三次样条插值知识讲解
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( x 2 ) ( x 4 ) ( x 8 ) ( x 1 0 )1 l2 ( x ) ( 6 2 ) ( 6 4 ) ( 6 8 ) ( 6 1 0 ) 6 4 ( x 2 ) ( x 4 ) ( x 8 ) ( x 1 0 ) l3 (x ) ( (x 8 2 2 ) )( (8 x 4 4 ) )( (8 x 6 6 ) )( (8 x 1 1 0 0 ) ) 9 1 6 (x 2 )(x 4 )(x 6 )(x 1 0 )
插值与拟合
前言
函数是多种多样的,在科研与工程实际中有的 函数表达式过于复杂而不便于计算,但又需要计算 多点的函数值;有的函数甚至给不出数学式子,只 能通过实验和测量得到一些离散数据(如某些点的 函数值和导数值)。面对这种情况,很自然的一个 想法就是构造某个简单的函数作为要考察的函数的 近似 。
如果要求近似函数满足给定的离散数据,则称之 为的插值函数。实用上,我们常取结构相对比较简 单的代数多项式作为插值函数,这就是所谓的代数插 值。
二、存在唯一性
定理1 设 x0,x1xn为给定的彼此互异的 n 1个插值 节点,则存在唯一的次数不超过 n的多项式 Pn (x) ,满足 条件
Pn(xi) yi , i0,1,n.
证明: 设 P n a 0 a 1 x a 2 x 2 L a n x n, 其中 a0,a1,a2,Lan
(1)差商定义
定义
称 f[xi,xj]f(xxi)i xfj(xj), ij 为 f ( x ) 在 x i , x j
两点处的一阶差商.
f[x0,x1,x2]f[x0,xx10 ] xf2[x1,x2]
二阶差商
f[x 0 ,x 1 ,L x n ]f[x 0 ,x 1 L x n x 1 0 ] x fn [x 1 ,x 2 ,L x n ]n 阶差商
( x 4 ) ( x 6 ) ( x 8 ) ( x 1 0 ) 1 l0 ( x ) ( 2 4 ) ( 2 6 ) ( 2 8 ) ( 2 1 0 ) 3 8 4 ( x 4 ) ( x 6 ) ( x 8 ) ( x 1 0 )
( x 2 ) ( x 6 ) ( x 8 ) ( x 1 0 ) 1 l 1 ( x ) ( 4 2 ) ( 4 6 ) ( 4 8 ) ( 4 1 0 ) 9 6 ( x 2 ) ( x 6 ) ( x 8 ) ( x 1 0 )
差商表
xk
f (xk)
一阶 差商
二阶差商
三阶差商 四阶差商
n
P n(x)
i0
yi (xxn i)1(n 'x)1(xi)
(2)插值误差估计
定理2 设 f (n) (x) 在[a, b] 上连续,f (n1) (x)在 (a, b) 内存在,
节点 a x 0 x 1 x n b ,Pn ( x) 是拉格朗日插值多项 式,则对任意 x[a,b] , 插值余项
一、问题提出
设 x0,x1L xn为给定的节点,yi f(xi),i0,1,n 为相应的函数值,求一个次数不超过 n的多项式 Pn (x), 使其满足
Pn(xi) yi, i0,1,n. 这类问题称为插值问题。f ( x ) 称为被插值函数,P n ( x ) 称
为插值函数,x0,x1L xn 称为插值节点
R n(x)f(x)P n(x)f(n (n 1)1 ())!n 1(x) 其中(a,b)且依赖于 x.
例2.求过点(2,0)(4,3)(6,5)(8,4)(10,1)的拉格朗日型插值多 项式。
解:用4次插值多项式对5个点插值
x0,y02 ,0,x1,y14 ,3 ,x2,y26 ,5, x3,y38 ,4,x4,y41 0 ,1 ,
引入记号 n 1 ( x i ) ( x x 0 ) x ( x 1 ) ( x x n ),
易证 n 1 ( x i ) ( x i x 0 ) ( x i x i 1 ) x i x ( i 1 ) ( x i x n ) ,
从而Lagrange插值多项式可表示为
l4 (x ) (1 ( 0 x 2 2 )( ) 1 (0 x 4 4 ) )( (1 x 0 6 6 )( )( x 1 0 8 )8 ) 3 1 8 4 (x 2 )(x 4 )(x 6 )(x 8 )
于是有
P 4 ( x ) y 0 l 0 ( x ) y 1 l 1 ( x ) y 2 l 2 ( x ) y 3 l 3 ( x ) y 4 l 4 ( x )
1 (x4)(x6)(x8)(x10) 3(x2)(x6)(x8)(x10)
384
96
5(x2)(x4)(x8)(x10) 4(x2)(x4)(x6)(x10)
64
96
1 (x2)(x4)(x6)(x8) 384
缺点: 当增加或减少插值节点时,基函数需要重新 构造,不便于实际的计算使用
四、 Newton插值法
为待定系数.利用插值条件 Pn(xi) yi ,我们得到一个线性代数方程
组 Aa b ,其中
Байду номын сангаас
1 x0 L A 1 x1 L
M M L 1 x n L
x0 x1
n n
M
,
a0
a
a1
,
M
x
n
n
a
n
y0
b
y1
M
y
n
观察发现矩阵A是范德蒙矩阵,那么,由几代知识知道矩阵A 的行列式
为 Det(A) (xi xj) ,由定理中条件,插值结点为彼此互异的, 那么行 0jin
列式不为零.故由Cramer法则知线性代数方程组 Aa b 存在唯一解.
三、Lagrange插值法
(1)Lagrange插值多项式可以表示为
n
Pn (x) yili (x) i0
l i( x ) ( x ( i x x x 0 0 ) ) L L ( ( x x i x x i i 1 1 ) ) ( ( x x i x x i i 1 1 ) ) L L ( ( x x i x n x ) n ) ,i 0 ,1 ,L n
插值与拟合
前言
函数是多种多样的,在科研与工程实际中有的 函数表达式过于复杂而不便于计算,但又需要计算 多点的函数值;有的函数甚至给不出数学式子,只 能通过实验和测量得到一些离散数据(如某些点的 函数值和导数值)。面对这种情况,很自然的一个 想法就是构造某个简单的函数作为要考察的函数的 近似 。
如果要求近似函数满足给定的离散数据,则称之 为的插值函数。实用上,我们常取结构相对比较简 单的代数多项式作为插值函数,这就是所谓的代数插 值。
二、存在唯一性
定理1 设 x0,x1xn为给定的彼此互异的 n 1个插值 节点,则存在唯一的次数不超过 n的多项式 Pn (x) ,满足 条件
Pn(xi) yi , i0,1,n.
证明: 设 P n a 0 a 1 x a 2 x 2 L a n x n, 其中 a0,a1,a2,Lan
(1)差商定义
定义
称 f[xi,xj]f(xxi)i xfj(xj), ij 为 f ( x ) 在 x i , x j
两点处的一阶差商.
f[x0,x1,x2]f[x0,xx10 ] xf2[x1,x2]
二阶差商
f[x 0 ,x 1 ,L x n ]f[x 0 ,x 1 L x n x 1 0 ] x fn [x 1 ,x 2 ,L x n ]n 阶差商
( x 4 ) ( x 6 ) ( x 8 ) ( x 1 0 ) 1 l0 ( x ) ( 2 4 ) ( 2 6 ) ( 2 8 ) ( 2 1 0 ) 3 8 4 ( x 4 ) ( x 6 ) ( x 8 ) ( x 1 0 )
( x 2 ) ( x 6 ) ( x 8 ) ( x 1 0 ) 1 l 1 ( x ) ( 4 2 ) ( 4 6 ) ( 4 8 ) ( 4 1 0 ) 9 6 ( x 2 ) ( x 6 ) ( x 8 ) ( x 1 0 )
差商表
xk
f (xk)
一阶 差商
二阶差商
三阶差商 四阶差商
n
P n(x)
i0
yi (xxn i)1(n 'x)1(xi)
(2)插值误差估计
定理2 设 f (n) (x) 在[a, b] 上连续,f (n1) (x)在 (a, b) 内存在,
节点 a x 0 x 1 x n b ,Pn ( x) 是拉格朗日插值多项 式,则对任意 x[a,b] , 插值余项
一、问题提出
设 x0,x1L xn为给定的节点,yi f(xi),i0,1,n 为相应的函数值,求一个次数不超过 n的多项式 Pn (x), 使其满足
Pn(xi) yi, i0,1,n. 这类问题称为插值问题。f ( x ) 称为被插值函数,P n ( x ) 称
为插值函数,x0,x1L xn 称为插值节点
R n(x)f(x)P n(x)f(n (n 1)1 ())!n 1(x) 其中(a,b)且依赖于 x.
例2.求过点(2,0)(4,3)(6,5)(8,4)(10,1)的拉格朗日型插值多 项式。
解:用4次插值多项式对5个点插值
x0,y02 ,0,x1,y14 ,3 ,x2,y26 ,5, x3,y38 ,4,x4,y41 0 ,1 ,
引入记号 n 1 ( x i ) ( x x 0 ) x ( x 1 ) ( x x n ),
易证 n 1 ( x i ) ( x i x 0 ) ( x i x i 1 ) x i x ( i 1 ) ( x i x n ) ,
从而Lagrange插值多项式可表示为
l4 (x ) (1 ( 0 x 2 2 )( ) 1 (0 x 4 4 ) )( (1 x 0 6 6 )( )( x 1 0 8 )8 ) 3 1 8 4 (x 2 )(x 4 )(x 6 )(x 8 )
于是有
P 4 ( x ) y 0 l 0 ( x ) y 1 l 1 ( x ) y 2 l 2 ( x ) y 3 l 3 ( x ) y 4 l 4 ( x )
1 (x4)(x6)(x8)(x10) 3(x2)(x6)(x8)(x10)
384
96
5(x2)(x4)(x8)(x10) 4(x2)(x4)(x6)(x10)
64
96
1 (x2)(x4)(x6)(x8) 384
缺点: 当增加或减少插值节点时,基函数需要重新 构造,不便于实际的计算使用
四、 Newton插值法
为待定系数.利用插值条件 Pn(xi) yi ,我们得到一个线性代数方程
组 Aa b ,其中
Байду номын сангаас
1 x0 L A 1 x1 L
M M L 1 x n L
x0 x1
n n
M
,
a0
a
a1
,
M
x
n
n
a
n
y0
b
y1
M
y
n
观察发现矩阵A是范德蒙矩阵,那么,由几代知识知道矩阵A 的行列式
为 Det(A) (xi xj) ,由定理中条件,插值结点为彼此互异的, 那么行 0jin
列式不为零.故由Cramer法则知线性代数方程组 Aa b 存在唯一解.
三、Lagrange插值法
(1)Lagrange插值多项式可以表示为
n
Pn (x) yili (x) i0
l i( x ) ( x ( i x x x 0 0 ) ) L L ( ( x x i x x i i 1 1 ) ) ( ( x x i x x i i 1 1 ) ) L L ( ( x x i x n x ) n ) ,i 0 ,1 ,L n