最优化—基于matlab的共轭梯度法
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
共轭梯度算法程序:
function f=conjugate_gradient(x0,t) x=x0;
syms xi yi a
f=(xi-2)^2+(yi-4)^2;
fx=diff(f,xi);
fy=diff(f,yi);
fx=subs(fx,{xi,yi},x0);
fy=subs(fy,{xi,yi},x0);
fi=[fx,fy];
n=0;
while double(sqrt(fx^2+fy^2))>t s=-fi;
if n<=0
s=-fi;
else
s=s1;
end
x=x+a*s;
f=subs(f,{xi,yi},x);
f1=diff(f);
f1=solve(f1);
if fi~=0
ai=double(f1);
else
break
x,f=subs(f,{xi,yi},x),n
end
x=subs(x,a,ai);
f=xi-xi^2+2*xi*yi+yi^2;
fxi=diff(f,xi);
fyi=diff(f,yi);
fxi=subs(fxi,{xi,yi},x);
fyi=subs(fyi,{xi,yi},x);
fii=[fxi,fyi];
d=(fxi^2+fyi^2)/(fx^2+fy^2);
s1=-fii+d*s;
n=n+1;
fx=fxi;
fy=fyi;
end
x,f=subs(f,{xi,yi},x),n
运行结果为:
>> conjugate_gradient([0 0],0.0001) x =
0.2500 -0.2500
f =
0.1250 n =
10 ans =
0.1250