一个 200W 开关电源的功率级设计

合集下载

200W LED照明系统的电源设计方案

200W LED照明系统的电源设计方案

200W LED照明系统的电源设计方案上网时间:2009-07-07 来源:飞兆通用大功率LED照明驱动系统可以采用TI、Intersil、ST、Richtek、Linear、OnSemi的LED驱动器来实现,关键的是LED路灯需要的电源输出功率一般要大于100W,因此设计一个高效率的大功率电源是整个系统的关键点。

本文简单介绍飞兆半导体(Fairchild)公司的200W电源解决方案。

飞兆200W电源解决方案主要由基于FAN6961电压模式PFC控制器的高功率因数预稳压器和基于谐振LLC拓扑的隔离型DC/DC转换器构成,输入电压范围可从90VRMS到265VRMB,可产生六路输出,每路最大输出功率为0.7A/48V。

FAN6961是8引脚边界模式PFC控制器,能准时调整输出的DC电压,从而达到功率因素修正。

该器件的电源电压高达25V,起动电流低于25uA,工作电流可降低到6mA以下,可以进行零电流检测和逐个周期限流。

FAN6961可用于电子灯镇流器,AC/DC开关电源转换器以及适配器和带ZCS/ZVS的反激电源转换器。

图1给出了基于FAN6961的带整流和EMI滤波功能的电路图。

图1:基于FAN6961的带整流和EMI滤波功能的电路图FSFR2100功率开关也是该方案中的一个重要元件。

FSFR2100采用零电压开关(ZVS)技术,能够大幅降低MOSFET和整流器的开关损耗。

采用这种技术,此开关无需散热器即可处理高达200W的功率,使用散热器更可处理高达450W的功率。

FSFR2100还集成了所有必需元件以构建可靠及高效的谐振转换器,并在高热效的SiP封装中集成了一个脉冲频率调制(PFM)控制器、一个高压栅极驱动电路和两个快速恢复MOSFET(FRFET),以及软启动、间歇工作模式和重要的保护功能。

图2:200W LED照明系统的电源方案原型这个200W电源解决方案的详细介绍和实现电路图参见下面的PDF文档。

如何一步一步设计开关电源?开关电源设计调试步骤全过程

如何一步一步设计开关电源?开关电源设计调试步骤全过程

如何一步一步设计开关电源?开关电源设计调试步骤全过程针对开关电源很多人觉得很难,其实不然。

设计一款开关电源并不难,难就难在做精,等你真正入门了,积累一定的经验,再采用分立的结构进行设计就简单多了。

万事开头难,笔者在这就抛砖引玉,慢慢讲解如何一步一步设计开关电源。

开关电源设计的第一步就是看规格,具体的很多人都有接触过,也可以提出来供大家参考,我帮忙分析。

在这里只带大家设计一款宽范围输入的,12V2A的常规隔离开关电源。

1、首先确定功率根据具体要求来选择相应的拓扑结构;这样的一个开关电源多选择反激式(flyback)基本上可以满足要求。

在这里我会更多的选择是经验公式来计算,有需要分析的,可以拿出来再讨论。

2、选择相应的PWMIC和MOS来进行初步的电路原理图设计当我们确定用flyback拓扑进行设计以后,我们需要选择相应的PWMIC和MOS来进行初步的电路原理图设计(sch)。

无论是选择采用分立式的还是集成的都可以自己考虑。

对里面的计算我还会进行分解。

分立式:PWMIC与MOS是分开的,这种优点是功率可以自由搭配,缺点是设计和调试的周期会变长(仅从设计角度来说);集成式:就是将PWMIC与MOS集成在一个封装里,省去设计者很多的计算和调试分步,适合于刚入门或快速开发的环境。

3、做原理图确定所选择的芯片以后,开始做原理图(sch),在这里我选用STVIPer53DIP(集成了MOS)进行设计。

设计前最好都先看一下相应的datasheet,确认一下简单的参数。

无论是选用PI的集成,或384x或OBLD等分立的都需要参考一下datasheet。

一般datasheet里都会附有简单的电路原理图,这些原理图是我们的设计依据。

4、确定相应的参数当我们将原理图完成以后,需要确定相应的参数才能进入下一步PCBLayout。

当然不同的公司不同的流程,我们需要遵守相应的流程,养成一个良好的设计习惯,这一步可能会有初步评估,原理图确认,等等,签核完毕后就可以进行计算了。

开关电源设计

开关电源设计

一个比较好的解决方案是:以轻巧的高频变压器取代笨重的工频变压器,采用脉冲调制技术的直流--直流变换器型稳压电源,即我们马上就要讲到的开关电源。

开关电源具有管耗小、效率高、稳压范围宽及体积小、重量轻等优点,目前已在各种电子仪器和设备、航空和宇宙飞行器、发射机、电子计算机、通讯设备和电视机、录放像机等中得到了广泛应用。

开关电源按变换方式可分为以下四大类:1、AC/DC 开关电源2、DC/DC 开关电源3、DC/AC 逆变器4、AC/AC 变频器目前只将前面两类称为开关电源,将后面两类分别称为逆变器和变频器。

开关电源按应用方式可分为以下三大类:1、外置电源与设备分开放置的电源模块或电源系统,如:---通信用一次电源模块和系统---电力操作电源模块和系统---手机电池充电器---笔记本电脑的Adapter---各类手提设备、便携设备的电池充电器等等2、内置电源放在设备内部的电源模块或电源系统,如:---计算机内部的SilverBox和VRM---家电(如:普通电视机、等离子电视机、液晶电视机)内部的供电电源---工业控制设备内部的电源---仪器中使用的电源---通信设备内部的电源模块和系统---复印机、传真机、打印机等的内部电源等等3、板上电源放在设备内单板上的电源模块,如:---标准砖类电源(全砖、半砖、1/4砖、1/8砖)---非隔离POL(Point of Load 负载点)变换器---VRM(V oltage regulator module电压调节模块)和VRD(V oltage regulator down)---小功率SMD电源---SIP和DIP电源等等开发一个开关电源产品所需要的基本技能:1、认识组成开关电源的所有元器件2、掌握各种元器件的电气性能和电路符号3、会自己制作各种磁芯元件4、会正确装配电源中的各个部分5、了解电源各项指标的意义并掌握如何测试的方法6、会使用仪器对装配后的电源进行正确的调试,优化和折中7、会对获得的实验结果进行分析,并进行总结8、会从不同渠道不断地学习电源知识并能够和别人交流开发一个开关电源产品所需要的专业理论知识:1、有源PFC的拓扑分析,控制与设计2、DC/DC功率变换器的拓扑与稳态分析3、开关电源的功率级参数设计4、开关电源的控制与动态分析5、开关电源的小信号分析与设计6、开关电源的大信号分析与设计7、开关电源的EMI分析与设计8、开关电源的热分析与设计9、开关电源的容差分析与设计10、开关电源的各种保护技术11、开关电源的同步整流技术12、开关电源的模块均流控制技术有些技术很成熟了,只要查表或者使用现成电路或专用芯片就可以做好。

200w开关稳压电源设计原理

200w开关稳压电源设计原理

200w开关稳压电源设计原理
200瓦开关稳压电源是一种常见的电源设计,它可以将输入电压转换为稳定的输出电压,适用于各种电子设备和电路。

下面我将从多个角度来解释这种电源的设计原理。

首先,开关稳压电源的设计原理涉及到几个关键部分,输入滤波电路、整流电路、滤波电容、开关变换电路、控制电路和输出稳压电路。

输入滤波电路用于滤除输入电源中的高频噪声和干扰,通常采用电感和电容组成的滤波网络来实现。

整流电路将交流输入电压转换为脉冲电压,常见的整流电路有单相桥式整流电路或全波整流电路。

接下来是开关变换电路,它使用开关管(如MOSFET)来控制输入电压的开关,通过周期性地切换开关管的导通和关断状态,将输入电压转换为脉冲电压。

这种脉冲电压经过滤波电容后得到平稳的直流电压。

控制电路则用来控制开关管的导通和关断,以保持输出电压的
稳定。

常见的控制方式包括脉宽调制(PWM)和脉冲频率调制(PFM),通过调节开关管的导通时间和频率来实现输出电压的稳定
控制。

最后是输出稳压电路,它通常由稳压管、反馈电路和输出滤波
电路组成,用于提供稳定的输出电压并滤除残余的高频噪声。

稳压
管通过反馈电路监测输出电压并调节开关管的工作状态,以保持输
出电压的稳定。

总的来说,开关稳压电源的设计原理涉及到输入滤波、整流、
开关变换、控制和输出稳压等多个环节,通过这些环节的协同工作,可以实现将输入电压转换为稳定的输出电压。

这种设计原理在实际
应用中被广泛采用,能够为各种电子设备提供稳定可靠的电源供应。

LED显示屏5V40A200W专用开关电源设计

LED显示屏5V40A200W专用开关电源设计

LED显示屏5V 40A专用开关电源设计1 参数:输入电源:220V输出电源:5V 40A2开关电源的组成开关电源大致由输入电路、变换器、控制电路、输出电路四个主体组成。

如果细致划分,它包括:输入滤波、输入整流、开关电路、采样、基准电源、比较放大、震荡器、V/F 转换、基极驱动、输出整流、输出滤波电路等。

实际的开关电源还要有保护电路、功率因数校正电路、同步整流驱动电路及其它一些辅助电路等。

图1是开关电源原理框图:图1 开关电源原理框图2.1 输入电路包括线性滤波电路、浪涌电流抑制电路、整流电路三部分。

作用:把输入电网交流电源转化为符合要求的开关电源直流输入电源。

典型电路如图2所示:图2 输入电路该电路包含滤波电路、浪涌电流抑制电路及全波整流电路。

输入电路各电容C11、C12、C13 用于滤波,滤除高频噪声;电抗器L11 用于浪涌抑制;电容C14、C15、C18 用于去耦。

输入220VAC 电压经过全波整流,产生变换器所需要的直流电压,及提供控制电路必须的工作电源。

J21 为短路线,TH 为过流电阻,当发生过流时,器件熔断。

2.2 功率电路基本原理市电220V的交流电经输入电路整流滤波后,已变为直流电(带脉动),从该直流电到输出之间的电路可简单等效为一个单管隔离降压变换器。

如图3所示:图3 功率电路基本原理为防止变压器T磁饱及快速恢复,原边使用了简单的R1C1释放电路。

副边VD1 整流,VD2 续流,C2去耦,L、C4滤波,R3C3、R4为辅助泄放通路。

当然实际电路比这个要复杂的多,复杂的原因主要是因为加入了保护电路、反馈电路、控制电路等。

下面具体讲述实际应用的电路。

2.3 变压器及控制部分供电电路变压器周边电路以及给控制电路供电的电路如图4所示:图4 变压器及控制部分供电电路本电路中的变压器T11就是图3中的变压器T,其中1-3绕组为原边主绕组(即图3中的N1绕组),6-7绕组为副边输出绕组(即图3中的N2绕组),4-5绕组为原边辅助绕组,主要给控制电路提供电源。

开关电源设计流程

开关电源设计流程

率较大的开关电源一般使用半桥或者全桥变换器拓扑。

2.2.设计原理图,制作PCB印制板原理图设计时应考虑整体的元件布局,使阅读者一目了然。

在PCB印制板设计的过程中要严格按照国家的安全标准进行设计,同时需要重点考虑的噪声干扰包括:EM I 干扰、功率开关管产生的高频噪声。

PCB板的设计过程中应考虑到地线、高压线的电流密度,功率开关管的高频线与其它走线之间的距离,一般不小于3mm,元件的PCB封装与实际生产元件封装一致,以便于生产。

元件的放置符合美观、实用的标准;元件与元件之间应紧凑,以提高开关电源的功率密度,降低生产成本(特殊元件除外)。

2.3.变压器的设计变压器是整个开关电源的核心器件,所以变压器的设计及验证是非常重要的环节。

2.3.1.磁芯和骨架的选择当我们的电路拓扑选定后,就要确定电路的工作频率和变压器磁芯的尺寸大小,确保在变压器体积最小的情况先获得最大的输出功率。

首先我们确定需要的引脚数,变压器的输出、输入,辅助绕组的引脚来确定骨架的引脚数,输出有单路和多路,变压器一般采用夹绕的方法以增加线圈的耦合度。

其次选择磁芯材料是主要参考材料铁损(单位一般为毫瓦/立方厘米)随频率和峰值磁通密度变化的曲线。

大多数变压器的磁芯的材料为铁氧体,因为它有很高的电阻率,所以铁氧体的涡流损耗很低。

2.3.2.根据变压器计算公式计算变压器的初级线圈匝数变压器初级匝数计算公式:N P =Vin(min)×Ton(max)/(ΔB×Ae)NP:变压器初级线圈的匝数。

Vin(min):输入直流电压的最小值(V)。

Ton(max):功率开关管导通时间的最大值(S)。

Ae:磁芯面积(m22)。

ΔB:由磁芯本身材料决定。

一般取1600G,因为当震荡频率大于50KHz的时候,高损耗材料会产生过量的磁芯损耗,这就使可选择的Bmax值变小,因此经过对比选择增量ΔB的值为1600G(1G=10-4-4T)。

其中T on (max )=(1/振荡频率)×D (D 为最大占空比,最大时一般取0.45)。

(整理)开关电源的设计与制作

(整理)开关电源的设计与制作

开关电源的设计与制作第一章开关电源概述一. 什幺是开关电源(Switching Power Supply)所谓开关电源是指以高频变压器取代工频变压器,采用脉冲调制技术的直流直流变换器型稳压电源.开关晶体管,开关二级管和开关变压器是组成开关电源的三个关键组件.二. 隔离式高频开关电源.图标说明:1)交流线路电压无论是来自电纲的,还是经过变压器降压的,首先要经过电纲滤波,以消除电磁干扰和射频干扰;2)经电纲滤波后的电流首先要经过整流,滤波电路变成含有一定脉动电压成分的直流电压,然后进入高频变换部分;3)高频变换器具有多种形式,主要分为半桥式,全桥式,推挽式,单端正激式,单端反激式等;高频变换部分的核心是一个高频功率开关组件,比如开关晶体管,场效应管(MDSFET)等组件,高频变换器产生高频(20KHZ以上)高压方波,所得到的高压方波送给高频隔离变压器的初级,在变压器的次级感应出的电压被整流,滤波后就产生了低压直流.4)脉冲宽度调制器(P WM)主要用于调节输出电压,使得在输入交流和输出直流负载发生变化时,输出电压能保持稳定,运作过程是P WM电路通过输出电压采样,并把采样的结果反馈给控制电路,控制电路把它与基准电压作比较,根据比较结果来控制高频功率开关组件的开关时间比例(占空比),达到调整输出电压的目的.(注:控制电路还有调频方式的)5)为了使整个电路安全可靠地工作,必须设置过压,过流保护电路等辅助电路.三.开关电源常用术语.1.效率(dfficiency):电源的输出功率与输入功率的百分比(测量条件为满负载,输入交流电压为标准值)2.ESR: 等效串联电阻,它表示电解电容呈现的电阻值的总和. ESR值越低的电容,性能越好.3.输出电压保持时间: 在开关电源的输入电压撤离后,依然保持其额定输出电压的时间;4.激活浪涌电流限制电路: 属保护电路,它对电源激活时产生的尖峰电流起限制作用.5.隔离电压: 电源电路中的任何一部分与电源基板地之间的最大电压.或者能够加在开关电源的输入端与输出端之间的最大直流电压.6.线性调整率: 输出电压随输入线性电压在指定范转内变化的百分率,条件是线电压和环境温度保持不变.7.负载调整率: 输出电压随负载在指定范围内变化的百分率,条件是线电压和环境温度保持不变.8.噪音和纹波: 附加在直流输出信号上的交流电压和高频兴峰信号的峰值.通常是以mV度量.9.隔离式开关电源: 一般指高频开关电源,它从输入的交流电源直接进行整流和滤波,不使用低频隔离变压器.10.输出瞬态响应时间: 从输出负载电流产生变化开始,经过整个电路的调节作用,到输出电压恢复额定值所需要的时间.11.过载或过流保护: 防因负载过重,使电流超过原设计的额定值而造成电源损坏的电路.12.远程检测: 为了补赏电源输出的电压降,直接从负载上检测输出电压的方法.13.软激活: 在系流激活时,一种延长开关波形的工作周期的方法,工作周期是从零到它的正常工作点所用的时间.14.电磁干扰无线频率干扰(EMI一RFI):那些由开关电源的开关组件引起的,不希望传输和发射的高频能量频谱.15.快速短路保护电路:一种用于电源输出端的保护电路,当出现过压现象时,保护电路激活,将电源输出端电压快速短路.16.占空比:在高频开关电源中,开关组件的导通时间和变换器的工作周期之比.即:δ=Ton /Τ(T= Ton+Toff)开关电源的设计与制作第二章输入电路一.电压倍压整流技术世界范围内的交流输入电压,通常是交流90~130V和180~260V的范围,为了适应不同电源输入环境的需要,实现两种输入电源的转换,要利用倍压整流技术.如下图2一1所示.2一15可用于110V和220V交流的开关电源输入电路电路工作过程为:1)当开关S1闭合时,电路在115V交流输入电压下工作,在交流电的正半周,通过二极管VD1和电容器C1被充电到交流电压的峰值,即115×1.4=160V,在交流电的负半周,电容器C2通过二极管VD4也被冲电到160V, 这样,电路输出的直流电压应该是电容器C1和C2上充电电压之和(160+160V=320V) 注意:不同的用电环境电压选择开关位置一定要选择正确.否则,会导致直流变换器中的开关功率管损坏,或因为输入电压太低而使开关电源进入欠压输入自动保护状态.二.抗电磁干扰和射频干扰电路考虑输入滤波电路(电纲滤波)1.开关电源的设计,生产,一定要将其辐射和传导干扰降低到可接受的程度.在美国,权威的指导性文件是F CCD ocket20780,在国际上,德国的Verband Deutscher Elektronotechniker(VDE)安全标准则得到了广泛的采用.2.开关电源中的RFI产生源:开关噪声的主要来源是开关晶体管,主回路整流器,输出二极管,晶体三极管的保护二极管以及控制单元本身.反激式变换器,由于设计的原因,其输入电流波形呈现三角形,较之输入波形为矩形的变换器,如正激式,桥式变换器等将产生较少的传导RFI噪声.(付里叶分析表明,一个三角形电流波形的高频谐波幅度是以40dB每倍频程进行跌落的,而对一个差不多的矩形电流波形,则只呈现20dB每倍频程的跌落)3.交流输入线路噪声滤波器对RFI的抑制.通常在开关电源中采用的噪声抑制方法是在主交流输入回路接入一个LC组成的滤波器,用于差模一共模方式的RFI抑制,通常是交流线路上串入一对电感L1, , 其两端并联二只电容器(X电容器),并在交流线二端对大地各接一只电容器(Y电容器),如图2一2(低通滤波纲络)2一2开关电源输入线路滤波器结构1)上图中电容电感的值可以采用下列的数值:C (X): 0.1~2UF;C(Y): 2200PF~ 0.033uF;L: 在25A时, 为1.8mH; 0.3A时, 为47mH注意:在选择滤波器的组件时,重要的是要使输入滤波器的谐振频率远低于电源的工作频率;另一方面,滤波器使得电源的工作频率增加时,会使噪声的传导变得更容易.2)上图中并联在交流输入线的电阻R是X电容的放电电阻,这是由VDE一0806和IEC一380两个标准中的有关安全的规范条款推荐应用的.IEC一380的8.8节阐明:若线路滤波器的X电容器的值大于0.1UF,则放电电阻的数值应由下式确定:R=t /2.21c (2一1)式中,t=ls, c为l电容器的总和值3)为进一步减少对称和不对称的干扰电压的措施是在交流线路中另外再接入一对电感L2,从而使得电容C4(X)的充电电流得到限制,于是降低了干扰,如图2一32一3改进的线路滤波器上图中L1与C3.C4组成常模抗干扰回路,L1与C1.C2组成共模,抗干扰回路,L2用于C4的充电电流的限制,因此,整个组合对各种高频干扰信号的抑制作用较好.三.输入整流器及整流后滤波电路.一)输入整流器如图2一1中,此整流电路由VD1~VD4组成(桥式或倍压整流)在选择组合组件或分立组件的整流器时,必须要查对下面的一些重要参数:1.最大正向整流电流,这个参数主要根据开关电源设计的输出功率决定.所选择的整流二极管的稳态电流容量至少应是计算值的2倍.2.峰值反向截止电压(PIV).由于整流器工作在高电压的环境,所以它们必须有较高的PIV值,一般应为600V以上.3.要有能承受高的浪涌电流的能力.二.输入滤波电容.由于滤波电容的选择将会影响到:电源输出端的低频交流波及电压和输出电压保护时间.一般情况下,高质量的电解电容所具有的滤除交流波纹电压的能力越强,它的ESR值越低.其工作电压的额定值至少应达到200V.在图2一1中,C1,C2 为滤波电容,电阻R4,R5与之并联以便在电源关闭时,给电容提拱一个放电通路.计算滤波电容的公式为:C=It /ΔV (2一2)式中C: 电容量, F;I: 负载电流 At: 电容提供电流的时间, s;ΔV: 所允许的峰一峰值纹波电压v .例:计算50w开关电源的输入滤波电容器的值.设输入交流电压为115V,60HZ,允许30V峰一峰值的纹波电压,且电容可维持电压电平的时间为半周期.解:1)计算直流负载电流假定一个最坏的情况,电源的效率为70%,那幺,输出功率为50W的电源其输入功率应该是:Pin=Pout/η=50 / 0.7=71.5(w)利用电压倍压技术(图2一1),在输入交流为115V时,直流输出电压将是2×(115×1∙4)=320(V),则负载直流电流应为I=P/E=7105/320=0.22(A)2)因半周期的线性频率或者说对于60HZ的交流电压大约是8ms,即t=1/2×1/60=8.33ms,故根据式2一2有.C=0.22(8×10 –3) /30=58×10 _6 =58(uF)选择标称值为50 uF的电容器.3)因为在倍压结构中,C4C5为串联,故有1/C=1/C1+1/C2,有C1=C2=100uF,即50W的开关电源,其滤波电容C4,C5为100uF.四.输入保护电路一).浪涌电流1.浪涌,一般情况下,只是电容的ESR值,如果不采取任何保护措施,浪涌电流可接近几百安培.2.控制电流主要是由滤波电容充电引起的,在开关管开始导通的瞬间,电容对交流电呈现出很低的阻抗浪涌电流的方法:广泛采用的措施有两种,一种是利用电阻 双向可控硅并联纲络;另一种是采用负温度系数(NTC)的热敏电阻,用以增加对交流线路的阻抗.1) 如图2一1,R 1,VS 组成此电路,R 1与VS 并联,当输入滤波电容充满电后,由于双向可控硅和电阻是并联的,可以把电阻短路,对其进行分流.这种电路结构需要一个触发电路,当某些预定的条件满足后,触发电路把双向可控硅触发导通,如图2一4 所示.1 T 2可控硅VS 的工作过程为:当电源接通后,C 6两端的电压逐渐升高,电流相应稳定.在C 6两端的电压稳定之前,浪涌电流被与之串联的电阻R 1(6.8Ω)所抑制,当输入交流为115V 时,C6两端的电压V C =115×1∙4=160(V).当电容器C 6充电时,电压加到高频变压器T 1的绕组LB 上,则在绕组LP 4端上产生感应电压,当感应电压达到1.5V 时,电流I G 开启可控硅.即当IG 流过可控硅的控制极G 时,触发T 1与T 2短接,可控硅导通,电阻R 1被VS 短路,使其温度下降,于是实现了R 1抑制浪涌电流的目的 .注:设计时要认真地选择双向可控硅的参数,并加上足够的散热片,因为在它导通时,要流过全部的输入电流.2)热敏电阻技术:这种方法是把负温度系数(NTC)的热敏电阻串联在交流输入或者串联在经过桥式整流后的直流线上,如2一1图中的RT 1和RT 2,其工作原理为:当开关电源接通后,热敏电阻的阻值基本上是电阻的标称值,这样,由于阻值较大,它就限制了浪涌电流,当电容开始充电时,充电电流流过热敏电阻开始对其加热.由于其具有负温度系数,随着电阻的加热,其电阻值开始下降,如果热敏电阻选择得合适,在负载电流达到稳定状态时,其阻值应该是最小,这样,就不会影响整个开关电源的效率..二) 输入瞬间电压保护一般情况下,交流电纲上的电压比较稳定,但由于电纲附近电感性开关,暴风雨天气雷电等现象的存在,都会产生高压的尖峰(如受严重的雷电影响,电纲上的高压尖峰可达5KV;而电感性开关产生的电压尖峰的能量公式W=1/2L.I2.式中L是电感器的漏感:I是通过线圈的电流)可是,虽然电压尖峰持续的时间很短,但是它有足够的能量使开关电源的输入滤波器,开关晶体管等造成致命的损坏,故必须采取措施加以干扰.最通用的抑制干扰器件是金属氧化物物压敏电阻(MOV)瞬态电压抑制器.如图2一1中的RV 把压敏电阻RV连在交流电压的输入端,起到一个可变阻抗的作用.即,当高压尖峰瞬间出现在压敏电阻两端时,它的阻抗急剧减小到一个低消值,消除了尖峰电压使输入电压达到安全值.其瞬能量消耗在压敏电阻上,选择压敏电阻时应按下述步骤进行.(1)选择压敏电阻的电压额定值,应比最大的电路电压稳定值大10%~20%;(2)计算或估计出电路所要承受的最大瞬间能量的焦耳数.(3)查明器件所需要承受的最大尖峰电流开 关 电 源 的 设 计第三章 高频电源变换器的基本类型一. 高频电源变换器的基本类型高频电源变换器的基本类型有五种:单端反激式,单端正激式,推挽式.半桥式和全桥式变换器,而半桥式和全桥式变换器电路实际上是推挽式变换器电路的改进型,所以,有人把这三种电路形式统称为推挽式变换器.高频电源变换器从激励方式上可分为单端(单极性)激励和双极性激励变换器,双极性变换器包括推挽式,半桥式,桥式等,其工作原理的实质是两个单端正激式变换器电路,从其耦合方式可分为直接耦合和变压器隔离两种,其中直接耦合形式为其基本形式.近年来出现的新型的变换器为C U K 变换器.1.单端反激式变换器的模型图: (3一1)(a) (b) 3 一1单端反激式变换器模型图单端反激式变换器的工作原理为:1) 当开关s 闭合时,电流I 流过电感L,在L 中储存能量,由于电压的作用,使二极VD 处于反向偏置,因此,在负载电阻R L 上无电压;2) 当开关S 打开时(上b 图),电感上的感应电压极性相反,则二极管VD 处于正向偏置,并产生电流Iv,这样,在负载电阻R L 上就出现一个与输入电压极性相反的电压.由于开关S 不断地开关动作,电路中的电流就以及脉的形式出现,因此,在单端反激式变换器中,当开关闭合时,能量存储在电感L 中,在开关打开时,能量被传递到负载RL 上.3. 单端正激式变换器的电路模式图(3一2)单端正激式变换器的工作原理为:Vin Ic------------- 1) 当开关S 闭合时,电流I 流过电感L,系,二极管VD 处于反向偏置; 2) 当开关S 打开时,电感L 中的磁场极性发生变化,,b2单端正激式变换器模型图,无脉动现象,恰恰与其相反,输入电流则是不连续的,. 3.(3一3)推挽式变换器的工作原理为:1)当S 1闭合S 2打开时,电源电流流过方向为 a Lp 1 b s1 d V in,那幺此时,在变压器次级绕组中咸应出电压并形成感应电流Is 1.2)当S 2闭 合S 1打工时,电源电流方向为 a f e d vin,那幺此时在变压器次级绕组LS 2中感应出电压形成感应电流IS 2二. 隔离式单端反激式变换器电路.概述 :一般情况下,隔离式开关电源都是用高频变压器作为主要隔离器件.在单端反激式隔离L-------------电路中,高频变压器是以变压器的形成出现的,但实际上它起的作用是扼流圈,所以应称之为变压器 扼流圈.如图3一4中,由于隔离变压器T 除了具有初次级间安全隔离的作用外,它还有变压器和扼流圈的作用,所以在反激式变换器的输出部分一般不需要加电感,但在实际应用中,往往在整流器和滤波电容之间加一个小的电感线圈,用以降低高频开关噪声的峰值.单端隔离激式变换器的工作过程为:1) 当晶体管VT1导通时,它在变压器初 级电感线圈中储存能量,与变压器次 级相连的二极管VD 处于反偏压状 态而截止,故在变压器次级回路无电 流流过,即没有能量传给负截. 2) 当晶体管VT 1截止时,变压器次级电 感感线圈中的电压极性反转过来,使得二极管VD 导通,给输出电容C 充电,同时在负载L 年也有了电流I L 3 一4隔离单端反激式变换器电路注:图3一4中C 为输出滤波电容.1.单端反激式变换器电路中的开关晶体管在单端反激式变换器电路中,所使用的开关晶体管必须具备两个条件:1)在晶体管截止时,要能承受集电极尖峰电压; 2)在晶体管导通时,要能承受集电极的尖峰电流.1) 晶体管截止时尖峰电压的计算公式:V CE max =Vin / 1一δmax式中Vin 是输入电路整流滤波后的直流电压, δmax 是晶体管最大工作占空比(注意:为了限制限晶体管的集电板安全电压,工作占空比应保持在相对地低一些,一般要低于50%,δmax<0.5,在实际设计时, δmax 一般取0.4左右,这样就限制集电极峰值电压: V CE max ≦2.2Vin,因此,在单端反激式变换器电路设计中,晶体管的工作电压一般在800V 通常接900V 计算可安全可靠地工作.)2) 晶体管导通时的集电极电流计算式:I C = I L / n式中,I L 是变压器初级绕组的峰值电流,而n 是变压器初级与次级间的匝数比.注: 为了导出用变压器输出功率和输入电压表达集电极峰值工作电流的公式.变压器绕组传递的能量Pout =可用下式表示:Pout = L . I L 2 / 2T ·η (3 一 3 )式中,η是变换器的效率.则有: Ic= 2Pout / η·Vin ·δmax ( 3 一 4 )假定变器的效率η是0.8,最大占空比δmax=0.4(即40%),那幺Ic = 6. 2Pout / Vin ( 3 一 5 )2. 单端反激式变换电路中的变压器绕组.在单端反激式变换器电路中,在设计时要汪意不要使磁芯饱和,所选的磁芯一定要有足够大+ RL 一的有效体积,通常应用空气隙来扩大其有效体积:V=Uo ·Ue · I L max ·L / B 2max ( 3一6 )中,Ilmax: 最大负载电流;L :变压器次级绕组的电感量; Uo : 空气的导磁率,其值为1;Ue: 所选磁芯的磁性材料的相对导磁率Bmax:磁芯的最大磁通密度;(具体见第五章)3一53.基本的单端反激式变换器的变形.1)如图3一5中,由于考虑到单只晶体管有时承受不了过高的输入电压,(一般商甲晶体管达不到指针),故利用两只晶体管工作.图中VD 1和VD 2同时导通或截止,二管起箝位作用,它们把晶体管的最大集电板电压限制在Vin,这样耐压低的晶体管就可以使用了.2单端反激式变换器电路的优点是:电路结构简单,可以实现多路电压输出.如图3一6,在电路中隔离变压器对各路输出电压起到公共扼流圈的作用变压器的次级可以有多个绕组,故可以实现多路输出 .每个次级绕组只需一个整流二极管和一个滤波电容,就可以得到一组直流输出电压.3一6有多路输出的单端反激式变换器电路+ R L 一1 1 out 1 out2 + V out3 一 L L3一7隔离单端正激式变换器电路图三.隔离单端正激式变换器电路1.概述:如图3一7所示1)在单端正激式变换器电路中,隔离组件是一个纯粹的变压器,为了有效地传递能量,,在输出电路中, 必须有储能组件电感线圈Lo同时,初次级绕组的极性是相同的.其电路工作过程为:当VT1导通时,在变压器的初级产生了电流,并储存了能量,由于变压器的次级极性与初级同相,这个能量也传到了变压器的次级并处在偏正的二极管VD2把能量储存到了电感L中.此时,二极管VD3是处在反向偏压状态,为截止状态,当三极管VT1截止时,二极管VD2是反向偏压,变压器绕组中的电压反向,续流二级管VD3处于正向偏压,在输出回路中,储存在电感中的能量通过电感L 继续传负载R L .2)变压器的第三绕组称为箝位绕组(或回授绕组)LP2,它与二极管VD1串联,其作用是用来限制晶体管C一E结上的电压尖峰,在晶体管截止时,还能使高频变压器的磁通复位, 这是因为:A.在VT1导通时,变压器初级绕组LP 1中会储存能理,当VT1截止时,变压器次级侧二极管VD2截止,那幺储存在LP1中的能量再不能传递到次级绕组了,此时必须要通过一种途径释放出来,否则,必然在线圈两端产生过高的电压,解决的办法是增加箝位绕组和二极管VD1,并使箝位绕组的匝数与初级绕组的匝数相同,二者紧密耦合,这样,当箝位绕组上的感应电超过电源电压时,二极管VD1导通,将磁能送回电源中,就可以把初级绕组的电压限制在电源电压上,所以,开关晶体管VT1的C一E极间的最高电压就被限制在二倍电源电压上.B.为满足磁芯复位的条件,使磁通建立和复位的时间相等,所以这种把电路的占空比不能超过50%.3)磁化电流Imag的计算公司为:Ima= Tδmax·Vin∕N ( 3一7)式中, T·δmax是VT时向,L是输出电感Ho4))单端正激式变换器是在晶体管导通时通过变压向负载传输能量,故运用的输出功率范转较大,一般情况下可达50~200W,其高频变压器要起变压器隔离和传输能量的作用,又起电感线圈储存能量的作用.2单端正激式变换器电路中的开关晶体管1)晶体管截止峰值电压:在单端正激式变换器电路中,由于有第三绕组和续流二极管VD1的作用,所以其截止时降在VT1上的最大电压VCEmax应为2Vin,且只要二极管VD1处于导通状态,即在Tδmax这个时间内,降在VT铁C 一E间的2Vin的峰值电压就维持不变.2)晶体管导通时集电极电流的峰值:为正激式变换器的电流值加上磁化电流Imag.Ic= Ic / n + Tδmax Vin / L =6.2Pout / Uin式中.n: 变压器初次级匝数比;IL : 输出电感电流. A;Tδmax: 晶体管导通时间L: 输出电感, H.3.单端正激式变换器电路的传输变压器在设计正激式变换器的传输变压器时,应十分注意选择适当的磁芯有效体积,并选择空气隙,以避免磁芯的饱和,其有效体积V为:V= UoUe I2mag L / B2max注意:A.这种电源的最大工作占空比应保持低于50%,以便通过第三绕组将变压器的电压进行箝位,将总电限制在2倍输入电压之内.这样,当VT1导通时,为箝位电平:当VT停止时,使该总电压接近于0值.如果最大工作占空比大于50%,即δmax > 0.5,将打破这种2倍于电源电压的平衡,导致变压器发生饱和,反过来会产生很高的集电峰位电流,这可能会损坏开关晶体管.B.尽管有第三绕组以及箝位二极管可将开关晶体管的峰值集电极电压限制在2倍直流输入电压之内,但在制作变压器时,还要严格注意初级绕组和第三绕组间的紧密耦合,以消除由于漏感引起的致命的电压尖峰.4.单端正激式变换器电路的变形.1)如同单端反激式变换器电路一样,也可用两个晶体管代替一个晶体管工作,它们同时导通或同时截止,但每个晶体管所承受的电压不会高于Vin.2)此电路也可以产生多路的出电压,但是需增加二极管和扼流圈应指出的是,续流二极管的容量至少要与主回路中的整流二极管相同,因为在晶体管VT1截止时,它要提供输出电路中的全部电流.四. 推挽式变换器电路概述:如图3一8所示,推挽式变换器电路实际上是由两个正激式变换器电路组成,只是它们工作时相位相反,在每个周期里,,两个晶体管交替导通和截止,在各自导通的半个周期内,分别把能量传递给负载,所以称之为”推挽”电路.故在推挽式变换器电路中,两组开关三极管和输出整流二极管因流过每一组组件的平均电流比同等的单端正激式变换器电路减少35%以上,其设计计算可接单端正激式变换器.还应看到,在只开关晶体管导通间隙,二极管VD1和VD2同时导通,它们把高频变压器的次级给短路了,与此同时,把能量传递到了输出回路,实质上,它们起到了续流二极管的作用.推挽式变换器电路的输出电压可用下式计算:V out= 2δmax·Vin / n (3一10)注意:为了避免两只开关晶体管同时导通而引起损坏,公式中δmax的值必须得持在0.5以下.假定δmax=0.4则有:Vout = 0.8Vin / n (3一11 )式中n是高频变压器的初级对次级的匝数比.1)每只开关管的峰值集电极电流Ic=Ic / n (3一12)Ic = Pout / η. (3一13)设η=0.8 δmax=0.8则Ic= 1.6Pout / Vin (3一14)2)每只管所承受的峰值电压限制在2Vin以内.3.推挽式变换器电路中的高频变压器在推挽式变换器电路中,两只晶体管导通时间相等(或者说强制两管导通时间相等),高频变压器的。

200W正弦波逆变电源的设计方法

200W正弦波逆变电源的设计方法

文章编号 :10 42 ( 0 1 o 0 6— 7 9 2 1 )4—02 o 3 7一 6
2 0W 正 弦 波逆 变 电源 的 设计 方 法 0
郑文兵
( 上海 电力学院 电力与 自动化工程学 院 , 上海 2 09 ) 0 0 0


要 :提出了一种基于数字控制 的具 有高频链 的 20W 正 弦波逆 变 电源的 设计方 法. 弦波逆变 电源 由 0 正
第2 7卷第 4期 21 0 1年 8月 上 Nhomakorabea海
电 力 学 院 学 报
Vo. 7, No 4 12 . Au . 2 1 g 01
J u a o S a g a Un v riy o E e ti P we or l n f hn hi i e st f lcr c o r
图. 最后利用 PI 软件对整体 电路进 行了仿真 , S M 仿真结果表 明符 合理论分析 的结果 .
关键词 :正弦波逆变 电源 ;软开关 ;瞬时无 功理论 ; 数字控制
中图分 类号 : P 7 T 3 12 r 1 ; P 3 . 文献标 志码 :A
Th sg eho fa 2 0 W i e W a e I v re e De i n M t d o 0 Sn v n e tr
周波变换器之间采用高频变压器隔离.
r D . 5

s }
s E

_ ] L f
u b
= -

I u c
} E ・} =

J 】 I
D t
’ T T
图 1 主电路拓扑结构
1 1 全桥 DC DC 变换 器 元 器件 参数 选择 . / 由于全桥 D / C变换 器 的输 入侧 为 l 的 CD 2V 蓄 电池 , 因此 功率 开 关 S ~S 选 用 5 和 5 , 可 OV O

200W开关电源设计PFC双管正激

200W开关电源设计PFC双管正激

学位论文200W开关电源设计——基于双管正激变换器摘要开关电源是一种由占空比控制的开关电路构成的电能变换装置,用于交流-直流或直流—直流电能变换,通常称其为开关电源。

其功率从零点几瓦到数十千瓦,广泛用于生活、生产、科研、军事等各个领域。

开关电源的核心为电力电子开关电路,根据负载对电源提出的输出稳压或稳流特性的要求,利用反馈控制电路,采用占空比控制方法,对开关电路进行控制。

本设计的交流输入电压范围是85V~265V,输出电压24V,输出功率200W。

该设计能够同时实现输入欠压保护、输出过压保护、功率因数校正等功能。

本设计主要采用单片开关电源芯片L6562D,NCP1015和NCP1217,线性光耦合器PC817A及可调式精密并联稳压器TL431等专用芯片以及其它的分立元件相配合,使设计出的开关电源具有稳压输出功能。

主要用到的开关电源电路拓扑有BUCK电路,BOOST电路和正激电路。

关键词:开关电源,功率因数校正,电路拓扑ABSTRACTThe switching power supply is a power conversion device for AC-DC or DC-DC conversion,which is consist of switching circuits controled by duty cycle.Its power varies from a few tenths of watts to tens of kilos watts,and it is widely used in life,production,scientific research, military and other fields.The core of the switching power supply is power electronic circuit.According to the request of steay output voltage or flow characteristics of power from the load,it can use feedback control circuit with duty cycle control method to control the switching circuit. The AC input voltage of this design ranges from 85V to 265V and the output voltage is 24V,the output power 200W.The design can simultaneously realize functions of input under-voltage protection, output overvoltage protection and power factor correction. The design mainly adopts dedicated chips ,such as single switching power supply chip L6562D, the NCP1015 and NCP1217A, a linear optocoupler PC817 and adustable precision shunt regulator control TL431 ,which is matched with other discrete components to make the switching power supply with voltage regulator output function. The main switching power supply circuit topology are Buck Circuit, the Boost Circuit and a Forward Circuit.Key words:the switching power supply,power factor correction,circuit topology目录第1章开关电源简介 (1)1.1 开关电源的发展简史 (1)1.2 开关电源的发展趋势和前景展望 (1)1.3 本文的主要工作 (2)1.3.1 基本要求 (3)1.3.2 发挥部分 (3)第2章开关电源的分类和基本工作原理 (4)2.1 开关电源的分类 (4)2.2 开关电源的基本工作原理 (4)2.3 PFC原理 (5)2.4 双管正激式变换器工作原理 (6)第3章交流输入部分电路的设计与实现 (8)3.1 原理图设计 (8)3.2 元件参数与选择 (8)3.2.1 压敏电阻 (8)3.2.2 安规电容 (8)3.2.3 泄放电路 (9)3.2.4 共模扼流圈 (9)3.2.5 整流桥和滤波电容 (9)第4章基于L6562D的连续型APFC电路设计与实现 (10)4.1 L6562D功能特点及其工作方式 (10)4.2 设计要求 (10)4.3 工作原理 (10)4.3.1 概述 (10)4.3.2 FOT峰值电流模式分析 (11)4.3.3 FOT峰值电流模式的输入电流畸变 (12)4.3.4 输入电流尖峰畸变的补偿电路 (12)4.4 原理图设计 (14)4.5 参数设计 (14)4.5.1 升压电感的设计 (14)4.5.2 确定电流取样电阻 (17)第5章基于NCP1217A双管正激变换器电路的设计与实现 (19)5.1 NCP1217A功能特点 (19)5.2 设计要求 (19)5.3 原理图设计 (19)5.4 参数设计 (21)5.4.1 变压器和输出电感的设计 (21)5.4.2 确定次级侧的整流二极管 (22)5.4.3 确定输出电容器 (23)5.4.4 脉冲驱动电路的设计 (23)5.4.5 稳压反馈电路设计 (24)第6章基于NCP1015的辅助电源设计与实现 (25)6.1 NCP1015功能特点 (25)6.2 设计要求 (25)6.3 原理图设计 (25)6.4 工作原理 (25)第7章测试报告 (26)7.1 概述 (26)7.1.1 输出电压精度 (26)7.1.2 线性调整率 (26)7.1.3 负载调整率 (27)7.1.4 工作效率 (28)7.1.5 PF值 (30)7.1.6 纹波 (31)7.2 毕设完成指数 (33)7.2.1 基本要求 (33)7.2.2 发挥部分 (33)第8章调试总结 (34)8.1.1 基于NCP1654的PFC调试 (34)8.1.2 基于NCP1217A的双管正激调试 (34)8.1.3 基于L6562D的APFC电路的调试 (34)8.1.4 联调 (35)8.1.5 心得体会 (35)参考文献 (37)附录A 原理图 (38)A.1 APFC设计部分 (38)A.2 双管正激部分 (39)A.3 交流输入部分 (40)A.4 NCP1217A设计部分 (40)A.5 辅助电源设计部分 (40)附录B 器件清单 (41)B.1 交流输入部分参数 (41)B.2 辅助电源设计部分参数 (41)B.3 NCP1217A设计部分参数 (41)B.4 APFC设计部分参数 (42)B.5 双管正激设计部分参数 (42)附录C APFC电路PCB (44)附录D 双管正激电路PCB (45)第1章开关电源简介1.1 开关电源的发展简史开关电源是相对线性电源说的。

开关电源的工作原理及电路图

开关电源的工作原理及电路图

开关电源的工作原理及电路图本文以丰富的(开关电源)案例分析,介绍单端正激式开关电源,自激式开关电源,推挽式开关电源、降压式开关电源、升压式开关电源和反转式开关电源。

随着全球对能源问题的重视,(电子)产品的耗能问题将愈来愈突出,如何降低其待机功耗,提高供电效率成为一个急待解决的问题。

传统的线性稳压(电源)虽然电路结构简单、工作可靠,但它存在着效率低(只有40%-50%)、体积大、铜铁消耗量大,工作温度高及调整范围小等缺点。

为了提高效率,人们研制出了开关式(稳压电源),它的效率可达85%以上,稳压范围宽,除此之外,还具有稳压精度高、不使用电源变压器等特点,是一种较理想的稳压电源。

正因为如此,开关式稳压电源已广泛应用于各种电子设备中,本文对各类开关电源的(工作原理)作一阐述。

一、开关式稳压电源的基本工作原理开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源(集成电路)中,绝大多数也为脉宽调制型。

因此下面就主要介绍调宽式开关稳压电源。

调宽式开关稳压电源的基本原理可参见下图。

对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。

直流平均电压U。

可由公式计算,即Uo=Um×T1/T式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。

从上式可以看出,当Um与T不变时,直流平均电压Uo将与脉冲宽度T1成正比。

这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。

二、开关式稳压电源的原理电路1、基本电路图二开关电源基本电路框图开关式稳压电源的基本电路框图如图二所示。

交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。

(控制电路)为一脉冲宽度调制器,它主要由取样器、(比较器)、(振荡器)、脉宽调制及基准电压等电路构成。

开关电源的EMC设计

开关电源的EMC设计

开关电源的EMC设计目前,大多数电子产品都选用开关电源供电,以节省能源和提高工作效率;同时越来越多的产品也都含有数字电路,以提供更多的应用功能。

开关电源电路和数字电路中的时钟电路是目前电子产品中最主要的电磁干扰源,它们是电磁兼容设计的主要内容。

下面以一个开关电源的电磁兼容设计过程进行分析。

图1是一个普遍应用的反激式或称为回扫式的开关电源工作原理图,50 Hz或60 Hz交流电网电压首先经整流堆整流,并向储能滤波电容器C5充电,然后向变压器T1与开关管V1组成的负载回路供电。

1)脉冲尖峰电流及其抑制措施。

一般电容器C5的容量很大,其两端电压纹波很小,大约只有输入电压的10%左右,而仅当输入电压Uin大于电容器C5两端电压的时候,整流二极管才导通。

因此在输入电压的一个周期内,整流二极管的导通时间很短,即导通角很小。

这样整流电路中将出现脉冲尖峰电流,如图2所示。

这种脉冲尖峰电流如用傅里叶级数展开,看成由非常多的高次谐波电流组成,这些谐波电流将会降低电源设备的使用效率,即功率因数很低,并会倒灌到电网,对电网产生污染。

当严重时还会引起电网频率的波动,即交流电源闪烁。

解决整流电路中出现脉冲尖峰电流过大的方法是在整流电路中串联一个功率因数校正(PFC)电路,或差模滤波电感器。

图3是进行过电磁兼容设计后的电气原理图。

PFC电路一般为一个并联式升压开关电源,其输出电压一般为直流400 V,没有经功率因数校正之前的电源设备,其功率因数一般只有0.4~0.6,经校正后最高可达到0.98。

PFC电路虽然可以解决整流电路中出现脉冲尖峰电流过大的问题,但又会带来新的高频干扰问题,这同样也要进行严格的EMC设计。

用差模滤波电感器可以有效地抑制脉冲电流的高频成份,从而降低电流谐波干扰。

但是在开关电源电路里,差模电感的体积和重量受到限制,因而提高功率因数的作用有限。

图3中的L1为差模滤波电感器,差模滤波电感器一般用硅钢片材料制作,以提高电感量,为了防止大电流流过差模滤波电感器时产生磁饱和。

200w开关电源功率级总结

200w开关电源功率级总结

一個200W開關電源的功率級設計總結Michael Weirich實驗室經理飛兆半導體(德国)公司摘要本文講述了一個基於FAN4800連續PFC前端的雙管正激電源的功率級設計。

回顧了這種電源的設計選擇。

討論的實際課題包括功率器件選型,電磁設計,佈局和電磁干擾(EMI),目的在於幫助工程師加速並改善其設計。

1.導言新的功率在200W-500W的交流電源設計,越來越需要功率因素校正(PFC),以在減少電源線上的能源浪費,並增加最多來自電源插座的功率。

這篇文章描述了一個用於液晶電視的200W電源的設計與構造,所以提到了很多注意事項,以達到高效率,待機功率低於1W,外形小巧尤其是高度為25mm,無風扇的簡單冷卻,低成本。

這些特徵對於將要應用的場合是不可或缺的。

2.電路描述和設計設計指標如下:‧交流輸入電壓:85-265VRMS‧功率因素:> 0.95‧總輸出功率:200W‧三個直流輸出:5V/0.3A12V/5A24V/6A電源分為兩個單元。

第一電源集成一個功率因素校正電路,內置在FAN4800 PFC/PWM(脈寬調制)二合一控制器周圍,產生一個24V/6A和12V/5A的輸出。

這個器件包含一個平均電流模式PFC控制器和一個能夠在電壓和電流模式下工作的PWM控制器。

在描述的這項應用中,PWM工作在電流模式,控制一個雙管正激變換器。

這種變換器能產生一個穩壓的24V輸出。

12V輸出則由一個采用MC34063A PWM控制器的Buck變換器產生。

這個附加模塊改善了12V輸出校正,減少交叉調節問題,這對於多重輸出正激變換器總是一個問題,當負載大範圍變化時。

附加變換器成本不是很高,如果與一個雙管輸出變換器的更複雜、更大的耦合電感相比。

第二電源是一個基於飛兆半導體功率開關(FPS)的Flyback變換器,它給FAN4800提供電源和5V輸出。

這個電源工作在待機模式下,它的無負載功耗低於500mW。

因此,即使對於省電模式下小負載情況,也有可能滿足1W待機功耗的限制。

一个200W开关电源的功率级设计总结

一个200W开关电源的功率级设计总结

一个200W开关电源的功率级设计总结
1. 导言
 新的功率在200W-500W 的交流电源设计,越来越需要功率因素校正(PFC),以在减少电源线上的能源浪费,并增加最多来自电源插座的功率。

这篇文章描述了一个用于液晶电视的200W 电源的设计与构造,所以提到了很多注意事项,以达到高效率,待机功率低于1W,外形小巧尤其是高度为25mm ,无风扇的简单冷却,低成本。

这些特徵对于将要应用的场合是不可或缺的。

 2. 电路描述和设计
 设计指标如下∶
 交流输入电压∶85-265VRMS·功率因素∶
 > 0.95·总输出功率∶200W·
 三个直流输出∶5V/0.3A12V/5A24V/6A电源分为两个单元。

 第一电源集成一个功率因素校正电路,内置在FAN4800 PFC/PWM(脉宽调制)二合一控制器周围,产生一个24V/6A 和12V/5A 的输出。

这个器件包含一个平均电流模式PFC 控制器和一个能够在电压和电流模式下工作的PWM控制器。

在描述的这项应用中,PWM工作在电流模式,控制一个双管正激变换器。

这种变换器能产生一个稳压的24V 输出。

12V输出则由一个采用MC34063A PWM控制器的Buck 变换器产生。

这个附加模块改善了12V 输出校正,减少交叉调节问题,这对于多重输出正激变换器总是一个问题,。

200w半桥开关电源方案

200w半桥开关电源方案

200w半桥开关电源方案一、半桥开关电源的基本原理。

半桥开关电源呢,就是一种很有趣的电源拓扑结构。

它主要由两个功率开关管(一般是MOSFET管啦)、一个高频变压器还有一些其他的小零件组成。

这两个功率开关管就像是两个小伙伴,轮流工作。

当一个管导通的时候,另一个管就休息,通过这种交替的方式,在高频变压器的初级绕组上产生交变的电压。

这个交变电压就像魔法一样,经过变压器的变压作用,在次级绕组上就能得到我们想要的电压啦。

而且哦,这种半桥结构有很多优点呢。

它能够在比较高的功率下工作,就像一个大力士,能承担起200w这么大的功率需求。

同时呢,它的电路结构相对来说不是特别复杂,不会像一些复杂的电路搞得人晕头转向的。

二、200w半桥开关电源的主要元件选择。

1. 功率开关管。

对于200w的半桥开关电源,功率开关管的选择可是至关重要的。

我们得找那些能够承受高电压、大电流的管子。

一般来说呢,要根据电源的输入电压范围、输出功率以及开关频率等因素来综合考虑。

比如说,我们可以选择一些知名品牌的MOSFET管,它们就像可靠的小战士,有着较低的导通电阻和较高的开关速度。

这样在工作的时候,就不会产生太多的热量,也能让电源的效率更高。

而且啊,它们的可靠性也比较高,不会动不动就闹脾气罢工。

2. 高频变压器。

高频变压器在这个半桥开关电源里可是扮演着很关键的角色呢。

它就像一个神奇的魔术师,把输入的电压变成我们想要的输出电压。

在选择高频变压器的时候,我们要考虑它的磁芯材料、匝数比还有电感量等参数。

对于200w的电源,我们可能需要一个能够承受一定功率、具有合适的磁芯尺寸的变压器。

比如说,铁氧体磁芯的变压器就比较常用,它的性能比较稳定,而且成本也不会高得离谱。

匝数比的确定呢,就要根据输入输出电压的要求来计算啦,就像做数学题一样,要算得准准的,这样才能得到正确的输出电压。

3. 电容。

电容在半桥开关电源里也有着不可忽视的作用。

输入电容就像是一个能量储存器,能够平滑输入电压,防止电压波动太大。

5v40a200W开关电源最佳使用功率

5v40a200W开关电源最佳使用功率

4.8A的P10单红可以带8张40\4.8A=8.33张3.2A的P10单2.6A的P10单规格尺寸(mm)点距分辩率点数/平方亮度功率W 功率W 带板数量3.0单色256*1284mm 64*3262500100182009.443.0双色256*1284mm 64*326250020027200 6.303.75单色304*152 4.75mm 64*3244321100182009.443.75双304*152 4.75mm 64*324432120027200 6.305.0单色484*2427.62mm 64*3217222100182009.445.0双色484*2427.62mm64*321722220027200 6.30规格尺寸(mm)点距分辩率点数/平方亮度功率功率W 带板数量5.0单色484*2427.62mm 64*32172221000202008.505.0双色484*2427.62mm 64*3217222450030200 5.67P10单色320*16010mm 32*16100001000202008.50P10双色320*16010mm 32*1610000450031200 5.48P12.5单色400*20012.5mm 32*1664001000202008.50P16单色256*12816mm 16*839061000720024.29P16双色256*12816mm16*8390620001120015.45规格尺寸点距像素点数/m2亮度功率功率W 带板数量P10单色320*16010mm 32*16100001000212008.10P10双色320*16010mm 32*1610000450038200 4.47P10全彩160*16010mm 16*16100005500202008.50P12单色192*9612mm 16*8694410001220014.17P12双色192*9612mm 16*869444500202008.50P12全彩192*9612mm 16*86944550025200 6.80P12.5单色400*20012.5mm 32*1664001000192008.95P12.5双色200*10012.5mm 16*8640045001120015.45P12.5全彩200*10012.5mm 16*8640055001320013.08P16单色256*12816mm 16*839061000720024.29p16双色256*12816mm 16*8390645001120015.45P16全彩256*12816mm 16*8390655001420012.14P20单色320*16020mm 16*825001*********.29P20双色320*16020mm 16*8250045001120015.45P20全彩320*16020mm16*82500550027200 6.30户外系列5V40A开关电源开关电源最佳使用功率为85%,这样对电源的寿命有很好保障5V40A开关电源5V40A开关电源推荐使用足功率-枭峰-5V40A200W电源我们所说一台5V40A电源带12张板计算方法是, P10半户外单元板的电流是3.2A,功率是16W,3.3A X 12 = 38.4A ^^^ 16W X12 =192W 工作时不超电源功率。

全面认识开关型电源中的BUCK-BOOST功率级

全面认识开关型电源中的BUCK-BOOST功率级

稳态连续导通模式分析 2.1 Buck-Boost main goal of this section is to provide a derivation of the voltage conversion relationship for
The following is a description of steady-state operation in continuous conduction mode. The
系统能源
目录 1 简介 2 Buck-Boost级稳态分析 2.1 Buck-Boost 稳态连续导通模式分析 2.2 Buck-Boost 稳态非连续导通模式分析 2.3 Critical Inductance 3 Buck-Boost功率级小信号模型 3.1 Buck-Boost 连续导通模式小信号分析 3.2 Buck-Boost非连续导通模式小信号分析 4 Buck-Boost功率级的变型 4.1反向(Flayback)功率级 5 组件选择 5.1输出电容 5.2输出电感 5.3功率开关 5.4输出二极管 6 总结 7 参考文献 2 3 3 7 11 12 13 16 21 21 24 24 26 27 28 29 31
a ia VI + Drive Circuit
Q1
CR1
p
VO C
c L IL = ic
R
RC
RL
图1.buck-boost 功率级原理图
在buck-boost功率级的正常工作中,Q1在控制电路的开关时间内,重复的打开、关上。在Q1、CR1 和L的连结节点处,开关动作产生了一个脉冲序列。电感L跟输出电容C相连,只有在CR1导通时,一 个有效的L/C输出滤波器才形成,过滤脉冲序列,产生直流输出电压。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一个 200W 开关电源的功率级设计总结Michael Weirich 实验室经理飞兆半导体(德国)公司摘要本文讲述了一个基於FAN4800 连续PFC 前端的双管正激电源的功率级设计。

回顾了这种电源的设计选择。

讨论的实际课题包括功率器件选型,电磁设计,布局和电磁干扰 (EMI),目的在於帮助工程师加速并改善其设计。

1. 导言新的功率在200W-500W 的交流电源设计,越来越需要功率因素校正(PFC),以在减少电源线上的能源浪费,并增加最多来自电源插座的功率。

这篇文章描述了一个用於液晶电视的200W 电源的设计与构造,所以提到了很多注意事项,以达到高效率,待机功率低於1W,外形小巧尤其是高度为25mm ,无风扇的简单冷却,低成本。

这些特徵对於将要应用的场合是不可或缺的。

2. 电路描述和设计设计指标如下∶·交流输入电压∶85-265VRMS·功率因素∶> 0.95·总输出功率∶200W·三个直流输出∶5V/0.3A12V/5A24V/6A电源分为两个单元。

第一电源集成一个功率因素校正电路,内置在FAN4800 PFC/PWM(脉宽调制)二合一控制器周围,产生一个24V/6A 和12V/5A 的输出。

这个器件包含一个平均电流模式PFC 控制器和一个能够在电压和电流模式下工作的PWM控制器。

在描述的这项应用中,PWM工作在电流模式,控制一个双管正激变换器。

这种变换器能产生一个稳压的24V 输出。

12V输出则由一个采用MC34063A PWM控制器的Buck 变换器产生。

这个附加模块改善了12V输出校正,减少交叉调节问题,这对於多重输出正激变换器总是一个问题,当负载大范围变化时。

附加变换器成本不是很高,如果与一个双管输出变换器的更复杂、更大的耦合电感相比。

第二电源是一个基於飞兆半导体功率开关(FPS)的Flyback 变换器,它给FAN4800提供电源和5V 输出。

这个电源工作在待机模式下,它的无负载功耗低於500mW。

因此,即使对於省电模式下小负载情况,也有可能满足1W待机功耗的限制。

为了简洁,设计计算和电路图将在每个模组中单独给出。

最终完成的示意图和布局,可在附录中查到。

3. 功率因素校正本节回顾了功率因素校正电路的电源选择。

用来设立乘法器的工作点和差动放大器的增益和频率补偿的低功率部件的设计在[1]中给出。

图1为电路示意图图1∶PFC级示意图,元件编号和FAN4800应用说明[1]相对应3.1 整流器由於主电源用来提供一个200W的输出功率,即总输入功率。

假设PFC的效率为90%,正激变换器效率为90%,其中输出功率为∶考虑到最大输入电压为85VRMS,最大输入电流为∶电磁干扰滤波器的常见共模扼流圈,必须承受这部分电流,同时具有约10mH 高电感。

市场上有一些扼流圈,具有高电流,高电感和小尺寸的特徵,来自EPCOS 和TDK。

扼流圈的实际值和类型由电磁干扰测试确定,依赖於工作条件,也许与本文提出的滤波器有所不同。

与输出串联的负温度系数热敏电阻(NTC)限制了浪涌电流,但并非电源工作所真正需要的。

整流器根据IIn,RMS选定,但注意到高额定电流二极管通常在某一电流下具有更低的电压降,使用一个额定电流略高的整流桥是有利的。

对於实际设计,选择一个6A/800V桥GBU6K。

整流器功耗是可以预计的,通过一个恒定正向电压下已知的近似二极管正向特性乘以一个串联电阻。

正向电压VF 和串联电阻Rs 必须从规格说明书中查,对於GBU6K 分别是0.8V和0.03Ω。

功耗方程变成∶如果我们假设一个绝对的最高结温度TJ 为150℃,最高室温为50℃,然後BR1 散热器的热大热阻(与空气之间)应为3.2 电感L1在讲述的设计中,通过L1的波纹电流的振幅被选定为输入电流的20%。

在这种选择下,电感可以根据下列等式(5)计算∶给出的电感差不多是1mH。

当RMS电流等於RMS输入电流时,L1的峰值电流是在这个电流和5A/mm2的电流密度下,所需的铜线截面积约为0.58mm2。

由於高频电流仅为输入电流的20%,趋肤效应和邻近效应不是很明确。

三或四条细电线并联总面积能够达到所需面积就足够了。

在实际设计中,使用了三根直径为0.5mm的电线,电流密度略低於5A/mm2。

L1 的磁环尺寸根据被称为磁环区域乘积Ap确定,即有效磁性截面积和绕组面积(骨架)的乘积。

这个乘积很容易证明是其中ACu是铜线面积,Bpeak 是饱和磁通密度(对於大多数铁氧体,≤0.35T)。

fCu是铜填充因子,对於简单电感,约为0.5;对於含有几个线圈的变压器,约为0.4。

确定这些数据後,L1的Ap需求值是基於惯例,对大多数磁环,磁性截面积和绕组面积非常相近,需要的磁环面积为因此,对於我们的应用,一个合适的磁环的Ae约为122mm2。

虽然,要找到此磁截面的磁芯并不难,但电感的高度由於应用要求被限制在25mm。

因此,经过一番对磁环和筒管规格说明书仔细搜索之後,选择了EER3542,它的Ae为107mm2,AW为154mm2,得到AP约为16500mm4。

中心臂上气隙的近似长度s 是∶其中AL,0是无气隙磁芯的AL(查磁芯规格书),有气隙的磁芯的AL是1mH/1242=65nH。

如果後两个值的单位是nH,Ae 的单位是mm2,那麽气隙长度s 的单位是毫米。

在这次设计中,气隙长度约2 毫米。

3.3 Q1和D1因为最高额定输入电压是265VRMS,Q1的最大漏极电压为500V 似乎足够了。

但是建议使用一个额定电压为600V的MOSFET,因为经验显示这个600V MOSFET,能够承受浪涌测试,根据无损坏IEC61000-4-5标准,而500V类型则需要额外的浪涌电压限制器。

同样,这对於Boost二极管也是有效的。

这是因为电解质电容C5能够吸收大量能量,保护一个600V 器件,而不是500V器件。

Q1和D1的峰值电流和通过L1 的峰值电流是相同的,即4.5A,而Q1的RMS 电流为∶D1的RMS 电流为∶尤其对於MOSFET,低功耗和峰值电流是选择某些器件的重要考虑因素。

经过一番计算,选择了一个最大RDSon约为0.45Ω@100℃的SuperFetTM FCP16N60。

Q1 的总功耗分成传导功耗和开关功耗。

传导功耗如下∶开关损耗进一步分为,由於源漏电容(加上寄生电容的,例如L1 和PCB)放电导致的功耗和由於开关过程中电流和电压重叠带来的功耗,以及D1反向恢复带来的功耗。

所有这三项都无法确切了解,但可以根据下面的表达式估计∶FCP16N60的COSS,eff是110pF,而杂散电容Cext估计为150pF。

50ns的交叉时间tcrossover 是一个合理的估计值,并且得到测量确认。

二极管反向恢复导致的功耗预计为2W。

最终,Q1 的总功耗是∶因此Q1散热器的最大热阻约为10℃/WD1传导功耗的计算和BR1相类似∶D1开关功耗估计在2W左右,得到试验确认。

二极管的总功耗为给二极管使用的一个合适散热片的热阻应该不超过25℃/W。

4、双管正激变换器图2∶正激变换器示意图图2是双管正激变换器。

在这个应用中,FAN4800的PWM部分运作在电流模式,控制一个双管正激变换器。

这个拓扑基本上和熟知的单管正激变换器相同。

但它的优点是,两晶体管中的任何一个漏极电压只需要等於PFC的直流输出电压。

相比之下,标准正激变换器需求两倍大小的漏极电压,差不多800-900V。

此外,对於双管正激变换器,变压器构造简单,便宜,因为它不需要复位绕组。

当然有缺点需要考虑∶使用的拓扑需要两个晶体管,其中一个的门极电压悬浮于高电压。

如果细看,这些问题都不是大问题,因为功率MOSFET 的导通阻抗正比於漏极电压,为2至2.5 倍。

这意味著两个晶体管,只须有一半耐电压同时只有一半导通阻抗,即可使用更少的矽面积得到相同的传导功耗。

所以两种解决方案的成本是相似的。

因为使用了门极驱动器FAN7382,第二缺点也没有了。

这个器件包含一个完全独立的低端和高端门极驱动器。

这是很重要的,因为在双管正激变换器中,所有的晶体管同时关闭和导通。

当导通时,能量转移到次级;当关闭时,变压器经复位二极管D217和D218被去磁化。

图3∶AN-4134电子数据表引用对於双管和单管正激来说,主要设计等式完全相同,所以飞兆半导体应用说明AN-4137及其相关的电子数据表,如图3所示 [2],可用於考虑一些变化後的计算。

由於变换器直流电压由一个PFC预调节器产生,填入电子数据表的线路电压须选择适当,以获得正确的直流电压。

在这个应用中,284VRMS用於两个最低和最高线电压。

线频率并不影响计算。

接下来,考量直流母线电容大小(例如1000uF),因为使用到PFC,实际直流母线电容器两端的纹波电压相当小。

最高占空比也须严格小於0.5,允许变压器去磁化。

为了留下一些馀量,最大占空比选择为0.45。

由於已经有了单个晶体管正激的表单,np/nr比(Excel:Np/Nr)和最大额定MOSFET电压可以忽略。

输出滤波电感L5的电流纹波因素Krf 的选择,通常是一个反复的过程。

一方面,想使这个因素尽可能小,以减少初级和次级电流的RMS 和峰值。

另一方面,L5 不得过大。

因此,开始假设一个纹波因素,然後检查L5的配置结果是否可以接受。

在这次设计中,KRF值为0.21,L5的计算电感为40μH。

计算的绕组将完全填补一个EER2828磁环。

根据选择的KRF,通过Q205和Q206的电流的RSM和峰值如下∶如前所述,最高漏极电压稍微大於400V足够了,能有效使用额定电压为500V MOSFET。

其次,输出建议使用600V MOSFET,而不是一个浪涌电压限制器。

SUPERFETTM FCP7N60具有下列数据功耗能够很容易得到,与计算Q1功耗类似。

这里给出了一个功耗上限值。

在实际中,励磁电感的谐振和节电输出电容使电压降低到400V 以下,Q206的功耗当然是完全相同的。

每一个MOSFET需要一个最大热阻为20℃/W的散热器。

电流感应电阻R233的值是这样选择的,最大峰值电流可能超过1.6A。

如果电阻值为0.56Ω,这个条件实现了但没有馀量。

出於这个原因,选择0.47Ω电阻,此时最大峰值电流为2.1A。

图4∶Buck变换器24V-12V的示意图电感L5,变压器,二次整流和滤波,都可以根据Excel表计算。

在工作表给出的变压器AP等式的帮助下,为变压器选择了一个EER2834磁环,绕组数据可在附录中查到。

整流二极管的反向电压计算值是57V,但是推荐使用一个指定最大电压至少100V的整流二极管。

为了减少传导和开关损耗,最好使用肖特基二极管。

RMS电流负载在电子数据表中给出,可以用来确定二极管;实际选择的是两个FYP2010DN二极管。

相关文档
最新文档