恒等式。
这些恒等式是通过三角函数的定义和性质推导出来的,是解题的基础。
1. 余弦的平方加正弦的平方等于1:cos²θ + sin²θ = 1这个恒等式是最基本的三角恒等式,也是其他恒等式的基础。
2. 余弦的倒数等于正弦:cosθ =1/sinθ正弦的倒数等于余弦:sinθ = 1/cosθ这两个恒等式可以互相转化,并在解题过程中起到简化计算的作用。
二、应用题解析下面我们通过具体的题目来说明三角恒等式的解题技巧。
例题1:已知sinθ = 3/5,求cosθ。
解析:根据基本三角恒等式cos²θ + sin²θ = 1,我们可以得到cos²θ = 1 - sin²θ。
将已知的sinθ代入,得到cos²θ = 1 - (3/5)² = 1 - 9/25 = 16/25。
因此,cosθ =±√(16/25) = ±4/5。
例题2:已知sinθ = 2/3,求tanθ。
解析:根据tanθ = sinθ/cosθ,我们需要先求出cosθ。
根据基本三角恒等式cos²θ + sin²θ = 1,我们可以得到cos²θ = 1 - sin²θ。
将已知的sinθ代入,得到cos²θ = 1 -(2/3)² = 1 - 4/9 = 5/9。
因此,cosθ = ±√(5/9) = ±√5/3。
将sinθ和cosθ代入tanθ =sinθ/cosθ,得到tanθ = (2/3) / (√5/3) = 2/√5 = 2√5/5。
高中数学三角恒等变换的应用举例及解题思路
高中数学三角恒等变换的应用举例及解题思路引言:三角恒等变换是高中数学中的重要内容之一,它在解决各种三角函数相关问题时具有广泛的应用。
本文将通过具体的例题,结合解题思路,向高中学生和他们的父母介绍三角恒等变换的应用,帮助他们更好地理解和掌握这一知识点。
一、简化三角表达式在解决三角函数的化简问题时,三角恒等变换是一种非常有效的方法。
例如,我们考虑以下例题:例题1:化简表达式:sin^2x + cos^2x - 2sin^2x解题思路:根据三角恒等变换中的“平方和恒等式”,我们知道sin^2x + cos^2x = 1。
将这个恒等式代入原表达式中,得到:sin^2x + cos^2x - 2sin^2x = 1 - 2sin^2x这样,我们就成功地将原表达式化简为1 - 2sin^2x。
通过这个例题,我们可以看到,三角恒等变换可以帮助我们简化复杂的三角表达式,使问题更加清晰明了。
二、证明三角恒等式三角恒等变换还可以用于证明各种三角恒等式,这对于理解三角函数的性质和关系非常有帮助。
下面我们来看一个例题:例题2:证明恒等式:tan^2x + 1 = sec^2x解题思路:我们可以利用三角恒等变换中的“平方和恒等式”和“余切定义恒等式”来证明这个恒等式。
首先,根据平方和恒等式,我们有tan^2x + 1 = sin^2x/cos^2x +cos^2x/cos^2x。
将这个式子进行通分,得到:tan^2x + 1 = (sin^2x + cos^2x)/cos^2x = 1/cos^2x接下来,我们利用余切定义恒等式tanx = sinx/cosx,将1/cos^2x进行变形,得到:1/cos^2x = sec^2x通过这个例题,我们可以看到,三角恒等变换可以帮助我们证明各种三角恒等式,深入理解三角函数之间的关系。
三、解决三角方程三角恒等变换在解决三角方程时也有重要的应用。
下面我们来看一个例题:例题3:解方程sin2x = cosx解题思路:我们可以利用三角恒等变换中的“二倍角恒等式”来解决这个方程。
三角恒等变换技巧
三角恒等变换技巧1.三角函数平方表示三角函数的平方表示可以将复杂的三角函数化简为简单的平方形式。
例如,可以利用以下恒等式:sin^2(x) + cos^2(x) = 1这个三角恒等式表明,一个角的正弦平方与余弦平方之和等于1、利用这个恒等式,我们可以将复杂的三角函数式子简化为更简单的形式,从而更好地进行计算。
2.和差化积和差化积是指将三角函数的和差形式转化为积的形式。
例如,可以利用以下恒等式:sin(x) + sin(y) = 2sin((x+y)/2)cos((x-y)/2)这个三角恒等式表明,两个角的正弦之和可以表示为正弦和余弦的乘积形式。
同样地,我们也可以通过差化积将两个角的正弦之差转化为正弦和余弦的乘积形式。
3.积化和差积化和差是指将三角函数的积的形式转化为和差的形式。
例如,可以利用以下恒等式:cos(x)cos(y) = 1/2[cos(x+y) + cos(x-y)]这个三角恒等式表明,两个角的余弦之积可以表示为两个角的和与差的余弦之和的一半。
同样地,我们也可以通过积化和差将两个角的正弦之积转化为正弦和余弦的和差形式。
这些三角恒等变换技巧在解决问题时经常被使用。
通过灵活地运用这些恒等变换技巧,可以将复杂的三角函数式子简化为更简单的形式,从而更方便地进行计算和分析。
此外,在解析几何中,三角恒等变换技巧也有助于直观地理解和推导三角函数的性质和关系。
总结起来,三角恒等变换技巧是一种重要的数学工具,它通过对三角函数之间相互转化,将复杂的三角函数式子简化为更简单的形式。
掌握这些变换技巧不仅有助于解决数学问题,还可以提高数学理解和推导的能力。
因此,我们应该加强对这些三角恒等变换技巧的学习和掌握,使其成为解决各种问题的利器。
高二数学解三角恒等式的方法与技巧
高二数学解三角恒等式的方法与技巧解三角恒等式是高中数学中的重要内容,也是考试中常见的题型之一。
掌握解三角恒等式的方法与技巧,不仅有助于理解三角函数的性质,还能提高解题效率。
下面将介绍几种常用的解三角恒等式的方法与技巧。
一、代入法代入法是解三角恒等式中常用且简便的一种方法。
具体操作如下:1. 将待证的恒等式两边分别用三角函数表示。
2. 根据已知的三角恒等式或性质,将原恒等式中的某些项替换成等价形式。
3. 将等式两边进行化简和变形,最终使等式两边完全一致。
示例1:证明恒等式sinθ / cosθ = tanθ。
解:根据代入法,将等式左边用三角函数表示得sinθ / cosθ,而右边用三角函数表示得tanθ。
根据三角函数的定义和性质,可以将等式左边进行变形,得到sinθ / cosθ = sinθ / cosθ * cosθ / cosθ = (sinθ cosθ) / (cosθ^2) = sinθ / (1 - sin^2θ)。
然后再通过三角函数的定义,将等式右边变形为sinθ / (1 - sin^2θ),经过化简后,等式左边和右边完全一致,从而证明了原恒等式。
二、化简法化简法是解三角恒等式的另一种常用方法,它通过一系列的化简和变形,将复杂的恒等式转化为简单的形式。
1. 利用三角函数的和差化积公式,将较复杂的三角函数表达式化简为简单的形式。
2. 运用三角函数的平方和差公式,将含有平方项的三角恒等式化简为不含平方项的形式。
3. 利用三角函数的倒数公式,将含有倒数的三角恒等式转化为不含倒数的形式。
示例2:证明恒等式sin^2θ - cos^2θ = -cos2θ。
解:根据化简法,利用平方差公式sin^2θ - cos^2θ = sin^2θ - (1 -sin^2θ) = 2sin^2θ - 1 = -cos(2θ)。
通过对等式两边进行化简和变形,可以得到等式左边和右边完全一致,从而证明了原恒等式。
三角恒等变换技巧
三角恒等变换技巧三角恒等变换不但在三角函数式的化简、求值和证明三角恒等式中经常用到,而且.由于通过三角换元可将某些代数问题化归为三角问题;立体几何中的诸多位置关系以其交角来刻画,最后又以三角问题反映出来;由于参数方程的建立,又可将解析几何中的曲线问题归结为三角问题.因此,三角恒等变换在整个高中数学中涉及面广.是常见的解题“工具”.而且由于三角公式众多.方法灵活多变,若能熟练地掌握三角恒等变换,不但能增强对三角公式的记忆,加深对诸多公式内在联系的理解,而且对发展学生的逻辑思维能力,提高数学知识的综合运用能力都大有裨益 · 一、 切割化弦“切割化弦”就是把三角函数中的正切、余切、正割、余割都化为正弦和余弦,以有利于问题的解决或发现解题途径.其实质是”‘归一”思想. 【例1】证明:ααααααααcot tan cos sin 2cot cos tan sin22+=++证明:左边ααααααααcos sin 2sin cos cos cos sin sin 22+⋅+⋅=ααααααααααααc o s s i n 1c o s s i n )c o s (s i n c o s s i n c o s c o s s i n 2s i n 2224224=+=++=右边ααααααααααcos sin 1cos sin cos sin sin cos cos sin 22=+=+= ∴左边~右边.原等式得证.点评“切割化弦”是将正切、余切、正割、余割函数均用正弦、余弦函数表示,这是一种常用的、有效的解题方法.当涉及多种名称的函数时,常用此法减少函数的种类.【例2】 已知θ同时满足b a b a b a 2sec cos 2cos sec 22=-=-θθθθ和,且b a ,均不为零,试求“b a ,”b 的关系.解:⎪⎩⎪⎨⎧=-=-②① b a b a b a 2sec cos 2cos sec 22θθθθ显然0cos ≠θ,由①×θ2cos +②×θcos 得: 0cos 2cos 22=+θθb a ,即0cos =+b a θ又0≠a ,∴ab-=θcos 代入①得a a b b a 2223=+0)(222=-⇔b a ∴22b a =点评 本例是化弦在解有关问题时的具体运用,其中正割与余弦、余割与正弦之间的倒数关系是化弦的通径.【例3】 化简)10tan 31(50sin 00+解:原式=000000010cos )10sin 2310cos 21(250sin )10cos 10sin 31(50sin +⋅=+ 110cos 80sin 10cos 10cos 40sin 210cos )1030sin(250sin 000000000===+⋅=点评 这里除用到化切为弦外,其他化异角函数为同角函数等也是常用技巧. 二、 角的拆变在三角恒等变换中经常需要转化角的关系,在解题过程中必须认真观察和分析结论中是哪个角,条件中有没有这些角,哪些角发生了变化等等.因此角的拆变技巧,倍角与半角的相对性等都十分重要,应用也相当广泛且非常灵活.常见的拆变方法有:α可变为ββα-+)(;α2可变为)()(βαβα-++;βα-2可变为αβα+-)(;α可视为2α的倍角;)45(0α±可视为)290(0α+的半角等等.【例4】(2005年全国卷)设α为第四象限角,若513sin 3sin =αα,则=α2tan _______. 解: 513tan 1tan 3tan 2tan tan 2tan sin 2cos cos 2sin sin 2cos cos 2sin sin 3sin 22=+-=-+=-+=αααααααααααααααα ∴91tan 2=α 又∵α为第四象限角 ∴31tan -=α∴43tan 1tan 22tan 2-=-=ααα 点评这里将α3写成αα+2,将α写成αα-2是解题的切人点.根据三角表达式的结构特征,寻求它与三角公式间的相互关系是解题的关键.【例5】已知锐角α、β满足)cos(2csc sin βααβ+=,2πβα≠+,求βtan 的最大值及β的值。
9种常用三角恒等变换技巧总结
9种常用三角恒等变换技巧总结三角恒等变换是数学中常用的一种技巧,在解决三角函数相关问题时非常有用。
下面总结了九种常见的三角恒等变换技巧。
1.倍角公式:sin2θ = 2sinθcosθcos2θ = cos²θ - sin²θtan2θ = 2tanθ / (1 - tan²θ)这些公式可以用于将一个三角函数中的角度变为它的倍角,从而简化计算。
2.半角公式:sin(θ/2) = ±√((1 - cosθ) / 2)cos(θ/2) = ±√((1 + cosθ) / 2)tan(θ/2) = ±√((1 - cosθ) / (1 + cosθ))这些公式可以用于将一个三角函数中的角度变为它的半角,从而简化计算。
3.和差公式:sin(A ± B) = sinAcosB ± cosAsinBcos(A ± B) = cosAcosB ∓ sinAsinBtan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)这些公式可以用于将两个角度的三角函数变成一个角度的三角函数,从而简化计算。
4.和差化积公式:sinA + sinB = 2sin((A+B)/2)cos((A-B)/2)sinA - sinB = 2cos((A+B)/2)sin((A-B)/2)cosA + cosB = 2cos((A+B)/2)cos((A-B)/2)cosA - cosB = -2sin((A+B)/2)sin((A-B)/2)这些公式可以用于将和或差的三角函数转化为乘积的三角函数,从而简化计算。
5.积化和差公式:sinAcosB = 1/2(sin(A+B) + sin(A-B))cosAsinB = 1/2(sin(A+B) - sin(A-B))cosAcosB = 1/2(cos(A+B) + cos(A-B))sinAsinB = -1/2(cos(A+B) - cos(A-B))这些公式可以用于将乘积的三角函数转化为和或差的三角函数,从而简化计算。
高中数学三角恒等式的变形与应用思路
高中数学三角恒等式的变形与应用思路在高中数学的学习中,三角恒等式是一个重要的内容。
掌握三角恒等式的变形与应用思路,不仅可以帮助学生解决各种数学题目,还可以提高他们的数学思维和解题能力。
本文将从几个常见的三角恒等式出发,通过具体的例题分析,介绍变形与应用思路。
一、基本的三角恒等式1. 余弦函数的平方与正弦函数的平方之和等于1这是最基本的三角恒等式之一,即cos²θ + sin²θ = 1。
通过变形,我们可以得到sin²θ = 1 - cos²θ,或者cos²θ = 1 - sin²θ。
应用思路:当遇到一个三角函数的平方与另一个三角函数的平方之和等于1的题目时,可以考虑使用这个恒等式进行变形。
例如,已知sinθ = 3/5,求cosθ的值。
根据sin²θ + cos²θ = 1,我们可以得到cos²θ = 1 - sin²θ = 1 - (3/5)² = 1 - 9/25 = 16/25。
因此,cosθ = ±√(16/25) = ±4/5。
2. 正弦函数与余弦函数的平方之和等于1这是另一个基本的三角恒等式,即sin²θ + cos²θ = 1。
通过变形,我们可以得到cos²θ = 1 - sin²θ,或者sin²θ = 1 - cos²θ。
应用思路:当遇到一个正弦函数与另一个余弦函数的平方之和等于1的题目时,可以考虑使用这个恒等式进行变形。
例如,已知sinθ = 4/5,求cosθ的值。
根据sin²θ + cos²θ = 1,我们可以得到cos²θ = 1 - sin²θ = 1 - (4/5)² = 1 - 16/25 = 9/25。
因此,cosθ = ±√(9/25) = ±3/5。
三角函数恒等变形技巧
三角函数恒等变形技巧三角函数是数学中非常重要的一部分,它们在几何、解析和应用数学中都广泛应用。
在处理三角函数方程和恒等式时,有时我们需要利用一些技巧来进行变形,以便简化方程的形式或证明两个三角函数的恒等式。
本文将介绍一些常用的三角函数恒等变形技巧。
1.利用和差角公式:和差角公式是三角函数的基本变形公式之一、它可以将一个三角函数形式的和(差)角转化为一个含有同一函数的乘积形式。
例如,对于正弦函数来说,和差角公式可以表示为:sin(A ± B) = sin A cos B ± cos A sin B。
2.利用倍角公式:倍角公式是将角度加倍后的三角函数值与原始三角函数值之间的关系。
例如,对于正弦函数来说,倍角公式可以表示为:sin(2A) = 2sin A cos A。
3.利用半角公式:半角公式是将角度减半后的三角函数值与原始三角函数值之间的关系。
例如,对于正弦函数来说,半角公式可以表示为:sin(A/2) = ±√[(1 - cos A) / 2]。
4.利用倒角公式:倒角公式是将角度的倒数与三角函数的倒数之间的关系。
例如,对于正弦函数来说,倒角公式可以表示为:sin(A) / sin(π - A) = csc A。
5.利用平方公式:平方公式是将一个三角函数平方与其他三角函数之间的关系。
例如,对于正弦函数来说,平方公式可以表示为:sin² A + cos² A = 16.利用互余公式:互余公式是将一个三角函数与其余补角的关系。
例如,对于正弦函数来说,互余公式可以表示为:sin A = cos (π/2 - A)。
7.利用对称性:三角函数具有一些对称性质,如正弦函数和余弦函数的奇偶性、正切函数和余切函数的周期性等。
利用这些对称性质可以简化一些三角函数的表达式。
以上是一些常见的三角函数恒等变形技巧,它们在解决三角函数方程和证明三角函数恒等式时非常有用。
当遇到复杂的三角函数问题时,我们可以尝试结合这些技巧进行变形,以便更好地理解和求解问题。
三角恒等变换的常见技巧(师)
三角恒等变换的常见技巧一、核心技巧方法1、三角恒等变换中的“统一”思想:三角恒等变换的主要目的是异名化同名、异次化同次、异角化同角、异构化同构,即化异为同,也就是将待证式左右两边统一为一个形式,或将条件中的角、函数式表达为问题中的角或函数式,达到以已知表达未知的目的。
基本切入点是统一角,往往从统一角入手便能全面达到化异为同的目的。
2、统一思想的应用——引入辅助角:对x b x a y cos sin +=型函数式的性质的研究,我们常常引入辅助角ϕ。
即化ab x b a x b x a y =++=+=ϕϕtan ),sin(cos sin 22,然后将该式与基本三角函数x A sin y =进行比照研究。
“位置相同,地位平等”是处理原则。
3、统一思想的应用——拆、拼角,如()()()()22β-α+β+α=αβ-β+α=αβ+β+α=β+α,,等等;4、统一思想的应用——弦切互化,如利用万能公式,把正余弦化为正切等等;对关于正余弦函数的齐次式的处理也属于“弦化切”技巧;5、统一思想的应用——公式变、逆用,主要做法是将三角函数式或其一部分整理成公式的一部分,然后利用公式的这一部分与另一部分的等量关系代入6、代换思想的应用——关于正余弦对等式的处理,常以21t x cos x sin ,t x cos x sin 2-==+代入,把函数式化为关于t 的函数式进行研究;另外,三角代换也是处理函数最值、值域等问题的重要技巧。
二、考点解析与典型例题考点一 引入辅助角研究三角函数的性质例1. 设f (x )=asin x ω+bcos x ω(0,,>ωb a )的周期为π且最大值f (12π)=4; 1)求ω、a 、b 的值;2)若α、β为f (x )=0的两个根(α、β终边不共线), 求tan (α+β)的值。
【解】1)ab x b a x f =++=ϕϕωtan ),sin()(22,则 ⎪⎩⎪⎨⎧===ω⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎩⎪⎨⎧==ϕ=ω⇒⎪⎪⎭⎪⎪⎬⎫=ϕ+ωππ=ωπ=+⇒=+=π=π32b 2a 23a b tan 21)12sin(24b a 4b a )12(f )x (f ,)x (f 2222max 周期为由上可知:)32sin(4)(π+=x x f ,令26320)(ππππk x k x x f +-=⇒=+⇒=因为α、β终边不共线,故33)tan(2123=+⇒++-=+βαππβαk考点二 拆、拼角例2. 已知cos 91)2(-=-βα,sin 32)2(=-βα,且,20,2πβπαπ<<<<求.2cos βα+【分析】观察已知角和所求角,可作出)2()2(2βαβαβα---=+的配凑角变换,然后利用余弦的差角公式求角。
三角恒等变换技巧
三角恒等变换技巧三角恒等变换不但在三角函数式的化简、求值和证明三角恒等式中经常用到,而且.由于通过三角换元可将某些代数问题化归为三角问题;立体几何中的诸多位置关系以其交角来刻画,最后又以三角问题反映出来;由于参数方程的建立,又可将解析几何中的曲线问题归结为三角问题.因此,三角恒等变换在整个高中数学中涉及面广.是常见的解题“工具〞.而且由于三角公式众多.方法灵活多变,假设能熟练地掌握三角恒等变换,不但能增强对三角公式的记忆,加深对诸多公式内在联系的理解,而且对开展学生的逻辑思维能力,提高数学知识的综合运用能力都大有裨益 · 一、 切割化弦“切割化弦〞就是把三角函数中的正切、余切、正割、余割都化为正弦和余弦,以有利于问题的解决或发现解题途径.其实质是〞‘归一〞思想. 【例1】证明:ααααααααcot tan cos sin 2cot cos tan sin 22+=++证明:左边ααααααααcos sin 2sin cos cos cos sin sin22+⋅+⋅= ααααααααααααcos sin 1cos sin )cos (sin cos sin cos cos sin 2sin 2224224=+=++=右边ααααααααααcos sin 1cos sin cos sin sin cos cos sin 22=+=+= ∴左边~右边.原等式得证.点评“切割化弦〞是将正切、余切、正割、余割函数均用正弦、余弦函数表示,这是一种常用的、有效的解题方法.当涉及多种名称的函数时,常用此法减少函数的种类. 【例2】θ同时满足b a b a b a 2sec cos 2cos sec 22=-=-θθθθ和,且b a ,均不为零,试求“b a ,〞b 的关系.解:⎪⎩⎪⎨⎧=-=-②① b a b a b a 2sec cos 2cos sec 22θθθθ显然0cos ≠θ,由①×θ2cos +②×θcos 得: 0cos 2cos 22=+θθb a ,即0cos =+b a θ又0≠a ,∴ab-=θcos 代入①得a a b b a 2223=+0)(222=-⇔b a ∴22b a =点评 本例是化弦在解有关问题时的具体运用,其中正割与余弦、余割与正弦之间的倒数关系是化弦的通径. 【例3】化简)10tan 31(50sin 00+解:原式=000000010cos )10sin 2310cos 21(250sin )10cos 10sin 31(50sin +⋅=+ 110cos 80sin 10cos 10cos 40sin 210cos )1030sin(250sin 000000000===+⋅=点评 这里除用到化切为弦外,其他化异角函数为同角函数等也是常用技巧. 二、 角的拆变在三角恒等变换中经常需要转化角的关系,在解题过程中必须认真观察和分析结论中是哪个角,条件中有没有这些角,哪些角发生了变化等等.因此角的拆变技巧,倍角与半角的相对性等都十分重要,应用也相当广泛且非常灵活.常见的拆变方法有:α可变为ββα-+)(;α2可变为)()(βαβα-++;βα-2可变为αβα+-)(;α可视为2α的倍角;)45(0α±可视为)290(0α+的半角等等.【例4】〔2005年全国卷〕设α为第四象限角,假设513sin 3sin =αα,那么=α2tan _______. 解: 513tan 1tan 3tan 2tan tan 2tan sin 2cos cos 2sin sin 2cos cos 2sin sin 3sin 22=+-=-+=-+=αααααααααααααααα ∴91tan 2=α 又∵α为第四象限角 ∴31tan -=α∴43tan 1tan 22tan 2-=-=ααα 点评这里将α3写成αα+2,将α写成αα-2是解题的切人点.根据三角表达式的结构特征,寻求它与三角公式间的相互关系是解题的关键.【例5】锐角α、β满足)cos(2csc sin βααβ+=,2πβα≠+,求βtan 的最大值及β的值。
进行三角恒等变换的几个技巧
很多三角函数题目侧重于考查三角恒等变换的技巧.进行三角恒等变换的关键是选择合适的公式或变形式,将三角函数式中的角、函数名称、幂等进行灵活的转化,从而顺利化简三角函数式,求出三角函数式的值.下面,笔者介绍几个进行三角恒等变换的技巧,以供大家参考.一、拆角与补角有些三角函数式中的角不相同,就需要运用拆角与补角的技巧,将题目中的角进行转化.在转化角时,要先联系已知条件和所求目标,将角进行拆分、拼凑,再灵活运用诱导公式、二倍角公式、两角的和差公式等进行变换.例1.已知cos (α+π4)=35,π2≤α≤3π2,求cos (2α+π4)的值.解:由于π2≤α≤3π2,所以3π4≤α+π4≤7π4,因为cos (α+π4)=35>0,可知3π2≤α+π4≤7π4,因此sin (α+π4)=-45,所以sin 2(α+π4)=2sin (α+π4)cos (α+π4)=-2425,cos 2(α+π4)=2cos 2(α+π4)-1=-725,因此cos (2α+π4)=cos[2(α+π4)-π4]=cos 2(α+π4)cos π4+sin 2(α+π4)sin π4=.观察题目中的各个角,可以发现:已知角α+π4与所要求的角2α+π4之间相差一个α,可得2(α+π4)-π4=2α+π4,用二倍角公式和诱导公式求出sin 2(α+π4)和cos 2(α+π4)的值,最后根据余弦的两角和公式,即可求出cos(2α+π4)的值.二、降幂与升幂当三角函数式中出现高次或者次数不一的式子时,就要运用降幂与升幂的技巧来解题.常用到的公式有cos 2α=2cos 2α-1=1-2sin 2α、tan 2α=2tan α1-tan 2α、sin 2α+cos 2α=1.例2.证明cos 2α+cos 2(x +π3)+cos 2(x -π3)的值与x 的取值无关.证明:cos 2α+cos 2(x +π3)+cos 2(x -π3)=1+cos 2x 2+1+cos(2x +23π)2+1+cos(2x -23π)2=32+12[cos 2x +cos(2x +23π)cos(2x -2π3)]=32+12(cos 2x -12cos 2x -2x -12cos 2x +2x )=32.该式与x 无关,命题得证.该三角函数式较为复杂,cos 2α、cos 2(x +π3)、cos 2(x -π3)均为二次式,且各个角不相等,需先利用余弦函数的二倍角公式降幂,将其转化为一次式,然后再进行化简,这样运算起来就会容易很多.三、弦切互化当函数式中出现多种不同的三角函数名称时,就需要通过弦切互化,将不同名函数化为同名函数.常用的办法是利用tan α=sin αcos α或sin 2α+cos 2α=1将切化弦或将弦化切.例3.已知tan α=2,求4sin α-2cos α5cos α+3sin α的值.解:因为tan α=2,所以cos α≠0,所以4sin α-2cos α5cos α+3sin α=4sin α-2cos αcos α5cos α+3sin αcos α=4tan α-25+2tan α=611.解答本题,需挖掘题目中的隐含信息cos α≠0,将所求目标式的分子、分母同时除以cos α,利用tan α=sin αcos α,使所求目标式中的函数名称统一为正切函数,最后将已知值代入,求得目标函数式的值.无论是对函数名称、角,还是对幂进行转化,都需要灵活运用三角函数中的基本公式及其变形式,有时也要学会逆用公式.在进行三角恒等变换时,要注意仔细观察三角函数式,选择恰当的三角恒等变换技巧.(作者单位:江苏省射阳县高级中学)解题宝典40。
三角恒等变形中常见解题方法与技巧
n si
. . . . . . .
种角作为基本量 , 其他形式 的角化为这种 形式 的角, 将 从
而 使 问题 得 以解 决 .
例 已 c i = ,s 值 2 知。 T )了求i 的 . s' 一 3 n 十 2
例 1 求 证
—
2,知 寻+的 倍 詈+ ,诱 公 得s x 角 2 为 2由 导 式 i = 已 n 2
一 os
( z. 号+)
,。z : 。 进 行 幂 的 升 降.
3 .幂 的 升 降 在三角恒等变形 中, 常根 据 三 角 式 的 次 数 的 差 异 , 用 运
分 本 不 直 求 角 需 凑 ,詈+ 析 题 能 接 出 2 故 要 角即 ,
s n
— 一 .
. . . . . .
iO
. .
 ̄
,
cos
. . . . . . .
O
-
. . . . .
 ̄
.
O
.. .
..
2
-
c os
. . . . . . . . . . . —
0
—
.
“
解 原式 :L
+L
+
分析
等式 左 边 有 正 切 函数 和 余 弦 函 数 , 等 式 右 边 而
只 有 正 弦 , 可 以 采 用 切 化 弦 来 化 简 等 式左 边. 故
.
—
。 —
1 .
岫 ∞ ,
÷ n。 (3 7 一 0 n 0 ÷+ (s。co + s0 ÷c0 一s ) 1n。 00 。。 i l 4 7 = 1 (2i m。1n。 + x一so 3 丁i ÷ x m。 + so 卜 )7 0 n n 。u u m 7 ÷一 ×n。÷i。÷ 一 so so . i n = ‘ ÷ 7+ “ u 7
2024年高考数学专项三角恒等变换4种常见考法归类(解析版)
三角恒等变换4种常见考法归类高频考点考点一两角和与差的正弦、余弦和正切公式(一)给角求值(二)给值(式)求值(三)给值求角(四)三角函数式的化简(五)两角和与差的正弦、余弦、正切公式的综合应用考点二二倍角公式(一)给角求值(二)给值(式)求值(三)给值求角(四)与同角三角函数的基本关系综合(五)与诱导公式的综合(六)利用二倍角公式化简求值考点三辅助角公式的应用考点四简单的三角恒等变换(一)半角公式的应用(二)三角恒等式的证明(三) 三角恒等变换的综合问题解题策略1.两角和与差的正弦、余弦和正切公式(1)两角和与差的正弦、余弦和正切公式(和角、差角公式)C(α-β)cos(α-β)=cosαcosβ+sinαsinβC(α+β)cos(α+β)=cos_αcos_β-sin_αsin_β记忆口诀:1、余余正正符号反2、同名相乘、加减相反3、谐音:“吃吃睡睡,颠倒黑白”S(α-β)sin(α-β)=sin_αcos_β-cos_αsin_β(异名相乘、加减一致)S(α+β)sin(α+β)=sin_αcos_β+cos_αsin_β(异名相乘、加减一致)记忆口诀:1、正余余正符号同2、异名相乘、加减一致3、谐音:“上错厕所,一一对应”T (α-β)tan(α-β)=tanα-tanβ1+tanαtanβ;(两式相除、上同下异).变形:①tanα-tanβ=tan(α-β)(1+tanαtanβ)②tanα·tanβ=tanα-tanβtan(α-β)-1 2024年高考数学专项三角恒等变换4种常见考法归类(解析版)T (α+β)tan (α+β)=tan α+tan β1-tan αtan β;(两式相除、上同下异).变形:①tan α+tan β=tan (α+β)(1-tan αtan β)②tan α·tan β=1-tan α+tan βtan (α+β)(2)二倍角的正弦、余弦、正切公式(倍角公式)二倍角是相对的,如:α2是α4的2倍,3α是3α2的2倍.S 2αsin 2α=2sin _αcos _α;变形:sin αcos α=12sin2α,cos α=sin2α2sin α,⇒1±sin2α=sin 2α+cos 2α±2sin αcos α=(sin α±cos α)2C 2αcos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;变形:cos 2α=1+cos2α2,sin 2α=1-cos2α2T 2αtan 2α=2tan α1-tan 2α(α≠k π+π2且α≠k π2+π4,k ∈Z )2.简单的三角恒等变换(1)降幂公式sin 2α=1-cos2α2.cos 2α=1+cos2α2.sin αcos α=12sin2α.(2)升幂公式1+cos α=2cos 2α2. 1-cos α=2sin 2α2. 1+sin α=sin α2+cos α2 2. 1-sin α=sin α2-cos α22.注:1+cos2α=2cos 2α;1−cos2α=2sin 2α;1+sin2α=(sin α+cos α)2;1−sin2α=(sin α−cos α)2(3)万能公式sin α=2tan α21+tan 2α2,cos α=1-tan 2α21+tan 2α2,tan α=2tan α21-tan 2α2(4)其他常用变式sin2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α;cos2α=cos 2α−sin 2αsin 2α+cos 2α=1−tan 2α1+tan 2α;cos 4x -sin 4x =(cos 2x +sin 2x )(cos 2x -sin 2x )=cos2x 3.辅助角公式(同角异名1次)a sin α+b cos α=a 2+b 2sin (α+φ),其中cos φ=a a 2+b 2,sin φ=b a 2+b 2,或tan φ=ba . 其中φ称为辅助角,它的终边所在象限由点(a ,b )决定.4.半角的正弦、余弦、正切公式(1)sin α2=±1-cos α2.(2)cosα2=±1+cosα2.(3)tanα2=±1-cosα1+cosα=sinα1+cosα=1-cosαsinα.5.常用的拆角、拼角技巧(1)15°=45°-30°=60°-45°=30°2.(2)β=α-a-β,α=(α+β)-β=β-(β-α),2α=(α+β)+(α-β),α=12[(α+β)+(α-β)]β=α+β2-α-β2=(α+2β)-(α+β). α-β=(α-γ)+(γ-β)(3)π3-α=π2-π6+α,π6-α=π2-π3+α,π3+α=π-2π3-α,π4+α=π-3π4-α. π4+α=π2-π4-α6. 应用和、差、倍角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”;(2)注意与同角三角函数基本关系、诱导公式的综合应用;(3)注意配方法、因式分解和整体代换思想的应用. 7. 和、差、倍角公式的逆用和变形用的应用技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式;(2)和差角公式变形:sinαsinβ+cos(α+β)=cosαcosβ;cosαsinβ+sin(α-β)=sinαcosβ;tanα±tanβ=tan(α±β)·(1∓tanα·tanβ);(3)倍角公式变形:降幂公式.(4)tanαtanβ,tanα+tanβ(或tanα-tanβ),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题. 8. 解决非特殊角求值问题的基本思路有:①化非特殊角为特殊角;②化为正负相消的项,消去后求值;③化分子、分母使之出现公约数,进行约分求值;④当有α,2α,3α,4α同时出现在一个式子中时,一般将α向2α,3α(或4α)向2α转化,再求关于2α式子的值.9.三角函数式的化简要遵循“三看”原则注:三角函数式化简、求值的一般思路:异名三角函数化为同名三角函数,异角化为同角,异次化为同次,切化弦,特殊值与特殊角的三角函数互化等. 10. 给值(式)求值的解题策略(1)已知某些角的三角函数值,求另外一些角的三角函数值,要注意观察已知角与所求表达式中角的关系,即拆角与凑角.(2)由于和、差角与单角是相对的,因此解题过程中根据需要灵活地进行拆角或凑角的变换.常见角的变换有:①α=(α-β)+β;②α=α+β2+α-β2;③2α=(α+β)+(α-β);④2β=(α+β)-(α-β).(3)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式.(4)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.(5)给值求值型恒等变换问题,重在对所给条件进行挖掘,如由某角正弦值可得其余弦、正切值,由所给值的符号判断角所在的象限等. 必要时还要进行估算,如锐角α的余弦值为35,由12<35<22,及余弦函数在0,π2上单调递减可知45°<α<60°,从而2α∈(90°,120°),或3α∈(135°,180°)等. 另外,注意三种主要变换:①变角,通常是“配凑”,常用的角的拆拼有2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β等;②变名,通过变换函数名称达到减少函数种类的目的,其手段通常有“切化弦”“升幂与降幂”等;③变式,根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手段通常有:“常值代换”如1=tan π4,1=sin 2α+cos 2α“逆用变换公式”“通分约分”“分解与组合”“配方与平方”等. 其中角的变换居核心地位.11. 已知三角函数值求角的解题步骤(1)界定角的范围,根据条件确定所求角的范围.(在给值求角时,一般地选择一个适当的三角函数,根据题设确定所求角的范围,利用三角函数的单调性求出角. 确定角的范围是关键,一定要使所选的函数在此范围内是单调的,必要时,还需根据已知三角函数值缩小角的范围.)(2)求所求角的某种三角函数值.为防止增解最好选取在范围内单调的三角函数(已知三角函数值求角,选三角函数时可按下列规则:(i )已知正切值,常选正切函数;(ii )已知正、余弦值,常选正弦或余弦函数;(iii )若角的范围是0,π2 ,π,3π2 ,常选正、余弦函数;(iv )若角的范围是π2,3π2 或-π2,π2 ,常选正弦函数;(v )若角的范围是(0,π)或(π,2π),常选余弦函数. )(3)结合三角函数值及角的范围求角.12. 利用半角公式求值的思路(1)看角:若已知三角函数式中的角是待求三角函数式中角的两倍,则求解时常常借助半角公式求解.(2)明范围:由于半角公式求值常涉及符号问题,因此求解时务必依据角的范围,求出相应半角的范围.(3)选公式:涉及半角公式的正切值时,常用tan α2=sinα1+cosα=1-cosαsinα,其优点是计算时可避免因开方带来的求角的范围问题;涉及半角公式的正、余弦值时,常先利用sin2α2=1-cosα2,cos2α2=1+cosα2计算.13. 三角恒等式证明的常用方法(1)执因索果法:证明的形式一般是化繁为简.(2)左右归一法:证明左右两边都等于同一个式子.(3)拼凑法:针对题设和结论之间的差异,有针对性地变形,以消除它们之间的差异,简言之,即化异求同.(4)比较法:设法证明“左边-右边=0”或“左边/右边=1”.(5)分析法:从被证明的等式出发,逐步地探求使等式成立的条件,直到已知条件或明显的事实为止,就可以断定原等式成立.考点精析考点一两角和与差的正弦、余弦和正切公式(一)给角求值14(2023·全国·高三专题练习)cos-75°的值是A.6-22B.6+22C.6-24D.6+2415(2023·全国·模拟预测)sin20°cos40°+sin70°sin40°=()A.32B.12C.22D.116(2023·广东湛江·统考一模)cos70°-cos20°cos65°=.17(2023·全国·高三专题练习)sin220°-cos220°sin45°cos155°1-sin40°=.(二)给值(式)求值18(2023·江西九江·统考三模)已知0<α<π2<β<π,且sinα=23,cosβ=-75,则cos(α-β)=()A.-115B.-1315C.-41415D.2141519(江西省九江市2023届高三三模数学(理)试题)已知0<α<β<π,且cosα=13,cosα-β=223,则cosβ=()A.89B.79C.429D.020(2023·陕西榆林·统考模拟预测)若tanα+π4=15,则tanα=()A.-23B.23C.-13D.1321(山西省晋中市2023届高三三模数学试题(A卷))已知α,β为锐角,且tanα=2,sinα+β= 22,则cosβ=()A.-31010B.31010C.-1010D.101022(河南省名校青桐鸣2023届高三下学期4月联考文科数学试题)已知tanαtanβ=2,cosα+β=-15,则cosα-β=()A.35B.-35C.115D.-11523(2023·全国·高三专题练习)若α∈π2,3π4,cosα-π4=210,则sinα+π3=24【多选】(河北省承德市2023届高三下学期4月高考模拟数学试题)已知0<α<π2<β<π,sinα=13,cos(α+β)=-223,下列选项正确的有()A.sin(α+β)=±13B.cosβ=-79C.cos2β=-1781D.sin(α-β)=-232725(2023·陕西商洛·统考三模)已知tan(α+β)=3,tanα+π4=-3,则tanβ=()A.-15B.15C.-17D.1726(2023·江西上饶·校联考模拟预测)已知α、β均为锐角,且sinα=2sinβ,2cosα=cosβ,则sinα-β=.(三)给值求角27(2023·全国·高三专题练习)已知α,β都是锐角,cosα=17,cos(α+β)=-1114,则β=.28(2023·全国·高三专题练习)已知cosα=17,cos(α-β)=1314,若0<β<α<π2,则β=.29(2023·河南·校联考模拟预测)设tanα,tanβ是方程x2+33x+4=0的两根,且α,β∈-π2 ,π2,则α+β=( ).A.π3B.-2π3C.π3或-2π3D.2π330(2023·全国·高三专题练习)已知cosα=255,sinβ=1010,且α∈0,π2,β∈0,π2,则α+β的值是()A.3π4B.π4C.7π4D.5π431【多选】(2023·全国·高三专题练习)若tan α+tan β=3-3tan αtan β,则α+β的值可能为()A.π3 B.π6C.-2π3D.-5π632(2023·全国·高三专题练习)已知0<α<π2,cos α+π4 =13.(1)求sin α的值;(2)若-π2<β<0,cos β2-π4=33,求α-β的值.33(2023·全国·高三专题练习)已知角α为锐角,π2<β-α<π,且满足tan α2=13,sin β-α =7210(1)证明:0<α<π4;(2)求β.34(2023·全国·高三专题练习)已知sin π4-α=-55,sin 3π4+β =1010,且α∈π4,3π4,β∈0,π4,求α-β的值为.(四)三角函数式的化简35(2023·福建厦门·统考模拟预测)已知sin α+sin α+2π3=sin π3-α ,则sin α=()A.0B.±217C.±22D.±3236(2023春·山西·高三校联考阶段练习)已知2sin θ+π4 =3cos θ,则sin θsin θ-cos θ=.37(2023·湖北·校联考模拟预测)已知sin x +π4 =-35,3π4<x <5π4,则sin x 1-tan x =()A.21100B.-21100C.7280D.-728038(2023·全国·高三专题练习)已知θ≠k π+π4k ∈Z ,且cos2θcos 3π2-θ=cos θ-sin θ,则tan θ-π4-tan2π2-θ =()A.83B.53C.-13D.-13339(2023·湖南长沙·长郡中学校考一模)已知α,β∈0,π2,sin (2α+β)=2sin β ,则tan β的最大值为()A.12B.33C.22D.3240(河南省部分学校2023届高三高考仿真适应性测试理科数学试题)已知向量a=2cos75°,2sin75°,b =cos15°,-sin15° ,且(2a +b )⊥(a -λb ),则实数λ的值为()A.8B.-8C.4D.-441(2023·陕西·统考一模)在△ABC 中,点D 是边BC 上一点,且AB =4,BD =2.cos B =1116,cos C =64,则DC =.42【多选】(2023·江苏南通·模拟预测)重庆荣昌折扇是中国四大名扇之一,其精雅宜士人,其华灿宜艳女,深受各阶层人民喜爱.古人曾有诗赞曰:“开合清风纸半张,随机舒卷岂寻常;金环并束龙腰细,玉栅齐编凤翅长”.荣昌折扇平面图为下图的扇形COD ,其中∠COD =2π3,OC =3OA =3,动点P 在CD 上(含端点),连结OP 交扇形OAB 的弧AB 于点Q ,且OQ =xOC +yOD,则下列说法正确的是()A.若y =x ,则x +y =23B.若y =2x ,则OA ⋅OP=0C.AB ⋅PQ≥-2D.PA ⋅PB ≥11243(广东省潮州市2023届高三二模数学试题)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知3tan A tan C =tan A +tan C +3.(1)求角B 的大小;(2)求cos A +cos C 的取值范围.考点二二倍角公式(一)给角求值44【多选】(2023·全国·高三专题练习)下列等式成立的是()A.sin275°-cos275°=32B.12sin15°+32cos15°=22C.sin75°cos75°=14D.1-tan15°1+tan15°=3345(2023·河南开封·开封高中校考模拟预测)4sin40°-tan40°sin75°-cos75°sin75°+cos75°的值为()A.66B.12C.63D.146(2023·重庆·统考模拟预测)式子2sin18°3cos29°-sin29°-1cos6°+3sin6°化简的结果为()A.12B.1C.2sin9°D.247(2023·全国·高三专题练习)公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为m=2sin18°,若m2+n=4,m n2cos227°-1 =.48(2023·全国·高三专题练习)若λsin160°+tan20°=3,则实数λ的值为()A.4B.43C.23D.433(二)给值(式)求值49【多选】(2023·山西·校联考模拟预测)已知sin x=35,其中x∈π2,π,则()A.tan x=-43B.cos x2=1010C.sin2x=-2425D.cos x-π4=-21050(2023·福建泉州·校考模拟预测)已知cosα=-35,π2≤α≤π,则cos2α+π4=.51(2023秋·湖南衡阳·高三衡阳市一中校考期中)已知sinα-cosα=-23,则sin2α=.52【多选】(2023·全国·高三专题练习)已知cosα+β=-55,cos2α=-45,其中α,β为锐角,则以下命题正确的是()A.sin2α=35B.cosα-β=-2255C.cosαcosβ=510D.tanαtanβ=1353(2023春·山西太原·高三山西大附中校考阶段练习)已知α∈0,π,cosα=-35,则cos2α2+π4=.54(2023秋·辽宁葫芦岛·高三统考期末)已知α∈0,π2,sin2α=cosπ4-α,则cos2α的值为()A.0B.12C.32D.-3255(2023·全国·高三专题练习)已知sinαsinπ3-α=3cosαsinα+π6,则cos2α+π3=()A.-32B.-1 C.12D.3256(2023·全国·高三专题练习)已知cos2π4+α=45,则sin2α=()A.35B.-35C.15D.-15(三)给值求角57(2023·全国·高三专题练习)已知tan α=13,tan β=-17,且α,β∈(0,π),则2α-β=()A.π4B.-π4C.-3π4D.-3π4或π458(2023·全国·高三专题练习)若α∈0,π ,cos2α=sin 2α2-cos 2α2,则α=.(四)与同角三角函数的基本关系综合59(2023·全国·高三专题练习)已知α∈π4,π2,且sin2α=45,则3sin α-cos α4sin α+2cos α=60(2023·海南·校联考模拟预测)已知tan α=2,则1-3cos 2αsin2α=.61(2023秋·四川成都·高三四川省成都市玉林中学校考阶段练习)已知tan α=2,则sin2αsin 2α+sin αcos α-cos2α-1的值为()A.12B.1C.2D.-1(五)与诱导公式的综合62(2023春·江西南昌·高三统考开学考试)已知tan (π-α)=22,则sin2α=()A.429B.229C.-229D.-42963(2023·全国·高三专题练习)若cos π3-2x =-78,则sin x +π3的值为( ).A.14B.78C.±14D.±7864(2023·河北·统考模拟预测)已知sinα-π6=-25,则cos2α+5π3=()A.825B.1725C.255D.5565(2023·湖北武汉·统考二模)已知sinα+π3=35,则sin2α+π6=()A.2425B.-2425C.725D.-725(六)利用二倍角公式化简求值66(2023·全国·高三专题练习)已知tanα=3,则sinα-π4cosα+π4sin2α=.67(2023·全国·高三专题练习)若sinθ1-cosθ=2,则1+2sin2θ+3cos2θ1-2sin2θ+3cos2θ=()A.5B.43C.2D.468(2023·全国·高三专题练习)已知函数f x =sin2x+cos2x-2sinπ-xcosπ+xsin9π2-x-cos13π2+x.(1)求fπ12的值;(2)已知fα =23,求sin2α的值.考点三辅助角公式的应用69(2023·全国·高三专题练习)函数y =cos x +cos x -π3x ∈R 的最大值为,最小值为.70(2023·陕西铜川·统考二模)已知函数f x =cos x +π2 cos x +π4,若x ∈-π4,π4,则函数f x 的值域为.71(2023·山东泰安·统考二模)已知sin α+3cos α=233,则sin 5π6-2α =.72(2023·湖北荆门·荆门市龙泉中学校联考模拟预测)若sin 2α+π6+cos2α=-3,则tan α=.73(2023·辽宁丹东·统考二模)若cos α≠0,2(sin2α+5cos α)=1+cos2α,则tan2α=()A.-43B.-34C.34D.4374(2023秋·福建莆田·高三校考期中)已知函数f (x )=23sin x cos x -2cos 2x +1.(1)求函数f (x )的最小正周期及单调递增区间;(2)求函数f (x )在区间-5π12,π6的值域;考点四简单的三角恒等变换(一)半角公式的应用75(2023秋·河北石家庄·高三统考期末)已知1+cos θsin θ=33,则tan θ2=.76(2023·全国·高三专题练习)若α∈0,π2 ,sin α2-cos α=tan α2,则tan α=( ).A.33B.3C.34D.6277(2023·全国·高三专题练习)若cos α=-45,α是第三象限的角,则1-tan α21+tan α2=()A.2B.12C.-2D.-1278(2023·浙江·校联考二模)数学里有一种证明方法叫做Pr oofwithoutwords ,也被称为无字证明,是指仅用图象而无需文字解释就能不证自明的数学命题,由于这种证明方法的特殊性,无字证时被认为比严格的数学证明更为优雅与有条理.如下图,点C 为半圆O 上一点,CH ⊥AB ,垂足为H ,记∠COB =θ,则由tan ∠BCH =BHCH可以直接证明的三角函数公式是()A.tanθ2=sin θ1-cos θB.tanθ2=sin θ1+cos θC.tanθ2=1-cos θsin θD.tanθ2=1+cos θsin θ(二)三角恒等式的证明79(2023·全国·高三专题练习)已知α,β∈0,π2 ,且满足sin βsin α=cos α+β .(1)证明:tan β=sin αcos α1+sin 2α;(2)求tan β的最大值.80(2023·高三课时练习)小明在一次研究性学习中发现,以下五个式子的值都等于同一个常数.①sin213°+cos217°-sin13°cos17°;②sin215°+cos215°-sin15°cos15°;③sin218°+cos212°-sin18°cos12°;④sin2-18°cos48°;+cos248°-sin-18°⑤sin2-25°+cos255°-sin-25°cos55°.(1)请依据②式求出这个常数;(2)相据(1)的计算结果,将小明的发现推广为三角恒等式,并证明你的结论.81(2023春·江苏宿迁·高三校考阶段练习)已知△ABC为斜三角形.(1)证明:tan A+tan B+tan C=tan A tan B tan C;(2)若△ABC为锐角三角形,sin C=2sin A sin B,求tan A+tan B+tan C的最小值.(三)三角恒等变换的综合问题82(2023春·北京·高三清华附中校考期中)已知函数f x =sin x +cos x 2-2sin 2x .(1)求函数f x 的最小正周期和单调递增区间;(2)求函数f x 在区间0,π2上的最大值和最小值,并求相应的x 的值.83(2023·上海浦东新·统考三模)已知向量a =3sin x ,cos x ,b =sin x +π2,cos x .设f x =a ⋅b .(1)求函数y =f x 的最小正周期;(2)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若f A =1,b =4,三角形ABC 的面积为23,求边a 的长.84(2023·浙江绍兴·统考模拟预测)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且满足a +b +c a +b -c =3ab .(1)求角C 的大小;(2)若△ABC 是锐角三角形,求a +2bc的取值范围.85(2023春·四川成都·高三成都外国语学校校考期中)已知向量a =sin x +π6,cos 2x ,b =cos x ,-1 .设函数f x =2a ⋅b +12,x ∈R .(1)求函数f x 的解析式及其单调减区间;(2)若将y =f x 的图像上的所有点向左平移π4个单位,再把所得图像上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数h x 的图像.当x ∈m ,m +π2(其中m ∈0,π2 )时,记函数h x 的最大值与最小值分别为h x max 与h x min ,设φm =h x max -h x min ,且使对∀m ∈0,π2都有k ≥φm 成立,求实数k 的最小值.86(2023春·四川成都·高三成都市锦江区嘉祥外国语高级中学校联考期中)嘉祥教育秉承“为生活美好、社会吉祥而努力”的企业理念及“坚韧不拔、创造第一”的企业精神,经过30年的发展和积累,目前已建设成为具有高度文明素质和良好社会信誉的综合性教育集团.某市有一块三角形地块,因发展所需,当地政府现划拨该地块为教育用地,希望嘉祥集团能帮助打造一所新的教育品牌学校.为更好地利用好这块土地,集团公司决定在高三年级学生中征集解决方案.如图所示,AB=BC=AC=2km,D是BC中点,E、F分别在AB、AC上,△CDF拟建成办公区,四边形AEDF拟建成教学区,△BDE拟建成生活区,DE和DF拟建成专用通道,∠EDF=90°,记∠CDF=θ.(1)若θ=30°,求教学区所在四边形AEDF的面积;(2)当θ取何值时,可使快速通道E-D-F的路程最短?最短路程是多少?三角恒等变换4种常见考法归类高频考点考点一两角和与差的正弦、余弦和正切公式(一)给角求值(二)给值(式)求值(三)给值求角(四)三角函数式的化简(五)两角和与差的正弦、余弦、正切公式的综合应用考点二二倍角公式(一)给角求值(二)给值(式)求值(三)给值求角(四)与同角三角函数的基本关系综合(五)与诱导公式的综合(六)利用二倍角公式化简求值考点三辅助角公式的应用考点四简单的三角恒等变换(一)半角公式的应用(二)三角恒等式的证明(三) 三角恒等变换的综合问题解题策略1.两角和与差的正弦、余弦和正切公式(1)两角和与差的正弦、余弦和正切公式(和角、差角公式)C(α-β)cos(α-β)=cosαcosβ+sinαsinβC(α+β)cos(α+β)=cos_αcos_β-sin_αsin_β记忆口诀:1、余余正正符号反2、同名相乘、加减相反3、谐音:“吃吃睡睡,颠倒黑白”S(α-β)sin(α-β)=sin_αcos_β-cos_αsin_β(异名相乘、加减一致)S(α+β)sin(α+β)=sin_αcos_β+cos_αsin_β(异名相乘、加减一致)记忆口诀:1、正余余正符号同2、异名相乘、加减一致3、谐音:“上错厕所,一一对应”T (α-β)tan(α-β)=tanα-tanβ1+tanαtanβ;(两式相除、上同下异).变形:①tanα-tanβ=tan(α-β)(1+tanαtanβ)②tanα·tanβ=tanα-tanβtan(α-β)-1T (α+β)tan (α+β)=tan α+tan β1-tan αtan β;(两式相除、上同下异).变形:①tan α+tan β=tan (α+β)(1-tan αtan β)②tan α·tan β=1-tan α+tan βtan (α+β)(2)二倍角的正弦、余弦、正切公式(倍角公式)二倍角是相对的,如:α2是α4的2倍,3α是3α2的2倍.S 2αsin 2α=2sin _αcos _α;变形:sin αcos α=12sin2α,cos α=sin2α2sin α,⇒1±sin2α=sin 2α+cos 2α±2sin αcos α=(sin α±cos α)2C 2αcos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;变形:cos 2α=1+cos2α2,sin 2α=1-cos2α2T 2αtan 2α=2tan α1-tan 2α(α≠k π+π2且α≠k π2+π4,k ∈Z )2.简单的三角恒等变换(1)降幂公式sin 2α=1-cos2α2.cos 2α=1+cos2α2.sin αcos α=12sin2α.(2)升幂公式1+cos α=2cos 2α2. 1-cos α=2sin 2α2. 1+sin α=sin α2+cos α2 2. 1-sin α=sin α2-cos α22.注:1+cos2α=2cos 2α;1−cos2α=2sin 2α;1+sin2α=(sin α+cos α)2;1−sin2α=(sin α−cos α)2(3)万能公式sin α=2tan α21+tan 2α2,cos α=1-tan 2α21+tan 2α2,tan α=2tan α21-tan 2α2(4)其他常用变式sin2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α;cos2α=cos 2α−sin 2αsin 2α+cos 2α=1−tan 2α1+tan 2α;cos 4x -sin 4x =(cos 2x +sin 2x )(cos 2x -sin 2x )=cos2x 3.辅助角公式(同角异名1次)a sin α+b cos α=a 2+b 2sin (α+φ),其中cos φ=a a 2+b 2,sin φ=b a 2+b 2,或tan φ=ba . 其中φ称为辅助角,它的终边所在象限由点(a ,b )决定.4.半角的正弦、余弦、正切公式(1)sin α2=±1-cos α2.(2)cosα2=±1+cosα2.(3)tanα2=±1-cosα1+cosα=sinα1+cosα=1-cosαsinα.5.常用的拆角、拼角技巧(1)15°=45°-30°=60°-45°=30°2.(2)β=α-a-β,α=(α+β)-β=β-(β-α),2α=(α+β)+(α-β),α=12[(α+β)+(α-β)]β=α+β2-α-β2=(α+2β)-(α+β). α-β=(α-γ)+(γ-β)(3)π3-α=π2-π6+α,π6-α=π2-π3+α,π3+α=π-2π3-α,π4+α=π-3π4-α. π4+α=π2-π4-α6. 应用和、差、倍角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”;(2)注意与同角三角函数基本关系、诱导公式的综合应用;(3)注意配方法、因式分解和整体代换思想的应用. 7. 和、差、倍角公式的逆用和变形用的应用技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式;(2)和差角公式变形:sinαsinβ+cos(α+β)=cosαcosβ;cosαsinβ+sin(α-β)=sinαcosβ;tanα±tanβ=tan(α±β)·(1∓tanα·tanβ);(3)倍角公式变形:降幂公式.(4)tanαtanβ,tanα+tanβ(或tanα-tanβ),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题. 8. 解决非特殊角求值问题的基本思路有:①化非特殊角为特殊角;②化为正负相消的项,消去后求值;③化分子、分母使之出现公约数,进行约分求值;④当有α,2α,3α,4α同时出现在一个式子中时,一般将α向2α,3α(或4α)向2α转化,再求关于2α式子的值.9.三角函数式的化简要遵循“三看”原则注:三角函数式化简、求值的一般思路:异名三角函数化为同名三角函数,异角化为同角,异次化为同次,切化弦,特殊值与特殊角的三角函数互化等. 10. 给值(式)求值的解题策略(1)已知某些角的三角函数值,求另外一些角的三角函数值,要注意观察已知角与所求表达式中角的关系,即拆角与凑角.(2)由于和、差角与单角是相对的,因此解题过程中根据需要灵活地进行拆角或凑角的变换.常见角的变换有:①α=(α-β)+β;②α=α+β2+α-β2;③2α=(α+β)+(α-β);④2β=(α+β)-(α-β).(3)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式.(4)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.(5)给值求值型恒等变换问题,重在对所给条件进行挖掘,如由某角正弦值可得其余弦、正切值,由所给值的符号判断角所在的象限等. 必要时还要进行估算,如锐角α的余弦值为35,由12<35<22,及余弦函数在0,π2上单调递减可知45°<α<60°,从而2α∈(90°,120°),或3α∈(135°,180°)等. 另外,注意三种主要变换:①变角,通常是“配凑”,常用的角的拆拼有2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β等;②变名,通过变换函数名称达到减少函数种类的目的,其手段通常有“切化弦”“升幂与降幂”等;③变式,根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手段通常有:“常值代换”如1=tan π4,1=sin 2α+cos 2α“逆用变换公式”“通分约分”“分解与组合”“配方与平方”等. 其中角的变换居核心地位.11. 已知三角函数值求角的解题步骤(1)界定角的范围,根据条件确定所求角的范围.(在给值求角时,一般地选择一个适当的三角函数,根据题设确定所求角的范围,利用三角函数的单调性求出角. 确定角的范围是关键,一定要使所选的函数在此范围内是单调的,必要时,还需根据已知三角函数值缩小角的范围.)(2)求所求角的某种三角函数值.为防止增解最好选取在范围内单调的三角函数(已知三角函数值求角,选三角函数时可按下列规则:(i )已知正切值,常选正切函数;(ii )已知正、余弦值,常选正弦或余弦函数;(iii )若角的范围是0,π2 ,π,3π2 ,常选正、余弦函数;(iv )若角的范围是π2,3π2 或-π2,π2 ,常选正弦函数;(v )若角的范围是(0,π)或(π,2π),常选余弦函数. )(3)结合三角函数值及角的范围求角.12. 利用半角公式求值的思路(1)看角:若已知三角函数式中的角是待求三角函数式中角的两倍,则求解时常常借助半角公式求解.(2)明范围:由于半角公式求值常涉及符号问题,因此求解时务必依据角的范围,求出相应半角的范围.(3)选公式:涉及半角公式的正切值时,常用tan α2=sin α1+cos α=1-cos αsin α,其优点是计算时可避免因开方带来的求角的范围问题;涉及半角公式的正、余弦值时,常先利用sin 2α2=1-cos α2,cos 2α2=1+cos α2计算.13. 三角恒等式证明的常用方法(1)执因索果法:证明的形式一般是化繁为简.(2)左右归一法:证明左右两边都等于同一个式子.(3)拼凑法:针对题设和结论之间的差异,有针对性地变形,以消除它们之间的差异,简言之,即化异求同.(4)比较法:设法证明“左边-右边=0”或“左边/右边=1”.(5)分析法:从被证明的等式出发,逐步地探求使等式成立的条件,直到已知条件或明显的事实为止,就可以断定原等式成立.考点精析考点一两角和与差的正弦、余弦和正切公式(一)给角求值14(2023·全国·高三专题练习)cos -75° 的值是A.6-22B.6+22C.6-24D.6+24【答案】C【解析】变形cos -75° =cos 45°-120° 后,根据两角差的余弦公式计算可得答案.【详解】cos -75° =cos 45°-120° =cos45°⋅cos120°+sin45°sin120°=22×-12+22×32=6-24,故选:C .【点睛】本题考查了两角差的余弦公式,属于基础题.15(2023·全国·模拟预测)sin20°cos40°+sin70°sin40°=()A.32B.12C.22D.1【答案】A【分析】根据诱导公式及三角恒等变换化简求值即可.【详解】已知可化为:sin20°cos40°+cos20°sin40°=sin 20°+40° =32.故选:A16(2023·广东湛江·统考一模)cos70°-cos20°cos65°=.【答案】-2【分析】根据三角函数的诱导公式和两角和的余弦公式,准确化简,即可求解.【详解】由三角函数的诱导公式和两角和的余弦公式,可得:cos70°-cos20°cos65°=cos (90°-20°)-cos20°cos65°=sin20°-cos20°cos 45°+20°=sin20°-cos20°cos45°cos20°-sin45°sin20°=- 2.故答案为:- 2.17(2023·全国·高三专题练习)sin 220°-cos 220°sin45°cos155°1-sin40°=.【答案】2【分析】根据三角恒等变换公式化简求值即可.【详解】因为sin 220°-cos 220°=sin20°-cos20° sin20°+cos20° ,cos155°=-cos25°=-cos 45°-20° ,1-sin40°=cos 220°+sin 220°-2sin20°cos20°=cos20°-sin20° =cos20°-sin20°,所以sin 220°-cos 220°sin45°cos155°1-sin40°=cos20°+sin20°22cos 45°-20° =cos20°+sin20°22×cos45°cos20°+sin45°sin20°=cos20°+sin20° 12cos20°+sin20°=2故答案为:2.(二)给值(式)求值18(2023·江西九江·统考三模)已知0<α<π2<β<π,且sin α=23,cos β=-75,则cos (α-β)=()A.-115B.-1315C.-41415D.21415【答案】A【分析】先根据0<α<π2<β<π,sin α=23,cos β=-75求出cos α,sin β,再利用两角差的余弦公式求cos (α-β)【详解】解析:∵0<α<π2<β<π,sin α=23,cos β=-75,∴cos α=1-sin 2α=1-29=73,sin β=1-cos 2β=1-725=325,∴cos (α-β)=cos αcos β+sin αsin β=73×-75 +23×325=-115,故选:A .19(江西省九江市2023届高三三模数学(理)试题)已知0<α<β<π,且cos α=13,cos α-β =223,则cos β=()A.89B.79C.429D.0【答案】D【分析】利用三角恒等变换计算即可,注意整体思想的运用.【详解】解法一:∵0<α<π,cos α=13,∴sin α=223,又-π<α-β<0,cos α-β =223⇒-π2<α-β<0,∴sin α-β =-13,∴cos β=cos α-α-β =cos αcos α-β +sin a sin α-β=13×223+223×-13 =0,故选:D .解法二:∵0<α<π,cos α=13,∴sin α=223,∴cos α-β =sin α,即cos β-α =cos π2-α ∵0<β-α<π,0<π2-α<π2∴β-α=π2-α⇒β=π2,cos β=0,故选:D .20(2023·陕西榆林·统考模拟预测)若tan α+π4 =15,则tan α=()A.-23B.23C.-13D.13【答案】A【分析】利用正切函数的和差公式即可得解.【详解】因为tan α+π4 =15,所以tan α=tan α+π4 -π4 =15-11+15×1=-23.故选:A .21(山西省晋中市2023届高三三模数学试题(A 卷))已知α,β为锐角,且tan α=2,sin α+β =22,则cos β=()A.-31010B.31010C.-1010D.1010【答案】D【分析】由条件,结合同角关系求sin α,cos α,再由特殊角三角函数值求α+β,再利用两角差的余弦公式求cos β.【详解】因为tan α=2,所以sin α=2cos α,又sin 2α+cos 2α=1,α为锐角,所以sin α=255,cos α=55,且α>π4.因为α,β为锐角,α>π4,所以π4<α+β<π,又sin (α+β)=22,所以α+β=3π4,故cos β=cos 3π4-α =cos 3π4cos α+sin 3π4sin α=1010.故选:D .22(河南省名校青桐鸣2023届高三下学期4月联考文科数学试题)已知tan αtan β=2,cos α+β =-15,则cos α-β =()A.35B.-35C.115D.-115【答案】A【分析】根据切化弦以及两角和差公式解出sin αsin β,cos αcos β,代入两角差的余弦公式即可.【详解】由题意可得tan αtan β=sin αsin βcos αcos β=2cos α+β =cos αcos β-sin αsin β=-15,即sin αsin β=2cos αcos βcos αcos β-sin αsin β=-15 ,sin αsin β=25cos αcos β=15,故cos α-β =cos αcos β+sin αsin β=35.故选:A .23(2023·全国·高三专题练习)若α∈π2,3π4,cos α-π4 =210,则sin α+π3=【答案】4-3310【分析】根据同角三角函数的基本关系求出sin α-π4,由cos α=cos π4+α-π4 求出cos α,从而求出sin α,再利用两角和的正弦公式计算可得.【详解】∵cos α-π4 =210,α∈π2,3π4 ,所以α-π4∈π4,π2,∴sin α-π4 =1-cos 2α-π4 =7210,∴cos α=cos π4+α-π4 =cos π4cos α-π4 -sin π4sin α-π4 =22×210-7210×22=-35,sin α=1-cos 2α=45,所以sin α+π3 =sin αcos π3+cos αsin π3=45×12-35×32=4-3310.故答案为:4-331024【多选】(河北省承德市2023届高三下学期4月高考模拟数学试题)已知0<α<π2<β<π,sin α=13,cos (α+β)=-223,下列选项正确的有()A.sin (α+β)=±13B.cos β=-79C.cos2β=-1781D.sin (α-β)=-2327【答案】BD【分析】根据同角关系以及诱导公式可得可得α+β=π-α,进而可判断A ,根据和差角公司以及二倍角公式即可代入求解BCD .【详解】由于0<α<π2且sin α=13,所以cos α=223,又α+β∈π2,3π2 ,cos (α+β)=-223=-cos α,故α+β=π-α或α+β=π+α,当α+β=π+α时,β=π显然不满足,故α+β=π-α,所以sin (α+β)=13,故A 错误,对于B ,cos β=cos α+β cos α+sin α+β sin α=-223×223+13×13=-79,故B 正确,对于C , cos2β=2cos 2β-1=2×-792-1=1781,故C 错误,对于D ,由B 可知sin β=1-cos 2β=429,所以sin (α-β)=sin αcos β-cos αsin β=13×-79-223×429=-2327,故D 正确,故选:BD25(2023·陕西商洛·统考三模)已知tan (α+β)=3,tan α+π4=-3,则tan β=()A.-15B.15C.-17D.17【答案】D【分析】由tan α+π4 =-3求得tan α,再使用凑配角由tan (α+β)=3求tan β.【详解】tan α+π4 =1+tan α1-tan α=-3,解得tan α=2,则tan β=tan [(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan β=17.故选:D 26(2023·江西上饶·校联考模拟预测)已知α、β均为锐角,且sin α=2sin β,2cos α=cos β,则sin α-β =.【答案】35/0.6【分析】利用题目信息以及平方关系分别计算得α、β角的正弦、余弦值,再利用两角差的正弦公式即可求得结果.【详解】因为sin α=2sin β,2cos α=cos β,即cos α=12cos β,所以sin 2α+cos 2α=4sin 2β+14cos 2β=1,又4sin 2β+14cos 2β=154sin 2β+14sin 2β+14cos 2β=1,即sin 2β=15,则cos 2β=45,又α、β均为锐角,所以sin β=55,cos β=255,所以sin α=255,cos α=55,所以sin α-β =sin αcos β-cos αsin β=255×255-55×55=35.故答案为:35(三)给值求角27(2023·全国·高三专题练习)已知α,β都是锐角,cos α=17,cos (α+β)=-1114,则β=.【答案】π3/60°【分析】要求β,先求cos β,结合已知可有cos β=cos [(α+β)-α],利用两角差的余弦公式展开可求.【详解】∵α、β为锐角,∴0<α+β<π∵cos α=17,cos (α+β)=-1114∴sin α=1-cos 2α=437,sin (α+β)=1-cos 2α+β =5314∴cos β=cos [(α+β)-α]=cos (α+β)cos α+sin (α+β)sin α=-1114 ×17+5314×437=12由于β为锐角,∴β=π3故答案为:π328(2023·全国·高三专题练习)已知cos α=17,cos (α-β)=1314,若0<β<α<π2,则β=.【答案】π3【详解】因为cos α=17,0<α<π2,所以sin α=437,又因为0<α-β<π2,所以sin (α-β)=3314,所以sin β=sin [α-(α-β)]=sin αcos (α-β)-cos αsin (α-β)=437×1314-17×3314=32,又因为0<β<π2,所以β=π3.29(2023·河南·校联考模拟预测)设tan α,tan β是方程x 2+33x +4=0的两根,且α,β∈-π2,π2,则α+β=( ).A.π3B.-2π3C.π3或-2π3D.2π3【答案】B【分析】利用两角和的正切公式求解即可.【详解】因为tan α,tan β是方程x 2+33x +4=0的两根,所以tan α+tan β=-33,tan αtan β=4,所以tan (α+β)=tan α+tan β1-tan αtan β=3,因为tan α+tan β=-33,tan αtan β=4,所以tan α<0,tan β<0,且α,β∈-π2,π2,所以α,β∈-π2,0 ,所以α+β∈-π,0 ,所以α+β=-2π3,故选:B .30(2023·全国·高三专题练习)已知cos α=255,sin β=1010,且α∈0,π2 ,β∈0,π2,则α+β的值是()A.3π4B.π4C.7π4D.5π4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学三角恒等式变形解题常用方法一.知识分析1. 三角函数恒等变形公式(1)两角和与差公式(2)二倍角公式(3)三倍角公式(4)半角公式(5)万能公式,,(6)积化和差,,,(7)和差化积,,,2. 网络结构3. 基础知识疑点辨析(1)正弦、余弦的和差角公式能否统一成一个三角公式?实际上,正弦、余弦的和角公式包括它们的差角公式,因为在和角公式中,是一个任意角,可正可负。
另外,公式虽然形式不同,结构不同,但本质相同:。
(2)怎样正确理解正切的和差角公式?正确理解正切的和差角公式需要把握以下三点:①推导正切和角公式的关键步骤是把公式,右边的“分子”、“分母”都除以,从而“化弦为切”,导出了。
②公式都适用于为任意角,但运用公式时,必须限定,都不等于。
③用代替,可把转化为,其限制条件同②。
(3)正弦、余弦、正切的和差角公式有哪些应用?①不用计算器或查表,只通过笔算求得某些特殊角(例如15°,75°,105°角等)的三角函数值。
②能由两个单角的三角函数值,求得它们和差角的三角函数值;能由两个单角的三角函数值与这两个角的范围,求得两角和的大小(注意这两个条件缺一不可)。
③能运用这些和(差)角公式以及其它有关公式证明三角恒等式或条件等式,化简三角函数式,要注意公式可以正用,逆用和变用。
运用这些公式可求得简单三角函数式的最大值或最小值。
(4)利用单角的三角函数表示半角的三角函数时应注意什么?先用二倍角公式导出,再把两式的左边、右边分别相除,得到,由此得到的三个公式:,,分别叫做正弦、余弦、正切的半角公式。
公式中根号前的符号,由所在的象限来确定,如果没有给出限制符号的条件,根号前面应保持正、负两个符号。
另外,容易证明。
4. 三角函数变换的方法总结三角学中,有关求值、化简、证明以及解三角方程与解几何问题等,都经常涉及到运用三角变换的解题方法与技巧,而三角变换主要为三角恒等变换。
三角恒等变换在整个初等数学中涉及面广,是常用的解题工具,而且由于三角公式众多,方法灵活多变,若能熟练掌握三角恒等变换的技巧,不但能加深对三角公式的记忆与内在联系的理解,而且对发展数学逻辑思维能力,提高数学知识的综合运用能力都大有益处。
下面通过例题的解题说明,对三角恒等变换的解题技巧作初步的探讨研究。
(1)变换函数名对于含同角的三角函数式,通常利用同角三角函数间的基本关系式及诱导公式,通过“切割化弦”,“切割互化”,“正余互化”等途径来减少或统一所需变换的式子中函数的种类,这就是变换函数名法.它实质上是“归一”思想,通过同一和化归以有利于问题的解决或发现解题途径。
【例1】已知θ同时满足和,且a、b均不为0,求a、b的关系。
解析:已知显然有:由①×cos2θ+②×cosθ,得:2acos2θ+2bcosθ=0即有:acosθ+b=0又a≠0所以,cosθ=-b/a ③将③代入①得:a(-a/b)2-b(-b/a)=2a即a4+b4=2a2b2∴(a2-b2)2=0即|a|=|b|点评:本例是“化弦”方法在解有关问题时的具体运用,主要利用切割弦之间的基本关系式。
(2)变换角的形式对于含不同角的三角函数式,通常利用各种角之间的数值关系,将它们互相表示,改变原角的形式,从而运用有关的公式进行变形,这种方法主要是角的拆变.它应用广泛,方式灵活,如α可变为(α+β)-β;2α可变为(α+β)+(α-β);2α-β可变为(α-β)+α;α/2可看作α/4的倍角;(45°+α)可看成(90°+2α)的半角等等。
【例2】求sin(θ+75°)+cos(θ+45°)-cos(θ+15°)的值。
解析:设θ+15°=α,则原式=sin(α+60°)+cos (α+30°)-cosα=(sinαcos60°+cosαsin60°)+(cosαcos30°-sinαsin30°)-cosα=sinα+cosα+cosα-sinα-cosα=0点评:本例选择一个适当的角为“基本量”,将其余的角变成某特殊角与这个“基本量”的和差关系,这也是角的拆变技巧之一。
【例3】已知sinα=Asin(α+β)(其中cosβ≠A),试证明:tan(α+β)=证明:已知条件可变为:sin[(α+β)-β]=Asin (α+β)所以有:sin (α+β)cosβ-cos (α+β)sinβ=Asin (α+β)∴sin (α+β)(cosβ-A)=cos (α+β)sinβ∴tan(α+β)=点评:在变换中通常用到视“复角”为“单角”的整体思想方法,它往往是寻找解题突破的关键。
(3)以式代值利用特殊角的三角函数值以及含有1的三角公式,将原式中的1或其他特殊值用式子代换,往往有助于问题得到简便地解决。
这其中以“1”的变换为最常见且最灵活。
“1”可以看作是sin2x+cos2x,sec2x-tan2x,csc2x -cot2x,tanxcotx,secxcosx,tan45°等,根据解题的需要,适时地将“1”作某种变形,常能获得较理想的解题方法。
【例4】化简:解析:原式====点评:1=“”的正用、逆用在三角变换中应用十分广泛。
(4)和积互化积与和差的互化往往可以使问题得到解决,升幂和降次实际上就是和积互化的特殊情形。
这往往用到倍、半角公式。
【例5】解三角方程:sin2x+sin22x=sin23x解析:原方程变形为:(1-cos2x)+(1-cos4x)=(1-cos6x)即:1+cos6x =cos2x+cos4x2cos23x =2cos3x cosx得:cos3x sin2x sinx =0解得:x=+或x=()∴原方程的解集为{x| x=+或x=,}点评:题中先降次后升幂,这种交错使用的方法在解三角方程中时有出现,其目的是为了提取公因式。
(5)添补法与代数恒等变换一样,在三角变换中有时应用添补法对原式作一定的添项裂项会使某些问题很便利地得以解决。
将原式“配”上一个因子,同时除以这个式子也是添补法的一种特殊情形。
【例6】求证:=证明:左边======右边∴原式成立。
点评:本例中采用“加一项再减去一项”,“乘一项再除以一项”的方法,其技巧性较强,目的都是为了便于分解因式进行约分化简。
(6)代数方法三角问题有时稍作置换,用各种代数方法对三角函数式作因式分解、等量置换等的变形,从而将三角问题转换成代数问题来解,而且更加简捷。
这其中有设元转化、利用不等式等方法。
【例7】锐角α、β满足条件,则下列结论中正确的是()A.α+β≠B. α+β<C. α+β>D. α+β=解析:令sin,则有整理得:(a-b)2=0即a=b即:sin2α=cos2β(α,β同为锐角)∴sinα=cosβ∴α+β=,故应选D。
点评:本例用设元转化法将三角问题转化为代数问题。
换元法这种数学思想应用十分广泛,往往能收到简捷解题的效果.(7)数形结合有的三角变换问题蕴含着丰富的几何直观,此时若能以数思形,数形渗透,两者交融,则可开辟解题捷径。
利用单位圆,构造三角形,利用直线、曲线的方程等方法都是数形结合的思想。
【例9】已知:,,求的值。
解析:∵点A,B均在单位圆上。
由已知条件知:AB的中点坐标为C(1/6,1/8),即直线AB过定点C如下图所示∠xOC=∴∴据万能公式得:点评:本题用和差化积公式也不难求得,但在三角问题中利用单位圆是常见的研究方法。
数形结合方法在三角变换中应用类型颇多,篇幅所限,仅举一例,本文不赘。
从六、七两种方法可以看出,将代数、几何与三角有机联系起来,综合运用,在解三角变换题中,不仅构思精巧,过程简易,趣味横生,而且还沟通数学知识的纵横关系,也有利于多向探求,广泛渗透,提高和发展学生的创造性思维能力。
以上探讨了三角变换中的七种变换思想和解题方法,在实际解题中这些方法是交织在一起的,混合于同一问题中灵活使用。
掌握这些变换方法的前提是熟悉公式,善于公式的变形运用,同时注意纵横联系数学知识用发散性的思维考虑问题。
三角变换的技巧除了以上七个方面外,还有平方消元,万能置换,利用正余弦定理进行边角转换,利用辅助角,借用复数表示等方法我们以后有机会再介绍。
5. 非特殊角的化简、求值问题的解题方法探究非特殊角的化简求值是给角求值中一类常见的三角求值类型,对于此类求值问题,由于涉及到的三角公式及其变形灵活多样,因而如何利用三角公式迅速准确的求值应是解决这类问题的重点,现在我们通过一个题目的解法探寻,体会非特殊角三角函数的求法。
【题目】求的值。
分析1:这是一道给角求值中非特殊角的化简求值问题,仔细观察可看出在所求式子中有一项是正切函数、一项是正弦函数,因此通常运用切割化弦,然后通过通分化简,使其化为特殊的三角函数值。
解法1:点评:通分以后,要将和式转化为积式,需将拆项为,这是将和式转化为积式中常用的变形手段,在将和差化积后要尽可能的出现特殊角特殊值,这样才有可能使化简得以进行下去。
分析2:运用切割化弦,通过通分化简后,若不考虑将和式转化为积式,而是对角进行变换,观察到运算的式子中出现的两角为20°,40°,与特殊角比较则会有60°-40°=20°,变角后再应用两角差的正弦公式展开进行化简。
解法2:分析3:我们在运用“切割化弦”时,若不利用商数关系,而是将tan200利用半角公式进行化弦,也能进行求值。
解法3:分析4:从以上路径可以看出,而是一个特殊的三角函数值,考虑它等于什么呢?,因而考虑可否会有,这样问题就转化为等式的验证。
解法4:∴有点评:本路径采用了综合法,只进行等式的验证,问题就得以解决。
分析5:利用倍角公式可得到,能否再对角进行适当的变换,出现特殊角,我们发现40°=60°一20°,这样变角后利用两角差的正弦公式展开化简,也能求值。
解法5:将等式可写成两边同除以得点评:本题利用综合法求得了的值,在这里首先进行角的变换,然后利用两角差的正弦公式展开,合并同类项后,再进行弦化切割,从而得到所要求的值。
以上我们探寻了不查表求非特珠角的三角函数的值的问题,对于这类问题,要从多方面考虑解决的方法,在这里我们是从三角函数的“变名”“变角”“变式”“切割化弦”弦化切割”等方面而进行了三角恒等变形,这在以后的学习训练中要逐步体会掌握。
【典型例题】例1. 化简cos(π+α)+cos(π-α),其中k∈Z。
解析:解法一:原式=cos[kπ+(+α)]+cos[kπ-(+α)]=cos kπcos(+α)-sin kπsin(+α)+cos kπcos(+α)+sin kπsin(+α)=2cos kπcos(+α),(k ∈Z)当k为偶数时,原式=2cos(+α)=cosα-sinα当k为奇数时,原式=-2cos(+α)=sinα-cosα总之,原式=(-1)k(cosα-sinα),k∈Z解法二:由(kπ++α)+(kπ--α)=2kπ,知cos(kπ--α)=cos[2kπ-(+α+kπ)]=cos[-(kπ++α)]=cos (kπ++α)∴原式=2cos(kπ++α)=2×(-1)k cos(+α)=(-1)k(cosα-sinα),其中k∈Z点评:原式=cos(kπ++α)+cos(kπ--α)=cos[kπ+(+α)]+cos[kπ-(+α)]这就启发我们用余弦的和(差)角公式。